
Memory-EquippedQuantum Architectures:
The Power of Random Access

Jonathan M. Baker
jmbaker@uchicago.edu
University of Chicago

David I. Schuster
david.schuster@uchicago.edu

University of Chicago

Frederic T. Chong
chong@cs.uchicago.edu
University of Chicago

ABSTRACT
Resonant cavities can be used to extend conventional superconduct-
ing transmon-based quantum architectures by adding a few bits of
quantum memory to each transmon. Such architectures leverage
the long coherence times of cavities creating a “memory-equipped”
quantum architecture (MEQC) extending the amount of quantum
state a machine can manipulate. However, random access to data
will have the greatest effect on improving machine performance.
Existing transmon architectures are locally connected and perform-
ing gates between distant qubits requires expensive pairwise swaps
for execution. Added swap operations increase the probability of
errors by increasing both operation count and execution time.

We develop a complete compilation framework with heuristics
to optimize for the load-store execution model of MEQC. We re-
duce the gate count and depth of compiled quantum programs by
an average 1.62x and 1.70x, respectively compared to traditional
transmon architectures. Based on small noise simulations, MEQC
architectures outperform on programs as small as 10 qubits, and in
general the probability of no gate errors, dominant in NISQ era, is
greater on MEQC. If idle errors become more significant, MEQC
will have a greater advantage.

We concludewith an exploration of different architectural choices,
such as transmon-transmon connectivity and cavity size, and ex-
plore their effect on the performance of the proposed architecture.
While we expect due to small initial physical experiments that we
have O(10) modes per cavity, the particular choice of cavity size
in this 2.5D architecture is an important one. For example, when
coherence times are high and we can withstand greater serializa-
tion it becomes more advantageous to favor larger cavity sizes. In
the early stages of these devices, we expect transmon-transmon
interactions to be potentially more expensive than transmon-cavity
interactions. Our proposed solution can tolerate potentially up to
12x worse interconnect error.

CCS CONCEPTS
• Computer systems organization → Quantum computing.

KEYWORDS
quantum computing, compilers, computer architecture

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PACT ’20, October 3–7, 2020, Virtual Event, GA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8075-1/20/10. . . $15.00
https://doi.org/10.1145/3410463.3414644

ACM Reference Format:
Jonathan M. Baker, David I. Schuster, and Frederic T. Chong. 2020. Memory-
Equipped Quantum Architectures: The Power of Random Access. In Pro-
ceedings of the 2020 International Conference on Parallel Architectures and
Compilation Techniques (PACT ’20), October 3–7, 2020, Virtual Event, GA, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3410463.3414644

1 INTRODUCTION
In the last few years, quantum computing has taken major steps
forward towards becoming practical, useful for more than distant,
untenable algorithms [11, 25]. More and more devices are becoming
available with on the order of 10s of quantum bits, albeit noisy. One
of the most important emerging problems is scalability of current
hardware in order to execute interesting problems in the current,
Noisy-Intermediate Scale Quantum (NISQ) [22], era with the goal
to demonstrate realizable quantum advantage or even quantum
supremacy [3].

There are several competing technologies for the underlying
implementation of qubits such as trapped ions or superconduct-
ing circuits. Each of these technologies present unique challenges
to scalability, at least without error correction. For example, in
superconducting technology with limited connectivity between
hardware qubits, numerous additional operations called SWAPs
must be added to an input program in order to execute it. For ex-
ample, in Linear-Nearest-Neighbor and a 2D grid topologies on
the order of thousands of additional operations must be inserted
for execution, many of which are derived from increased average
distance between qubits, as shown in Figure 1. With so many ad-
ditional operations, the input programs are almost guaranteed to
fail. These added operations dramatically increase the execution
time of these programs, moving far beyond the coherence limit of
current qubits (approximately the lifetime of qubits).

Past efforts have focused primarily on the compilation problem to
these small, near-term devices, such as variation aware mappings
or SWAP reductions [12, 18, 19, 28, 29]. These techniques have
improved the ability of programs to succeed on currently available
devices, but do not provide a path to scalability. There are inherit
limits in current quantum architectures, such as gate error rates or
qubit coherence times. Even with improved error rates or longer
qubit lifetimes, the large gate and depth overheads induced by
limited connectivity are too cumbersome.

We instead propose a new architecture, Memory-Equipped Quan-
tum Computing (MEQC). We use superconducting qubits equipped
with resonator cavities which can store qubits in their modes. Re-
cently, small, physical prototypes of this have been realized and
experimented with; however, the architectural implications of this
new technology are almost entirely unexplored. For example, in
the original experiments, the proposed benefit of this technology
was to store less frequently used qubits in long coherent memory.

Session 6: Domain/Application-Specific Hardware/Software PACT '20, October 3–7, 2020, Virtual Event, USA

387

https://doi.org/10.1145/3410463.3414644
https://doi.org/10.1145/3410463.3414644

20 40 60 80 100

0

10

20

30

Num. Qubits

Av
g.
Q
ub

it
D
is
t.

Avg. Qubit Distance In Some Devices

LNN
2D

MEQC-2D

Figure 1: Average qubit distance on several instances of near-
term target architectures. Average qubit distance approxi-
mates how many SWAPs are necessary to interact an ar-
bitrary pair of qubits. LNN architectures scale extremely
poorly in this metric resulting in a large number of added
gates and depth. 2D andMEQC architectures scalemuch bet-
ter. We show this translates into reduced number of gates
and reduced depth as we scale into the future.

Qubits stored in the modes of the attached cavity are expected to
have an order of magnitude longer coherence times than typical
transmon coherence times. This directly will reduce the frequency
of idle errors on qubits which are unused. Idle errors are due in-
ability to isolate qubits perfectly from the environment while still
being able to manipulate them. In other superconducting devices,
all qubits are roughly equally subject to these errors. In the pro-
posed architecture, stored qubits are more isolated, resulting in
protection from these idle errors.

This benefit is secondary to another hugely important feature
for near- and intermediate- term and that is connectivity. In the
proposed architecture, the transmon-cavity technology enables a
gate to be applied, via transmon mediation, to any pair of qubits
stored in the same cavity. This random access to stored qubits
greatly improves local connectivity between qubits in these devices.
This translates into significant reduction in compilation overhead,
reducing the need for large numbers of SWAPs, but only if the
compilation procedure properly accounts for these well connected
regions. While experimentalists anticipated the coherence times of
cavities to be the critical advantage, we find in our proposed MEQC
architecture the primary benefit is this random access. For our pro-
posed architecture, we provide a complete compilation framework
transforming input quantum circuits to ones executable in hard-
ware utilizing transmon-local memory. Our framework explicitly
maximizes the advantages of both of these features to minimize
compilation overhead.

Neither of these gains come for free. In the proposed architec-
ture, in order to execute a gate we must first load the qubit from
memory into a transmon which can be manipulated. Therefore,
operations on this architecture require on average two additional
operations in the form of Loads and Stores. For small programs, this
architecture will require more operations than others. Furthermore,
since there is only a single operational transmon per cavity, this
prevents gates from being executed in parallel on qubits located
in the same cavity. The gains of this new architecture in terms of

scalability outweigh these downsides, specifically by reducing the
number of total operations required to execute input programs.

In summary, we make the following contributions:
• We introduce a new scalable quantum architecture, MEQC,
which takes advantage of recent quantummemory-like hard-
ware increasing local qubit connectivity and protects infre-
quently used qubits from idle errors.

• We develop a full compilation framework for MEQC devices
which includes heuristics to maximize time spent in long
coherent memory when unused and heuristics for mapping
and routing of qubits during execution which minimizes the
total number of SWAP operations inserted.

• We demonstrate our system reduces required gate and depth
overhead substantially over other competitive options and
subsequently increases the chance to succeed.

• We analyze different architecture-specific design choices
such as number of modes per cavity, and top-level transmon
connectivity. Furthermore, our system is able tolerate up to
12x worse transmon-transmon interconnect error which is
expected to be the dominant source of error in systems utiliz-
ing transmon-cavity technology in near-term. We conclude
our architecture presents a path towards scalability in the
near and intermediate term.

2 BACKGROUND
2.1 Quantum Bits and Quantum Logic
In classical computing, bits exist as either 1 or 0. The quantum
analog is the quantum bit, or qubit. Unlike the classical bit, the
qubit may exist in a superposition of the 0 and 1 state, written as |0⟩
and |1⟩. That is, a qubit exists in a quantum state |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩
with 𝛼, 𝛽 ∈ C. When a qubit is observed, however, it collapses into
a classical bit, observed only ever as a 0 or 1. The outcome of this
observation is probabilistic: we observe 0 with probability |𝛼 |2 and
observe 1 with probability |𝛽 |2. We call these elements |0⟩ and |1⟩
the computational basis states. When we extend to multiple qubits
we have exponentially many basis elements. For example, in a two
qubit system the state can exist in a superposition of the states
|00⟩ , |01⟩ , |10⟩ and |11⟩.

In classical logic, bits are manipulated via gates which take many
bits and output a single output bit which can then be fanned out if
needed, that is copies can be made. In contrast, in quantum logic
every operation performed has the same number of inputs and
outputs and we cannot make copies of our data, i.e. we have a so-
called no cloning theorem. Furthermore, these operations must be
reversible. Multi-qubit operators, for example the controlled NOT
gate, or CNOT can be used to achieve quantum entanglement.

On near-term devices there is limited connectivity, that is only
certain pairs of physical qubits may interact. In order to interact
distant qubits, we can move qubits around via sequences of SWAP
operations. These SWAPs are typically decomposed as three CNOT
gates, which when two qubit gate error rates are around 1% on
these devices can severely limit what can successfully be executed.

2.2 Near-Term Quantum Architectures
In the last several years, a number of competing technologies have
emerged such as superconducting qubits and trapped ions. These

Session 6: Domain/Application-Specific Hardware/Software PACT '20, October 3–7, 2020, Virtual Event, USA

388

Figure 2: Both current and the proposed MEQC device. On the left is a LNN device where adjacent superconducting transmons
are coupled enabling two qubit interactions. In the center is a 2D mesh architecture common among current manufacturers.
On the right is the proposed MEQC architecture with transmons arranged in a line. Each transmon has an attached cavity
which stores in memory multiple qubits. To operate on the qubits, they must first be loaded into the transmons.

have been physically realized in systems containing on the order
of 10s of qubits [2, 16, 23]. These devices have limited connectivity
with qubit connections specified by an underlying topology. We
represent this connectivity as a graph with nodes corresponding to
physical qubits and edges indicating valid two-qubit interactions.
Some near-term topologies are found in Figure 2. For superconduct-
ing technology, common underlying topologies are Linear Nearest
Neighbor (LNN) and 2D Mesh connectivity. We use these two styles
of architectures as baselines to compare the proposed memory-
equipped superconducting architecture (MEQC).

2.3 Compilation to Quantum Architectures
In the near-term, quantum programs are typically specified as quan-
tum circuits. In order to execute this program, the circuit is decom-
posed into only single and two qubit gates. Then, the circuit level
qubits are mapped to the physical qubits of the device. Because
movement operations are expensive, qubits which interact often in
the circuit should be placed in close proximity. For each operation
specified in the circuit, if the qubits are already adjacent, nothing
additional needs to be done. If they are not adjacent, a sequence
of SWAP operations are inserted into the circuit to as to make the
qubits adjacent on hardware. This process is known as routing.

Due to error, it is critical to minimize the number of added oper-
ations to circuits, in this case these SWAP operations. Special care
should be taken to map qubits to hardware in an effective manner.
It is imperative to compile input programs in a way which requires
the least amount of additional overhead in terms of number of gates
and in added depth (roughly the length of the critical path from
start to end of a program).

2.4 Errors on Quantum Devices
Quantum devices in the NISQ era are subjected to fairly significant
error rates, somewhere on the order of 1 per 100-1000 operations
[15, 27]. As such, the output of a quantum computation may be
erroneous and it is common for a program to be run thousands
of times to collect a distribution of outputs. In an ideal case, the
correct answer appears with substantially higher probability than
all of the other wrong answers.

There are a variety of different types of errors which can occur
during the execution of a program [21]. The first are coherent errors
such as bit-flip or phase-flip errors. These typically occur due to an
error in the application of the gate to the qubits. The one and two
qubit error rates of the device approximate how often this type of

error occurs. These gates are easier to model and we expect this
class of errors to be dominant in the near-term. Another type of
error is decoherence errors, such as amplitude damping. This type
of error is due to interaction with the environment; physical qubits
are often kept isolated from the environment to avoid these types of
decoherence errors, however, perfect isolation cannot be achieved
because in order to do something useful we need to manipulate the
qubits. The T1 times, or coherence times, of qubits and the amount
of time it takes to execute a gate approximate how frequently these
types of errors will occur. A good quantum device has long coher-
ence times and low error rates. Finally, one other common error
is crosstalk which occurs when multiple gates (usually two qubit
gates) occur in parallel on adjacent sets of qubits. Unfortunately,
crosstalk error is hard to approximate in larger systems, but it is sus-
pected crosstalk in our proposed system is no worse than crosstalk
in current superconducting systems.

We are interested in designing a new type of scalable quantum
architecture, specifically, one with long coherent memory attached
to computational transmon qubits. As such we are unable to exe-
cute our benchmarks on realizations of these larger-scale devices.
Instead, we model error in this and other competing architecture
and use simulation results to determine performance. We use the
Kraus operator formalism and density matrix simulation allowing
us to inject noise channels into an executable circuit specific for a
target architecture and approximate how well, here by measuring
fidelity, the circuit performs compared to the ideal no noise version.

Simulating quantum systems is hard, requiring a large amount
(exponential) of memory [13], and we are only able to do this for
small benchmarks. An alternative approach is to use the probabili-
ties of errors and for every operation in the circuit randomly draw
if an error occurs or not. A successful program is one in which no
errors are drawn, that is we assume any error causes the program to
fail. In practice, this isn’t always the case but this method provides
a simple way to underestimate the probability of success (overesti-
mate the probability of failure) for larger circuits on the order to 50
to 100 qubits. We use this worst-case estimation for programs with
many qubits which even with the largest supercomputers would
be unable to simulate.

3 A MEMORY-EQUIPPED QUANTUM
ARCHITECTURE

In this section, we will present the proposed architecture termed
“Memory-Equipped Quantum Computing” due to long coherent

Session 6: Domain/Application-Specific Hardware/Software PACT '20, October 3–7, 2020, Virtual Event, USA

389

|Ψ1⟩ 𝐻 • 𝐻

|Ψ2⟩ 𝐻 • 𝐻

|Ψ3⟩ 𝐻 • 𝐻

|Ψ4⟩ 𝐻 𝐻

Mapping
=======⇒ |Ψ3⟩ |Ψ1⟩ |Ψ4⟩ |Ψ2⟩ Routing

======⇒

|Ψ1⟩ 𝐻 • × • × 𝐻

|Ψ2⟩ 𝐻 • 𝐻

|Ψ3⟩ 𝐻 × × 𝐻

|Ψ4⟩ 𝐻 𝐻

Figure 3: Compiling to near-term devices is a multi-step process. First we map the logical, circuit qubits to the physical hard-
ware qubits. Based on this placement and the input program, we insert SWAPs in order to interact distant qubits. Here we
compile a simple quantum program, Bernstein-Vazirani, to a 4 qubit LNN architecture. Quantum programs, like the input
program on the left are a sequence of gates specified on qubits. In this example, based on the given mapping, a pair of SWAPs
are required to execute a CNOT between |Ψ3⟩ and |Ψ4⟩.

resonator cavities which resembles memory attached to each of
the transmon, computational qubits. Recently, some key hardware
components have been physically realized [14, 20]. These initial
experiments are significant but limited in scope and their archi-
tectural implications remain unexplored. We present an architec-
ture which takes advantage of these memory-like components.
These components have several proposed benefits but also have
technology-dependent constraints.

Our proposed architecture, while focused on superconducting
qubit technology can be extended readily to other technologies
such as ion trap devices. As we will see, our cavity model well
approximates the operation of an ion trap device, specifically in
connectivity. Furthermore, inter-trap communication technology is
being demonstrated and is analogous to the transmon-transmon in-
teractions presented here [6, 26]. As such, our algorithms extend to
these other technologies, though would require some modification
regarding Loads, Stores, etc. which are technology specific.

We focus on the specific technology of [20] which realizes a
multi-mode quantum “memory,” but in general we naturally support
other hardware components which are memory-like. For multi-
mode quantum memory, at a high level qubits stored in a mode of
a resonator cavity which have long coherence times (T1), about
an order of magnitude longer than traditional superconducting
qubits. When qubits are unused or idle they can be well isolated
from the environment in these cavities, reducing the frequency of
decoherence errors occurring.We consider these cavities as a sort of
attached quantum memory to the actual computational qubits, here
realized as transmons. These transmons in theory can be strung
together or connected to each other in configurations similar to
other superconducting technology.

The qubits stored in memory cannot be operated on except by
special operations called Load and Store (transmon-mode iSWAPs)
which essentially transfer the qubit stored in memory to the parent
transmon. Therefore, in order to perform a single qubit operation
on a qubit 𝑄1 it must first be loaded into a transmon, the operation
then is enacted, and then 𝑄1 is replaced back into memory. In
order to perform any action on the stored qubits, an additional
two gates must be inserted. However, the modes of the resonator
can be accessed like random access memory meaning this Load
and Store pair is all that is needed. Besides improved resistance to
decoherence errors, our architecture has the added benefit of full
connectivity between qubits within the same cavity. This means
we can interact pairs of qubits in the same cavity without needing

to add a large number of SWAPs as we would typically. These
transmon-resonator pairs are strung together as in Figure 2.

This does not mean SWAPs are unnecessary altogether. SWAPs
are still required in order to interact qubits in different cavities. To
interact pairs of qubits located far away, we first load both qubits
into the top level transmons. Then we can swap them through a
path of connecting transmons at the top level. Once they are co-
located in the same cavity, we can perform a two qubit interaction
as usual. This architecture reduces the average distance between
any pair of qubits meaning reduction in SWAP overhead. This of
course comes at the cost of having a required a Load and Store for
every operation.

As an example, consider an input program as in Figure 4. On
other near-term devices, this program could executed as is, with no
additional operations (depending on the chosen gate set the CNOT
may need to be converted). On this device, we require no SWAPs
but several sets of Loads and Stores.

One other notable difference is the scale of the proposed devices.
Our architecture would require many cavities, which occupy a
much larger volume (though still small) than transmons. This leads
to the need for unique ways of connecting the transmon qubits
which may result in worse interconnect error rates. We explore our
sensitivity to this later.

3.1 MEQC Compilation: Input Program to
Executable

We now present our compilation framework which takes as input
a program specified as a quantum circuit and outputs a new circuit
executable on our architecture, specifically maps program qubits to
modes of the hardware cavities and inserts the requisite Loads and
Stores as well as any SWAPs that may be necessary to move qubits
between cavities. For all of the steps presented below we assume
the input circuit has been decomposed into a suitable gate set (the
set of gates executable on the device) consisting of only one and
two qubit interactions.

From this decomposed circuit, we may produce the interaction
graph of the circuit, where nodes in this graph correspond to the
circuit qubits and the edges are weighted by the number of inter-
actions between the pairs of qubits. Specifically, if the nodes of
the interaction graph are 𝑞1, ..., 𝑞𝑛 then𝑤 (𝑞𝑖 , 𝑞 𝑗) is the number of
interactions between 𝑞𝑖 and 𝑞 𝑗 in the input program.

Session 6: Domain/Application-Specific Hardware/Software PACT '20, October 3–7, 2020, Virtual Event, USA

390

|Ψ1⟩ 𝐻 •

|Ψ2⟩ 𝐻

Compilation
=========⇒

|𝑇 ⟩ 𝐿 𝐻 𝑆 𝐿 𝐻 𝑆 𝐿 • 𝑆

|𝑐1⟩ 𝐿 𝑆 𝐿 𝑆

|𝑐2⟩ 𝐿 𝑆

Figure 4: Compiling a small program to a MEQC device. In this case we map the input qubits |Ψ1⟩ and |Ψ2⟩ to one of the two
available cavity modes. When executing the gates, we first execute a Load to move the qubit to the connected transmon. The
gate is then executed and the qubit is returned to its original mode via a Store. We represent Loads as 𝐿 − 𝐿 and Stores as 𝑆 − 𝑆 .

3.2 Initial Qubit Placement via Graph
Partitioning

The first step in the compilation process is to generate a mapping
from circuit level qubits to hardware qubits. In this case, we want
to map the qubits to modes of the available resonator cavities. In
order to avoid needing excessive SWAPs, we want to map qubits
which frequently interact to the same cavity. Because there is es-
sentially full connectivity between qubits stored in the same cavity,
by placing frequently interacting qubits together we circumvent
the need for SWAPs.

Because each cavity is represented as a fully connected graph
in the underlying topology, we can perform initial placement by
partitioning the interaction graph such that we minimize the num-
ber of edge crossings between partitions. Specifically, if we have 𝑘
many cavities with exactly 𝑝 resonant modes, we want to partition
the interaction graph into 𝑘 clusters with maximum cluster size
of 𝑝 . We do not require a minimum size; if there are disconnected
components it will usually be worse to force clusters to be full. We
allow for clusters to be non-full by adding in dummy nodes which
have weight zero to every real qubit. This problem is well-studied,
and we adapt a version of a heuristic Overall Extreme Exchange to
do this initial partitioning [17].

Alone, this is insufficient. We want to map the clusters to the
physical cavities. If these cavities were fully connected (i.e. every
transmon was connected to every other transmon), then every
assignment of clusters to cavities is the same, that is in order to
interact a pair of qubits located in different cavities we would need
exactly one SWAP. However, this is not in general the case and
the transmon connectivity may be much less well connected and
therefore if clusters which interact frequently are distant we may
need many more SWAPs. To avoid this, we want to locate these
cavities nearby in terms of the device topology.

To handle this, we first choose any mapping of clusters to cav-
ities. Let 𝑃1, ..., 𝑃𝑛 be the partitions produced by the partitioning
algorithm, which may be empty, and let 𝐶1, ...,𝐶𝑛 be the cavities of
the machine. These cavities have a distance between them 𝑑 (𝐶𝑖 ,𝐶 𝑗)
give by the shortest path distance in the device topology. This initial
mapping is an assignment of partitions to cavities, a bijective map
𝜑 . During the following process, the qubits in the cavities remain
fixed and therefore the weight between partitions is fixed and is
given as

𝑊 (𝑃𝑖 , 𝑃 𝑗) =
∑
𝑞𝑖 ∈𝑃𝑖

∑
𝑞 𝑗 ∈𝑃 𝑗

𝑤 (𝑞𝑖 , 𝑞 𝑗)

where if𝑊 is large then the partitions 𝑃𝑖 and 𝑃 𝑗 should be located
nearby each other.

We then repeat the following process. First we compute the gain,
𝑔, obtained by swapping pairs of adjacent partitions. We want to
compute if by swapping two partitions they in general get closer
to partitions they have a large weight with while simultaneously
not getting too far from partitions they were already close to with
high weight. Specifically, for every pair of partitions 𝑃𝑖 , 𝑃 𝑗 with
𝑑 (𝜑 (𝑃𝑖), 𝜑 (𝑃 𝑗)) = 1 we compute the following “forward gain” and
“backward gain”

𝑔𝑓 (𝑃𝑖 , 𝑃 𝑗) =
∑
𝑃𝑘

𝑑 (ℓ𝑗 ,ℓ𝑘)<𝑑 (ℓ𝑖 ,ℓ𝑘)

𝑊 (𝑃𝑖 , 𝑃𝑘) −𝑊 (𝑃 𝑗 , 𝑃𝑘)

𝑔𝑏 (𝑃𝑖 , 𝑃 𝑗) =
∑
𝑃𝑘

𝑑 (ℓ𝑗 ,ℓ𝑘)>𝑑 (ℓ𝑖 ,ℓ𝑘)

𝑊 (𝑃 𝑗 , 𝑃𝑘) −𝑊 (𝑃𝑖 , 𝑃𝑘)

where ℓ𝑖 = 𝜑 (𝑃𝑖). Then the net gain is given as

𝑔(𝑃𝑖 , 𝑃 𝑗) = 𝑔𝑓 + 𝑔𝑏
We choose the pair 𝑃𝑖 , 𝑃 𝑗 with 𝑔(𝑃𝑖 , 𝑃 𝑗) > 0 maximized and

swap them. Specifically, we set 𝜑 (𝑃𝑖), 𝜑 (𝑃 𝑗) = 𝜑 (𝑃 𝑗), 𝜑 (𝑃𝑖) and
repeat until no more swaps can be made. This heuristic helps locate
strongly weighted partitions together on the topology in order to
reduce needed SWAPs to interact qubits between them.

3.3 Scheduling and Routing: Inserting Loads,
Stores, and SWAPs

In this section, we will briefly describe the baseline method for com-
pilation to other current proposed scalable architectures specifically
the LNN and 2D mesh, the benchmarks we test on, and methods of
evaluation.

In other common quantum architectures, we only need to insert
SWAPs in order to make interacting qubits adjacent. Here, we
must also insert Loads and Stores. For an input circuit, we define a
moment as the maximal set of operations which can be performed
simultaneously, or in parallel. We assume all input programs have
operations occurring as soon as possible. In each moment, there
are operations which can already be executed, that is all one-qubit
operations and all two-qubit operations for which both qubits are
co-located in the same cavity. We execute these first, in an arbitrary
order.

For each single qubit operation we insert a Load, moving the
qubit into the cavity’s transmon, execute the gate on the transmon,
then Store the qubit in it’s original location in the resonator. For
a two qubit controlled gate, we insert a Load to move the control
into the transmon, we execute the gate, and then Store the control
in its original location.

Session 6: Domain/Application-Specific Hardware/Software PACT '20, October 3–7, 2020, Virtual Event, USA

391

QAOA QFT-Adder Generalized-Toffoli Rand-0.4 Rand-0.6
Num. Qubits 10 20 50 10 20 50 9 19 49 10 20 50 10 20 50
Num. of Gates 290 580 1450 45 165 975 119 289 799 19 72 483 24 127 757
Circuit Depth 125 203 276 14 29 74 52 73 95 6 11 27 7 17 37

Table 1: Benchmarks and some of their properties.

Model 𝑝1 𝑝2 Δ1 Δ2 Δℓ 𝑇1 𝑇1,𝑡 𝑇1,𝑐

SC-Current 0.001 0.01 100 ns 300 ns - 73 𝜇s - -
MEQC-Current 0.001 0.01 100 ns 250 ns 150 ns - 150 𝜇s 900 𝜇s

Table 2: Error model details for current systems [15, 20].

Operations which cannot be executed in this moment are ones in
which the two qubits are located in different cavities, call them 𝑞0
and 𝑞1. SWAPs are inserted which modify the qubit mapping. We
determine the sequence of SWAPs based on a heuristic algorithm
with two goals. The first is to minimize the total number of SWAPs
inserted. The second is to displace qubits in the cavities along the
path from 𝑞0 to 𝑞1 which are least attached to their current location,
i.e will interact the least in the future with qubits in its current
cavity.

We begin by computing an updated interaction graph for the
program, considering only future moments, updating edge weights
of the original interaction graph to be only the number of future
interactions between pairs of qubits, 𝑤 (𝑞𝑖 , 𝑞 𝑗). Let 𝑑 (𝐶𝑖 ,𝐶 𝑗) be
the distances between cavities on the device, as before. Let 𝜆 be
a map from qubits to cavities. The distance between qubits 𝑞0, 𝑞1
is then given as 𝑑 (𝜆(𝑞0), 𝜆(𝑞1)). Then, for every cavity 𝐶𝑖 with
𝑑 (𝜆(𝑞0),𝐶𝑖) = 1 and 𝑑 (𝐶𝑖 , 𝜆(𝑞1) < 𝑑 (𝜆(𝑞0), 𝜆(𝑞1)) we compute the
following gain to swap 𝑞0 with some element 𝑞𝑡 ∈ 𝐶𝑖

gain(𝑞0, 𝑞𝑡) =
∑

𝑞𝑖 ∈𝐶𝑖\𝑞𝑡
[𝑤 (𝑞0, 𝑞𝑖) −𝑤 (𝑞𝑡 , 𝑞𝑖)]+∑

𝑞𝑖 ∈𝜆 (𝑞0)\𝑞0
𝑤 (𝑞𝑡 , 𝑞𝑖)

In the same way we compute gain(𝑞1, 𝑞𝑡) for 𝑞𝑡 ∈ 𝐶𝑖 for every
𝐶𝑖 with 𝑑 (𝜆(𝑞1),𝐶𝑖) = 1 and 𝑑 (𝐶𝑖 , 𝜆(𝑞0)) < 𝑑 (𝜆(𝑞1), 𝜆(𝑞0)). This
captures how much is gained (or lost) by making a particular swap
of qubits between cavities while maintaining we only consider
cavities strictly closer to the target qubit. This ensures we always
get closer to our target. We choose to swap the qubits with the
greatest gain, and then repeat. Notice we allow either 𝑞0 or 𝑞1 to be
moved at each step, so the qubits may meet in some cavity between
them. The SWAPs are executed in order by Loading both qubits
to be swapped into their transmons, execute the SWAP between
transmons and Store the qubits back into their new cavity. This may
introduce redundant Loads and Stores, but they can be eliminated
via an optimization procedure (Sec 3.4).

The gain value above can be modified to favor swapping with
cavities which are closest to the target, however, we choose this
method because it allows us to sometimes anticipate future interac-
tions of qubits eliminating the need for some future SWAPs. Once

all the operations of a moment have been executed, we move to the
next moment and perform the same procedure.

3.4 Optimizations
The above algorithms produce a valid executable of an input circuit,
however with more gates than necessary due to an invariant which
requires every operation to be initiated with a Load and terminated
with a Store. For example, if we wanted to execute two single qubit
gates on the same qubit in sequence we would need to insert two
Loads and two Stores resulting in a total of 6 gates. We can eliminate
redundant Loads and Stores by simply checking if a Store from a
transmon to a cavity mode is followed immediately by a Load from
the same mode to the same transmon.

Another important optimization is to ensure that qubits are
loaded from memory only immediately when they are being used.
Because T1 times are much lower in the transmon, we do not want
any qubit to idle there and instead want to make sure it persists
in a cavity for as long as its unused to protect it from decoherence
errors. We perform both of these optimizations in our compilation
process.

3.5 Fundamental Trade Offs
The proposed architecture has several fundamental trade offs dis-
tinct from currently operational architectures. The first is the re-
quirement for qubits to be loaded from memory in order to be
operated on. This forces a greater degree of sequentialism since
only a single operation per cavity can be performed at once. This
also means, for every operation we need approximately 3 times as
many gates, the Load, the Store, and the gate itself.

This architecture has several benefits which outweigh these costs
as we scale to larger devices. When qubits are not being operated
on they are stored in memory with coherence times substantially
longer than the computational qubits, the transmons. The cavities
are random access for the transmon, providing full connectivity
between qubits in the same cavity and reducing the average distance
between qubits on the device meaning many fewer SWAPs required.
Parallelism is still achievable in this architecture. Each transmon-
cavity pair operates independently; a well-partitioned algorithm
with some degree of parallelism will still be executed in parallel.

Session 6: Domain/Application-Specific Hardware/Software PACT '20, October 3–7, 2020, Virtual Event, USA

392

3.6 Limitations and Potential
The underlying technology which serves as a basis for our proposed
architecture is less developed than currently available commercial
hardware like that of IBM or Rigetti. However, the current limits
such as greater errors, are not fundamental and the technology is
expected to evolve with similar trajectory of other current hardware.
Our goal is to demonstrate the power of the unique advantages
provided by equipping transmons with localized memory. In order
to evaluate this, we experiment with more speculative error rates
and coherence times which are believed to reflect the potential
of the underlying hardware. One possible important advantage
not evaluated here is consistency. Current manufacturers have
struggled to scale current designs beyond handfuls of transmon
qubits with consistently low error rates. With MEQC, obtaining
the same number of logical qubits requires fewer total transmons
which may help in reducing overall variability by manufacturing a
smaller number but higher quality set of transmons. MEQC, while
currently in developmental stages, is not fundamentally limited.

4 EXPERIMENTAL SETUP
4.1 Compiling to LNN and 2D Mesh

Architectures
The compilation procedure for these devices closely reflects the
compilation procedure for our proposed MEQC architecture. For
each of these, we utilize the heuristic found in [19] to give an initial
mapping of circuit qubits to hardware qubits. Operations on these
architectures are assumed to be done in parallel if possible and no
loading or storing is required. If an operation cannot be done given
the initial mapping, the interacting qubits are moved via SWAPs
to each other, the operation is performed, and then the qubits are
moved back to their original position. This common SWAP strategy
assumes the initial qubit mapping is a good one, minimizing the
average total distance between qubits which interact frequently
and consequently number of required SWAPs.

In order to limit the number of gates applied to specific qubits
on the 2D mesh architectures, we look at all shortest paths between
interacting qubits given by the bounding rectangle between them.
For each path in this rectangle, we choose the path which uses
qubits with the fewest number of past and future uses. SWAP paths
are done in parallel if possible.

These devices are denoted as LNN-x and 2D-n-m where 𝑥 is
the number of qubits in the chain, and 𝑛,𝑚 are the dimensions of
the mesh. The average distance between qubits in 2D and LNN
architectures scales much worse than an MEQC device, as noted in
Figure 1, meaning on average to interact a pair of qubits many more
SWAPs will be required even with MEQC transmons connected
poorly.

4.2 Benchmarks
We evaluate our proposed architecture compared to other compet-
ing designs by compiling a range of both parallel and serial NISQ
applications, see Table 1.

4.2.1 Arithmetic Circuits. Many important quantum algorithms
like Shor’s algorithm make use of arithmetic circuits. Many of
these circuits like modular exponentiation are beyond the NISQ era.

Other smaller arithmetics like addition are much more practical.
There are several efficient implementation of these circuits like
the Cuccaro Adder [9] and the QFT (Quantum Fourier Transform)
Adder [24]. These circuits are highly sequential for a majority of
their execution. We focus on the QFT Adder as a representative for
this class of circuits. Unlike the Cuccaro adder, the QFT adder has
a highly parallel section in the middle of its execution.

4.2.2 The Generalized Toffoli. The Toffoli gate, and its generalized
form, is well studied as well as its decompositions. It has many
practical uses in a number of applications over a wide range of sizes
for example in Grover’s search algorithm, larger arithmetic circuits,
etc. We consider a generalized decomposition using ancilla given
by [4] which allows this operation to be highly parallel, specifically
in logarithmic depth.

4.2.3 QAOA - MAX-CUT. One of the most promising algorithms
for NISQ era devices is optimization problems. One such problem is
QAOA, quantum approximate optimization algorithm [10], which
can be used to find approximation solutions to combinatorial op-
timization problems such as MAX-CUT. The parallelism in this
circuit is dependent on the underlying graph in the input problem.
We run our QAOA on 4-regular graphs with 𝑛 nodes, 𝑛 the number
of qubits.

4.2.4 Random Circuits. Finally, we generate a number of random
circuits which tend to have very low amounts of parallelism. To
generate these circuits, over 𝑛 trials we select with probability 𝑝 if
an interaction exists between two qubits. If it does, we insert a two
qubit interaction between them. We explore 𝑝 = 0.4 and 𝑝 = 0.6 for
more sparse and more dense random circuits, respectively.

4.3 Evaluation
When evaluating systems, we use the error model details laid out
in Table 2, where 𝑝1 be the probability of an error occurring on a
single qubit operation, 𝑝2 be the probability of an error occurring
on a two qubit operation, Δ1 the duration of a one qubit gate, Δ2
the duration of a two qubit gate, Δℓ the duration of a Load or Store,
𝑇1 the coherence time of a superconducting qubit in a traditional
architecture,𝑇1,𝑐 the coherence time of a qubit located in the cavity,
and 𝑇1,𝑡 the coherence time of a qubit located in the transmon of
a MEQC device. A dash indicates the value is not relevant to the
architecture.

For small circuits and devices, we are able to perform full density
matrix simulations and compute the fidelity of circuits compiled for
different architectures with noise channels based on various error
models. For these simulations, we use typical superconducting error
rates for one and two qubit gate errors. Similarly, we use the T1
times provided from [15] for current SC devices and T1 from [20]
for the proposed MEQC architecture as well as gate times. For these
simulations, we use the Kraus operator formalism [21] for noise
simulation in which coherent error channels (bit-flip and phase-flip
operators) are symmetric and amplitude damping probability is a
function of the T1 times. For our architecture, we have two different
T1 times and we apply amplitude damping as a function of the 𝑇1,𝑐
when qubits are present in the cavity and𝑇1,𝑡 when being operated
on.

Session 6: Domain/Application-Specific Hardware/Software PACT '20, October 3–7, 2020, Virtual Event, USA

393

0 10 20 30 40 50
0

5,000

10,000

15,000

Co
m
pi
le
d
N
um

.G
at
es

QFT-Adder

0 10 20 30 40 50
0

2,000

4,000

Generalized Toffoli, CnX

10 20 30 40 50
0

2,000

4,000

6,000

QAOA

0 10 20 30 40 50
0

2,000

4,000

6,000

Co
m
pi
le
d
Ci
rc
ui
tD

ep
th

0 10 20 30 40 50
0

500

1,000

Num. Qubits

10 20 30 40 50
0

1,000

2,000

MEQC-10-5-LNN 2D-5-10

Figure 5: The scaling of depth and gate count in a subset of our benchmarks. LNN-50 is omitted because it adds substantially
more gates than both of these architectures and as such is not competitive. In many cases, 2D-5-10 is competitive with the
proposed architecture, however, clear separation emerges in all cases.

Unfortunately, simulation for even moderate sized programs is
extremely hard. For larger circuits we will use an approximation
method to determine an estimate for the probability of success
of a circuit. For each gate in the circuit, with given probability
we draw if an error occurs. If any error occurs during the entire
circuit, we consider the program to have failed. This is only a rough
approximation and will be directly related to the number of gates
in the circuit. In this model, we are unable to quantify the effect
of amplitude damping as a result of different T1 times, however,
it should be noted in general longer coherence times mean qubits
are well isolated from the environment and more protected from
decoherence errors.

A more general metric we will use is gate count and depth of
the compiled circuit. Usually, as the number of gates increases
the probability of success drops and as the depth increases our
computation will approach the coherence limit and so it is best to
keep both as small as possible.

We explore a variety of different MEQC arrangements, specifi-
cally exploring different cavity sizes as well as different arrange-
ments of the transmons. We will abbreviate these machines as
MEQC-x-y-z with 𝑥 the number of transmons, 𝑦 the number of
modes per cavity, and 𝑧 the arrangement of the transmons, for ex-
ample LNN for an arrangement in a chain, 2D to refer to a mesh, and
Full for full connectivity between transmons. For example, MEQC-
2-5-LNN means an MEQC design with 2 transmons connected in
a chain each with a single attached cavity containing 5 resonant
modes. This device would be able to store 10 qubits in memory. A
2D MEQC can be built by building the chain of cavities in the 3rd
dimension [8] and any effect on communication error in the mesh
is discussed in Section 5.4.

5 RESULTS AND DISCUSSION
5.1 Depth and Gate Count Scaling
As noted before, in the proposed MEQC architecture every gate
requires approximately two additional operations, the Load and

QF
T A

dd
er

𝐶
𝑛 𝑋

QA
OA

Ra
nd
-0.
4

Ra
nd
-0.
6

0

5,000

10,000

15,000
G
at
es

Po
st
-C
om

pi
la
tio

n

QF
T A

dd
er

𝐶
𝑛 𝑋

QA
OA

Ra
nd
-0.
4

Ra
nd
-0.
6

0

2,000

4,000

6,000

Ci
rc
ui
tD

ep
th

Po
st
-C
om

pi
la
tio

n

Input Program MEQC-10-5-LNN
MEQC-10-5-2D 2D-5-10

Figure 6: Post-compilation number of gates and circuit
depth for 50 qubit input programs on all benchmarks. In ev-
ery case, MEQC with transmons arranged with as a chain or
a mesh shows improvement over a more standard 2D mesh
qubit arrangement. The increase in gate count in MEQC ar-
chitectures is approximately 60% due to loads and stores and
the rest from SWAPs. By requiring fewer gates, we reduce
the possibility of gate-induced error.

Session 6: Domain/Application-Specific Hardware/Software PACT '20, October 3–7, 2020, Virtual Event, USA

394

Benchmark Factor Gate Factor Depth
Improvement Improvement

QFT-Adder 2.46x 2.35x
𝐶𝑛𝑋 1.44x 1.76x
QAOA 1.74x 2.06x
Rand-0.4 1.46x 1.46x
Rand-0.6 1.36x 1.29x

Harmonic Mean 1.62x 1.70x
Table 3: Summary of the improvements on 50 qubit bench-
marks for MEQC-10-5-2D over 2D-5-10. In all cases, we see
strict improvement.

2 4 6 8 10

0.4

0.6

0.8

1

Num. Qubits

Fi
de
lit
y

Simulation of QFT-Adder

MEQC-2-5-LNN
MEQC-1-10-LNN

2D-2-5

Figure 7: Output fidelity for full density simulations of the
QFT Adder on 2-10 qubits. Even with more gates in these
small instances, programs compiled to MEQC devices are
competitive, and at 10 qubits we see the start of advantage.

the Store. Furthermore, this approach induces a large degree seri-
alization, specifically when multiple operations are scheduled to
be done on qubits in the same cavity they cannot be executed in
parallel. However, what we lose in some serialization and required
extra operations, we make up for in full connectivity within cavity
and reduced average distance between qubits.

In Figure 5 we compare the scaling of gate counts and depth in
a subset of the benchmarks to a 2D and MEQC device. We note all
LNN devices with 50 qubits insert dramatically more SWAPs and
are completely infeasible, and as such they are omitted. In Figure 5,
2D-5-10 and MEQC-5-10-LNN are competitive in both gate count
and depth, with a clear separation emerging as we reach the limits
of the devices. In Figure 6, we compare circuit depth and gate count
post compilation for 50 qubit inputs for all benchmarks. In all cases,
the number of gates required for execution is much greater than
the input program. However, MEQC with transmons connected as
either LNN or 2D both improve over a traditional 2D architecture.
We expect this separation to be even more pronounced as the de-
vices scale up. For reference, in MEQC architectures approximately
60% of added gates are loads and stores with the remainder due to
added SWAPs.

While we might first anticipate architectures which permit every
qubit to be operated on in parallel if needed to outperform our
proposed architecture which forces only a small subset of qubits to
be operated on at a time, it turns out communication limitations
on other near-term devices eliminates this advantage. The number

of SWAPs inserted to make a program executable scales extremely
poorly. A greater degree of connectivity in near-term devices, and
therefore reduced average distance between qubits, is critical to the
performance of a program. The insertion of SWAPs itself induces
a degree of serialization even in 2D or LNN architectures. Even if
a program is written maximizing parallel operations, compilation
procedures to transform a program into one satisfying connectivity
constraints can evaporate this advantage.

Even though more traditional architectures provide the mecha-
nism for large amounts of parallelism, it may be extraneous. In this
case, qubits are still subject to the same low T1 times even when
not being operated on. There is no mechanism to protect these
qubits while being unused. Initially, MEQC was appealing because
it avoided this issue. When qubits are not needed, they can be stored
in memory with long T1 times. Random access memory and full
connectivity within cavity provides a much more realizable advan-
tage. These architectural details were previously unexplored by
physical experimentalists, but MEQC indicates these new memory
technologies are a path towards scalability in the near-term.

5.2 Effect On Probability of Success: An
Estimation

In non-error corrected devices an input program is run thousands
of times to obtain a distribution of answers and if run without error
we expect the correct answer to appear with the highest probability.
These systems have moderate errors and intuitively we expect as
the number of gates required for execution increases the probability
with with a program succeeds diminishes. Similarly, as the depth of
a program increases, perhaps because parallelism is sequentialized
or communication operations like SWAPs delay input program’s
execution, the qubits are more and more likely to be subject to
decoherence errors. This also leads to a decreased chance of the
correct answer appearing with highest probability in the output
distribution.

In order to evaluate the effect of this system on the probability
of success, we simulate some small instances of the QFT-Adder
benchmark. We perform full density simulations by injecting into
the final compiled circuit both coherent errors, or gate errors, with
probability given in Table 2 and decoherence errors, specifically
depolarizing errors with probability given as a function of the T1
times and gate durations of Table 2. Specifically, we used Google’s
quantum framework Cirq [1] which contains a full density simula-
tor. We run this simulator on the compiled circuit, which results
in the ideal outcome matrix, and the same circuit except with the
appropriate error channels which results in a noisy outcome matrix.
We compute the pseudo-metric fidelity to evaluate how close the
noisy outcome is to the ideal outcome. In Figure 7 we show the
resulting fidelities for one benchmark. Despite fewer gates and less
depth in small circuits compiled to the traditional 2D architecture,
MEQC is competitive and begins to edge out the 2D architecture
beginning around 10 qubits, indicating the significantly longer T1
times of qubits stored in memory do indeed protect these qubits.
MEQC-2D is roughly the same performance as MEQC-LNN in these
small programs and is omitted for clarity.

Unfortunately, modeling errors via simulation is difficult to do for
even moderately sized programs, requiring exponential space and

Session 6: Domain/Application-Specific Hardware/Software PACT '20, October 3–7, 2020, Virtual Event, USA

395

5 10 15 20
0

0.5

1

Pr
ob
ab
ili
ty

of
N
o
G
at
e
Er
ro
rs QFT-Adder

5 10 15 20
0

0.5

1

Generalized Toffoli, CnX

5 10 15 20
0

5 · 10−2

0.1

0.15

QAOA

5 10 15 20
0

0.5

1

Num. Qubits

Pr
ob
ab
ili
ty

of
N
o
G
at
e
Er
ro
rs Rand-0.4

5 10 15 20
0

0.5

Num. Qubits

Rand-0.6

MEQC-10-5-LNN-Current 2D-5-10-Current

Figure 8: An estimation of if no gate errors occur in small program instances. As noted, this only accounts for errors due to
one and two qubit gate errors and is not influenced by decoherence errors. Larger is better and in general programs compiled
to our proposed architecture are competitive or better than a 2D architecture. We expect with better T1 times and better gate
and depth scaling, our architecture will outperform, by increasing the likelihood or successful execution, by a larger margin
as programs scale and gate errors improve. All data points were obtained by running 8000 trials of the input compiled input
program.

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1

Pr
ob
ab
ili
ty

of
N
o
G
at
e
Er
ro
rs QFT-Adder

0 10 20 30 40 50
0.7

0.8

0.9

1

Generalized Toffoli, CnX

10 20 30 40 50

0.6

0.8

1

QAOA

MEQC-10-5-LNN-10xGates 2D-5-10-10xGates

Figure 9: With 100x better gates, we begin to see the effect of improved compilation. Specifically, by reducing the total number
of gates required for execution on the proposed MEQC devices we reduce the probability of a program failing due to gate
errors. Furthermore, with substantially longer T1 times in cavity, qubits stored in memory are protected from decoherence
errors. All data points are obtained by running 8000 trials of the input program compiled to the two target architectures.

time. More generally, we rely on an approximation to account for
how added gates affect the output of a program.We approximate the
probability of no gate errors occurring given the error rates in Table
2. This will not account for decoherence errors due to interaction
with the environment. However, the T1 times of the proposed device
are significantly longer than those of other competing devices.
We expect with reduced depth and larger coherence times that
programs compiled to MEQC architectures will be less affected by
this type of error as we scale, as indicated by the small simulations.

Given current error rates of typical superconducting devices, on
all benchmarks up to size 20 we notice competitive if not better
probability of no gate errors as in Figure 8. In order to better dis-
tinguish the effects of Figure 5 on this probability, in Figure 9 we

explore a potential set of futuristic error rates, specifically 100x
better gate errors. In this case, we begin to be able to identify the
advantage of our proposed architecture with separation emerging
on even moderate sized input programs. We expect even greater
advantage when all error types are considered.

5.3 Sensitivity to Arrangement and Cavity Size
One notable feature of Figure 6 is that better connected transmon
qubits results in fewer gates and less depth. In order to further
evaluate this we study two adjustable parameters in the proposed
MEQC architecture: the number of modes in resonator cavity and
the top-level connectivity of the transmon qubits. Specifically, we

Session 6: Domain/Application-Specific Hardware/Software PACT '20, October 3–7, 2020, Virtual Event, USA

396

2 4 6 8 10
600

800

1,000

1,200

1,400

Modes Per Cavity

N
um

G
at
es

Sensitivity to Modes Per Cavity

LNN 2D
Full Baseline 2D Arch.

2 4 6 8 10

400

600

Modes Per Cavity

Ci
rc
ui
tD

ep
th

Sensitivity to Modes Per Cavity

LNN 2D
Full Baseline 2D Arch.

Figure 10: Gates and depth of 20 qubit QFT Adder compiled to MEQC architectures with different transmon connectivity
and varying cavity sizes. As the number of qubits per cavity increases, we expect the average qubit distance to be reduced
meaning fewer SWAPs necessary. However, inMEQCdevices operations on qubits in the same cavity cannot be done in parallel.
Therefore, we expect lose some degree of parallelism, hence the increase in depth.

study LNN, 2D, and Full connectivity between the transmons as
well as cavities of various size.

We expect as the number of modes in the cavity increase, the
number of SWAPs, and hence the total gates, required will decrease
because of improved average qubit distance. The compilation pro-
cedure will prefer to place qubits in these large, well-connected
regions of the machine because of this. However, as we noted
previously, operations cannot be performed in parallel on qubits
co-located in the same cavity. We expect this corresponds to an
increase in overall program depth because of reduced parallel oper-
ations. We study this tradeoff in Figure 10, in which we study three
different arrangements of 10 transmons with increasing cavity size
for a 20 qubit QFT Adder input program.

While full connectivity shows consistent improvement, it is only
very slight advantage. We expect as the size of the input program
increases this will becomemore important but for near-term devices
it suggests we do not need as well connected transmons and what
matters most is the well connectedness of the cavity itself. The best
choice of modes per cavity here is 5, a balance between number of
gates and depth, though these curves are a function of the particular
input program. For example, for the 50 qubit QFT Adder of Figure 6
there is only marginal improvement by moving to a 2D connectivity
of the transmons. For other benchmarks, this gain is larger. This also
demonstrates if we know gate errors will be much more dominant
than idle errors, we can choose to favor designs with larger cavities.

5.4 Sensitivity to Interconnect Error Rates
In each of the previous studies, we assume the error rates of SWAPs
and communication between transmons of MEQC devices is the
same as they would be in other more traditional architectures.
Demonstrations of this communication protocol have achieved less
desirable fidelity, sometimes with error several factors worse than
SWAPs in current devices [7, 8]. We call this interconnect error. As
we’ve seen, the scaling of both number of gates and depth is better
for the proposed MEQC device and we study the degree to which
we can tolerate this greater interconnect error.

0 2 4 6 8 10 12

30

40
MEQC Better

MEQC Worse

Factor of Interconnect Error

N
um

Q
ub

its
,Q

FT
-A
dd

er

Sensitivity to Increasing Interconnect Error

Crossover

Figure 11: Crossover points for various interconnect error
rates of the QFT-Adder benchmark. Interconnect in MEQC
devices may not be as good as SWAPs in traditional archi-
tectures. We study how much interconnect error we can tol-
erate in the NISQ target of 100 qubit devices with 10−5 two
qubit error rates. We find we can tolerate up to 12x worse
interconnect errors, provided programs of at least size 52.

In Figure 11, we use fixed 100 qubit machines, 2D-10-10 and
MEQC-10-10-2D, with two qubit error rates 1000x better than cur-
rent error rates (e.g. two qubit errors of 10−5), target machines for
the NISQ era [5]. We scale the error rate of gates occurring between
transmons of the MEQC devices and use our approximation method
as before to predict the probability of no gate errors occurring. We
locate the crossover points, the program size where it becomes
advantageous to use our architecture.

The crossover points are depicted in Figure 11 for error factors
up to 12x worse interconnect error on the QFT-Adder. We find for
NISQ devices up to 100 qubits, a 2D MEQC can tolerate up to 12x
worse interconnect error as other 2D architectures. As the number
of qubits 𝑛 grows, the random access advantage of MEQC grows
substantially (as long as 𝑛 does not overly dominate the maximum
memory bank size of 10 cavities per transmon).

REFERENCES
[1] 2018. Cirq: A python framework for creating, editing, and invoking Noisy

Intermediate Scale Quantum (NISQ) circuits. https://github.com/quantumlib/cirq.
[2] 2018. Quantum devices simulators. https://www.research.ibm.com/ibm-q/

technology/devices/

Session 6: Domain/Application-Specific Hardware/Software PACT '20, October 3–7, 2020, Virtual Event, USA

397

https://github.com/quantumlib/cirq
https://www.research.ibm.com/ibm-q/technology/devices/
https://www.research.ibm.com/ibm-q/technology/devices/

[3] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell,
Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Court-
ney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gid-
ney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Har-
rigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S.
Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn
Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov,
Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh,
Salvatore Mandrà, Jarrod R. McClean, MatthewMcEwen, Anthony Megrant, Xiao
Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew
Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C.
Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin,
Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D.
Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie
Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. 2019.
Quantum supremacy using a programmable superconducting processor. Nature
574, 7779 (2019), 505–510. https://doi.org/10.1038/s41586-019-1666-5

[4] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Nor-
man Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter.
1995. Elementary gates for quantum computation. Phys. Rev. A 52 (Nov 1995),
3457–3467. Issue 5. https://doi.org/10.1103/PhysRevA.52.3457

[5] Lev S Bishop, Sergey Bravyi, Andrew Cross, Jay M Gambetta, and John Smolin.
2017. Quantum volume. Quantum Volume. Technical Report (2017).

[6] Brad R Blakestad, Aaron Vandevender, Christian Ospelkaus, Jason Amini,
Joseph W Britton, Dietrich G Leibfried, and David J Wineland. 2009. High
Fidelity Transport of Trapped-Ion Qubits through an X-Junction Trap Array|
NIST. Nature Physics 102, Nature Physics (2009).

[7] P Campagne-Ibarcq, E Zalys-Geller, A Narla, S Shankar, P Reinhold, L Burkhart, C
Axline, W Pfaff, L Frunzio, RJ Schoelkopf, and Devoret RH. 2018. Deterministic re-
mote entanglement of superconducting circuits through microwave two-photon
transitions. Physical review letters 120, 20 (2018), 200501.

[8] Kevin S Chou, Jacob Z Blumoff, Christopher S Wang, Philip C Reinhold, Christo-
pher J Axline, Yvonne Y Gao, Luigi Frunzio, MH Devoret, Liang Jiang, and RJ
Schoelkopf. 2018. Deterministic teleportation of a quantum gate between two
logical qubits. Nature 561, 7723 (2018), 368.

[9] StevenA. Cuccaro, Thomas G. Draper, Samuel A. Kutin, andDavid PetrieMoulton.
2004. A new quantum ripple-carry addition circuit. arXiv e-prints, Article quant-
ph/0410184 (Oct 2004), quant-ph/0410184 pages. arXiv:quant-ph/0410184 [quant-
ph]

[10] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approxi-
mate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014).

[11] Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search.
In Annual ACM Symposium on Theory of Computing. ACM, 212–219.

[12] Gian Giacomo Guerreschi and Jongsoo Park. 2017. Two-step approach to sched-
uling quantum circuits. arXiv:arXiv:1708.00023

[13] Thomas Häner and Damian S Steiger. 2017. 0.5 petabyte simulation of a 45-
qubit quantum circuit. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 33.

[14] Connor T Hann, Chang-Ling Zou, Yaxing Zhang, Yiwen Chu, Robert J Schoelkopf,
Steven M Girvin, and Liang Jiang. 2019. Hardware-efficient quantum ran-
dom access memory with hybrid quantum acoustic systems. arXiv preprint
arXiv:1906.11340 (2019).

[15] ibm0 [n.d.]. IBM Quantum Devices. https://quantumexperience.ng.bluemix.net/
qx/devices. Accessed: 2019-03-16.

[16] Julian Kelly. 2018. A preview of Bristlecone, Google’s new quantum processor.
Google Research Blog 5 (2018).

[17] Brian W Kernighan and Shen Lin. 1970. An efficient heuristic procedure for
partitioning graphs. Bell system technical journal 49, 2 (1970), 291–307.

[18] Gushu Li, Yufei Ding, and Yuan Xie. 2018. Tackling the Qubit Mapping Problem
for NISQ-Era Quantum Devices. arXiv:arXiv:1809.02573

[19] Prakash Murali, Jonathan M. Baker, Ali Javadi Abhari, Frederic T. Chong, and
Margaret Martonosi. 2019. Noise-Adaptive Compiler Mappings for Noisy
Intermediate-Scale Quantum Computers. arXiv:arXiv:1901.11054

[20] RK Naik, N Leung, S Chakram, Peter Groszkowski, Y Lu, N Earnest, DC McKay,
Jens Koch, and DI Schuster. 2017. Random access quantum information processors
using multimode circuit quantum electrodynamics. Nature communications 8, 1
(2017), 1904.

[21] Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computation and
Quantum Information: 10th Anniversary Edition (10th ed.). Cambridge University
Press, New York, NY, USA.

[22] John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum
2 (Aug. 2018), 79. https://doi.org/10.22331/q-2018-08-06-79

[23] Chad Rigetti. 2018. The Rigetti 128-qubit chip and what it means for quantum.
Medium (2018).

[24] Lidia Ruiz-Perez and Juan Carlos Garcia-Escartin. 2014. Quantum arithmetic
with the Quantum Fourier Transform. Quantum Inf Process (2017) 16: 152. (2014).
https://doi.org/10.1007/s11128-017-1603-1 arXiv:arXiv:1411.5949

[25] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (Oct. 1997),
1484–1509. https://doi.org/10.1137/S0097539795293172

[26] Andreas Wallraff. 2018. Deterministic Quantum State Transfer and Generation
of Remote Entanglement using Microwave Photons. In APS Meeting Abstracts.

[27] K.Wright, K.M. Beck, S. Debnath, J. M. Amini, Y. Nam, N. Grzesiak, J. S. Chen, N. C.
Pisenti, M. Chmielewski, C. Collins, K. M. Hudek, J. Mizrahi, J. D. Wong-Campos,
S. Allen, J. Apisdorf, P. Solomon, M. Williams, A. M. Ducore, A. Blinov, S. M.
Kreikemeier, V. Chaplin, M. Keesan, C. Monroe, and J. Kim. 2019. Benchmarking
an 11-qubit quantum computer. arXiv:arXiv:1903.08181

[28] Xin Zhang, Hong Xiang, Tao Xiang, Li Fu, and Jun Sang. 2018. An efficient quan-
tum circuits optimizing scheme compared with QISKit. arXiv:arXiv:1807.01703

[29] Alwin Zulehner, Alexandru Paler, and Robert Wille. 2017. An Efficient
Methodology for Mapping Quantum Circuits to the IBM QX Architectures.
arXiv:arXiv:1712.04722

Session 6: Domain/Application-Specific Hardware/Software PACT '20, October 3–7, 2020, Virtual Event, USA

398

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevA.52.3457
https://arxiv.org/abs/quant-ph/0410184
https://arxiv.org/abs/arXiv:1708.00023
https://quantumexperience.ng.bluemix.net/qx/devices
https://quantumexperience.ng.bluemix.net/qx/devices
https://arxiv.org/abs/arXiv:1809.02573
https://arxiv.org/abs/arXiv:1901.11054
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1007/s11128-017-1603-1
https://arxiv.org/abs/arXiv:1411.5949
https://doi.org/10.1137/S0097539795293172
https://arxiv.org/abs/arXiv:1903.08181
https://arxiv.org/abs/arXiv:1807.01703
https://arxiv.org/abs/arXiv:1712.04722

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum Bits and Quantum Logic
	2.2 Near-Term Quantum Architectures
	2.3 Compilation to Quantum Architectures
	2.4 Errors on Quantum Devices

	3 A Memory-Equipped Quantum Architecture
	3.1 MEQC Compilation: Input Program to Executable
	3.2 Initial Qubit Placement via Graph Partitioning
	3.3 Scheduling and Routing: Inserting Loads, Stores, and SWAPs
	3.4 Optimizations
	3.5 Fundamental Trade Offs
	3.6 Limitations and Potential

	4 Experimental Setup
	4.1 Compiling to LNN and 2D Mesh Architectures
	4.2 Benchmarks
	4.3 Evaluation

	5 Results and Discussion
	5.1 Depth and Gate Count Scaling
	5.2 Effect On Probability of Success: An Estimation
	5.3 Sensitivity to Arrangement and Cavity Size
	5.4 Sensitivity to Interconnect Error Rates

	References

