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Advancements in quantum system lifetimes and control have enabled the creation of increasingly
complex quantum states, such as those on multiple bosonic cavity modes. When characterizing
these states, traditional tomography scales exponentially in both computational and experimental
measurement requirement, which becomes prohibitive as the state size increases. Here, we imple-
ment a state reconstruction method whose sampling requirement instead scales polynomially with
subspace size, and thus mode number, for states that can be expressed within such a subspace. We
demonstrate this improved scaling with Wigner tomography of multimode entangled W states of up
to 4 modes on a 3D circuit quantum electrodynamics (cQED) system. This approach performs sim-
ilarly in efficiency to existing matrix inversion methods for 2 modes, and demonstrates a noticeable
improvement for 3 and 4 modes, with even greater theoretical gains at higher mode numbers.

Quantum state tomography (QST) is the process of de-
termining the quantum state of a system, and is a funda-
mental part of quantum information processing. The ex-
ponentially greater complexity of quantum systems com-
pared to classical ones makes efficient QST a challeng-
ing task. In its conventional formulation, obtaining full
state information has a processing and measurement re-
quirement that scales exponentially with the size of the
Hilbert space [1, 2]. However, physical states of inter-
est typically have some structure that we can exploit to
simplify the measurement complexity. Direct fidelity es-
timation (DFE) is a technique that utilizes this, and has
been applied to matrix product states or stabilizer states
in many-qubit systems [2–5] to efficiently produce partial
information about the system state. In the remainder of
this work, we refer to such states as DFE-efficient.

Efficient QST is especially relevant in continuous vari-
able systems with bosonic cavity modes, whose Hilbert
spaces are arbitrarily large. These systems have ap-
plications in error correction codes [6–8], quantum op-
tics [9], quantum simulation [10], and quantum informa-
tion processing [11]. For a single mode, full state in-
formation is obtained by measuring operators like the
Wigner operator [12] or Q function operator at different
mode displacements [13]. Efficient QST in the multi-
mode case is much more challenging. Several efforts use
multiple cavities to propose or produce increasingly com-
plex states like multimode cat states [14], W states [15],
multimode GKP states [16], GHZ states [17], and other
multimode Fock state superpositions [18, 19] that have
a variety of applications in quantum error correction
and logical encodings, as well as quantum simulation.
In particular, W states have unique multipartite entan-
glement and protection against photon loss that gives
them applications in quantum communication. Some
proposed theoretical methods are able to extract mul-
timode state information while circumventing the expo-
nential scaling of observation number with the number of

modes. These include techniques that apply additional
unitaries between modes as part of the measurement pro-
cess, perform targeted measurements with polynomial
post-processing [20], make use of ancillary modes and a
known excitation number [21], or apply operators based
on excitation counting [13]. To obtain more full state in-
formation, we instead directly measure the density ma-
trices of potentially mixed states confined in a subspace
of interest.

In this work, we use the Direct Extraction of (Density)
Matrix Elements from Subspace Sampling Tomography
(DEMESST) method to demystify and reconstruct quan-
tum state density matrices. DEMESST applies when
an unknown state lies in a polynomial dimensional sub-
space. It only requires local operations if the subspace
is spanned by a set of finite local operations acting
on a DFE-efficient state [22]. Under these conditions,
DEMESST has a polynomially scaling sampling require-
ment, and applies to both discrete qubit and continuous
cavity systems. For certain multimode cavity states, the
total measurement number will therefore depend poly-
nomially on the number of modes, rather than exponen-
tially. This is especially advantageous when the sub-
space that an expected state lives in is much smaller
than the full space. With DEMESST, we individually
sample measurements for each basis operator in a poly-
nomial subspace, and subsequently reconstruct a density
matrix by combining them. Additionally, we implement
this method with Wigner operators and Wigner tomogra-
phy, thus performing the measurements with purely local
operations on the modes and eliminating errors that may
be associated with multimode unitaries or beamsplitters.
With this approach, we measure fidelities of W states pre-
pared in up to 4 bosonic modes, which is beyond existing
demonstrations and advances the state of the art.

The structure of this paper is as follows: we first de-
scribe the details of DEMESST and elaborate on how
it operates. We then discuss existing QST methods for
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continuous variable systems and how they have been op-
timized [15, 23]. We compare DEMESST to these pre-
vious methods by testing the observation number re-
quired to accurately reconstruct the density matrices of
approximate entangled multimode W states of 2, 3, and 4
modes on a superconducting cQED system, without mak-
ing prior assumptions about the populations or phases of
the state components. Finally, we experimentally con-
firm the advantage of DEMESST and verify its expected
properties.

DEMESST scales polynomially with mode number for
states that have support in a polynomial subspace of
DFE-efficient basis operators [3] (for example, states with
a known maximum excitation number in the Fock basis).
This is accomplished by leveraging that information, and
rather than sampling displacements corresponding to all
basis operators, only sampling for the ones that are ex-
pected to support the state. This is illustrated schemat-
ically in Fig. 1(a). We reconstruct a density matrix ρ in
a polynomial subspace by independently measuring ba-
sis operators and the corresponding matrix elements for
each projection of ρ within the subspace, through meth-
ods similar to DFE [3, 4], without introducing bias (see
supplementary information). The reconstructed state is
given by

ρ =

Tr[ρOn⃗1,n⃗1
] Tr[ρOn⃗2,n⃗1

] . . .
Tr[ρOn⃗2,n⃗2

]
...

. . .

 (1)

With this approach, we avoid extracting irrelevant in-
formation about states outside the subspace of interest,
thereby lowering the number of measurements required
for an accurate result (see supplementary information).
For example, if we know a 3-mode state has a maximum
of 2 photons (M = 3, N = 3 for 0, 1, or 2 photon pop-
ulation), we reconstruct it with DEMESST by measur-
ing the matrix elements associated with that subspace,
namely the one formed by |000⟩ , |001⟩ , |011⟩ , |002⟩, and
permutations. We eliminate unnecessary sampling of
unnecessarily high photon number states like |111⟩ or
|012⟩ and beyond. Additionally, we build upon exist-
ing work [2, 3] by developing and applying this approach
to QST of bosonic modes and arbitrary mixed states
rather than qubits and pure states. Here, we implement
DEMESST on a multimode cavity system with Wigner
tomography.

Wigner tomography uses measurements of the Wigner
operator W(α⃗) = D(α⃗)ΠD(−α⃗) acting on a bosonic state
ρ to reconstruct it. Here, D(α⃗) =

⊗
iD(αi) is the dis-

placement operator and Π is a parity measurement. Ex-
isting inversion-based Wigner tomography methods op-
erate by taking the Wigner functions of a set of displace-
ments {α⃗} to construct a measurement matrix M that
maps to states as x⃗ = M|ρ⟩⟩, where |ρ⟩⟩ is the vector-
ized form of ρ. Inverting M to minimizeρ ||M|ρ⟩⟩ − x⃗||

Ôn⃗1,n⃗′
1

Ôn⃗2,n⃗′
2

ρ

Tr[ρÔn⃗1,n⃗′
1
]

Tr[ρÔn⃗2,n⃗′
2
]
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Figure 1 | Theoretical comparison and schematic
representation of tomography methods. (a) Schematic
representing the DEMESST method. Rather than sampling
an entire multimode operator space (3D space), if a state
lives in some number of subspaces (blue 2D plane), we
restrict the sampling to each of those instead. The {O} basis
operators are of the form On⃗,n⃗′ = |n⃗⟩ ⟨n⃗′| for generic basis
states |n⃗⟩ , |n⃗′⟩ (see supplementary information). Assuming
an orthonormal basis, the state ρ is given by
ρ =

∑
n⃗1,n⃗2

Tr[ρOn⃗2,n⃗1 ]On⃗1,n⃗2 . This improves the overall
efficiency of the sampling, especially for states with support
across large numbers of modes. In practice, we use
Hermitian {O} that are accessible through experiment. (b)
Number of measurements required for the DEMESST
(purple, circles) and OLI (orange, squares) methods to reach
a 90% state reconstruction fidelity on W states of up to 7
modes, assuming perfect state preparation. OLI scales
exponentially with the size of the Hilbert space (and
therefore the number of modes M), while DEMESST scales
only polynomially.

allows us to determine the physical (unit trace and posi-
tive semidefinite) ρ that was most likely to have produced
x⃗. The set {α⃗} is optimized by minimizing the condition
number (the ratio of largest to smallest eigenvalue) of M
and thus the error magnification, using the techniques
presented in [15, 23]. We refer to this method as Opti-
mized Linear Inversion (OLI). In this approach, to make
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Figure 2 | Experimental system and scheme. (a) Diagram of the multimode flute cavity with a storage cavity and
readout cavity that both couple to a transmon chip. Experimental drives are input through the readout cavity, or through a
direct drive on the storage cavity. (b) Wigner tomography pulse sequence. Initial cavity displacements and a final generalized
multimode parity measurement implement the tomography, while optional conditional pi pulses are used for projecting
targeted modes out of the transmon ge subspace for the DEMESST approach (see supplementary information). An additional
angle ϕ is applied between the π/2 pulses of the parity measurement to project it onto the real axis. (c) Cavity displacement
plots for the OLI (orange) and DEMESST (purple) sampling methods. The OLI has ring features corresponding to
measurement of all Fock states up to a cutoff, while DEMESST has points more densely located in the phase space based on
the basis state being measured.

the problem tractable, we choose a cutoff dimension N
to truncate the Hilbert space. Reconstructing ρ for a sin-
gle mode therefore requires at least N2 measurements to
determine each density matrix parameter. For multiple
modes, the size of the Hilbert space and thus the number
of required measurements will scale exponentially, requir-
ing at least N2M observations for M modes. We compare
OLI with DEMESST by testing their performance on ex-
perimentally prepared W states.

W states are excellent candidates for testing our
Wigner tomography sampling methods. For 2 modes,
this forms a dual rail encoding, |W2⟩ = (|10⟩ +
eiϕ |01⟩)/

√
2. For 3 modes, |W3⟩ = (|100⟩ + eiϕ1 |010⟩ +

eiϕ2 |001⟩)/
√
3, and similarly for 4 modes, |W4⟩ =

(|1000⟩+eiϕ1 |0100⟩+eiϕ2 |0010⟩+eiϕ3 |0001⟩)/
√
4. Here,

the ϕj ’s are a priori unknown phases on each of the
state components, and are determined through measure-
ment. Additionally, due to imperfect state preparation,
we make no assumptions about the component popula-
tions and precisely measure each one separately, making
our measurement task more difficult. We further gener-
alize this: rather than restricting ourselves to the pure
states Wj = |Wj⟩ ⟨Wj |, we measure the full, possibly
mixed density matrices. W states are great representa-
tive states because they are irreducible multimode states
that generalize straightforwardly to arbitrary numbers of
modes, and have a well-defined photon number. We pre-
pare them easily using photon blockade [15, 24–26].

We first investigate the simulated theoretical perfor-
mance of DEMESST and OLI on M -mode W states. As-
suming perfect state preparation, we compare the num-
ber of observations required to accurately reconstruct the
W state with 90% fidelity. This is shown in Fig. 1(b). As
discussed previously, inversion-based methods like OLI
have a sampling requirement that scales exponentially
with mode number M . In contrast, the DEMESST
method scales polynomially with the subspace dimen-
sion and thus M , demonstrating an advantage that in-
creases with M . For two modes, OLI performs better
due to overhead required for the DEMESST approach
(see supplementary information). However, for larger M ,
DEMESST requires fewer measurements to converge to
the same level of fidelity, and scales much more efficiently
than OLI. We proceed to demonstrating this expected
behavior in experiment.

We generate W states and implement DEMESST and
OLI on a superconducting 3D cQED platform. The
system consists of a transmon qubit coupled to a 3D
readout cavity and a 3D multimode storage cavity. A
schematic of this hardware setup is shown in Fig. 2(a).
The single storage cavity supports many bosonic cavity
modes at roughly equally spaced microwave frequencies.
The transmon allows for universal control of the cavity
modes and also mediates interactions like photon block-
ade [24, 26] between the storage modes. We use four of
the modes to prepare our multimode W states. We also
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Simulated Fidelity OLI Fidelity DEMESST Fidelity OLI:DEMESST Distance

2-mode 0.971 0.966(5) 0.96(1) 0.96(2)

3-mode 0.956 0.949(4) 0.955(4) 1.55(10)

4-mode 0.912 0.912(7) 0.911(7) 2.3(2)

Table 1 | OLI and DEMESST Tomography results. Simulations and Wigner tomography measurements are performed
on M -mode W states of varying size. The fidelities are in good agreement, and the Frobenius norm matrix distance ratio
demonstrates exponential improvement as M increases.

use the transmon to implement the parity measurements
necessary for the multimode Wigner tomography.

The tomography sampling methods use the same gen-
eralized Wigner tomography sequence, where each cavity
mode is displaced before performing a generalized par-
ity measurement on the transmon [15]. This procedure
allows us to perform multimode tomography measure-
ments despite having unequal dispersive shifts χm for
different modes, without requiring χ engineering tech-
niques [27, 28] or additional control pulses. This pulse se-
quence is shown in Fig. 2(b). For the DEMESST method,
we may also include a πge pulse conditioned on certain
cavity populations followed by an πef pulse on the trans-
mon. These pulses project one or more of the cavity
modes to the transmon |f⟩ level and outside the |g⟩− |e⟩
qubit space of the Wigner tomography. This effectively
removes those modes from the measurement and allows
us to perform it more easily. We apply this when the
basis operator being measured has one or more cavity
modes in vacuum. For example, to sample the 3-mode
matrix element |001⟩ ⟨010|, we project the first mode to
|f⟩ and reduce the sampling to the 2-mode |01⟩ ⟨10|. This
projection allows us to reduce the size of the sampling
problem for that element to a lower number of modes
(see supplementary information).

We first compare the state reconstructed from the OLI
method with simulation, which we use as a baseline for
later comparison to DEMESST. With OLI, we find pre-
pared W state fidelities that are in good agreement with
the simulated fidelities, as shown in Table 1. The simula-
tions include error from transmon and cavity decoherence
and decay, and state preparation errors such as leakage
outside of the blockaded subspace. We now continue to
the DEMESST performance.

For the DEMESST approach, we reconstruct the 2–4
mode density matrices by measuring Wigner operators
corresponding to multimode Fock basis states with up
to 2 photons. Even though W states have at most one
photon, we measure two-photon operators to capture im-
perfect state preparation errors. These observations di-
rectly provide the values of each density matrix element.
From the density matrix, we obtain the component popu-
lations and phase angles ϕj of our prepared approximate
W states by calculating the phase angle value that best
matches the resulting data. These angles are then verified

to match with the ones obtained from the OLI approach.
We quantify the performance of the DEMESST and

OLI sampling methods versus total measurement number
with two metrics: reconstructed state fidelity and Frobe-
nius norm matrix distance. The fidelities are computed
with respect to an ideal W state, while the matrix dis-
tances are calculated with respect to the experimentally
prepared state reconstructed at the maximum measure-
ment number. These results are shown in Fig. 3. The fi-
nal fidelities obtained from the DEMESST approach are
presented in Table 1, and are consistent with the OLI
results. Error bars are obtained from the results of 10
independent sets of 10 repetitions of tomography mea-
surements for each sampled displacement. The number
of distinct displacements for the OLI method therefore
equals the Total Measurement Number shown on the x-
axis in Fig. 3 divided by 10. For the DEMESST method,
the number of distinct displacements for each basis ele-
ment is further divided by the number of elements. For
the 2-mode W state, the two methods perform similarly,
while for 3 and 4 modes, DEMESST performs better than
OLI with faster convergence to the final state fidelity.

This improvement is most evident in the matrix dis-
tance comparisons. The distances are computed using
the Frobenius norm, with error bars again computed from
10 independent sets of 10 repetitions for each displace-
ment. The final state density matrix against which the
distances are computed is obtained by considering all 100
repetitions, rather than sets of 10, which is why the fi-
nal distances do not completely vanish. The behavior of
both sampling methods is nearly identical for the 2-mode
W state. However, for the 3-mode case, the DEMESST
has noticeably faster convergence versus total measure-
ment number x, as the matrix distance d to the final
state is smaller, as seen by the fit coefficient to d = axb

(a = 1.1±0.1 for DEMESST versus 1.71±0.02 for OLI).
This effect is further enhanced in the 4-mode case. The
ratio of these fit values scales roughly geometrically, as
shown in Table 1, reflecting the fact that OLI scales expo-
nentially while DEMESST only scales polynomially ver-
sus total measurement number. In all cases, the distances
fall off roughly as x−1/2, as expected.

An advantage of the DEMESST sampling method
compared to OLI is its self-consistency. Individual den-
sity matrix elements for any multimode state are mea-
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Figure 3 | Tomography fidelity and matrix distances for DEMESST and OLI sampling methods. Sampling was
performed on approximate entangled W states of 2–4 modes. The top panels (a)–(c) show fidelities versus an ideal (exactly
equal population coefficients) W state for 2–4 modes, with dashed horizontal lines indicating the final converged fidelity
obtained from the OLI method. These final fidelities are, for 2–4 modes, 0.966± 0.005, 0.949± 0.004, and 0.912± 0.007 for
OLI and 0.96± 0.01, 0.954± 0.004, and 0.911± 0.007 for DEMESST and are in good agreement. The bottom panels (d)–(f)
show Frobenius norm matrix distances between the state at a given measurement number versus the final measured state. The
rates of convergence are close to 1/

√
x or a power of -0.5, as expected. As the mode number increases, the DEMESST method

performs increasingly more efficiently by requiring fewer measurements to reach a given level of convergence or error threshold.

sured independently, without needing to choose a cutoff
maximum photon number or Hilbert space size that could
subject the reconstructed state to inversion errors. This
eliminates the risk of obtaining an inaccurate tomogra-
phy result if, for example, the prepared state contains
population beyond the space spanned by our chosen ba-
sis during OLI sampling.

We verify that the DEMESST tomography sampling
method leads to self-consistent measurement results. We
check the traces of our prepared W states and compare
them with unity, the expected value for physical states.
This allows us to confirm that our prepared state in-
deed lives in our chosen, measured Hilbert space. The
results are shown in Fig. 4 as average trace versus ob-
servation number. Like before, the averages are taken
over 10 independent sets of 10 measurement repetitions
for each sampled displacement. We find that in all cases
((a)–(c)), the observed traces are near one. We attribute
large deviations from unity at low measurement numbers
to noise and statistics, and attribute the final traces be-
ing slightly less than one to imperfect state preparation
that produces population outside the measured subspace.
We perform a further check by considering only a 2-mode

subspace of a prepared 4-mode W state. This is shown
in Fig. 4(d). As expected, the measured trace converges
to a value near 0.5, as we are effectively only observing
half of the total state population. This demonstrates that
the DEMESST method provides accurate results for each
basis operator independently. In particular, we can iden-
tify when we have measured insufficient basis elements
to fully characterize a state, such as when the state lives
partially (or entirely) outside the corresponding space,
which is a useful capability in itself.

In summary, we have applied the DEMESST sam-
pling method to characterize multimode cavity states
with Wigner tomography. DEMESST is most appropri-
ate for multimode states that have population contained
in a small subspace of DFE-efficient elements of an over-
all Hilbert space, and outperforms traditional optimized
inversion-based methods by scaling polynomially rather
than exponentially with mode number. We observe this
improvement for W states on 3 and 4 modes. Here, we
have presented comparisons using the multimode Fock
basis on multimode W states, but DEMESST also ap-
plies to different bases that more readily support other
states; this tomography method can even be used for
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Figure 4 | Trace verification for the DEMESST sampling method. Trace versus point number for prepared (a)
2-mode, (b) 3-mode, and (c) 4-mode W states. Error bars are shown for every fourth point, as well as the final one. They are
obtained from comparing the traces from individual sets of measurements. As expected, the traces converge to values near
unity. (d) Trace versus point number when measuring only a 2-mode subspace of a prepared 4-mode W state. Due to only
measuring half of the populated space, the trace converges to 0.5. This demonstrates that the DEMESST sampling method is
self-consistent and does not depend on the chosen measurement subspace.

DFE by choosing as a basis the intended target state.
While Wigner tomography was presented in this work,
the method also operates beyond the bosonic Wigner
function, and works for both continuous and discrete sys-
tems. This approach operates without coupling gates
between modes, and would be useful for calibrating en-
tangled states over distributed quantum networks. Ulti-
mately, the DEMESST sampling method enables efficient
measurement of large states, which will be crucial as the
size of quantum hardware systems increases and more
complicated states are generated and applied for quan-
tum simulation, bosonic logical state encoding, and error
correction.
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Supplementary Information: Efficient multimode Wigner tomography

I. CRYOGENIC SETUP AND CONTROL
INSTRUMENTATION
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Figure S1 | Schematic of the cryogenic setup, microwave
wiring and filtering, and control instrumentation.

The multimode cavity device is heat sunk to an OFHC
copper plate connected to the base stage of a Bluefors
LD-400 dilution refrigerator (10-12 mK). The sample is
surrounded by a can containing two layers of µ-metal
shielding, with the inside of the inner layer connected to
a can made out of copper shim that is painted on the in-
side with Berkeley black and attached to the copper can
lid. A schematic of the cryogenic setup, control instru-
mentation, and device wiring is shown in SFig. S1. The
device is machined from a single piece of 5N5 aluminium
and consists of a readout cavity and a multimode storage
cavity fabricated using the flute method described in [S
1] and also used in [S 2]. The cavities are bridged by a
3D transmon circuit. Controls are performed through the
readout cavity or the direct cavity drive line, by driving
at the qubit and storage mode frequencies. The pulses
are directly digitally synthesized using a four-channel, 64

GSa/s arbitrary waveform generator (Keysight M8195A).
The combined signals are sent to the device after being
attenuated at each of the thermal stages, as shown in
SFig. S1. Outside the fridge, the signal is filtered (tun-
able narrow band YIG filter with a bandwidth of 80 MHz)
and further amplified. The amplitude and phase of the
resonator transmission signal are obtained through a ho-
modyne measurement, with the transmitted signal de-
modulated using an IQ mixer and a local oscillator at
the readout resonator frequency. The homodyne signal
is amplified (SRS preamplifier) and recorded using a fast
ADC card (Keysight M3102A PXIe 500 MSa/s digitizer).

II. CALIBRATION OF THE MULTIMODE
HAMILTONIAN

The Hamiltonian of the multimode cQED system re-
alized by the transmon and the storage modes is:

H = ωq |e⟩ ⟨e|+
N−1∑
m=0

{ωma†mam + χma
†
mam |e⟩ ⟨e|

+
km
2
a†mam(a†mam − 1)}+

∑
n ̸=m

kmna
†
mama

†
nan,

(1)

where ωq/(2π) = 4.96 GHz is the frequency of the trans-
mon |g⟩ - |e⟩ transition, ωm/(2π) ranging from 5.72−6.47
GHz are the cavity mode frequencies, χm/(2π) ranging
from −1.64 to −0.91 MHz are the dispersive shifts, km
the self-Kerr shift of each mode, and kmn the cross-Kerr
interactions between the modes. The Kerr nonlinearities
range from −6−7 kHz. Parameter values are determined
with the processes described in the supplement of [S 2].
A summary of the system parameters used in the ex-
periment, as well as Liouvillian terms corresponding to
transmon and cavity decoherence and decay, is provided
in STable 2. The 2-mode experiments used the last two
modes in the table, the 3-mode experiments used the last
three modes, and the 4-mode experiments used all four
of the modes.

III. THE WIGNER FUNCTION AND ITS
GENERALIZATION

The Wigner function is the quasiprobability distribu-
tion of a state in phase space, and is one of the most
important functions in the field of quantum optics. For a
single-mode state ρ, the Wigner function is defined as [S
3]

Wρ(α) = 2Tr[ρD(α)eiπa
†aD†(α)], (2)
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Parameter Hamiltonian/Liouvillian Term Quantity Value(s)

Transmon frequency ωq |e⟩ ⟨e| ωq/(2π) 4.97 GHz

Storage cavity frequencies ωma†
mam ωm/(2π) 5.716, 5.965, 6.223, 6.469 GHz

Readout frequency ωra
†
rar ωr/(2π) 7.79 GHz

Readout dispersive shift χra
†
rar |e⟩ ⟨e| χr/(2π) 1 MHz

Storage mode dispersive shifts χma†
mam |e⟩ ⟨e| χm/(2π) -1.636, -1.269, -1.093, -0.906 MHz

Storage mode self-Kerrs km
2
a†
mam(a†

mam − 1) km/(2π) 9.0, 5.2, 4.2, 3.2 kHz

Storage mode cross-Kerrs kmna
†
mama†

nan kmn/(2π) −6− 0 kHz

Transmon |e⟩ → |g⟩ relaxation 1
T

q
1
(1 + n̄)D

[
|g⟩ ⟨e|

]
T q
1 108± 7 µs

Transmon |g⟩ − |e⟩ dephasing
(

1
T

q
2
− 1

2T
q
1

)
D
[
|e⟩ ⟨e|

]
T q
2 165± 14 µs

Readout linewidth κrD[ar] κr/(2π) 0.52 MHz

Storage mode relaxation 1
Tm
1
D[a] Tm

1 ∼ 1− 2 ms, see [S 1]

Transmon thermal population n̄
T

q
1
D
[
|e⟩ ⟨g|

]
n̄ 1.5± 0.5 %

Storage mode dephasing
(

1
Tm
2

− 1
2Tm

1

)
D
[
|1⟩ ⟨1|

]
Tm
2 ∼ 1.5− 3 ms, see [S 1]

Table 2 | Multimode cQED system parameters

where D(α) = eαa
†−α∗a is the displacement operator.

We can see that Wρ(α) is proportional to the expectation
value of the parity operator with the state ρ displaced by
complex amplitude −α. Similarly, we can introduce the
Wigner function for an operator O with finite Frobenius
norm (F-norm) (||O||F =

√
Tr[O†O] < +∞) by substi-

tuting the state ρ with the operator O in Eqn. (2).
The Wigner function of a multimode M -mode state ρ

can be expressed as

Wρ(α⃗) = 2MTr[ρD(α⃗)eiπ
∑M

m=1 a
†
mamD†(α⃗)], (3)

where D(α⃗) =
∏M
m=1 e

αma
†
m−α∗

mam . As described in the
main text, due to the different dispersive shifts of our
cavity modes, we instead implement a generalized parity
operator [S 2]. We can express the corresponding gener-
alized version of the Wigner function, as introduced in [S
4], as

Wρ(α⃗, θ⃗) =
2MTr[ρD(α⃗)ei

∑M
m=1 θma

†
mamD†(α⃗)]∏M

m=1[1 + i cot(θm/2)]
, (4)

where θm can be different and need not equal π for the
M modes. We also denote

W̃ρ(α⃗, θ⃗) = Tr[ρD(α⃗)ei
∑M

m=1 θma
†
mamD†(α⃗)], (5)

where W̃ρ(α⃗, θ⃗) can in general be a complex number,
since ei

∑M
m=1 θma

†
mam is no longer Hermitian. Also,

|W̃ρ(α⃗, θ⃗)| ≤ 1. We can see from the form of Eqn. (5)
that W̃ρ(α⃗, θ⃗) = W̃ ∗

ρ†(α⃗,−θ⃗). This generalized Wigner
function W̃ρ(α⃗, θ⃗) is what we experimentally measure.
In the next section, we show that W̃ρ(α⃗, θ⃗) for quantum
states plays a similar role as the usual Wigner function
(Eqn. (3)) when calculating the expectation values with
other operators.

IV. ESTIMATING EXPECTATION VALUES
WITH WIGNER SAMPLING

In this section, we discuss the sampling method for
estimating the expectation value of the Wigner function
with an operator with finite F-norm O. We then ana-
lyze the overhead required to reach a certain accuracy
threshold.

We start with the identity that reflects the relationship
between expectation values and the Wigner function:

Tr[ρO] =

∫
d2M α⃗

πM
Wρ(α⃗)WO(α⃗). (6)

For the generalized Wigner function, we have a similar
expression:

Tr[ρO] =

∫
d2M α⃗

πM
Wρ(α⃗,−θ⃗)WO(α⃗, θ⃗)

= CM

∫
d2M α⃗ W̃ρ(α⃗,−θ⃗)W̃O(α⃗, θ⃗),

(7)

where CM =
∏M
m=1[2(1− cos θm)/π].

The equations above have been applied for direct fi-
delity estimation between an experimentally prepared
state ρ and a target pure state σ [S 5]. For example,
we can rewrite Eqn. (7) as

F (ρ, σ) = Tr[ρσ] = CM

∫
d2M α⃗ |W̃σ(α⃗, θ⃗)|2

W̃ρ(α⃗,−θ⃗)
W̃σ(α⃗,−θ⃗)

=

∫
d2M α⃗ pW 2(α⃗)

Re[eiϕ(α⃗)W̃ρ(α⃗,−θ⃗)]
|W̃σ(α⃗,−θ⃗)|

,

(8)
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where pW 2(α⃗) = CM |W̃σ(α⃗, θ⃗)|2 satisfies pW 2(α⃗) ≥ 0
and

∫
d2M α⃗ pW 2(α⃗) = Tr[σ2] = 1, such that we

can treat pW 2(α⃗) as a probability distribution func-
tion that we can then use to sample a set of displace-
ment vectors {α⃗(k)}. Given a set {α⃗(k)}, we can mea-
sure Re[eiϕ(α⃗

(k))W̃ρ(α⃗
(k),−θ⃗)] and calculate the average

Re[eiϕ(α⃗(k))W̃ρ(α⃗
(k),−θ⃗)]

|W̃σ(α⃗(k),−θ⃗)|
to obtain an estimate of F (ρ, σ). In

Sec. VI, we show explicitly that by repeatedly measur-
ing whether the qubit is in the |g⟩ level, we can obtain a
series of binomial outcomes A(k)

j ∈ {1,−1} whose expec-
tation values lead to exactly Re[eiϕ(α⃗

(k))W̃ρ(α⃗
(k),−θ⃗)].

We call the above sampling method the W 2 tomography
sampling method.

In general, we have the freedom to choose other prob-
ability distribution functions p(α⃗) to generate sampling
points {α⃗(k)}, since

Tr[ρO]

= CM

∫
d2M α⃗ p(α⃗)

|W̃O(α⃗, θ⃗)|
p(α⃗)

Re[eiϕ(α⃗)W̃ρ(α⃗,−θ⃗)].

(9)

We can calculate the average of CM
|W̃O(α⃗(k),θ⃗)|
p(α⃗(k))

A
(k)
j to

obtain an estimate for Tr[ρO]. However, in certain sit-
uations, there will be an optimal choice for p(α⃗). For
example, if we perform single shot measurements where
we only measure each sampling vector α⃗(k) once, the vari-
ance of the estimator CM

|W̃O(α⃗(k),θ⃗)|
p(α⃗(k))

A(k) will be limited
by

C2
M

∫
d2M α⃗ p(α⃗)

|W̃O(α⃗, θ⃗)|2

p2(α⃗)
− (Tr[ρO])2

≥
[CM

∫
d2M α⃗ |W̃O(α⃗, θ⃗)|]2∫
d2M α⃗ p(α⃗)

− (Tr[ρO])2

=

[
CM

∫
d2M α⃗ |W̃O(α⃗, θ⃗)|

]2
− (Tr[ρO])2.

(10)

Here, we have used the Cauchy-Schwarz inequality and
the fact that

∫
d2M α⃗ p(α⃗) = 1. The minimum is achieved

when p(α⃗) ∝ |W̃O(α⃗, θ⃗)|, which we call the DEMESST
sampling method. It is also worth noting that, for the
W 2 method where pW 2(α⃗) = CM |W̃O(α⃗, θ⃗)|2, the inte-
gral shown in the first line of Eqn. (10) will be divergent.
To avoid this, Ref. [S 5, 6] have proposed choosing a
threshold cutoff value to discard some sampling vectors

α⃗(k) that make the denominator of
A

(k)
j

|W̃O(α⃗(k),θ⃗)|
too small.

This cutoff procedure can lead to bias when estimating
Tr[ρO] and makes the error analysis more complicated.
A detailed analysis of the effect of this cutoff in a multi-
mode setting is beyond the scope of this work.

Instead, we focus on the DEMESST method. The

probability distribution function is given by

pD(α⃗) =
|W̃O(α⃗, θ⃗)|

ZO
, (11)

where

ZO =

∫
d2M α⃗ |W̃O(α⃗, θ⃗)|. (12)

In the DEMESST method, we must average CMZOA
(k)
j

over all sampling vectors α⃗(k) and all possible binomial
outcomes from the qubit measurement per sampling vec-
tor. In the limit where we do one qubit measurement per
α⃗(k), we can use Hoeffding’s inequality to estimate the
number of samples Nspl required to reach an accuracy ϵ1
with probability 1− δ1 to be

P

∣∣∣∣∣∣CMZONspl

Nspl∑
k=1

A(k) − Tr[ρO]

∣∣∣∣∣∣ ≥ ϵ1

 ≤ δ1 (13)

when

Nspl ≥ ⌈2C
2
MZ

2
O

ϵ21
ln(2/δ1)⌉. (14)

We can see that, in general, Nspl ∝ (CMZO)
2. In the

next section, we analyze the properties of ZO for our
operators of interest.

V. DENSITY MATRIX RECONSTRUCTION
PROCEDURE

In this section, we discuss our scheme for reconstruct-
ing an unknown state using the DEMESST sampling
method to estimate each element of its density opera-
tor in the Fock basis. We consider a system with M
modes and maximum total photon number N between
those modes. This restricts the dimension of the Hilbert
space to

(
M+N
N

)
. We focus on the scaling of the sampling

overhead (number of samples required) vs. mode number
M , in the limit where M is much larger than 2N , and
show that this overhead scales polynomially vs. M with
bounded photon number N , demonstrating the efficiency
of the DEMESST approach as M increases.

We assume that the operator O (in Tr[ρO]) is in one
of the following forms:

On⃗,n⃗ = |n⃗⟩⟨n⃗|,

ORn⃗,n⃗′ =
|n⃗⟩⟨n⃗′|+ |n⃗′⟩⟨n⃗|√

2
(n⃗ ̸= n⃗′),

OIn⃗,n⃗′ = i
|n⃗⟩⟨n⃗′| − |n⃗′⟩⟨n⃗|√

2
(n⃗ ̸= n⃗′).

(15)

Here |n⃗⟩ =
⊗M

m=1 |nm⟩ and |n⃗′⟩ =
⊗M

m=1 |n′m⟩ are Fock
basis states that satisfy

∑M
m=1 nm ≤ N and

∑M
m=1 n

′
m ≤
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( 01 + 10 )/ 2 00 , 01 , |10⟩
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Figure S2 | Flowchart depicting the steps involved in our density matrix reconstruction procedure, of which DEMESST is
an example. Starting with a target expected state ρT , we can use our knowledge of ρT to identify a target subspace and
compute the operators Ôj that span that basis. We then use those operators to generate sampling points, which may involve
projections to be done efficiently, as described in Sec. IV. By experimentally implementing the operators on our prepared
state, we can reconstruct the state ρ and compare it with the ideal target ρT . Even if the prepared state ρ is not close to ρT ,
as long as it lives in the same subspace, we can effectively reconstruct it.

N . The operators O are chosen such that O = O† and
Tr[O†O] = 1. For a system with M modes and maxi-
mum total photon number N , we have

(
M+N
N

)2
of these

operators.

One essential observation is that, when M > 2N , for
any (n⃗, n⃗′) pair there are at least (M − 2N) elements in
the set S ≡ S(n⃗,n⃗′) = {m|nm = n′m = 0}. We also denote
S̄ = {1, 2, . . . ,M}\S. Because of this, the corresponding
operators shown in Eqn. (15) can always be decomposed
as

O =
(⊗
m∈S

|0⟩⟨0|m
)
⊗OS̄ , (16)

where OS̄ has support on the modes with index m ∈ S̄.
We can see that the number of elements in S̄ is no greater
than 2N , and independent of M . Similarly, the general-
ized Wigner function of such an operator O satisfies

W̃O(α⃗, θ⃗) =
( ∏
m∈S

W̃|0⟩⟨0|(αm, θm)
)

· W̃OS̄
(α⃗S̄ , θ⃗S̄),

(17)

where α⃗S̄ , θ⃗S̄ contain those elements in α⃗, θ⃗ whose mode
index m ∈ S̄. Again, W̃OS̄

(α⃗S̄ , θ⃗S̄) is independent of M .

Now, we consider the sampling overhead to obtain a
precise estimate of Tr[ρO] when O satisfies the properties
described above. One approach is to sample directly ac-
cording to the M -mode function |W̃O(α⃗, θ⃗)|/ZO. Based
on Eqn. (14), the key quantity we should focus on is

CMZO, which satisfies

CMZO =
( M∏
m=1

2(1− cos θm)

π

)∫
d2M α⃗ |W̃O(α⃗, θ⃗)|

=
∏
m∈S

(2(1− cos θm)

π

∫
d2α⃗ |W̃|0⟩⟨0|(αm, θm)|

)
· CS̄

∫
d2|S̄|α⃗S̄ |W̃OS̄

(α⃗S̄ , θ⃗S̄)|

= 2M−|S̄|CS̄ZOS̄
.

(18)

Here, CS̄ =
∏
m∈S̄ [2(1 − cos θm)/π]. Since OS̄ is sup-

ported on at most 2N modes, which is independent of
M when M > 2N , the only M -dependence in CMZO
comes from the 2M factor. Unfortunately, this is still un-
favorable, as it grows exponentially with mode number
M .

To resolve this issue, consider OS̄ , which is non-
trivially supported on the modes contained in S̄, rather
than the full operator O itself. We introduce the pro-
jection operator PS =

⊗
m∈S |0⟩⟨0|m and denote ρS̄ =

TrS [ρPS ]. Here TrS [•] means the partial trace over all
modes with m ∈ S. We can see that

Tr[ρO] = Tr[ρS̄OS̄ ], (19)

where ρS̄ and OS̄ are wholly supported on modes in S̄,
which contains at most 2N elements. We can perform
DEMESST sampling according to OS̄ as follows:

Tr[ρS̄OS̄ ]

= CS̄ZOS̄

∫
d2|S̄|α⃗S̄ pD(α⃗S̄) Re[eiϕ(α⃗S̄)W̃ρS̄ (α⃗S̄ ,−θ⃗S̄)].

(20)
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In the experiment, we utilize the |f⟩ level of the
transmon to effectively restrict the cavity state to
ρS̄ . From the measurement, we obtain binomial
outcomes A

(k)
j ∈ {1,−1} with expectation values

Re[eiϕ(α⃗
(k)

S̄
)W̃ρS̄ (α⃗

(k)

S̄
,−θ⃗S̄)]. More details about this ex-

perimental protocol is presented in Sec. VI. Like before,
we can use Hoeffding’s inequality to estimate the sam-
pling overhead. If we only measure once per sampling
vector α⃗(k)

S̄
, we will have

P

∣∣∣∣∣∣CS̄ZOS̄

Nspl

Nspl∑
k=1

A(k) − Tr[ρS̄OS̄ ]

∣∣∣∣∣∣ ≥ ϵ2

 ≤ δ2 (21)

when

Nspl ≥ ⌈
2C2

S̄
Z2
OS̄

ϵ22
ln(2/δ2)⌉. (22)

When N is bounded, CS̄ZOS̄
is independent of mode

number M when M > 2N . Therefore, Nspl in Eqn. (22)
scales as

Nspl ∼ OM

(f(N)

ϵ22
ln(2/δ2)

)
, (23)

where OM indicates that we focus only on the scaling
over M in the large M limit, and f(N) = 2C2

S̄
Z2
OS̄

is a
function that depend solely on N and the specific form
of O from Eqn. (15). We also introduce fmax(N) to rep-
resent the maximum value of f(N) from those

(
M+N
N

)2
operators.

We can now consider our reconstructed density matrix
ρ̂. By performing expectation value estimation on the
unknown state ρ with all

(
M+N
N

)2
operators with form in

Eqn. (15), we can achieve

P (B) ≥ 1−
(
M +N

N

)2

δ2 (24)

with total sample number

Ntot ∼ OM

[(
M +N

N

)2
fmax(N)

ϵ22
ln(2/δ2)

]
, (25)

where B requires all the conditions below:

|⟨n⃗|(ρ̂− ρ) |n⃗⟩ | ≤ ϵ2,

|Re[⟨n⃗|(ρ̂− ρ) |n⃗′⟩]| ≤ ϵ2/
√
2 (n⃗ ̸= n⃗′),

|Im[⟨n⃗|(ρ̂− ρ) |n⃗′⟩]| ≤ ϵ2/
√
2 (n⃗ ̸= n⃗′).

(26)

If B is satisfied, we will have the Frobenius norm distance
between our reconstructed state and the true state satisfy

||ρ̂− ρ||F =

√∑
n⃗,n⃗′

|⟨n⃗|(ρ̂− ρ) |n⃗′⟩ |2 ≤
(
M +N

N

)
ϵ2.

(27)

Also, if ρ is a pure state, we will have

|F (ρ̂, ρ)− 1| = |Tr[(ρ̂− ρ)ρ] ≤ ϵ2 ·
∑
n⃗,n⃗′

|⟨n|ρ |n⃗′⟩ |

≤ ϵ2 ·
√∑
n⃗,n⃗′

|⟨n|ρ |n⃗′⟩ |2 ·
(
M +N

N

)

= ϵ2 ·
√

Tr[ρ2] ·
(
M +N

N

)
=

(
M +N

N

)
ϵ2.

(28)

In summary, by choosing ϵ2 = ϵ/
(
M+N
N

)
and δ2 =

δ/
(
M+N
N

)2
, our sampling method will require the total

sample number

Ntot ∼

OM

[(
M +N

N

)4
fmax(N)

ϵ2
ln

(
2

(
M +N

N

)2

/δ

)]
(29)

to achieve

P (||ρ̂− ρ||F ≤ ϵ) ≥ 1− δ, (30)

even if we only perform a single measurement for each
sampling instance. With the same amount of sampling,
we can also achieve

P (|F (ρ̂, ρ)− 1| ≤ ϵ) ≥ 1− δ (31)

when ρ is a pure state.
The procedure for DEMESST is as follows: first, the

Wigner function corresponding to a chosen basis opera-
tor is normalized to a probability distribution based on
its absolute value. Then, displacement vectors are sam-
pled from the resulting inverse cumulative distribution
function (CDF) by randomly selecting a value between
0 and 1 to find the corresponding angular and radial
values of the displacements (see supplementary informa-
tion). This calculation is performed efficiently by utiliz-
ing Laguerre functions and their inverses. During mea-
surement, each displacement vector will have the origi-
nal sign of its Wigner function value preserved, so that
if the Wigner function was negative at that point, the fi-
nal measured value will be multiplied by -1. Observing a
set of these will provide an estimate of the chosen density
matrix element. Repeating this for multiple elements will
thus produce the density matrix of the prepared state.

VI. DEMESST EXPERIMENTAL PROTOCOL

For simplicity, in this section we assume that the cav-
ity is initialized as a pure state |ψ⟩. However, the same
arguments will apply for a generic density operator ρ,
which can always be decomposed as ρ =

∑
i ci|ψi⟩⟨ψi|

and understood as an ensemble average of a set of pure
states {|ψi⟩⟨ψi|} with probability ci.
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First, we consider the generalized Wigner function of
an M -mode state. We assume that the cavity-qubit state
is initialized as |ψ⟩ |g⟩. To perform the Wigner tomog-
raphy measurement, we apply a short (large-bandwidth)
drive to each cavity mode, then apply a large-bandwidth
π/2 pulse on the qubit to begin the parity measure-
ment. After these operations, the qubit part becomes
exp(−iπ4σy) |g⟩ = |g⟩+|e⟩√

2
, and the cavity part becomes

|ψD⟩ = D(−α⃗) |ψ⟩. Then, as part of the parity mea-
surement, we wait for a time t. Due to the disper-
sive interaction Hamiltonian Hint =

∑
m χma

†
mam|e⟩⟨e|,

the cavity modes will be entangled with the qubit as
1√
2
[|ψD⟩ |g⟩+ e−i

∑
m θma

†
mam |ψD⟩ |e⟩], where θm = χmt.

In principle, we could choose any time t, as long as none
of the θm are integer multiples of 2π. However, in prac-
tice, we select t to make each of the θm as close to π mod-
ulo 2π as possible. This choice provides the maximum
contrast and is closest to the ideal multimode parity op-
erator. To complete our generalized parity measurement,
we apply another π/2 pulse on the qubit, but with differ-
ent phase from the initial one. Specifically, we consider
the qubit rotation along r⃗ = − sinϕ e⃗x−cosϕ e⃗y. By ap-
plying this exp(−iπ4 r⃗ · σ⃗) operation, the final cavity-qubit
entangled state |Ψ⟩ will be

|Ψ⟩ = |ψD⟩+ eiϕe−i
∑

m θma
†
mam |ψD⟩

2
|g⟩

+
−e−iϕ |ψD⟩+ e−i

∑
m θma

†
mam |ψD⟩

2
|e⟩ .

(32)

Thus, when performing readout on the qubit, the final
probability of achieving |g⟩ will be

Pg =
1 + Re{eiϕTr[D†(α⃗)|ψ⟩⟨ψ|D(α⃗)e−i

∑
m θma

†
mam ]}

2

=
1

2
{1 + Re[eiϕW̃|ψ⟩⟨ψ|(α⃗,−θ⃗)]}.

(33)

Therefore, if we record A = 1 upon measuring |g⟩ and
A = −1 otherwise, the expectation value of A will be
exactly Re[eiϕW̃ρ(α⃗,−θ⃗)]. This derivation applies for any
ϕ, but as mentioned before, the choice of ϕ depends on
the operator O and the sampling vector α⃗.

We must modify the experimental protocol above to
measure the generalized Wigner function for the pro-
jected state ρS̄ , which is defined in Sec. V. In particular,
we utilize the second excited state |f⟩ of the transmon
to implement subsystem tomography and measure the
Wigner values for only the projected states ρS̄ , which
is similar to the idea used in [S 7]. Our W states
are generated using multimode photon blockade as de-
scribed in [S 8] to ensure that our maximum total pho-
ton number is N = 1. Consequently, for the density ma-
trix reconstruction, the Hilbert space will be spanned by
{|n⃗⟩ |

∑M
m=1 nm ≤ 1}. In this case, the projected oper-

ator OS̄ introduced in Eqn. (16) will be supported on

at most 2 modes. Because of the different dispersive
couplings between the qubit and distinct cavity modes
(STable 2), we can selectively target each of the modes
with sufficiently narrow-bandwidth qubit pulses to help
perform the necessary projections. Therefore, before the
parity measurement, we first apply several long (narrow-
bandwidth) qubit π pulses with frequencies ωq + χm
for m ∈ S, such that the qubit that coupled with the
(I − PS) |ψ⟩ component of the multimode cavity state
will transfer from |g⟩ to |e⟩, while the component that
coupled with PS |ψ⟩ will stay in |g⟩. Then we give the
transmon a short π pulse on the |e⟩−|f⟩ transition. After
those steps, the cavity-transmon state becomes

|Ψ⟩ = PS |ψ⟩ |g⟩+ (I − PS) |ψ⟩ |f⟩ . (34)

Finally, we can use the procedure that we described be-
fore when focusing on the Wigner value measurement of
a generic M -mode state ρ. We only need to drive those
modes with index m ∈ S̄ such that those modes are dis-
placed by D(−α⃗S̄). The probability to measure |g⟩ from
the final qubit readout is

Pg,ϕ =
Tr[ρS̄ ] + Re[eiϕW̃ρS̄ (α⃗S̄ ,−θ⃗S̄)]

2
, (35)

where ρS̄ = TrS [PS |ψ⟩⟨ψ|]. In practice, the result above
is unaffected by the order in which we perform the qubit
π pulses and cavity displacements, assuming that we add
additional π pulses to target the displaced state. We
found this order to work better in the experiment, despite
the need for a larger comb of π pulse frequencies.

Now, if we proceed similarly to before and assign A = 1
for |g⟩ and A = −1 otherwise, the expectation value of
A will not give us our desired result. To solve this issue,
we utilize the freedom we have in choosing the phase of
the second qubit π/2 pulse in the parity measurement. If
we choose the second qubit π/2 rotation to be along −r⃗
instead of r⃗ (or equivalently choose (ϕ+ π) instead of ϕ,
then the probability of measuring |g⟩ will be

Pg,(ϕ+π) =
Tr[ρS̄ ]− Re[eiϕW̃ρS̄ (α⃗S̄ ,−θ⃗S̄)]

2
. (36)

Therefore, comparing with Eqn. (35), one solution to re-
covering our desired quantity is to first generate a ran-
dom binomial number s. There is a 50% probability that
s = 1 and 50% probability that s = −1. If we get s = 1,
we choose the second qubit π/2 rotation to be along r⃗,
and otherwise choose −r⃗ instead. In both cases, we as-
sign A = 1 if the qubit measurement outcome is |g⟩, and
assign A = −1 if it is not |g⟩. The expectation value of
sA will be exactly Re[eiϕW̃ρS̄ (α⃗S̄ ,−θ⃗S̄)]. An advantage
of this procedure is that it will work even when it is dif-
ficult to distinguish |e⟩ and |f⟩ levels in qubit readout,
as long as we can distinguish |g⟩ outcomes from others.
The same applies for other permutations of these three
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Figure S3 | Absolute value of the final density matrices
determined using the DEMESST tomography sampling
method (left column) and the OLI method (right column)
for W states of (a) 2, (b) 3, and (c) 4 modes. The results for
DEMESST and OLI are in good agreement.

states, as long as the experimental protocol is adjusted
accordingly. In the actual experiment, we did not use
this trick of random number s generation, since we can
perform more than a single measurement per sampling
vector α⃗S̄ . Instead, we repeated the experiment 10 times
for rotation of the second π/2 along r⃗ and 10 times along
−r⃗. Finally, we subtracted the averaged probability of
measuring |g⟩ between the two cases to obtain an esti-
mate for Re[eiϕW̃ρS̄ (α⃗S̄ ,−θ⃗S̄)].

VII. FINAL RECONSTRUCTED DENSITY
MATRICES

Using the DEMESST and OLI tomography methods,
we can reconstruct the final density matrices of our pre-
pared W states. These matrices are final in the sense
that they are the results obtained from the entire set
of measurements performed in the experiment, i.e. 100
averages for each distinct displacement, so that the total
measurement number is 10 times the maximum measure-
ment number shown in Fig. 3 of the main text. Given
a fixed total measurement number that equals the prod-
uct of a number of distinct sets of cavity displacements

times the number of averages that each displacement is
repeated, we would gain the most information from max-
imizing the number of distinct displacements and mea-
suring each a single time. We choose instead to average
each measurement 10 times due to our imperfect readout
fidelity, to minimize our average number but still be able
to obtain accurate measurement results. We then repeat
this process 10 times to obtain statistics, resulting in a
total of 100 averages for each distinct displacement. This
choice lets us balance this theoretical maximal informa-
tion of singleshot measurements with our measurement
errors.

The final reconstructed density matrices for 2, 3, and 4
modes are shown in SFig. S3. We plot the absolute values
of the density matrix elements so that we have a single
matrix grid for each combination of tomography method
and mode number. We can see that the two methods
are in good agreement, with the largest visible deviation
being in the 3-mode case for Fock basis elements with
nonzero population in the second (middle) cavity mode.
Nevertheless, the distances between the two final matri-
ces as determined by the two methods is still low, and
is 0.05 for the 2-mode case, 0.22 for the 3-mode case,
and 0.30 for the 4-mode case. These distances are all
below the corresponding minimum distances at the max-
imum total measurement number presented in the main
text, and so this difference should not have significantly
affected those results.

Besides some slight deviations in the measured pop-
ulations of individual density matrix elements, the re-
maining distance between the final reconstructed matri-
ces can be explained by small differences in the fit phase
angles of the W states. For the 2-mode W state with
form |W2⟩ = (|10⟩ + eiϕ |01⟩)/

√
2, using the DEMESST

method we obtain a fit ϕD = 0.04, and using the OLI
method we measure ϕO = 0.03. In the 3-mode case, for
W state with phase angles defined as |W3⟩ = (|100⟩ +
eiϕ1 |010⟩+eiϕ2 |001⟩)/

√
3, we measure ϕ1D = −0.19 and

ϕ2D = 1.57, while ϕ1O = −0.12 and ϕ2O = 1.57. Sim-
ilarly to what we see in the populations, the deviation
is primarily in the middle mode. Finally, for 4 modes
and W state |W4⟩ = (|1000⟩+ eiϕ1 |0100⟩+ eiϕ2 |0010⟩+
eiϕ3 |0001⟩)/

√
4, we find ϕ1D = −1.36, ϕ2D = −2.90,

and ϕ3D = 0.60, and ϕ1O = −1.38, ϕ2O = −3.02, and
ϕ3O = 0.63. These angles are obtained by discretely
sweeping the ϕj values over the full 2π range for each
of the modes and determining which set of ϕj gives the
largest fidelity when compared to an ideal W state with
those phases.

VIII. INFIDELITY AND MATRIX DISTANCE
SIMULATIONS

In this section, we present simulations of the infidelity
and Frobenius norm matrix distance vs. point number
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Figure S4 | Simulated infidelity vs. total measurement
number for W states of different mode numbers for the two
tomography methods, (a) DEMESST and (b) OLI. The
infidelity is computed as the fidelity difference between the
reconstructed state at a given total measurement number vs.
an ideal M -mode W state. Error bars are obtained from
repeating the simulation multiple times while including
readout bit flip errors. The infidelities decrease to lower
values more quickly for the DEMESST approach, especially
for larger mode numbers. The dashed horizontal lines
indicates an infidelity of 0.1 (90% fidelity).

for our two tomography methods, DEMESST and OLI,
following the same procedure described in the main text.
Wigner tomography measurements are sampled assuming
perfect state preparation, and the infidelities are com-
puted with respect to an ideal M -mode W state, and the
results are shown in SFig. S4. Error bars are obtained by
repeating the simulations while modeling bit flip readout
errors. The resulting infidelity vs. total measurement
number for each M is fit to a power law, and the in-
tersection with 0.1 (90% fidelity) is used to generate the
values plotted in Fig. 1(a) in the main text. We can see
that the OLI method requires fewer measurements than
DEMESST for 2 modes, but DEMESST has a lower sam-
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Figure S5 | Simulated matrix distance vs. total
measurement number for W states of different mode
numbers for the two tomography methods, (a) DEMESST
and (b) OLI. The distance is computed as the Frobenius
norm between the reconstructed state at a given
measurement number and a final simulated W state with
state preparation errors from photon blockade and
decoherences. Error bars are obtained from repeating the
simulation multiple times while including readout bit flip
errors. The distances decrease to lower values more quickly
for the DEMESST approach, especially for larger mode
numbers.

pling requirement for 3 or more modes. This effect be-
comes increasingly apparent for larger M . DEMESST
scales polynomially with M , while OLI scales exponen-
tially with M .

To compute the Frobenius norm matrix distances, we
obtain the density matrix of an imperfect W state pre-
pared by photon blockade, with errors from transmon and
cavity decoherence and leakage through the blockade. We
then simulate Wigner tomography measurements on that
state for the total measurement numbers and using the
same cavity displacement sampling points as used in our
experiment, then reconstruct the density matrix while
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including readout and bit flip error. These simulated
results are shown in SFig. S5, with error bars obtained
from repeating the simulations with the readout errors.
As expected, the DEMESST method performs increas-
ingly more efficiently as the mode number increases.

Comparing to the experimental data presented in the
main text, the matrix distance results are similar, albeit
with some differences. For example, we can see that the
measurement number at which the simulated distance
reaches roughly 0.1 for 2 modes is slightly less than 105,
while we observe a distance slightly above 0.1 at that
point number in our data. For the 3-mode case, in the
experiment we observe a distance of roughly 0.3 at 105

measurements for DEMESST and 0.4 for OLI, which is
close to the simulated distances of roughly 0.25 and 0.3,
respectively. For the 4-mode case, we measure a distance
of 0.4 at roughly 2 × 105 measurements for DEMESST,
compared to a simulated distance of roughly 0.2, and a
distance of roughly 1.0 vs 0.8 for OLI at that measure-
ment number. We attribute the discrepancies to fluctu-
ations over time in the readout error that may affect the
accuracy of the simulation. This effect is particularly pro-
nounced for the 4-mode case, where more measurements
are required.

IX. W 2 STATE RECONSTRUCTION

Another Wigner tomography sampling method that
we implement is the W 2 method, which was first intro-
duced in [S 5] and that we briefly discussed in Sec. IV.
In this approach, sets of coherent cavity displacements
αi are chosen using rejection sampling. This approach
computes the overlap between a prepared state and a
desired target state. For M modes, a cutoff c and a dis-
placement vector (β1, ..., βM ) is randomly sampled from
a uniform distribution between 0 and a maximum value
of |W(α1, ..., αM )|2

∏M
i=1 |αi|, where W corresponds to

the target state. If |W(β1, ..., βM )|2
∏M
i=1 |βi| > c, the

vector is kept. This ensures that we measure cavity dis-
placements that provide the most information about the
state, while also avoiding displacements with large mag-
nitude or Wigner values near zero, which are more sus-
ceptible to experimental errors. After measuring a set of
n of these vectors, the final overlap fidelity is computed
as 1

n

∑n
i=1 Wexp(

−→αi)/Wideal(
−→αi). This approach allows

for direct fidelity estimation of a prepared state with an
ideal state. In particular, the W 2 method can be used
in a similar manner to the DEMESST, where the fidelity
estimation is performed with respect to multimode Fock
state basis elements. Repeating for multiple elements can
thus provide a reconstructed density matrix.

Experimentally, we use the W 2 method as an addi-
tional check on our prepared W states. We set the tar-
get state to be the multimode W state with ϕ’s deter-
mined from the DEMESST and OLI methods. The W 2
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Figure S6 | Experimental results for the W 2 tomography
sampling method. (a) State reconstruction fidelities for 2-
(purple circles), 3- (orange triangles), and 4-mode (blue
squares) W states. Horizontal lines indicate the fidelities
obtained from the OLI method, which are consistent with
the W 2. (b) Error magnitudes for the fidelities shown in (a).
All results follow a roughly 1/

√
x relationship vs. total

measurement number, as expected.

measurements then provide a direct fidelity estimation
of the prepared state with the expected target. Since
the sampling uses these angles, we present the W 2 re-
sults independently from the DEMESST and OLI, which
do not utilize that information. The results are shown
in SFig. S6. The fidelities for the maximum provided
observation number are 0.972 ± 0.013, 0.95 ± 0.35, and
0.90 ± 0.08 for the 2-, 3-, and 4-mode W states respec-
tively. These averages are consistent with the results of
the previous DEMESST and OLI methods, with the OLI
fidelities indicated by the horizontal lines in SFig. S6(a),
and the data converges quickly to the expected fidelity
obtained from those two approaches, although with large
uncertainties, as shown in SFig. S6(b). One reason for
these errors is the relatively low total measurement num-
ber compared with the other methods. However, an odd
behavior is that the 3-mode data has much greater un-
certainties than even the 4-mode case, when we would
expect the uncertainties to increase monotonically with
mode number. Some possible explanations for this be-
havior could be a particularly low readout fidelity dur-
ing data collection or fluctuations in drive strength dur-
ing the measurement sequence that modify the effective
Wigner operator differently for distinct sets of cavity
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mode displacements. This could also be caused by the
choice in cutoff, as derived in Sec. IV. All the uncer-
tainties have the expected 1/

√
x with total observation

number.
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