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Protocol for high-fidelity readout in the photon-blockade regime of circuit QED
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The driven-damped Jaynes-Cummings model in the regime of strong coupling is found to exhibit a coexistence
between the quantum photon blockaded state and a quasicoherent bright state. We characterize the slow time
scales and the basin of attraction of these metastable states using full quantum simulations. This form of bistability
can be useful for implementing a qubit readout scheme that does not require additional circuit elements. We
propose a coherent control sequence that makes use of a simple linear chirp of drive amplitude and frequency
as well as qubit frequency. By optimizing the parameters of the system and the control pulse, we demonstrate
theoretically very high readout fidelities (>98%) and high contrast with experimentally realistic parameters for
qubits implemented in the circuit QED architecture.
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Qubit readout in solid-state systems is an open problem,
which is currently the subject of intensive experimental
and theoretical research. High-fidelity single-shot readout is
an important component for the successful implementation
of quantum information protocols, such as measurement-
based error-correction codes [1], as well as for closing the
measurement loophole in Bell tests [2,3]. For measurements
where the observed pointer state depends linearly on the
qubit state, for example, dispersive readout in circuit QED
(cQED) [4], there exists a unified theoretical understanding [5].
Experimentally, these schemes require a following amplifier of
high gain and low noise, spurring the development of quantum
limited amplifiers [6]. However, the highest demonstrated
fidelities to date rely on nonlinear measurement schemes with
qubit-dependent latching into a clearly distinguishable state,
for example, the Josephson bifurcation amplifier (JBA), as
well as optimized readout of phase qubits [3,7]. For this
class, during the measurement, the system evolves under
the influence of time-varying external fields and nonlinear
dynamics, ultimately projecting the qubit state. The space
for design and control parameters is very large, and the
dependence of the readout fidelity on them is highly nontrivial.
Therefore, the optimization is difficult and does not posses a
generic structure.

We propose a coherent control-based approach to the
readout of a qubit that is strongly coupled to a cavity, based
on an existing cQED architecture, but not necessarily limited
to it. This approach is in the spirit of the latching readout
schemes, but it differs in that the source of the nonlinearity
is the Jaynes-Cummings (JC) interaction. When the qubit
is brought into resonance with the cavity mode, the strong
anharmonicity of the JC ladder of dressed states can prevent
the excitation of the system even in the presence of a strong
drive, a quantum phenomenon known as photon blockade [8].
However, due to fact that the JC anharmonicity is diminishing
with the excitation number, we find a form of bistability,
where highly excited quasicoherent states (QCSs) coexist with
the blockaded dim states (Fig. 1). In order to make use of
this bistability to read out the qubit, it is necessary to solve
the coherent control problem of selective population transfer,
which is how to steer the system toward either the dim state or
the QCS, depending on the initial state of the qubit (Fig. 2).
This selective dynamical mapping of the qubit state to the dim

or bright states constitutes the readout scheme. It is potentially
of high contrast and hence robust against external amplifier
imperfections. An advantage of this readout is that it uses no
additional components beyond the qubit and the cavity, the
latter already present as part of the cQED architecture. Based
on a full quantum simulation which includes dissipation of the
qubit and the cavity (we ignore pure dephasing1), we predict
that implementing this scheme should yield very high fidelities
between 90% and 98% for a typical range of realistic cQED
parameters (Fig. 3).

We consider the JC model with drive and dissipation
(h̄ = 1),

H = ωca
†a + ωq

2
σz + g(σ+a + a†σ−)

+ ξ (t)(a + a†) + Hγ + Hκ, (1)

where ξ (t) is the time-dependent drive of the cavity, g is
the cavity-qubit coupling, and Hγ,κ represent the coupling
to the qubit and cavity baths, respectively. When the system is
initialized in the ground state, there is a range of drive strengths
for which the system will remain blockaded from excitations
out of the ground state. However, since the anharmonicity of
the JC ladder decreases with excitation number, the transition
frequency for excitations between adjacent levels ultimately
approaches the bare cavity frequency. Qualitatively, when the
excitation level n is such that the anharmonicity becomes
smaller than the linewidth κ , we expect the state dynamics
to be semiclassical, similar to a driven-damped harmonic
oscillator [9]. More specifically, in order to support a coherent
wave packet centered around level n, with a standard deviation
of

√
n, the difference of transition frequencies across the

wave packet has to be of the order of the linewidth κ . This
approximate criterion for a minimal n can be written as
ωn+2σ − ωn−2σ ≈ κ , where ωn±2σ are the ladder transition
frequencies, positioned 2σ = 2

√
n above and below the mean

level n. Quantitatively, we find in simulations that the lifetime
of the QCS is long but finite and increases with the amplitude
of the drive (see inset in Fig. 1). As we explain in what follows,
we find that low-lying QCSs (n̄ = 20) are the most effective for

1Typically transmon qubits operate in a regime of EJ /EC � 1,
where pure dephasing is exponentially suppressed.
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FIG. 1. (Color online) A schematic of the dim state (left his-
togram) in the quantum part of the JC (+) manifold and the QCS
in the semiclassical part (right histogram). Application of a readout
pulse sequence dynamically maps the initial qubit state into one of the
states with high fidelity. The inset shows the lifetimes of several QCSs
with increasing drive strength and mean photon number, while for
these parameters the dim state is photon blockaded (the coexistence
regime), and the qubit decay (T1) has a distinct influence on the
lifetime (τb) of the QCS.

optimizing the overall readout fidelity. Note that the JC ladder
consists of two manifolds (originating from the degeneracy of
the bare states |g,n + 1〉 and |e,n〉) denoted by (±), and we
always refer to a states occupying one manifold since the drive
is off-resonant with respect to the other manifold. Transitions
between manifolds contribute to the decay of the QCS to the
dim state. Such transitions can be induced by the drive but
their rate is smaller by a factor of O(n−1/2) compared to the
rate of transitions inside the same manifold. An additional
source of intermanifold transitions are decay (T1) and pure
qubit dephasing (Tϕ), whose effects in the presence of drive
were studied in the context of the dispersive regime [10].
Indeed, as we see in Fig. 1, changing T1 has a noticeable
effect on the QCS lifetimes. For very large n̄, these processes
become ineffective for inducing decay of QCS, since then the
difference between manifolds excitation frequencies becomes
smaller than κ , and therefore the drive effectively drives both
manifolds. For superconducting transmon qubits T1 is the
dominant decay process, and we show its effect on the overall
fidelity in Fig. 3.

The QCSs exist with drive amplitudes where the ground
state is photon blockaded, giving rise to a dynamical bistability
between quantum and semiclassical parts of the JC ladder.
Indeed, we see that there is a basin of attraction for states
initialized as coherent wave packets to persist as QCSs, and we
characterize it according to the probability of the state to decay
on the time scale τb � κ−1. In Fig. 4 we plot the contours of
equal probability of the QCSs to decay to a manifold of states
close to the ground states, after a time κ−1, given that it was
initialized with a certain amplitude (α) and phase (θ ). We see a
large region supporting QCSs, and the phase sensitivity can be
understood qualitatively from the time-dependent simulations:
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FIG. 2. (Color online) Readout control pulse. (a) Time trace of
the drive amplitude. A fast and selective initial chirp (10 ns) can
selectively steer the initial state, while the qubit is detuned from the
cavity [(ωq − ωc)/2π ≈ 2g]. It is followed by a slow displacement
to increase contrast and lifetime of the latching state, while the
qubit is resonant with the cavity (κ/2π = 2.5 MHz). The drive
amplitude ramp is limited so that the photon blockade is not broken,
but the contrast is enhanced by additional driving at the highest
drive amplitude. (b) A diagram of transition frequencies shows how
the drive frequency chirps through the JC ladder frequencies of
the (+) manifold and how the manifold changes due to the time-
dependent qubit frequency. (c) Wave-packet snapshots at selected
times [indicated by bullet points on panel (b)] of the chirping drive
frequency of panel (b) conditioned on the initial state of the qubit.

A mismatch between the phases of the drive and the initial
coherent state causes ringing of the wave packet outside of
the basin into the too-anharmonic part of the ladder, from
which it cannot recover. In addition to the existence of this
basin, the anharmonicity acts together with the cavity decay
to induce mixing of the QCSs: Even for bright states (n̄ > 40)
we extracted a relatively low purity of Tr(ρ2) < 0.5.

In the regime of coexistence, the dim quantum state
and QCS present us with the possibility of implementing a
high-contrast readout scheme. This requires the solution of
the coherent control problem of steering the logical |↑〉 state to
some point within the basin of attraction (Fig. 4), while keeping
the |↓〉 far from the basin, in the manifold of dim states. In the
presence of dissipation, the latter would quickly decay to the
ground state and remain there even in the presence of driving,
due to the photon blockade, whereas the QCSs would persist
for a long time τb and emit approximately κ〈n〉bτb photons.
The standard coherent control problem of population transfer
[11], which was also discussed recently for superconducting
qubits [12,13], is to maximize the probability Pi→f of steering
the state |i〉 to the state |f 〉. However, here the goal is to
bring the probability for selective steering Pi→f + Pi ′→f ′ < 2
close to its theoretical maximum, which is an essentially
different coherent control problem. For systems with very large

022335-2



PROTOCOL FOR HIGH-FIDELITY READOUT IN THE . . . PHYSICAL REVIEW A 82, 022335 (2010)

0 50 100 150 200 250 300 350 4000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
(N

>N
th

)

T1=100ns

| >

F=98%

| >

T1=500ns
T1=1.5µs

T1=15µs

N

FIG. 3. (Color online) Cumulative probability distributions for
the number of photons (N ) emitted from the cavity during the driving
time tf for different qubit decay times (T1), including a very long
T1 = 15 µs, indicating that T1 is not limiting the readout fidelity. For
low detection thresholds (Nth ≈ 20) for distinguishing |↑〉 (N > Nth)
from |↓〉 (N < Nth), the fidelity can be very high (>98%) for realistic
values of qubit decay in cQED (a few microseconds) and of high
contrast for more moderate fidelities (>90%). The distributions also
show almost no false positives for higher thresholds Nth > 20 (here
th = 194 ns and other parameters as for Fig. 2).

anharmonicities, for example atomic systems, it is possible
to effectively implement a population transfer via adiabatic
control schemes such as stimulated Raman adiabatic passage
(STIRAP) [11]. The JC ladder anharmonicity is relatively
small compared to atomic systems, and so these schemes are
inapplicable here.
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FIG. 4. (Color online) Probability for the QCS to decay after
being initialized as a coherent-state wave packet |αeiθ 〉 and driven
for a time κ−1. The equal probability contours trace out two basins
of attraction: States initialized inside the low-decay probability
contour (Pd < 1%) end up long lived (τb � κ−1), whereas states
initialized left of Pd = 90% quickly decay to the ground state and
remain photon blockaded. The parameters are g/2π = 100 MHz,
κ/2π = 4.05 MHz, ξ/2π = 9.9 MHz, (ωd − ωc)/2π = 12.3 MHz,
(ωc − ωq )/2π = 9.7 MHz, T1 = 1591 ns (ωd is the drive frequency).

The control pulse sequence we apply is depicted in Fig. 2
and consists of three parts. (i) A strong chirped pulse (t < tc)
drives the cavity, with the qubit being detuned such that the
cavity frequency is state dependent. This pulse maps the |↓〉
and |↑〉 to the dim- and bright-state basins, respectively [see
Fig. 3(c)]. Since κtc 
 1, an initial superposition α|↑〉 + β|↓〉
maps into a coherent superposition of the dim and bright
states. Next, (ii) a much weaker long pulse transfers the
initially created bright state (for initial |↑〉) to even brighter
and longer-lived states (tc < t < th) and (iii) steady driving for
additional contrast (th < t < tf ). For an initial superposition,
the interference terms between the dim and bright states
decohere on the time scale of κ−1, such that the interaction with
the reservoir for t > tc effects a projection of the pointer state.
In designing such a pulse sequence, we have the following
physical considerations: (a) The initial fast selective chirp has
to be optimally matched to the level structure so that the popu-
lation transfer and selectivity would be extremely high; (b) it is
necessary to chirp up quickly before decay processes become
effective and result in false negative counts (tcκ ≈ 0.16); (c) for
t > tc it is necessary to drastically reduce drive strength since it
reaches drive strengths which would break the photon blockade
through multiphoton processes if it persisted. The piecewise
linear chirp sequence is fed into a full quantum simulation that
includes decay, and the 13 parameters of the system and drive
are optimized with respect to the total readout fidelity.

The cumulative probability distributions to emit N photons
conditioned on starting in two initial qubit states are plotted in
Fig. 3. These distributions were optimized for T1 = 1 µs and
then regenerated after varying T1 in order to depict the effect of
qubit relaxation on the readout. There are two figures of merit
from Fig. 3: One is that there exist very high fidelities F =
1 − P (↑ | ↓) − P (↓ | ↑) exceeding 98% for a low threshold
around Nth = 20 even for relatively short-lived qubits (T1 ≈
500 ns). In order to take advantage of these fidelities a very
low noise amplifier would be needed. In addition, we find
high contrast and high fidelities (>90%) for long-lived qubits
T1 > 1.5 µs with thresholds around Nth = 150, which should
be accessible with state-of-the-art amplifiers (see Appendix).
The limit of obtainable fidelities with this control scheme is
not due to finite qubit lifetime, as we see from the curve that
was simulated for T1 = 15 µs. The reason is that after the
QCS is generated at t = tc the qubit is brought into resonance
to form the blockade, and that enhances the anharmonicity of
the system. Since the drive is not in resonance with all the
transition frequencies relevant to the wave packet, this leads
to the few percent of decay events which are unrecovered
by the drive. Note also that a useful feature of these distribu-
tions is the very low level of false positives (red curve for qubit
state |↓〉), for a wide range of thresholds, originating from the
effectiveness of the photon blockade.

For experimental applications, it is useful to know how
robust the fidelity is against deviations of the control pulse
parameters from their optimal values. We therefore var-
ied the parameters of the initial chirp pulse δd,c = ωd −
ωc,δ̇d,c,δd,q = ωd − ωq,δ̇d,q ,ξ̇ ,tc and κ independently around
their optimal values. Table I shows for each parameter the
range of variation for which the fidelity is above 98%
(the range cited is the smaller of the two ranges above and
below the optimal value). The fidelity is most sensitive to
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TABLE I. Values of optimal chirp parameters for achieving
maximal fidelity and their relative tolerances (given in percentages of
the optimal value).

Parameter Optimal value Range for F � 98%

δd,c(t = 0)/2π −56.0 MHz ±40%
δ̇d,c/2π 21.9 MHz/ns ±20%
δd,q (t = 0)/2π −226.2 MHz ±30%
δ̇d,q/2π −8.2 MHz/ns ±100%
ξ̇ /2π 29.4 MHz/ns ±60%
tc 10.1 ns ±10%
κ/2π 2.5 MHz ±60%

variations of the duration of the chirp pulse tc, which yields a
tolerance of ±10% and higher ranges (>±20%) for the rest
of the parameters. For achieving slightly less high fidelities
(>97%) the bounds for tc increase significantly to ±20%,
which is important for a realistic experimental setup, since the
quench of the Hamiltonian parameters at t = tc will take a few
nanoseconds with the current microwave technologies.

For cQED all the necessary components for the preceding
scheme have been experimentally demonstrated. Strong qubit-
cavity coupling has been demonstrated in many experiments
[14–16]. Strong driving of a cavity-qubit system has been
shown in [17], with the system behaving in a predictable way,
as well as photon blockade [18] and fast dynamical control
of the qubit frequency via flux bias lines [19]. In addition,
there is evidence both theoretically and experimentally for
the increasing role that quantum coherent control plays in the
optimization of these systems for tasks of quantum information
processing. As examples, we can mention improving single
qubit gates [20], two-qubit gates [21], and population transfer
for phase qubits [12]. We therefore believe that the readout
scheme would be applicable for the transmon, although the
control parameters would have to be reoptimized due to the
effect of additional levels.

The suggested readout scheme is different from other
existing schemes in several aspects. Compared to dispersive
readout [4], it involves very nonlinear dynamics and could
potentially exhibit much higher fidelity and contrast. Even
though it relies on a dynamical bistability, it is essentially
different from the JBA and another recently proposed scheme
[22], since it explicitly operates using the quantum photon
blockade. Our scheme is also essentially different from a
recently suggested adaptation of electron-shelving readout to
cQED [23]. The latter makes use of a third level in addition to
the two levels which define the qubit and requires a direct
coupling to the qubit with negligible direct driving of the
resonator and strong driving of the qubit in the regime where

the rotating wave approximation breaks down. It is important
to stress that the optimization of the control parameters in
our scheme is only partial, since we have limited ourselves to
simple linear chirps in this work. More complex modulations
are certainly possible, although the standard methods for
optimal control [24] may be difficult to implement here due
to the large Hilbert space. Therefore, we believe that an
experimentally based optimization using adaptive feedback
control [25] might be the best option and has the potential to
yield superior readout fidelities for higher detection thresholds.
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APPENDIX: THE EFFECT OF REALISTIC AMPLIFIERS

A cryogenic high electron mobility transistor (HEMT)
amplifier with noise temperature of TN ≈ 5K adds noise
to the amplitude quadratures bx(z,t) = 1√

2
[b†(z,t) + b(z,t)],

by(z,t) = i√
2
[b†(z,t) − b(z,t)] of the input signal, where

b(z,t) denotes the annihilation of a photon in the transmission
line at position z and time t [5]. The annihilation and creation
operators are defined such that φ(z0,t) = 〈b†(z0,t)b(z0,t)〉 is
the photon flux at the point of entry z0 to the amplifier.
The dimensionless spectral density of the noise is given by
S = kBTN/h̄ωc ≈ 20, where ω is the frequency of the probe
signal. To obtain an optimal signal-to-noise ratio (SNR) the
signal is measured by time integration, which introduces
a bandwidth of 1/tf around the carrier frequency, where
tf is defined in Fig. 2. This bandwidth is optimal [26] in
the sense that it lets in all the signal but keeps the noise
level minimal (disregarding the short initial transient of the
chirp). In this model the quadrature noise is assumed to
be normally distributed with bi,noise(z,t) ∼ N (µ = 0,σ =√

S/tf ), where i = x,y. It is therefore possible to estimate
the effect of the amplifier noise by analyzing the distribution
of the total number of emitted photons, including the photons
of noise, N = 1

2tf

∑
i=x,y{

∫ tf
0 [bi(z0,t) + bi,noise(z0,t)]dt}2,

where the noise is added to each quadrature independently.
For the cases depicted in Fig. 3 where N↑ ≈ 350 we have
SNR ≈ 17 and approximately 3% of errors were added by the
noise, which is therefore not a significant limit to fidelities in
the 90%–95% range. For TN > 5K the effect of the noise can
be mitigated by increasing tf (up to time τb).
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[8] A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, Phys.
Rev. Lett. 79, 1467 (1997); K. M. Birnbaum, A. Boca, R. Miller,
A. D. Boozer, T. E. Northup, and H. J. Kimble, Nature (London)
436, 87 (2005); A. Hoffman, S. Srinivasan, B. Shim, and A.
Houck (unpublished).

[9] P. Alsing and H. J. Carmichael, J. Eur. Opt. Soc. B 3, 13 (1991);
S. Kilin and T. B. Krinitskaya, J. Opt. Soc. Am. B 8, 2289
(1991).

[10] M. Boissonneault, J. M. Gambetta, and A. Blais, Phys. Rev. A
79, 013819 (2009).

[11] K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70,
1003 (1998).

[12] H. Jirari, F. W. J. Hekking, and O. Buisson, Europhys. Lett. 87,
28004 (2009).

[13] A. M. Forney et al., Phys. Rev. A 81, 012306 (2010).

[14] R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett.
68, 1132 (1992).

[15] J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73,
565 (2001).

[16] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang,
J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
(London) 431, 162 (2004).

[17] M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl,
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