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Experiments with light provide one of the backbones around 
which the scientific community has built our understanding 
of the bizarre and beautiful implications of the laws of quan-

tum mechanics. Historically, most experiments with photons — the 
quanta of the electromagnetic field — have explored elementary 
processes involving the generation, manipulation and detection of 
a few such particles1. The entanglement between a pair of photons, 
for example, provided the pivotal evidence supporting quantum 
mechanics over hidden variable theories2,3.

In the last decade, the situation changed with the advent of quan-
tum fluids of light4: under suitable conditions, photons inherit an 
effective mass from the structure confining them, and collide with 
one another due to the nonlinear optical response of the struc-
ture. Together, these properties enable macroscopic ensembles of 
photons to exhibit collective behaviours akin to ordinary fluids. 
As compared to a standard description of light in the language of 
nonlinear and quantum optics, thinking in terms of a gas or fluid 
of interacting bosonic particles offers new insights and unexpected 
perspectives gleaned from the world of condensed matter.

While this adventure had its first breakthroughs in the infra-
red and visible domains using exciton polaritons in semicon-
ductor microcavities5,6 and Rydberg polaritons in atomic gases7,  
exciting new possibilities have recently emerged from microwave 
photons in superconducting quantum circuits. Although these cir-
cuits were originally developed for quantum computing purposes, 
the same features — single-photon non-linearities8, long coherence 
times9,10 and excellent scalability11 — are essential ingredients for 
realizing synthetic photonic quantum materials. As such, where 
most nonlinear and quantum optics studies until the late 2000’s 
focused on the semi-classical collective dynamics of many pho-
tons or the quantum dynamics of few photons, the circuit quantum 
electrodynamics (QED) platform enables studies of the quantum 
dynamics of many strongly correlated photons — the regime where 
microwaves behave as a novel photonic material. Earlier reviews 
exploring the promise of this direction (but not its realization) can 
be found in4,11–14.

This Review Article will focus on materials made of light that 
are built and manipulated in the circuit QED platform. This new 
approach dramatically broadens the scope of models and physi-
cal phenomena that are experimentally addressable beyond what 
is accessible in traditional materials composed of atoms in solids 
and liquids, electrons in solids, or protons and neutrons in nuclei. 
Nonetheless, the properties of synthetic materials are governed by 
the same mechanisms that control traditional materials, namely 
competition between interactions, kinetic energy, temperature and, 
in the case of driven quantum-material properties, dephasing.

Quantum matter by the numbers
A comparative summary of the characteristic energy scales in tra-
ditional materials versus their synthetic counterparts in photonic 
and cold atom platforms is provided in Fig. 1. What is clear is that, 
from the perspective of interactions compared with decoherence, 
photonic quantum materials now have the potential to support 
comparable large-scale entanglement to other platforms. Beyond 
this, photonic materials offer dramatic advantages over traditional 
solid-state systems, including new probes with direct quantitative 
access to microscopic observables and a fast experimental repetition 
rate that enables accumulation of statistics on complex many-body 
quantum correlators.

In addition to these technical advantages, the many-body physics 
accessible in photonic systems also offers exciting new perspectives, 
particularly in the ease of introducing driving and dissipation. Until 
very recently, the general understanding was in fact that photonic 
platforms are more lossy and thus less ‘quantum’ than their atomic 
and electronic counterparts, and that this was an ultimate limitation 
precluding strongly correlated many-body states of light. This per-
ception originated at a time when the available nonlinearities were 
either weak or inextricably tied to strong dissipation, as happens in 
most optical material. With the advent of circuit QED, many of the 
extrinsic decoherence channels were tamed, and selective dissipa-
tion can now be re-introduced as a powerful feature of the platform. 
Indeed, central challenges today have more to do with the design 

Photonic materials in circuit quantum 
electrodynamics
Iacopo Carusotto1, Andrew A. Houck   2, Alicia J. Kollár3,4, Pedram Roushan5, David I. Schuster6,7 and 
Jonathan Simon   6,7 ✉

Photonic synthetic materials provide an opportunity to explore the role of microscopic quantum phenomena in determining 
macroscopic material properties. There are, however, fundamental obstacles to overcome — in vacuum, photons not only lack 
mass, but also do not naturally interact with one another. Here, we review how the superconducting quantum circuit platform 
has been harnessed in the last decade to make some of the first materials from light. We describe the structures that are 
used to imbue individual microwave photons with matter-like properties such as mass, the nonlinear elements that mediate 
interactions between these photons, and quantum dynamic/thermodynamic approaches that can be used to assemble and 
stabilize strongly correlated states of many photons. We then describe state-of-the-art techniques to generate synthetic mag-
netic fields, engineer topological and non-topological flat bands and explore the physics of quantum materials in non-Euclidean 
geometries — directions that we view as some of the most exciting for this burgeoning field. Finally, we discuss upcoming pros-
pects, and in particular opportunities to probe novel aspects of quantum thermalization and detect quasi-particles with exotic 
anyonic statistics, as well as potential applications in quantum information science.

Review Article | FOCUS
https://doi.org/10.1038/s41567-020-0815-y
Review Article | FOCUS
https://doi.org/10.1038/s41567-020-0815-y

Nature Physics | VOL 16 | March 2020 | 268–279 | www.nature.com/naturephysics268

mailto:simonjon@uchicago.edu
http://orcid.org/0000-0002-9788-5874
http://orcid.org/0000-0001-7854-4647
http://crossmark.crossref.org/dialog/?doi=10.1038/s41567-020-0815-y&domain=pdf
https://doi.org/10.1038/s41567-020-0815-y
https://doi.org/10.1038/s41567-020-0815-y
http://www.nature.com/naturephysics


FOCUS | Review ArticleNaTurE PHysics

of suitable dissipation and pumping schemes that are able to selec-
tively generate specific quantum phases of the photonic material.

Routes to ordering
A comparison with traditional condensed matter systems is use-
ful to put this problem in a wider perspective: electronic systems 
are typically prepared at or near to thermal equilibrium with their 
solid-state environment, which is itself kept at the required low tem-
perature through standard cryogenic techniques. The quantum state 
then naturally arises as the low-temperature phase of the many-body 
system under investigation. The preparation stage is slightly more 
subtle in cold atom systems, where the dominant approach to build-
ing many-body states relies upon initial preparation of a low-entropy 
Bose–Einstein condensate by laser and evaporative cooling of the 
atoms, and then adiabatic variation of the system Hamiltonian, for 
example by introducing an optical lattice15,16. If a suitable adiabatic 
path is chosen17,18 and the process is carried out slowly enough, the 
(unentangled) initial state is adiabatically converted into the (highly 
entangled) ground state of the final Hamiltonian (Fig. 2a). The key 
ingredients for this approach are (1) a way to remove entropy from 
the system and (2) the ability to vary the system Hamiltonian at a 
suitable speed. While this approach is possible with quantum cir-
cuits, it has thus far proven technically challenging.

Shortly after the first proposals of strongly correlated photonic 
matter19–21 and in parallel to related studies in non-equilibrium 
Bose-Einstein condensates of photons and polaritons4,22–27, the need 
to address the unique driven-dissipative characteristics of optical 
systems was recognized by the community28. The next generation 
of proposals29,30 and experiments31 relied upon spectroscopically 
resolved excitation of the system, one particle at a time (Fig. 2b), 
akin to laser excitation of an atom or molecule: the fact that this 
process requires detailed knowledge of the many-body spectrum of 
the system and is sensitive to particle loss, disorder and other per-
turbations leads again to the undesired perception that photons are 
unfavourable for quantum materials science.

To circumvent these challenges, a promising modern approach 
to explore photonic quantum materials relies upon continuous cou-
pling of the system to non-Markovian reservoirs that compensate 
particle loss whilst simultaneously cooling the system. The resulting 
quantum dynamics must then be understood in a driven-dissipative 
many-body paradigm, potentially reaching a dynamical steady-state 
rather than thermodynamic equilibrium. Years of theoretical and 
experimental advances have revealed that these non-equilibrium 
systems provide unique physics of their own: from time-crystals32,33 
to light-induced superconductivity34 and beyond, far-from-equi-
librium dynamics displays a much richer phenomenology than its 
quasi-equilibrium counterpart35. Ramping up in complexity, engi-
neered coupling to the environment (frequency-dependent non-
Markovian damping) has been shown to provide a powerful tool for 
controlled entropy removal36–41, allowing driven-dissipative systems 
to be continuously cooled towards correlated many-body steady-
states42 (Fig. 2). Such entropy manipulation will be a central thread 
in this review.

Basics of circuit QED for photonic quantum matter
Circuit QED is a framework that uses superconducting qubits  
and cavities to manipulate the quantum state of microwave pho-
tons43,44. The unique versatility of this platform stems from the  
flexibility in the design of the system geometry and of the light-mat-
ter coupling, both of which can be engineered using conventional 
lithography. This versatility allows one to change the character 
of the Hamiltonian studied without significant changes to the  
materials or the experimental apparatus. The essential ingredi-
ents of the circuit-QED toolbox for photonic quantum materials  
are the superconducting resonator, which provides a home for 
non-interacting photons, and the ‘transmon’ qubit45, which acts as 
the lattice sites in which photons reside and strongly interact with  
one another.

The transmon, as shown in Fig. 3, is a capacitively shunted 
Josephson junction: it may be understood as an inductor–capacitor  
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Fig. 1 | A comparison of quantum matter platforms. Figures of merit for 2D electron gases are calculated for high-mobility AlGaAs/GaAs 
heterostructures, based upon mobilities from ref. 160 and typical Coulomb energy in the lowest Landau level at a magnetic field of 2.5 T (ref. 161). For cold 
atoms, typical numbers come from ref. 15. For microwave photons, numbers come from refs. 9,42). Note that, because electrons and atoms do not decay 
quite as photons do, the numbers for 2D electron gases reflect disorder, while those for atomic gases in optical lattices reflect atom losses due, for 
example, to background gas collisions, lattice-induced heating, and inelastic scattering. g, the qubit–cavity coupling strength; κ, the cavity linewidth; SC, 
superconducting.
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(LC) resonator whose inductance (derived from the Josephson 
effect) depends strongly upon the current flowing through it. This 
results in a photon-blockade-like46 phenomenon, where the energy 
of the 0→1 transition from the zero- to the one- photon state (typi-
cally ω01 ≈ 2π × 5 GHz) in the LC circuit is substantially differ-
ent than that of the 1→2 transition adding a second photon. This 
energy difference, U ≈ 2π × −300 MHz, may be viewed as a strong 
attractive interaction of energy ħU between photons residing in the 
same transmon. That is, photons on the same lattice site feel each 
others presence in a time Tcoll ≈ |U|−1.

If transmons act as the sites of a lattice and their intrinsic non-
linearity provides effective attractive interactions between photons 
in each site, the next thing we need is to induce tunnelling between 
the sites. In the simplest scheme, this is achieved via a capacitive 
coupling between the transmons, which induces a coherent tun-
nelling between lattice sites of order J ≈ 2π × 1–100 MHz. When 
sites are arranged in periodic lattice geometries, photonic analogs of 
the crystalline lattice of solid-state materials, or the periodic optical 
potential of optical lattices for ultracold atoms, are obtained. Beyond 
what is typically possible in atomic systems, the lattice geometry of 
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Fig. 2 | Assembling quantum matter. A summary of the various approaches to assembly and stabilization of quantum materials, using the 
antiferromagnet, highlighted with green arrows, as a paradigmatic target state that all approaches aim to reach. Adiabatic preparation begins with the 
easily prepared, unentangled/uncorrelated paramagnetic state, and slowly varies the Hamiltonian (via a tuning parameter α) such that the ground state 
(thick black curve) is smoothly converted from the paramagnet into the antiferromagnet. Spectroscopic assembly again begins with the paramagnet, and 
converts it into the antiferromagnet through sequential coherent pulses that energetically resolve the intermediate states. Dissipative stabilization begins 
in any state, and an engineered dissipation process continuously pumps the system towards the desired target state.
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Fig. 3 | The circuit QED toolbox for materials. The microwave photon is the essential constituent of the photonic quantum materials explored in 
this review: it acts as the basic constituent from which the material is made, while interactions between photons are mediated by the nonlinear 
electromagnetic response of the underlying medium. a, A resonator composed of an inductor and a capacitor can trap and hold an arbitrary number 
of microwave photons at frequencies in the few-gigahertz range. As in a textbook quantum harmonic oscillator, in such a resonator the photons do not 
interact. This reflects in the spacing between neighbouring energy levels — that is, photon number states — being independent of the number of photons 
residing within the resonator. b, To introduce interactions between the photons, the inductor is replaced with a strongly nonlinear element such as a 
capacitively shunted Josephson junction. This device provides an inductance which depends upon the current flowing through it, and thus creates a non-
uniform energy-level spacing for this ‘transmon’ qubit. In typical set-ups, this corresponds to a photon–photon interaction energy U of a few hundred 
megahertz. c, To enable motion of photons between lattice sites, neighbouring transmons or resonators are coupled through a coupling element (for 
example, a capacitor) that allows photon tunnelling from one resonator to another, with hopping energy J tunable across the interaction energy. Proper 
fabrication can suppress photon/qubit decay down to 2π × 10 Hz/1 kHz respectively10,162, with comparable dephasing.
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circuit QED systems can be designed bottom-up with great flexibil-
ity47,48 and the tunnelling amplitude can be externally tuned in real 
time in both magnitude and phase49,50.

In a generic material, ordering among the constituent particles 
arises from the interplay of kinetic and interaction energies. In 
photonic systems, dissipation and pumping introduce a further 
energy scale related to the decoherence rate γ, so that the ‘quan-
tumness’ of a photonic material can be roughly characterized 
by the number of (entanglement-producing) collisional events 
a particle in the photonic material of density nphot per lattice site 
(typically of order unity) undergoes before interacting with the 
environment and collapsing the many-body wavefunction of the 
system, Ncoll ≈ nphot|U|/γ.

This review is focused on the strongly interacting regime 
Ncoll≫1, where the particles have time to become strongly entangled 
before the many-body wavefunction collapses due to decoherence. 
This regime is to be opposed to a semiclassical regime where the 
collective action of a large number of particles is required to see 
an appreciable effect of interactions and the dynamics is thus accu-
rately described with a (classical) mean-field theory analogous to 
the Gross–Pitaevskii regime of a dilute Bose–Einstein condensate51.

While typical nonlinear optics experiments deal with this semi-
classical regime, strong efforts are presently underway to realize 
strong interactions between optical photons7. The present state of 
the art in optical quantum photonics follows several thrusts: polari-
ton lattices in microcavities embedding quantum wells52,53 with 
interactions approaching the quantum regime54,55; free-space pho-
tons coupled to Rydberg atoms, which have reached the quantum 
regime, with a few collisions per photon lifetime56,57; and cavity pho-
tons coupled to Rydberg atoms, with the possibility of more colli-
sions and complex many-mode dynamics58–60. By comparison, the 
circuit QED experiments under consideration here already reach 
beyond 104 collisions per photon lifetime, positioning the platform 
deep in the quantum regime and opening the way to studies of 
many-body physics of strongly interacting particles.

In contrast to traditional condensed matter where experiments 
typically probe macroscopic quantities, a further important asset 
of circuit materials is the possibility of simultaneous, high fidelity 
(>99%) read-out of occupation of the individual lattice sites, for 
example, using the transmons’ photon-number-dependent disper-
sive shift8,61,62. This provides a spatio-temporally resolved readout of 
observables and correlation functions akin to an atomic quantum gas 
microscope63,64, with the crucial advantage that one is not restricted 
to measurements in the occupation basis. For instance, observables 
involving coherences between different number states can be mea-
sured by applying on-site qubit rotations65 prior to measurement.

Strongly interacting lattices
The first decade or so of circuit QED experiments focused primarily 
on the nonlinear quantum dynamics of devices involving at most 
a few cavity modes coupled to qubits43,66–69. While this required 
substantial developments in microwave quantum technology, the 
unprecedented nonlinearity and coherence time that was eventu-
ally achieved have allowed for demonstrations of textbook quantum 
optical effects with unique clarity8,70–72. In light of these remarkable 
successes, the focus of the community is now shifting towards sys-
tems of many cavities and/or many qubits, whose physics is domi-
nated by many-body entanglement with the potential to explore an 
exponentially larger Hilbert space4,11,13,14,44,73.

Early experiments in this direction include a delocalization–
localization transition explored in a two-site Hubbard model74 and 
spectroscopy and cooling into few-body eigenstates of a three-site 
Hubbard model31. In the former experiment, inspired by theoretical 
work in ref. 75, a large coherent state was injected into a single site 
of the Hubbard chain and coherent wave-like tunnelling dynamics 
observed until photon loss made the interaction energy comparable 

to the tunnelling energy and the photons were localized by a vari-
ant of the well-known self-trapping mechanism of Bose–Einstein 
condensates76,77. In the latter experiment, precise a-priori knowl-
edge of the few-particle energy spectrum enabled spectroscopically 
resolved population of target eigenstates, where coupling to a lossy 
cavity enabled engineering of the decay dynamics to lead to autono-
mous stabilization of a desired few-body state.

As experimental capabilities have improved, it has become pos-
sible to prepare arrays of qubits corresponding to low-disorder 
Hubbard chains42,65 and start investigating one- and two-body phys-
ics78,79, opening the door to exploration of myriad proposals for 
quantum many-body physics of photons on a lattice4,13,14,73. A cen-
tral question that arose in this context, and became an intellectual 
driver of the field, is: given the ability to realize a desired photonic 
Hamiltonian, how does one populate it with photons and drive it 
into a particular many-body state or material phase?

This challenge is of course not unique to microwave photons 
and naturally arises in any synthetic quantum system that is not 
in thermal contact with its environment. In the case of ultracold 
atoms in optical lattices, the solution was to (1) make use of laser 
and evaporative cooling techniques to prepare a Bose–Einstein con-
densate of weakly interacting atoms and, then, (2) slowly change the 
system Hamiltonian (by the introduction of optical potentials, mag-
netic fields, two-body interactions, and so on) to reach a desired 
target Hamiltonian. Stage (1) removes all/most entropy from the 
system and dumps it into scattered optical fields and the motion of 
untrapped atoms, thereby preparing with high fidelity the ground 
state of the weakly-interacting many-body Hamiltonian; stage (2) 
then adiabatically (and thus isoentropically) converts this relatively 
simple ground state into the strongly correlated ground state of the 
target Hamiltonian. This method, based on global control of sys-
tem parameters in systems of macroscopic size, was tremendously 
successful for cold atoms, enabling exploration of the superfluid 
to Mott insulator quantum phase transition16, paramagnet to anti-
ferromagnet transition15, and more recently, studies of the Fermi-
Hubbard model80, all while avoiding the need to cool the system 
at any time other than the very beginning, when the atomic gas is 
weakly interacting and evaporation most effective.

While cold-atom systems employ global knobs that simultane-
ously control a huge number of sites with utmost precision, tuning 
tunnel couplings and on-site energies in a quantum circuit typi-
cally requires local control on each site. As a result, the procedure is 
likely sensitive to the details of the disorder, and imposes substan-
tial technical limitations. Whereas this approach has nevertheless 
led to several breakthrough experiments (in particular the one in 
ref. 50 that is discussed in detail in the section ‘Topological lattices’ 
below), these difficulties typically restrict its efficiency to small sys-
tems with few photons. Rather than such a head-on confrontation 
with technical challenges, a more promising strategy is to directly 
engineer reservoirs for both particle injection and entropy removal 
in the strongly interacting regime. Several works36–41,81–84 have in 
fact proposed routes to ‘dissipatively stabilize’ quantum many-body 
phases in the steady state by means of a continuous preferential 
injection of particles at particular energies and removal of particles 
at other energies, resulting in cooling of the quantum many-body 
system. In contrast to the reversible nature of coherent driving, both 
in its original formulation29 and in more sophisticated two-photon 
versions83,85, the preference for photon injection versus removal 
in different frequency windows requires breaking of reversibility/
unitarity and thus implies a coupling to an external reservoir. In 
circuit QED platforms such reservoirs are practically realized either 
by exploiting the band gap of photonic waveguides86 or using the 
frequency-selectivity of resistor–inductor–capacitor (RLC) resona-
tors involved in the photon injection process42.

This frequency-selectivity-based approach to entropy removal 
relies upon an energetic distinction between ‘low-energy’ and  
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‘high-energy’ states: while the former are quickly refilled to com-
pensate for unavoidable losses, the latter are effectively blocked by 
the sizable frequency mismatch to the injection RLC. This imple-
ments, in the driven-dissipative context, the concept of incompress-
ibility. To achieve this, it exploits the many-body energy gap present 
above the ground state of many strongly correlated phases of matter, 
including Mott insulating and fractional quantum Hall states: hole-
like states that accidentally form below the many-body energy gap 
because of losses are quickly refilled, while extra particles cannot be 
injected above the many-body gap.

This idea underlies the first demonstration of strongly corre-
lated photonic matter, consisting of a Mott insulator of photons42, 
realized in an array of eight capacitively coupled transmon qubits, 

dissipatively pumped by a two-photon drive with entropy dumped 
into a narrow-band RLC resonator as shown in Fig. 4a. Note that 
the high fidelity of the resulting Mott state is not a single-site effect 
but results from many-particle dynamics of the full lattice: the dis-
sipative pumping (Fig. 4b) occurred only at the rightmost end of the 
chain, allowing for exploration of the gradual growth of the crystal-
line steady-state at unit filling as new particles are injected and the 
system equilibrates with the particle-reservoir as displayed in Fig. 4c.

Whereas the quantum state of matter realized in this experi-
ment — the Mott insulator — is a well-known concept in many-
body physics, one can reasonably expect that the driven-dissipative 
nature of the system modifies its properties, adding temporal fluc-
tuations and perturbing its relaxation towards its stationary state.  
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tunnelling between sites is mediated by capacitors (a) or flux-tunable couplers (d). The occupation of each lattice site is measured through frequency-
multiplexed readout resonators. In a, photons are irreversibly injected into the system through an engineered reservoir, while in d, the coherent evolution 
starting from a suitably factorized initial state is followed in time. b, Schematic diagram of the many-photon energy levels involved in the preparation of the 
Mott-insulator state. The combination of coherent excitation and parametric scattering processes (green cloud) irreversibly injects photons in a limited 
frequency window roughly corresponding to the non-interacting photon band (blue). This frequency-dependent incoherent pumping assembles the target 
Mott state one photon at a time, until the lattice is full and it is no longer possible to inject extra photons without traversing the compressibility gap Δcomp 
to the next Hubbard band (red). States of this band can also rapidly dissipate into the same reservoir modes used for pumping (red ellipse), thus providing 
evaporation of high-energy particles. We plot with for U > 0 in analogy with cold atoms and electrons — transmons in fact exhibit U < 0, but this does not 
impact the physics. Note that adiabatic assembly is sensitive to the fixed-particle-number manybody gap Δmb, not the related (but non-identical) particle 
injection compressibility gap Δcomp. ∂E/∂N, energy required to inject an additional photon into a system containing N photons. c, Temporal evolution of 
the preparation process of a Mott state starting from an empty system: the reservoir (at right, Q1) progressively (right to left) fills the lattice sites Q2–7 
with photons as time advances (downwards). The color scale indicates the unit-occupancy probability P1 of each lattice site: the filling front moves with a 
light cone away from the reservoir, and even reflects off of the far edge of the system. Within a few microseconds, the photon fluid has reached a steady 
state with near-unity (just below 90%) occupancy. e, Scheme of the energy levels of a generic many-body quantum system. Localization phenomena are 
related to the distribution of the energy-level spacing ratio rɑ, defined in terms of the energies of the eigenstates Eɑ and their differences sɑ. f, The measured 
histogram P(r) for disorder/tunnelling ratio Δ/J = 1 and 5. The dashed lines indicated the Poisson PPoisson and the Gaussian orthogonal ensemble PGOE 
distributions that are expected for P(r) in the two limiting cases of ergodic and many-body localized phases in the thermodynamic limit. The solid lines 
are numerical simulations for the chain of 9 qubits used in experiments. Nq, number of sites. Figure reproduced with permission from: a–c, ref. 42, Springer 
Nature Ltd.; d–f, ref. 65, AAAS.
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It is even interesting to ask if the thermal-reservoir coupling in 
solid-state Mott insulators perturbs their properties.

To these ends, in recent years substantial theoretical effort 
has been devoted to studying non-equilibrium phase transi-
tions40,41,73,75,82,84,87–94 and the fluctuations and effective heating 
mechanisms induced by pumping and dissipation95–99; nonetheless 
the overall understanding of strongly interacting driven-dissipative 
many-body systems remains less complete than that of isolated sys-
tems at or near equilibrium. From a numerical perspective, substan-
tial efforts are still ongoing to develop techniques able to deal with 
the non-perturbative interplay of hopping, interactions, driving and 
dissipation40,100–105.

Another interesting challenge is how to study gapless phases, 
where dissipative stabilization is more challenging. Beyond weakly 
interacting non-equilibrium Bose–Einstein condensates4,22,23, 
strongly interacting many-body localized states are of particular 
interest, where disorder broadens the energy spectrum, removing 
gaps, and also inhibits particle diffusion106, further complicating the 
equilibration process.

Rather than attempting to stabilize the ground state of such many-
body localized Hamiltonians, the authors of ref. 65 adopt a unique 
quantum-optics-inspired approach to probing many-body localiza-
tion: they directly extract the frequency difference between pairs of 
eigenstates of a disordered Hubbard chain of transmons (Fig. 4d) by 
looking at quantum beats in the time evolution of suitable one- and 
two-body observables. In this way, the clear signature of localiza-
tion appearing in the resulting few-body spectrum is the absence of 
level repulsion in the statistics of system gaps (Fig. 4d–f). Subsequent 
work107 explored arrested relaxation of a density-wave state by disor-
der, disentangling single- and many-body localization effects through 
full quantum-state tomography of the ten-lattice-site system.

To date, strongly correlated photonic materials have been 
explored exclusively in one dimensional (1D) lattices, whose con-
nectivity is a quite trivial one, but another strength of the circuit 
QED platform is the ability to engineer lattices with more complex 
connectivities. In the following sections we describe the menagerie 
of fascinating topological, flat-band and non-Euclidean lattices that 
are presently under exploration, and discuss their prospects for 
integration with strong photon–photon interactions.

Topological lattices
From the quantum Hall effect to topological insulators108, some of 
the most fascinating properties of solids arise due to band structures 
that are knotted in suitable abstract spaces. Fundamentally, these 
effects result from Lorentz forces on electrons in magnetic fields 
and/or spin–orbit coupling effects in the material, which introduce 
a handedness in the material’s properties.

Exploring such phenomena in the circuit QED platform was ini-
tially hindered by the fact that photons are charge-neutral objects, 
and as such do not experience a Lorentz force in the presence of a 
magnetic field. To overcome this difficulty, in close connection with 
simultaneous efforts in the field of neutral atoms109, an intense effort 
has been devoted to the realization of synthetic magnetic fields 
for photons and, more generally, to introduce ideas of topological 
quantum matter into optics. This has given rise to the new field of 
topological photonics110: beginning with the pioneering theoretical 
insight in ref. 111 and the breakthrough observation of topologically 
protected chiral edge states in photonic crystals112, this field has 
grown into a new area of optics with numerous applications.

The first proposals for microwave photons in circuits date back 
to ref. 113, where ferrimagnetic circulator elements were proposed 
to break time-reversal symmetry and generate topologically non-
trivial bands. Soon after, the idea of modulating the site frequencies 
and/or the hopping amplitudes in time was put forward114. These 
proposals rely on the so-called Peierls substitution, a formal con-
nection between the magnetic field in continuum systems and tun-

nelling phases in their lattice counterparts: the effective magnetic 
flux through a plaquette is proportional to the net tunnelling phase 
around that plaquette. This Peierls idea underlies the realizations of 
topological lattices illustrated in Fig. 5a,c.

A network of inductors and capacitors can be assembled to real-
ize time-reversal-invariant spin-Hall115,116 and Weyl117 band struc-
tures, as well as to observe higher order topological features such 
as corner states in quadrupole insulator lattices118. While this con-
struction can be made extremely low loss and insensitive to fabri-
cation disorder, the absence of time-reversal-symmetry breaking 
intrinsic to the use of just inductors and capacitors makes it less 
clear what many-body phases will be obtained when strong inter-
photon interactions are added to the system.

To overcome this limitation and break time-reversal symmetry, 
an ultra-low-loss topological lattice based on bulk cavities contain-
ing ferrimagnetic materials was proposed119. In this configuration, 
the modes on the individual lattice sites with opposite angular 
momentum are split by the magnetic element (see Fig. 5a). This 
technique has been employed to realize topological Chern bands in 
a 1/4-flux Hofstadter model120 (Fig. 5b). The ongoing challenge is 
now to introduce qubits into the array and thereby realize interac-
tions between the photons, moving from single-particle topological 
physics to many-body topological order.

The first experiment combining a synthetic magnetic field with 
strong photon–photon interactions was reported in ref. 50. Using three 
superconducting qubits placed in a ring geometry (see Fig. 5c–d),  
the authors synthesize artificial magnetic fields by sinusoidally 
modulating the qubit couplings so to induce a non-trivial Peierls 
phase. As a signature of the time-reversal-breaking synthetic mag-
netic field, they observed a directional circulation of single-photon 
wavepackets (Fig. 5e). The interplay of the synthetic magnetic field 
with strong interactions was then apparent in the opposite direc-
tion of circulation of a two-photon state: when the authors inserted 
a pair of photons into a pair of neighbouring sites, as shown in  
Fig. 5f, they observed an overall rotation with opposite chirality as 
compared to individual photons. This striking result indicates that, 
as a result of strong interactions, the photons do not move freely but 
behave as effectively impenetrable particles.

The observed dynamics is most simply understood as the 
motion of a photon vacancy: akin to holes in an electronic band, 
the oppositely ‘charged’ vacancies circulate in the opposite direction 
compared to photons. This pioneering result paralleled the related 
observation of two-body quantum dynamics of ultracold bosons in 
a Hofstadter ladder121. A recent work122 reported the observation of 
single-particle topological end states in a circuit magnon insulator, 
a configuration that automatically imposes hard-core constraint on 
the excitations and is thus promising in view of many-body physics.

The natural next step will be to scale up these devices to full 
lattice geometries, for which the possibility of realizing fractional 
quantum Hall states has been investigated30,81,123 and symmetry-pro-
tected topological phases124 are under exploration.

Flat bands and curved-space dynamics
A particular advantage of the circuit QED platform is the ability to 
realize complex lattice connectivities by simply changing the wiring 
of the circuit. Clear demonstrations of this possibility are the peri-
odic boundary conditions that were realized for the aforementioned 
topological lattices in both 2D (ref. 115) and 3D (ref. 117) geometries. 
By contrast, such configurations are obviously hard if not impos-
sible to obtain in real solid materials and require cumbersome syn-
thetic dimensional set-ups in ultracold atomic systems125. Given the 
link between the topology of the ambient space and the degeneracy 
of the ground state of strongly correlated fluids displaying non-
Abelian anyons, one can anticipate that experimental control on the 
global properties of the ambient space will play an important role in 
fault-tolerant quantum computing126.
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It has recently become apparent that the flexibility in the design 
of the lattice geometry is far broader than this. Even within the scope 
of planar, non-crossing designs for which fabrication is mature, it is 
possible to realize connectivities wherein particles explore curved 
spaces and non-Euclidean geometries, or experience destructive 
interference effects that entirely inhibit tunnelling in so-called flat 
bands. Such flat-band models present opportunities for new phys-
ics, as particles living in flat bands have no kinetic energy, so any 
interaction between the particles, in conjunction with the structure 
of the band, completely determines the particles’ ordering82,127,128.

While a significant suppression of the kinetic energy naturally 
occurs in the topological Hofstadter model discussed in the previ-
ous section, the first realization of a completely flat band in circuit 
QED appeared in the lattice shown in Fig. 6a. This lattice appears 
visually to be honeycomb, but because the resonators (depicted as 
light blue lines) are actually the sites and not the links, the actual 
lattice (shown in dark blue) that the photons inhabit (yellow dots) 
is kagome11,129. The kagome lattice is known to exhibit a flat band 

that is unfortunately not energetically isolated. As such any photon–
photon scattering will drive photons into adjacent bands, thus it is 
essential to find a way to isolate the flat band.

In the quest to explore flat-band circuits, it was discovered129 that 
flat bands can be isolated by exploiting a duality between sites and 
links: in periodic tight-binding lattices consisting of sites connected 
equally to three neighbours, swapping sites and links yields an iden-
tical (but shifted) band structure with a new flat band. From here, 
frustrating the initial lattice to minimize its bandwidth energetically 
isolates the flatband129–131. Such a flat band could be realized48 in a lat-
tice with heptagonal honeycomb connectivity shown in Fig. 6b, but 
unfortunately identical heptagons cannot tile a Euclidean plane. On 
the other hand, a hyperbolic plane of constant negative curvature can 
be tiled with heptagons. The arbitrary connectivity and the decoupling 
of geometrical arrangement and hopping rate possible in circuit QED 
systems enable such a lattice to be implemented in a planar circuit 
as shown experimentally in Fig. 6c. Recent theoretical breakthroughs 
provide a general path to planar lattices with isolated flatbands128.
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Fig. 5 | Topological lattices. Summary of two experiments demonstrating topological lattices for photons in circuit QED platforms. a, A schematic of 
a quarter-flux Hofstadter model, a model of non-interacting particles on a square lattice pierced by an orthogonal (synthetic) magnetic field. In this 
realization, the synthetic magnetic field is induced by enforcing that every fourth lattice site has a chiral mode function (circular arrow), which imposes the 
requisite tunnelling phases. All other sites (open circles) exhibit instead spatially uniform cavity mode functions. b, Top view of the experimental lattice, 
as realized by machining an array of 3D coaxial resonators. The chiral sites are implemented by introducing yttrium–iron–garnet ferrimagnets to those 
sites. The four-site plaquette highlighted in green is the physical realization of the four-site plaquette highlighted in gray in a. c, In the alternative approach 
schematically shown here, the requisite tunnelling phase is obtained by temporally modulating the coupling between adjacent lattice sites and photons 
are effectively impenetrable particles. A single plaquette of such a lattice is highlighted in the schematic. ΦB, effective magnetic flux. d, Micrograph of 
the physical implementation of a three-site triangular closed loop configuration, consisting of three superconducting qubits Qj connected via adjustable 
couplers CPjk. e, Single-photon counter-clockwise circulation resulting from the time reversal breaking by the synthetic magnetic field piercing the loop. 
The three curves show the measured time-dependence of the probability of the photon occupying each qubit PQj

I
 for the coherent evolution starting from 

a state with a single photon in Q1. f. When the same experiment is performed starting with a single photon in each of Q1 and Q2, the strong photon–photon 
interactions result in circulation of an oppositely-charged vacancy in the opposite direction. Figure reproduced with permission from: a,b, ref. 120; c–f, ref. 50, 
Springer Nature Ltd.
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Once again, the natural next step is to add strong interactions 
to these curved-space models. It is natural to expect that particles 
inhabiting curved surfaces have their ordering perturbed by the 
Gaussian curvature, which introduces pleats132 and other topo-
logical defects much as a full head of hair must have a cowlick133. 
Furthermore, it was recently discovered that the celebrated Laughlin 
wavefunction has a curved-space generalization134, whose response 
to spatial curvature reveals new topological quantum numbers135.

In general, the inherently higher connectivity of hyperbolic 
spaces compared to their Euclidean counterparts, as well as real-
ization of higher-dimensional lattices via the synthetic dimension 
concept136, is anticipated to have a profound effect on many-body 
physics, enhancing the effects of interactions and frustration, 
speeding up the propagation of entanglement, and substantially 
modifying surface-tension-like effects governing phase boundaries 
and domain growth137. These features are especially promising in 
view of topological quantum computing applications, where they 
are expected to improve performance of surface codes138.

Looking ahead
The photonic quantum matter effort has taught us how to  
create customized ‘particles’ from the ground up, to cool them, and 
to characterize the microscopic structure of the resulting order-
ing. In the process, we have gained a unique perspective on what 
makes a material a material. In the quest to study new phases of 
matter, the work of realizing the ingredients often reveals exciting 
physics of its own: we have seen that exploring curved-space phys-
ics yields new insights into flat bands; stabilizing a Mott insula-
tor poses new questions about dissipatively driven steady states; 
spectroscopic probes of many-body localization provide new 
insights into level spacings in the localized phase. The quantum-
matter frontier holds surprises around every corner, each awaiting  
discovery with the unique probes and understanding afforded by 
the various platforms.

Despite this explosion of progress and innovation in the circuit 
materials community, it is clear that we are closer to the beginning 
of this journey than to its end. As we have seen, the first realizations 
of strongly correlated photonic matter have only just come online, 
and have yet to be integrated at any scale with the zoology of topo-
logical and exotic lattice models outlined in the latter parts of this 
work. In a similar vein, the toolset to dissipatively stabilize strongly 
correlated matter has now been realized in its minimal form, but has 
yet to be applied to any but the simplest Mott models, or formally 

connected to thermodynamics. Given the flexibility of the circuit 
QED platform in creating new lattices and new interactions, we can 
reasonably expect that new quantum phases of matter are waiting to 
be discovered, with a number of potential applications to quantum 
technologies.

As in the last decade, technical innovation will remain a driver 
of the field, and we expect to benefit richly from ongoing circuit 
quantum computing work. Advances are essential on two fronts: 
(1) reduction of the fabrication disorder of superconducting qubits: 
current fabrication techniques produce large (5–10%) variation in 
qubit frequencies, and while site-by-site flux tuning is possible42, 
suppressing qubit disorder to the ~2 × 10−4 level achieved for reso-
nators47 would be transformative for scaling; and (2) overcoming 
the tyranny of planar connectivity: at present, most research groups 
implement circuits on single-sided sapphire wafers, limiting the 
achievable graph connectivity. Large-scale incorporation of air 
bridges139, bump bonds140, or superconducting vias141 will enable 
fully arbitrary connectivity between lattice sites.

Opportunities loom to explore yet-more-exotic models, where 
photons interact with one another at range142,143 or via more complex 
potentials, which are anticipated to lead to fractal band structures144, 
intriguing topological orders145, or even models of bosons coupled 
to dynamical gauge fields146. While this physics is in principle acces-
sible given existing qubit topologies with appropriately engineered 
drives, one of the unique strengths of the circuit QED platform 
is the ability to engineer and fabricate new fundamental building 
blocks with exotic properties. It seems clear that such engineering, 
while intellectually expensive on the front-end, will lead to simpler 
and more robust tools that scale more manageably.

In terms of experimental opportunities, a challenge immediately 
facing the community is to realize bosonic analogues of the frac-
tional quantum Hall states30,123, which extend the recent pioneer-
ing demonstration in spatially continuous geometries60 to discrete 
lattice configurations. While photonic topological materials will 
likely never exist with particle number comparable to their elec-
tronic counterparts, numerics suggest18,147–150 that much of the phe-
nomenology that a material exhibits emerges from the microscopic 
quantum dynamics of a few interacting particles. As such, there are 
fascinating opportunities to stabilize small Laughlin puddles of light 
in topological lattices that scale up to a full-fledged 2D lattice by 
building upon the trimer demonstrated in ref. 50 or by combining 
the topological lattice described in ref. 120 with the interactions dem-
onstrated in ref. 42.

a b c

Fig. 6 | Curved-space and flat-band lattices. a, If a honeycomb lattice is realized by using resonators as the links (light blue), the photons inhabiting those 
resonators tunnel around in a tight-binding lattice which is effectively kagome (dark blue) because the ‘sites’ of this lattice are the resonators themselves. 
b, Equivalent overlay for a heptagonal-honeycomb lattice. If distances are to be preserved, this lattice can only be embedded in a non-Euclidean hyperbolic 
plane. c, Photograph of a resonator lattice which realizes the heptagonal-honeycomb lattice of b: different resonators have different physical shapes to 
compensate for the variable physical lengths of the bonds. Figure reproduced with permission from: c, ref. 48, Springer Nature Ltd.
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Dissipative stabilization will be a crucial ingredient of any such 
topological material, though the slow motion of quasi-holes in a 
Laughlin fluid will likely demand distributed stabilizers, and their 
fractional charge will likely affect the refilling efficiency36,81. From 
here, the reward to be reaped in the mid-term is the long-awaited 
experimental verification of the anyonic statistics of the quasi-par-
ticle excitations of quantum Hall fluids145,151–154, an exciting concept 
that has so far eluded conclusive observation in traditional elec-
tronic systems126,155 and is presently under active study in circuit 
QED platforms from the alternate point of view of toric codes156. To 
this and related purposes, the artillery of manipulation and detec-
tion techniques as well as the high repetition rate of circuit QED 
systems will allow for measurements of fundamental many-body 
quantities such as correlation functions and Green functions with 
unprecedented statistics, giving game-changing information on the 
microscopic properties of topological matter.

A long-run objective with potentially revolutionary technologi-
cal applications will then be to generate more complex many-body 
states that support non-Abelian anyons and to demonstrate their 
exotic statistics under exchange. Here, the great challenge is to 
take advantage of the local nature of loss and pumping processes 
to extend the concept of topological protection of the state to the 
driven-dissipative context. In this way, one could encode quantum 
information in a topologically degenerate many-body state of light 
in a fault-tolerant way and exploit anyon exchange to perform quan-
tum computations126.

From a fundamental perspective, the dynamics of strongly 
interacting photons as they thermalize in any relatively large lat-
tice system, topological, exotic or otherwise, proffers fascinating 
questions157: To what extent do the dynamical steady-states result-
ing from dissipative stabilization mirror their equilibrium coun-
terparts94 and how does the non-equilibrium nature affect phase 
transitions and critical behaviour24,90,96–99? Does this depend crucially 
on the precise nature of the drive or are there universal features? Is it 
possible to develop coarse-grained hydrodynamic models that cap-
ture the essential behaviour of these systems158? How would such 
models depend upon the microscopic parameters of the underlying 
physical platform? Although these questions may appear specific to 
the circuit QED platform, they strike at the very heart of quantum 
many-body physics: how do the laws of the macroscopic classical 
world emerge from the underlying quantum froth159?

It is interesting to ask how digital quantum computers might 
supplement custom-built synthetic quantum materials for basic 
condensed-matter research. Through Trotterization (decomposing 
an arbitrary operator into easily implemented operators through the 
Trotter–Suzuki formula), a digital quantum computer can simulate 
nearly any Hamiltonian system. Without error correction, however, 
Trotterization is quite inefficient in its use of the accessible quantum 
coherence. The extraordinary flexibility of circuit-based quantum 
materials to directly engineer the physics of interest allows them to 
make more efficient use of coherence and, in many cases, exhibit 
higher tolerance to errors. This makes them an attractive way to 
explore high entanglement-depth quantum dynamics of exotic 
many-body systems.

It is thus apparent that circuit QED provides a wholly new way 
to look at matter. This novel perspective has already provided 
new understandings of problems from dynamics in curved space 
and topological physics to quantum thermalization and many-
body localization. The array of rich science emerging from recent 
endeavors notwithstanding, this lively field has posed many more 
questions than it has answered: we anticipate that the coming years 
will furnish answers to these questions, and allow the community 
to investigate yet-more-fundamental questions at the interfaces of 
quantum many-body physics, the emergence of the classical proper-
ties from entanglement in driven-dissipative quantum systems, and 
quantum information science.
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