
PHYSICAL REVIEW B 90, 094518 (2014)

Understanding degenerate ground states of a protected quantum circuit in the presence of disorder
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A recent theoretical proposal suggests that a simple circuit utilizing two superinductors may produce a qubit
with ground-state degeneracy [Brooks, Phys. Rev. A 87, 052306 (2013)]. We perform a full circuit analysis
along with exact diagonalization of the circuit Hamiltonian to elucidate the nature of the spectrum and low-lying
wave functions of this 0-π device. We show that the ground-state degeneracy is robust to disorder in charge,
flux, and critical current as well as insensitive to modest variations in the circuit parameters. Our treatment is
nonperturbative, provides access to excited states and matrix elements, and is immediately applicable also to
intermediate parameter regimes of experimental interest.
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I. INTRODUCTION

The idea of topological protection from decoherence [1]
has greatly influenced research aimed at the physical im-
plementation of quantum computation. The central paradigm
of topological protection is to store quantum information in
an explicitly nonlocal fashion, rendering qubits insensitive
to various sources of local noise. Potential realizations of
such topological protection have been suggested for anyon
quasiparticles in fractional quantum Hall systems [1–3], for
p + ip superconductors [4], as well as for Majorana fermions
in topological nanowires [5–10]. With coherence times of
the order of milliseconds [11,12], conventional unprotected
superconducting circuits [13–16] are already quite promising
[17,18]. Here we will attempt to explore what are the minimal
requirements for such intrinsic protection in superconducting
circuits. We will show that the use of circuits with more
than one or two effective degrees of freedom can lead to
qualitatively different and more robust quantum states.

A promising avenue for realizing protection in supercon-
ducting circuits is to exploit frustration, such as topological
or Ising-type frustration in junction arrays first proposed in
[19,20] and further explored in [21–23]. From this viewpoint,
the recently proposed 0-π circuit by Brooks, Kitaev and
Preskill (BKP) [24] is particularly intriguing: it features a much
smaller four-node superconducting circuit with the potential
of remarkable robustness with respect to local noise and
the possibility of carrying out quantum gates in a protected
fashion.

The BKP paper takes it for granted that a 0-π qubit with
sufficient inductance and without disorder can be realized,
and rather focuses on protected gates to be performed on
this device. A challenge of the circuit is, indeed, that its
predicted properties may require inductances larger than those
that have been realized to date. Nevertheless, there have
been significant experimental advances towards building such
“superinductors” with increasingly large inductances [25–28].

Our paper has two primary goals. First, we wish to elucidate
the central physics underlying the 0-π circuit by studying the
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nature of its wave functions and general spectral properties.
Second, we investigate what device parameters are needed
for robust degeneracy and discuss the feasibility of accessing
this parameter regime based on state-of-the-art fabrication
techniques. This discussion necessarily includes the effects of
device imperfections, in particular disorder in circuit element
parameters, on the characteristics of the 0-π circuit.

The presentation is structured as follows. We start with
the full circuit analysis of the 0-π device in Sec. II, and
thereby identify its three relevant degrees of freedom. If
disorder in device parameters is absent, the 0-π device is
described by merely two degrees of freedom, while the third
one decouples. For this ideal case, we investigate the spectrum,
wave functions, and the degeneracy of low-lying states in
Sec. III. The role of disorder in circuit parameters is addressed
in Sec. IV. We show that the 0-π circuit is favorably insensitive
to disorder in junction parameters but may be negatively
affected by disorder in the values of the superinductances
and the additional capacitances in the circuit. We present our
conclusions and an outlook on possible future uses of the 0-π
circuit in Sec. V.

II. CIRCUIT ANALYSIS OF THE SYMMETRIC
0-π DEVICE

The 0-π device, depicted in Fig. 1, is a superconducting
circuit with four nodes. The nodes form an alternating ring
consisting of two inductors and two Josephson junctions.
Additional cross capacitances connect the opposing nodes in
the ring. As shown, all circuit elements occur pairwise and
are, in the ideal circuit, identical such that both Josephson
junctions share the same Josephson energy EJ and junction
capacitance CJ, both inductances are given by L, and both
cross capacitances by C. Neglecting any deviations in these
circuit element parameters renders the circuit symmetric under
a π rotation. (For better visibility, one cross capacitance is
shown external to the ring in Fig. 1.) We hence refer to this
special case as the symmetric 0-π device.

For the quantitative study of the spectrum and eigenstates
of the symmetric 0-π device, we begin with a systematic
circuit analysis. In the usual first step [29,30], we assign
node fluxes to each of the four circuit nodes numbered
j = 1, . . . ,4. Each node flux, defined as the time integral of the
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FIG. 1. (Color online) Circuit diagram of the 0-π qubit. Each
of the four circuit nodes is associated with one phase variable ϕj .
Additional symbols show the naming of capacitances, inductances,
and Josephson-junction parameters, and the magnetic flux �ext that
may thread the inner circuit loop.

electrostatic potential Uj on each node, serves as a generalized
variable in the circuit Lagrangian. For convenience, we
employ the dimensionless version of the node variables, ϕj =∫ t

t0
dt ′ Uj (t ′)/�0, where �0 = �/2e is the reduced magnetic-

flux quantum. (Note the inclusion of the 1/2π factor relative
to the conventional definition of the magnetic-flux quantum).

Expressed in terms of node variables, the kinetic- and
potential-energy contributions to the circuit Lagrangian as-
sume the form

T = 1
2 CJ(ϕ̇2 − ϕ̇1)2 + 1

2 CJ(ϕ̇4 − ϕ̇3)2

+ 1
2 C(ϕ̇3 − ϕ̇1)2 + 1

2 C(ϕ̇4 − ϕ̇2)2 (1)

and

U = − EJ cos(ϕ4 − ϕ3 − ϕext/2) − EJ cos(ϕ2 − ϕ1 − ϕext/2)

+ 1
2EL(ϕ2 − ϕ3)2 + 1

2EL(ϕ4 − ϕ1)2. (2)

Note that we have absorbed factors of �2
0 by letting C =

C�2
0, etc. The potential energy U incorporates the effect of an

external magnetic flux, expressed here in dimensionless form
as ϕext = �ext/�0. We have chosen a symmetric division of
the flux between the two Josephson junctions. (As usual, other
equivalent choices are simply obtained by shifting the node
variables.) The terms in the second line of Eq. (2) denote the
inductive contributions in terms of the energy EL = �2

0/L.
From Eq. (1) it is clear that there will be cross terms between

the ϕ̇j variables. Physically, such terms arise because of cross
capacitances in the circuit diagram, Fig. 1. We now adopt new
variables φ, θ , χ , and �, which we will show to diagonalize
the kinetic-energy term and which are defined as

2φ = (ϕ2 − ϕ3) + (ϕ4 − ϕ1), 2χ = (ϕ2 − ϕ3) − (ϕ4 − ϕ1),

2θ = (ϕ2 − ϕ1) − (ϕ4 − ϕ3), � = ϕ1 + ϕ2 + ϕ3 +ϕ4 (3)

with inverse

2ϕ1 = � − θ − φ + χ, 2ϕ2 = � + θ + φ + χ,

2ϕ3 = � + θ − φ − χ, 2ϕ4 = � − θ + φ − χ. (4)

Following our variable transformation, the kinetic and
potential energies simplify to

T = CJφ̇
2 + C�θ̇2 + Cχ̇2 (5)

and

U = − 2EJ cos θ cos(φ − ϕext/2) + ELφ2 + ELχ2. (6)

Here, C� = CJ + C abbreviates the sum capacitance, again
including the factor of �2

0. As intended, the effective mass
tensor in Eq. (5) is now diagonal. Due to gauge invariance,
the variable � decouples completely, leaving us with three
degrees of freedom. Furthermore, the variable χ is harmonic:
it simply captures the oscillator subsystem with frequency
	χ = √

8ELEC/� formed by the two inductances L and
the two capacitances C; EC = e2/2C denotes the relevant
charging energy. For the perfectly symmetric circuit, the
oscillator variable χ exactly decouples from the other two
variables θ and φ but will become relevant again once we
consider disorder in Sec. IV.

For the remaining two degrees of freedom of the symmetric
0-π qubit we thus obtain the effective Lagrangian

Lsym = CJφ̇
2 + C�θ̇2 + 2EJ cos θ cos(φ − ϕext/2) − ELφ2.

(7)

Note that, here, φ̇ only sees the junction capacitance, whereas
θ̇ sees (i.e., depends on the phase difference across) both the
junction as well as the other two cross capacitances. The new
effective masses associated with them may thus be different
and will be instrumental in understanding the physics of the
circuit. From the potential-energy terms it is clear that both φ

and θ are affected by the junctions, but only φ is influenced by
the inductors.

Carrying out the usual Legendre transform and canonical
quantization, we finally arrive at

Hsym = − 2ECJ∂
2
φ − 2EC�∂2

θ

− 2EJ cos θ cos(φ − ϕext/2) + ELφ2 + 2EJ (8)

as the Hamiltonian of the symmetric 0-π qubit. The additional
energy shift 2EJ included in H is convenient in rendering the
energy spectrum strictly positive. All charging energies in H

refer to the charge of a single electron so that ECJ = e2/2CJ and
EC� = e2/2C� . The potential energy V (φ,θ ) associated with
the symmetric 0 − π Hamiltonian is depicted in Fig. 2(a). The
boundary conditions associated with Hsym consist of square-
integrability of the wave functions �(φ,θ ) along the real φ

axis and 2π periodicity in the θ variable.

III. SPECTRUM OF THE SYMMETRIC 0-π DEVICE

A. Qualitative discussion

The effective potential for the 0-π circuit derived in
Eq. (8), V (φ,θ ) = −2EJ cos θ cos(φ − ϕext/2) + ELφ2 + 2EJ,
is shown in Fig. 2(a). For a qualitative understanding of
low-lying eigenstates of the 0-π device, it is useful to consider
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FIG. 2. (Color online) (a) Potential energy V (φ,θ ), showing the twofold fluxoniumlike potential for cuts along the θ = 0 and θ = π ridges.
Localization wave function in these ridges occurs when the effective mass along the θ direction is sufficiently large. (Parameters: EJ/EL = 165.)
(b) Simplified model with separable potential energy. In this case, wave functions are products ψ(φ,θ ) = ψho(φ) ψdw(θ ) of harmonic-oscillator
and double-well wave functions along φ and θ direction, respectively.

a much simpler potential first, taking the form

V ′(φ,θ ) = Vdw(θ ) + Vho(φ). (9)

Here, Vdw is a symmetric double-well potential and Vho a
shallow harmonic oscillator potential as shown in Fig. 2(b).
Due to the special form of this potential, the problem
becomes separable and wave functions are products ψ(φ,θ ) =
ψho(φ) ψdw(θ ) of harmonic-oscillator and double-well wave
functions along the φ and θ coordinate, respectively. The
two lowest-lying eigenstates correspond to Gaussian wave
functions along φ and the symmetric and antisymmetric
superposition of states localized close to the the two double-
well minima along the θ direction. The degeneracy of these
two states is only weakly broken by tunneling as long as
the effective mass along the θ direction is heavy enough to
suppress large fluctuations. For a charge space discussion
of the structure and degeneracy of this separable model see
Appendix B 1.

As long as tunneling in the θ direction remains suppressed,
excited states above these lowest two states will appear in
doublets. Except for the small tunnel-induced splittings within
doublets, level spacings in the spectrum will exhibit two
separate energy scales: the harmonic-oscillator energy spacing
from Vho and the spacing of states in each local-well of Vdw.
When considering the form of the wave functions, the two
energy spacings are associated with either an increase in the
node number in the φ direction or in the θ direction. An
example for the choice Vdw(θ ) = −2EJ| cos θ | is shown in
Fig. 3(b), illustrating the localization along the two ridges
θ = 0 and θ = π as well as the progressive increase in the
number of nodes along the two directions.

We next consider the actual potential energy V of the
symmetric 0-π circuit, as shown in Fig. 2(a) for zero magnetic
flux. Like the simplified potential V ′, the true potential
V has two ridges at θ = 0 and θ = π—but additionally
has oscillatory terms along the φ direction. While each of
them resembles a fluxonium potential [25,31], the minima in
the θ = 0 ridge versus the θ = π ridge are staggered with

respect to one another (thus preventing separability). With
the appropriate choice of circuit parameters, the interesting
ground-state degeneracy seen in the simplified toy model is
also reflected in the physics of the actual circuit with the more
complicated potential.

B. Discussion of conditions for degeneracy

A prototype for a single-particle nearly degenerate system
is a double well. In the mentioned toy model, it is clear that if
the valleys are symmetric and tunneling is suppressed, then the
states of the particle living in the left and right valley will be
approximately decoupled and degenerate. For certain circuit
parameters, the degeneracy in the 0-π circuit is very similar in
nature. It will become apparent in Sec. IV that the degeneracy
of the 0-π circuit is especially robust against disorder.

When tunneling in the φ direction (i.e., in the direction
along each ridge) is much larger than tunneling in the θ

direction (from one ridge to the other), then the maxima in
the 0-π potential can largely be ignored and one expects a
similar degeneracy as in the toy model. This difference in
tunneling strengths can be achieved by choosing significantly
different effective masses along the φ and θ directions, namely
ECJ � EC� (or, equivalently, CJ � C). Localization along
θ within each ridge is further strengthened by reducing
the oscillator length for harmonic fluctuations along the θ

direction, which is accomplished when EJ � EC� .
The symmetry between the two ridges is broken because

the minima of the two ridges are staggered with respect to the
harmonic potential. Further, magnetic flux shifts both ridges
with respect to the harmonic potential, leading to energy
offsets. The sensitivity to both of these effects is reduced
when wave functions are delocalized over multiple minima
of the cosine potential within each ridge. This occurs when the
parabolic envelope of the potential is sufficiently shallow, i.e.,
EL � EJ, and the nominal oscillator length in the quadratic
potential is large, i.e., EL � ECJ.
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FIG. 3. (Color online) Density plots of the wave function amplitudes for eigenstates in (a), the full potential V of the 0-π qubit and (b), the
separable potential V ′. The numbers n = 1,2, . . . enumerate the eigenstates starting from the ground state. Different colors (shades of gray)
mark distinct signs of the wave function amplitudes. In the simpler case (b), localization along the two ridges θ = 0 and θ = π and pairing of
states into doublets of symmetric and antisymmetric states (in θ direction) are easily visible. Wave functions of the actual 0-π circuit in (a)
show additional local extrema due to the cosine corrugation of the potential V . Overall comparison—in particular, states n = 5 and 6—shows
that delocalization in θ occurs more easily for the 0-π circuit. As a result, the development of nodes in φ direction (states 12 and 13) only takes
place at higher energies. (Parameter values: �ωp/EL = 104, �ωp/EC� = 2.2×103, �ωp/EJ = 7.9.)

Intuition for this insensitivity of states delocalized in φ is
similar to the flux insensitivity of the fluxonium circuit [31,32].
There, low-lying wave functions form metaplasmon states
delocalized across multiple potential minima. These states
are exponentially insensitive, with an exponential suppression
factor of ∼ exp(−r

√
ε/EL) where ε is the charge dispersion

of the Cooper pair box with energy scales EJ and ECJ, and the
constant r > 0 is of order unity [31,33]. We will show that the
same physics leads to degenerate states insensitive to magnetic
flux and energy offsets in the 0-π circuit.

To summarize, we find that robust ground-state degeneracy
(up to exponentially small deviations) requires the following
set of inequalities among device parameters to hold:

EL,EC� � EJ, ECJ. (10)

An analysis of the ground-state degeneracy in this limit, from
the perspective of the charge basis, is given in Appendix B.

C. Numerical results for wave functions and energy levels

Due to the cosine modulation along the φ direction and
coupling between motion in the φ and θ direction, the full
potential V of the 0-π circuit is not separable. We thus solve
the corresponding Schrödinger equation numerically to obtain
energy levels and eigenstates. Specifically, we employ the
finite-difference method in its simplest implementation (see
Appendix A). With this method we can find the full solution
in both the limit described in Eq. (10) but also in intermediate
regimes where no clear hierarchy of energy scales exists.

Figure 3(a) illustrates the resulting wave functions for
the 0-π device deep in the degeneracy regime. Qualitative
similarities with the wave functions of the simplified potential
[Fig. 3(b)] are evident. Important differences between the two
cases include the additional structure of wave functions of
the 0-π device brought on by the cosine corrugation of the

potential, as well as an increased tendency of wave functions
to spread in the θ direction. The latter is easily understood
from inspection of the potential V , showing that the two
ridges are not separated by a large potential barrier along
θ = π/2. Nevertheless, the wave functions shown in Fig. 3
are qualitatively similar between the toy model and the actual
potential.

Which of these two types is formed generally depends
on the parameters EL, EC� , and magnetic flux. As long as
the magnetic flux is away from half-integer flux quanta, the
staggering of local minima leads to an effective energy offset
between the two ridges. Just as for an asymmetric double-well
potential these energy offsets promote localization in the indi-
vidual ridges, becoming more pronounced as EL is increased
and leading to a ground-state doublet of the type shown in
Fig. 4(a) [Fig. 9(a) shows the charge basis representation of
the doublet]. Conversely, decreasing the effective mass along
the θ direction, i.e., increasing EC� , promotes tunneling and
delocalization of the wave function, leading to eigenstates
in the form of symmetric and antisymmetric superpositions,
as shown in Fig. 4(b) [Fig. 9(b) shows the charge basis
representation of the doublet]. In summary, by tuning the
relative strength between EL and the tunneling (via EC�),
we can favor one type over the other.

In principle, magnetic flux can also be used to generate
superposition-type states: tuning �ext to a half-integer flux
quantum produces a potential which is symmetric with respect
to the two ridges and, thus, does not exhibit an effective energy
offset. Figure 5 gives an example of the full flux dependence
of low-lying energy levels. The doublet structure of the lowest
four energy states is clearly visible, as is the suppression
of the energy splitting at half-integer flux (ϕext = π ). The
metaplasmonlike character of the wave functions explains the
relative insensitivity of low-lying energy levels to the external
magnetic flux.
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FIG. 4. (Color online) Wave functions for the ground state and its (nearly) degenerate partner state for two choices of device parameters.
While the value of the degeneracy is identical in the two cases (D = 2.7), it is limited by potential-energy differences in the two ridges in (a),
and by tunneling along the θ direction in (b). For tunneling-induced degeneracy breaking (larger EC� and smaller EL), we observe symmetric
and antisymmetric superpositions of the states localized in the individual ridges. For degeneracy breaking due to potential offsets between the
two ridges (smaller EC� and larger EL), we observe localization in the two separate ridges. Figure 9 displays the same eigenfunctions
expressed in the charge basis. [Parameter values: (a) �ωp/EL = 9.9×102, �ωp/EC� = 104, �ωp/EJ = 8.3; (b) same as in Fig. 3, i.e.,
�ωp/EL = 104, �ωp/EC� = 2.2×103, �ωp/EJ = 7.9.]

We next assess the degree of degeneracy that can be
achieved with realistic device parameters. To quantify the
degeneracy we define the parameter D by

D = log10
E2 − E0

E1 − E0
, (11)

where E0, E1, and E2 are the eigenenergies arranged in
increasing order, starting with the ground state. D thus
specifies the ratio between the doublet energy splitting and
the energy difference to the next higher doublet on a log scale,
as illustrated in Fig. 5. In the absence of magnetic flux, wave

(
)

FIG. 5. (Color online) (a) Energy spectrum as a function of
external magnetic flux ϕext = �ext/�0. For the selected parameters,
the lifting of the degeneracy at zero flux is primarily induced
by the potential asymmetry and strongly suppressed for ϕext = π

where the potential becomes symmetric. (b) Magnetic-flux depen-
dence of the logarithmic degeneracy parameter D. (Parameter values:
�ωp/EL = 103, �ωp/EC� = 103, and �ωp/EJ = 3.95.)

functions in this example are of the type shown in Fig. 4(a). The
degeneracy D is seen to reach a maximum at half-integer flux,
which eliminates the energy offsets between the two ridges and
switches to wave functions of the Fig. 4(b) type. The following
discussion will investigate the degeneracy at zero flux, away
from the special flux value, to better highlight the interplay
between the two regimes.

An important question is the quantitative dependence of
the degeneracy D on the device parameters of the 0-π
circuit. Indeed, the inequalities from Eq. (10) specify general
requirements for finding near-degenerate pairs of low-lying
states, however, Eq. (10) does not provide a concrete parameter
range. To obtain this range, we systematically calculate the
degeneracy D for a large set of parameter choices as follows.
We first note that variations in junction capacitance CJ and
Josephson energy EJ are routinely achieved with Al-AlOx-Al
junctions by changing the junction area while keeping the
insulator thickness constant. Under these circumstances, the
effective plasma frequency ωp = √

8EJECJ/� remains fixed.
We thus take �ωp as our energy scale and treat EL, EC� , and
EJ as independent parameters; the junction capacitance takes
the form ECJ/�ωp = �ωp/8EJ. We then form a logarithmic
grid in the parameter plane spanned by EL and EC� . For each
grid point, we calculate the degeneracy D and finally vary EJ

to find the maximum degeneracy value Dmax (for given EL and
EC�). Our key results are depicted in the log-log plot shown
in Fig. 6.

The constant-D contours in Fig. 6 illustrate that there are
indeed two qualitative regimes for reaching high degeneracy
values, which is fully consistent with the two types of doublet
states shown in Fig. 4. Whenever EL is sufficiently small,
the degeneracy D is mainly limited by the splitting induced
by tunneling along the θ direction. Accordingly, D can be
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FIG. 6. (Color online) Maximum value of the degeneracy param-
eter D for given EL and EC� and optimal E∗

J . Contours of maximum
D are shown in black and show that strong degeneracy requires
challengingly small values of EL and EC� . Contours for the optimal
values E∗

J maximizing D are shown as white dashed lines. The
two dash-dotted asymptotes show the regime where D is limited
by potential offsets [towards larger EL, where wave functions have
the form of Fig. 4(a)] and the regime where D is limited by tunnel
splitting [towards smaller EL, where wave functions have the form
of Fig. 4(b)].

increased by further suppressing tunneling, as is achieved by
decreasing the value of EC� . In this regime, wave functions
are symmetric and antisymmetric superpositions of wave
functions localized in the θ = 0 and θ = π ridges, as shown
in Fig. 4(b). Vice versa, when EC� is sufficiently small, D is
predominantly governed by the asymmetry between the two
potential ridges. This asymmetry can be lowered by decreasing
the superinductance energy EL. Wave functions in this regime
are localized in one ridge or the other; see Fig. 4(a).

In Fig. 6, we also show the contours for E∗
J , defined as the

value of EJ that maximizes the degeneracy for given EL and
EC� . These contours are, approximately, straight and parallel
lines with a unit slope, implying that the optimum values obey
the parametric dependence E∗

J = f (EC�/EL). Contours of
E∗

J are nearly equidistant, implying that E∗
J is nearly a plane

surface in log-log space over the investigated parameter range.
Numerically, we find the approximate relation

E∗
J

�ωp

≈ 0.17 − 0.11× log10(EC�/EL). (12)

To illustrate the practical challenge in reaching the parameter
regime of degeneracy, let us consider a specific example of
parameter values. We choose �ωp/EC� = �ωp/EL = 103 for
the relevant charging and superinductance energies, which
achieves a degeneracy value of D ≈ 2; see Fig. 6. For
Josephson junctions with a plasma oscillation frequency of
the order of ωp/2π = 40 GHz (typical of Al-AlOx junctions),
this choice implies a superinductance of roughly 4 μH and a
capacitance C of about 0.5 pF.

Experimentally, capacitances of the order of 0.1 pF (charg-
ing energies in the range of 200 MHz) are routinely achieved
in transmon qubits [11] and could be increased further to the
desired level. The largest values of superinductances, to date,
are L = 0.3 μH in the linear regime [28] and L = 3 μH in the
nonlinear regime [27]. Reaching a linear superinductance with
the value of 4 μH from our example parameter set therefore
remains challenging but may be possible assuming further
advances in the design and fabrication of superinductances
based on Josephson-junction arrays or thin superconducting
wires.

Since the two lowest levels become nearly degenerate,
it is appropriate to ask how temperature affects the circuit.
Wave functions of the ground-state doublet are disjoint and
will be coupled to each other only very weakly. Hence, it is
possible to operate the circuit even when kBT � E01—quite
similar to the use of hyperfine levels of trapped ions even at
room temperature. In order to initialize and measure the state
of the circuit, the energy separation to the next set of levels
should exceed the energy scale set by temperature, E02 �
kBT —in analogy to the optical transitions used in ions. For
the parameters considered here, E02 is of the order of 1 GHz
(Fig. 5), corresponding to a temperature of 50 mK which is
readily achievable with standard dilution refrigerators.

We note that the value D = 1 of the degeneracy param-
eter may be viewed as a threshold above which protection
becomes manifest. Specifically, appropriate changes in circuit
parameters beyond this point lead to an exponential gain in
protection from decoherence. Given the discussion of the
example parameter set, we find that reaching the D = 1
threshold is completely feasible with current technology
and the interesting physics of the circuit should be readily
observable. However, to supplant existing superconducting
qubits—which already are remarkably good—higher values of
D will be necessary, requiring advances in fabrication as well
as further development of protocols for single- and multiqubit
operations.

IV. EFFECTS OF DISORDER

Unavoidable device imperfections will generally lead to
some amount of disorder in the parameters of the 0-π
circuit. Specifically, the parameters of each pair of junctions,
capacitors, and superinductors in the circuit will not be
precisely identical. We thus consider the effect of such disorder
on the spectrum of the 0-π circuit and on the degeneracy D,
in particular.

When including parameter disorder, the kinetic and poten-
tial energies [previously Eqs. (5) and (6)] take the more general
form

T = CJφ̇
2 + (C + CJ)θ̇

2 + Cχ̇2 + 2 δCJ φ̇ θ̇ + 2δC θ̇ χ̇

(13)

and

U = − 2EJ cos(θ ) cos
(
φ − 1

2ϕext
)

+ 2δEJ sin(θ ) sin
(
φ − 1

2ϕext
)

+ ELφ2 + ELχ2 + 2δELφχ. (14)
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Here, C = (C1 + C2)/2 now denotes the arithmetic mean of
the two capacitors and δC = (C1 − C2)/2 the deviation from
the mean. We employ analogous definitions for disorder in the
various other circuit parameters.

A Legendre transform and subsequent series expansion in
the capacitive disorder then leads to the Hamiltonian

H 	 Hsym + 4EC�(δCJ/CJ)∂φ∂θ

+ 2 δEJ sin θ sin(φ − ϕext/2) − 2EC∂2
χ + ELχ2

+ 4EC�(δC/C)∂θ∂χ + 2 δELφ χ, (15)

where we have dropped contributions ∼O(δC2,δCJ
2,δC δCJ).

The terms in the first line of Eq. (15) comprise the previous
model of the symmetric 0-π device [Eq. (8)] plus small
corrections due to disorder in the parameters CJ and EJ

describing the two Josephson junctions. The second line
contains the harmonic terms for the χ degree of freedom,
as well as two terms from disorder in EL and C which couple
between the χ degree of freedom and the fundamental 0-π
circuit variables (φ, θ ). In the following, we discuss the effects
of these different types of disorder.

A. Disorder in junction parameters EJ and CJ

Disorder in the Josephson junction parameters (δEJ and
δCJ) is straightforward to incorporate as it does not introduce
coupling between the fundamental 0-π circuit variables and
the additional harmonic degree of freedom captured by the χ

variable. The effects of junction disorder can thus be treated
by the same numerical diagonalization scheme as before.

As seen from Eq. (15), disorder in the junction capacitance
CJ only leads to a slight change in the effective mass
tensor. Corrections due to this are expected to be small
since EC� δCJ/CJ < EC� � ECJ. The critical condition for
maintaining robust degeneracy in the presence of CJ disorder,
is that the tunneling along φ must remain strong and tunneling
along θ must remain weak. As long as the δCJ (and CJ) remains
small compared to C, this tunneling condition will still be
satisfied. Indeed, results from numerics show that the effect of
this disorder is negligible for values up to δCJ/CJ = 100%.
This should be compared to the conservative estimate of
experimental disorder in CJ of up to 10%, mainly caused by

edge imperfections in the double-angle evaporation used for
the fabrication of Al-AlOx Josephson junction.

Disorder in the Josephson energies leads to a distortion
of the potential energy V (φ,θ ). According to Eq. (15), this
distortion is directly proportional to δEJ and can hence produce
noticeable changes in wave functions, eigenenergies, and the
degeneracy measure D. Representative numerical results are
shown in Fig. 7. The degeneracy D is fairly robust for realistic
amounts of EJ disorder [Fig. 7(a)]. Experimentally, Josephson
energies are known to vary from device to device by up to
20%; disorder among junctions within the same device is
expected to be significantly smaller than this. The reason for
the rapid drop of D at very strong disorder is illustrated in
Fig. 7(b), showing the dramatic change of wave functions as
the potential energy is more and more deformed. Strong EJ

disorder eliminates the two potential ridges along θ = 0 and
θ = π and wave functions spread over the full range along the
θ direction. Consequently, EJ disorder ultimately destroys the
degeneracies of low-lying states—however, only for disorder
strengths that vastly exceed the amount of disorder expected
in experiments.

B. Disorder in C and EL

Both disorder in the capacitance C as well as in the
superinductance energy EL introduce coupling between the
0-π device variables (φ,θ ) and the harmonic variable χ . This
is similar to the typical situation of circuit QED where a qubit
is coupled to a harmonic oscillator, and can thus be treated
by the same methods [34]. In the eigenbasis {|l〉}l=0,1,... of the
symmetric 0-π circuit [Eq. (8)], the full Hamiltonian can be
rewritten as

H =
∑

l

E
sym
l |l〉〈l| + �	χa†a +

∑
l,l′

(gll′ |l〉〈l′|a + H.c.), (16)

where gll′ = g
φ

ll′ + igθ
ll′ are coupling strengths defined by

gθ
ll′ = EC�(δC/C) (32EL/EC)1/4 〈 l | i ∂θ | l′ 〉, (17)

g
φ

ll′ = δEL (8EC/EL)1/4〈 l | φ | l′ 〉, (18)

a (a†) is the annihilation (creation) operator for excitations
of the χ oscillator, and 	χ/2π is its angular frequency. (For

ba

FIG. 7. (Color online) Effect of disorder in the Josephson energies. (a) Dependence of the degeneracy parameter D on relative disorder in
the Josephson energy, δEJ/EJ. The plot shows a comparison of two different parameter sets, both with �ωp/EC� = 103 and �ωp/EJ = 7.9
and zero magnetic flux. The degeneracy is seen to be fairly robust with respect to EJ disorder. The vertical line at 20% disorder marks the
worst-case disorder seen in experiments. (b) Density plots of the ground-state wave function showing the expected deformation as EJ disorder
is increased.
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7 82 3 4 5 6n=1

FIG. 8. (Color online) Density plot of low-lying wave functions with disjoint support. The numbers n = 1,2, . . . enumerate the eigenstates
starting from the ground state. [Same parameters as in Fig. 4(b).]

the example parameters discussed in Sec. III, this frequency
is approximately 280 MHz.) Due to disjoint support of wave
functions as well as parity, we expect certain instances of
the occurring matrix elements to be strongly suppressed; see
Figs. 8 and 9(b).

Following the general approach from Ref. [35], we obtain
the dispersive Hamiltonian

H ′ =
∞∑
l=0

(
E

sym
l + κl

)|l〉〈l| + �	χa†a +
∑

l

χl|l〉 〈l| a†a,

(19)
where

χl =
∑

l′
|gll′ |2

(
1

�ll′
− 1

�l′l

)
, κl =

∑
l′

|gll′ |2
�ll′

(20)

are the ac Stark shift and the Lamb shift, respectively. The
detuning is defined as �ll′ = E

sym
l − E

sym
l′ − �	χ . We note

that if there are resonances between the 0-π circuit and the
harmonic oscillator, this perturbative treatment may break
down. For small disorder, we expect that the Lamb shifts κl

will be small compared to the splitting between each doublet.

V. CONCLUDING REMARKS

We have developed a full circuit analysis of the 0-π
superconducting circuit, which is valid both in the highly
degenerate regime as well as in intermediate parameter regimes
where both the ground state and low-lying excited states are
important. We find that in the case of symmetric parameter
values and no disorder, the system can be decomposed into
an uncoupled harmonic degree of freedom, and a subsystem
subject to a two-dimensional effective potential. In a certain
regime, the spectrum of this subsystem consists of degenerate
doublets whose ground-state splitting is exponentially small
compared with the spacing between the lowest two doublets
(≈ωp

√
EC�/ECJ). If such degenerate states could be utilized

as quantum bits, they would be protected from both dephasing
and relaxation and would not require fine-tuning of parameters.
However, realizing universal operations on such states is not
a trivial task, and is still a subject of active inquiry. Reaching
the degenerate regime of D > 2 (a 100-fold suppression)
requires realizing inductances slightly larger than the current
state-of-the-art but seems possible with continued advances in
design and microfabrication techniques.

A careful study of the effects of disorder has been presented.
Deep within the degenerate regime, even large disorder in
the circuit parameters will not strongly affect the degeneracy.

In intermediate regimes, it is clear that disorder becomes
important, especially disorder which introduces coupling to
the χ harmonic mode. We have shown that this coupling
can be treated using the formalism of circuit QED. Future
work will consider the potential to exploit this additional
quantum degree of freedom for quantum manipulation and
readout.

In this context, understanding the effects of thermal fluc-
tuations and relevant decoherence channels will also become
important. Qualitatively, we expect exponential suppression of
sensitivity to both charge and flux noise for D > 1. The charge
noise sensitivity is similar to the suppression established in the
transmon qubit [33,36] and is governed by the large ratio of
EJ/EC� . The reduced sensitivity to flux noise follows the same
principle as for metaplasmon states in the fluxonium qubit
[25,31]. The exponential insensitivity to offset charges also
indicates robustness with respect to quasiparticle tunneling.
However, this expectation should be verified in a future study
using the general theory presented in Refs. [37–39].

The 0-π circuit and the analysis method we have employed
point to a new strategy of engineering the potential and
kinetic energies of circuits with larger numbers of degrees
of freedom: the realization of protected manifolds, suitable
for quantum information processing, through the design of
potential landscapes with specific properties. Even in the
absence of strict degeneracy, the presence of doublet λ

systems in the energy spectrum represents a promising route
to realizing ultracoherent qubits. Finally, it may be possible to
employ more complex circuit topologies in the future design
of potential-energy landscapes.
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APPENDIX A: NUMERICAL DIAGONALIZATION
OF THE 0-π HAMILTONIAN

For numerical diagonalization of the 0-π circuit Hamil-
tonian, we employ the finite-difference method in its sim-
plest possible form. We truncate φ to a finite interval
[−φM,φM ] and discretize φ and θ according to φm = m�φ
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(m = 0, ± 1, . . . ,±M) and θn = n�θ (n = 1, . . . ,N) so that
θN = N�θ = 2π . The corresponding orthonormal set {|nm〉}
of discretized position states is defined in the usual way
by ψnm(φ,θ ) = 〈φ,θ | nm〉 = (�φ�θ )−1/2 whenever (φ,θ ) lies
inside the rectangle centered at (φn,θm) with width and length
set by the grid constants �φ , �θ . Everywhere else, the wave
function vanishes. For sufficiently fine grid, the matrix ele-
ments of potential energy and kinetic energy are approximated
by using 〈m′n′|V (φ,θ )|mn〉 ≈ δmm′δnn′V (φm,θn) and

〈m′n′|∂2
φ|mn〉 ≈ �−2

φ (δm′,m+1δn′n + δm′,m−1δn′n − 2δm′mδn′n),

〈m′n′|∂2
θ |mn〉 ≈ �−2

θ (δm′mδn′,n+1 + δm′mδn′,n−1 − 2δm′mδn′n).

With this, the stationary Schrödinger equation reduces to a
sparse eigenvalue problem which we solve numerically, while
carefully checking for discretization errors and convergence.

APPENDIX B: CHARGE BASIS DISCUSSION
OF WAVE FUNCTIONS AND DEGENERACY

To complement the flux space analysis given in the main
text, in this appendix we discuss the energy levels and wave
functions of the 0-π circuit from the perspective of the con-
jugate charge variables. Starting with the simple separable
model of Eq. (9), then using a Bloch wave formalism [31], we
describe how the ground-state doublet of the symmetric 0-π
circuit is composed of states with even and odd charge parity.

To perform the switch to charge basis, we define a conjugate
charge momentum nϑ

i = (nθ ,nφ,nχ ,n�)i for each flux variable
ϑi = (θ,φ,χ,�)i . The spectra of these charge operators can
be discrete or continuous. For example, since nθ is conjugate
to the 2π -periodic variable θ , its eigenvalues are integer-
valued and hence quantized. In contrast, the spectrum of
nφ is continuous and encompasses all R. The spectrum of
each charge operator determines the effects of offset charges
coupling to it. In particular, since static offset charges do not
affect continuous charge variables, we only need to consider
the effects of a single offset charge ng coupling to nθ .

We can thus fully account for the effects of static offset
charge in the 0-π circuit via the replacement nθ → (nθ − ng).
We use the notation Hsym+ng

to indicate the symmetric
Hamiltonian of Eq. (8) under this replacement. As the relevant
charging energy EC� is much smaller than the Josephson
energy EJ, the eigenenergies of the 0-π circuit are exponen-
tially insensitive to offset charge. We shall show how this
insensitivity to offset charge is helpful in understanding the
near degeneracy of the ground-state doublet.

The wave functions in charge basis (“momentum”) now
simply correspond to the Fourier components of the general-
ized flux basis (“position”), i.e.,

ψ̃(nθ ,nφ) =
∫ 2π

0

dθ

2π

∫ ∞

−∞
dφ e−i(nθ θ+nφφ)ψ(θ,φ), (B1)

or, in discretized form appropriate for the numerical imple-
mentation based on Appendix A,

�̃μν = 1√
N (2M + 1)

∑
n,m

e−i[νn/N+μm/(2M+1)]�nm. (B2)

Figure 9 displays the charge basis form of the same wave
functions presented in Fig. 4 (there shown in the generalized
flux basis).

1. Charge parity and the ground-state doublet
of a symmetric double well

To explain how insensitivity of the eigenenergies to offset
charge and a conserved charge parity can lead to a nearly
degenerate ground-state doublet, we first consider the simpler
setting of the separable model discussed in the main text [see
paragraph containing Eq. (9)]. For clarity, in this appendix
we neglect the harmonic φ variable, considering only a one-
dimensional Hamiltonian Hdw+ng

that includes the double-well
potential Vdw(θ ) = | cos(θ )| and offset charge dependence. As
Vdw is π periodic with only even Fourier components, if it were
to describe a Josephson junction it would be a very special type
of junction, allowing only even numbers of Cooper pairs to hop

 

 

a b

 

FIG. 9. (Color online) Charge-basis eigenfunctions for the nearly degenerate ground-state doublet of the symmetric 0-π circuit as described
in Appendix B. Panels (a) and (b) respectively show the same states shown in Figs. 4(a) and 4(b) (there presented in the flux basis). In (b) the
small splitting of the doublet is primarily determined by differences in the charging energy of the states. Each wave function has nearly disjoint
support in the charge basis, and are located on interpenetrating “even” and “odd” quasicharge lattices (checkerboard pattern). In (a), the wave
functions consist of symmetric and antisymmetric combinations of even and odd quasicharge wave functions. In this case, the energy splitting
is primarily determined by the inductive energy which mixes states with different quasicharge parity.
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together across it. To explain how such “even only” hopping
leads to even and odd charge parity eigenstates, we introduce
a charge parity operator

P = eπ∂θ = eiπnθ . (B3)

The parity operator P commutes with Hdw+ng
and has two

eigenspaces, an even subspace with eigenvalue +1 spanned
by even charge states |nθ ∈ even〉, and an odd subspace
with eigenvalue −1 spanned by |nθ ∈ odd〉. The Hamiltonian
Hdw+ng

can be block-diagonalized in each parity subspace,
with eigenvectors assigned either even or odd parity.

We now show how exponentially weak offset charge energy
dispersion can help explain the existence of a ground-state
doublet. To begin we note that the spectrum of Hdw+ng

has
unit periodicity with respect to the offset charge ng . To see
this, consider that a change in offset charge ng → ng + 1
can be exactly compensated by changing the eigenvectors
|ψ〉 → eiθ |ψ〉, i.e., by

∑
n ψn|n〉 → ∑

n ψn|n + 1〉 so that
the eigenenergy remains invariant. While the spectrum of the
Hamiltonian is invariant under such a shift in offset charge, the
transformation eiθ acts nontrivially on eigenstates, changing
parity even states into parity odd states.

As known from the transmon limit of the Cooper pair box
[33], the charge dispersion of the low-energy wave functions
is exponentially suppressed when the charging energy is weak
relative to the Josephson energy. Thus, while low-energy
eigenstates of Hdw+ng

change their energy very little as a
function of offset charge, the energy of an even eigenstate
for offset charge ng must be equal to the energy of an odd
eigenstate for offset charge ng + 1. As a result the low-energy
eigenstates of Hdw+ng

in the ECJ � EJ limit will necessarily
come in pairs. In particular, the ground state of Hdw+ng

will
form a nearly degenerate doublet. The parity of the exact
ground state depends on the particular value of ng , with
the even and odd eigenstates becoming exactly degenerate
at ng = 1/2.

In the main text, we emphasized the intuitive picture that
decreasing tunneling through the double-well barrier leads to
localization of wave functions in θ and near degeneracy. In
the charge basis, the same intuition implies that increased
delocalization of wave functions in nθ generates the near
degeneracy of the even and odd charge parity eigenstates.

2. Bloch wave analysis and the quasicharge double well

Just as for the simple one-dimensional (1D) model of the
previous subsection, arguments based on charge parity and
exponentially weak offset charge energy dispersion are helpful
in explaining the ground-state doublet of the symmetric 0-π
circuit, particularly from the perspective of the charge basis.
However, for the symmetric 0-π circuit, the Hamiltonian is
2π periodic in θ (rather than π periodic like Hdw+ng

). Also,
the variable θ is strongly coupled to the continuous variable
φ. Thus, the notion of charge parity is not as straightforward.

In this subsection we introduce a Bloch wave formalism
[31] which allows us to define a notion of charge parity similar
to the previous 1D example. To begin, we group together
the noninductive terms of the symmetric 0-π Hamiltonian

(including offset charge) defining

Hsym+ng
= H̃ + 1

2ELφ2, (B4)

H̃ = −2EC�(∂θ − ing)2 + 2ECJ∂
2
φ − 2EJ cos(θ ) cos(φ).

(B5)

The collected terms, H̃ , are periodic in the continuous variable
φ and are invariant under the primitive translation

T = eπ∂φ eπ∂θ = eiπnθ eiπnφ . (B6)

We next define a Bloch wave basis as the simultaneous
eigenvectors of H̃ and T ,

T |q,s〉 = eiπq |q,s〉, (B7)

H̃ |q,s〉 = Ẽs(q)|q,s〉, (B8)

where q ∈ [0,2) is a continuous quasicharge index and s ∈
{0,1,2, . . .} is a discrete quantum number.

Eigenstates within the quasicharge q subspace are spanned
by charge states |nθ ,nφ〉 that satisfy the relation

nφ + nθ ≡ q (mod 2). (B9)

These spanning states can be visualized as forming a checker-
board pattern in nθ ,nφ charge space, where the checkerboard
is offset from the origin in the nφ direction by a distance q.

The significance of relation (B9) can be elucidated as
follows. Consider the operators ei(θ+φ) and ei(θ−φ). The
operator ei(θ+φ) describes a Cooper pair hopping across the
Josephson junction with energy EJ1, while ei(θ−φ) describes
a Cooper pair hopping across the Josephson junction with
energy EJ2 (see Fig. 1). As is clear from their definition, both
operators individually change nθ and nφ by ±1. Thus, the sum
of the two remains within the same quasicharge subspace as
expressed by Eq. (B9). In short, the Josephson hopping of
Cooper pairs across either junction does not change the value
of the quasicharge.

The q = 0 subspace includes charge states of the form
|nθ ∈ even,nφ = 0〉, while the q = 1 subspace includes charge
eigenstates of the form |nθ ∈ odd,nφ = 0〉. This similarity to
the even and odd parity eigenstates of Hdw+ng

motivates our
extension of the term even to indicate quasicharge states with
a q value (mod 2) near zero, and odd to indicate quasicharge
states with a q value (mod 2) near unity.

As discussed in the main text, degeneracy can arise when
tunneling in the φ direction is much stronger than tunneling
in the θ direction (EC� � ECJ). In addition, localization must
occur in the θ direction (EC� � EJ). In the charge basis this
implies that wave functions should be delocalized in nθ and,
at the same time, considerably more localized in nφ .

We next discuss the implications of these limits for the
dependence of the band energies Ẽs(q) on quasicharge q,
and contrast it with the dispersion of Ẽs(q) with respect to
offset charge ng . Just as for Hdw+ng

, the spectrum of H̃ is
offset charge periodic with period 1. The same argument
applies: as offset charge changes by 1, ng → ng + 1, the
eigenvectors transform |ψ〉 → eiθ |ψ〉 so that the energy
remains invariant. Importantly, under this transformation the
value of the quasicharge changes q → q + 1, interchanging
even and odd parity states. This observation implies that in the
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FIG. 10. (Color online) In the limit that the inductive energy
goes to zero, the eigenfunctions of the symmetric 0-π Hamiltonian
can be diagonalized within a Bloch wave formalism and assigned
a quasicharge q. The figure shows the dependence of the energy
of the lowest energy band Ẽs=0(q) as a function of q. As the
charging energy EC� decreases, states with quasicharges differing
by 1 become nearly degenerate, leading to an effective quasicharge
double well. Restoring the inductive energy but maintaining the
limit of large inductance leads to a doublet comprised of a state
with even quasicharge [q (mod 2) ≈ 0] and odd quasicharge
[q (mod 2) ≈ 1].

limit of small EC� but EJ ≈ ECJ, states with quasicharge q and
q + 1 will become nearly degenerate, i.e., Ẽs(q) ≈ Ẽs(q + 1),
yet despite this, Es(q) retains strong dispersion with q.

Figure 10 shows a numerical calculation of the dependence
of the energy of the lowest band on quasicharge, Ẽ0(q), for
different values of EC� . The calculation shows the onset of
unit periodicity of Ẽ0(q) in the limit of small EC� . Even in
this limit, the dispersion of Ẽ0(q) with q remains of order ECJ.
We will refer to this as a quasicharge double well.

3. Ground-state doublet of the symmetric 0-π Hamiltonian

We now use the Bloch wave basis introduced in the previous
subsection to analyze the symmetric 0-π Hamiltonian. As
expressed in Eq. (B4) the Hamiltonian Hsym+ng

is comprised of
terms, H̃ , which are diagonal in the Bloch wave basis, as well
as the term, ELφ2/2, which accounts for the inductive energy.
As the inductive term is not periodic under the translation T the
Hamiltonian Hsym+ng

will not conserve quasicharge. However,
the operator φ does act locally in the quasicharge basis with a
contribution proportional to ∂q . Explicitly we have

〈q,s|φ|q ′,s ′〉 = δ(q − q ′)[iδss ′∂q − 	(q)ss ′ ]. (B10)

Here, the gauge potential 	 is defined as

〈φ|q,s〉 = eiqφus(q,φ), (B11)

	(q)ss ′ = i

2π

∮
dφ u∗

s (q,φ)∂qus ′ (q,φ). (B12)

Since 	 also becomes unit periodic in q in the limit of small
EC� , for a qualitative understanding it is sufficient to neglect
its effects and approximate ELφ2 ≈ −EL∂2

q . In the limit that
EL � ECJ the large values of inductance allow the low-energy
wave functions to reduce their tunneling in the q direction and
localize within each even and odd well, forming a ground-state
doublet.

To help understand the remarkable properties of such large
inductance scales it is useful to consider the case of a super-
conducting L-C oscillator. For conventional superconducting
L-C oscillators the impedance

√
L/C is small compared to

the superconducting impedance quantum �/(2e)2 ≈ 1.02 k	.
This implies that the low-energy eigenfunctions have charge
fluctuations that are significantly larger than that of a single
Cooper pair. One remarkable property of a superinductor is that
it allows for impedance values to be in the opposite regime,
generating low-energy eigenfunctions with charge number
fluctuations comparable to or smaller than that of a single
Cooper pair.

4. Splitting of the ground-state doublet

Now that we have discussed the formation of the ground-
state doublet of the symmetric 0-π circuit from the charge
perspective, we parallel the main text and discuss the small
remaining splitting and the structure of the eigenfunctions.
As discussed in the main text, in the limit of EC� large
and EL small, the doublet is primarily split by tunneling in
the θ direction [case (b) of Fig. 4]. In the charge basis this
limit corresponds to large enough EC� so that the remaining
energy difference on either side of the quasicharge double
well primarily determines the splitting of the doublet [case
(b) of Fig. 9]. In the opposite limit [EL large and EC� small;
cases (a) of Figs. 4 and 9] the flux space intuition is that the
doublet is split by the energy differences on the two sides of
the flux space potential ridges. The charge space interpretation
is that the doublet is split primarily due to inductance-induced
tunneling through the barrier of the quasicharge double well.

We can now use this analysis to understand the charge space
structure of the ground-state doublet eigenfunctions (for ng =
0 and ϕext = 0). When the eigenfunctions are located within
separate parity wells [EC� large and EL small; Fig. 9(b)], the
peaks in amplitude of the charge space eigenfunctions take
the form of a checkerboard with a small spread of order �q

in nφ around each peak—with the magnitude of the peaks
decreasing more slowly in the nθ direction. (Here, �q is the
oscillator length in the local minimum of the quasicharge
double well.) The two eigenfunctions of the doublet are
spaced on interpenetrating sublattices. In the opposite limit
[EL large and EC� small; Fig. 9(a)], the eigenfunctions
become the symmetric and antisymmetric superposition of
such checkerboard wave functions.

We conclude this appendix by emphasizing one important
way in which the near-degeneracy of the superconducting 0-π
circuit differs from the degeneracy of a conventional double
well that can occur in, e.g., a flux qubit. For a conventional
double well any stray magnetic field that couples to φ will
bias the minimums on either side of the potential barrier,
and will lift the degeneracy. Fluctuations of such magnetic
fields will lead to dephasing. For the 0-π circuit an analogous
operator that lifts the degeneracy is any operator that mixes
states with even and odd parity such as eiθ . However, such
operators involve coherent hopping of Cooper pairs across
insulating barriers, and thus can be dramatically suppressed.
Nevertheless, such considerations may lead to some practical
design limits, e.g., on the minimum thickness of the insulating
barrier between the large capacitors of the 0-π circuit.
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[19] B. Douçot and J. Vidal, Phys. Rev. Lett. 88, 227005 (2002).
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