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ABSTRACT

Electrons on helium form a unique two-dimensional electron system on the interface of

superfluid 4He and vacuum. At low temperatures and weak confinement, trapped electrons

can arrange into strongly correlated states known as Wigner molecules, which can be used

to study electron interactions in the absence of disorder, or as a promising resource for

quantum computation. Wigner molecules have orbital frequencies in the microwave regime

and can therefore be integrated with circuit quantum electrodynamics, which would allow

rapid detection and manipulation of such a molecule’s orbital state.

In this thesis, we demonstrate deterministic preparation of one to four-electron Wigner

molecules in an electron-on-helium quantum dot located at the tip of an on-chip microwave

resonator. The Wigner molecule dipole coupling to the resonator allows us to measure spec-

tral features of Wigner molecules in the microwave regime. We find that different-sized

Wigner molecules have strikingly different spectra, and each spectrum serves as a fingerprint

for the molecule’s internal structure and its surroundings. By modeling the electron-cavity

system, we extract each molecule’s orbital frequency and electron configuration. For a sin-

gle electron, the orbital frequency crosses the resonance frequency and we measure a large

coherent electron-photon coupling rate of g/2π = 4.8 MHz, which exceeds the incoherent

cavity decay rate by ten times. These results provide a solid base for the development of an

electron-on-helium qubit. Looking forward, our platform allows for new microwave studies

of strongly correlated electron states and can be used to couple a single microwave photon

to a single electron spin.
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CHAPTER 1

INTRODUCTION

1.1 Electrons on helium

1.1.1 The quantum mechanics of an electron floating on liquid helium

As an experimental physicist, it is rare to encounter a stable, trapped elementary particle.

Such particles are usually embedded within matter (e.g. an electron in a solid state defect),

and are easiliy perturbed or absorbed (e.g. photons trapped in a cavity). An electron on

helium is unique in this respect, since it forms a stable isolated quantum system on the

interface of liquid helium and vacuum. Electrons on helium naturally float approximately

10 nm above a helium surface and can move across this surface almost effortlessly, so they

can be thought of as microscopic quantum hoverboards. This behavior is quite remarkable,

but can be explained by the competition between an attractive force between the electron

and its induced image charge, and a repulsive barrier caused by the helium surface.

The image charge is induced below the liquid helium surface and is schematically depicted

in Fig. 1.1. Continuity of the displacement εiE⊥ perpendicular to the helium surface dictates

that the image charge is of opposite sign

q′ = e
εHe − 1

εHe + 1
, (1.1)

where εHe = 1.056 is the dielectric constant of liquid helium, and therefore attracts the neg-

ative electron towards the helium surface. The repulsive force that balances the electrostatic

force arises from the energy that is needed to place an electron inside the bulk helium. In

that case, the electron energy is minimized when it is at the center of a vacuum bubble. The

energy needed to form this electron bubble amounts to

E ≈ h2

8meR2
+ 4πσR2, (1.2)
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Figure 1.1: (a) An electron on floating a distance de above a liquid helium surface induces an
image charge inside the helium a distance de below the surface. An electric pressing field E⊥,
generated by a positively biased submersed electrode (not shown), is used in experiments to
control the electron density. (b) Electronic wavefunctions for the ground state |1〉 = χ1(z)
and first excited state |2〉 = χ2(z) obtained by solving the Schrödinger equation (Eq. (1.6)).
The potential V (z) in the absence of a pressing field E⊥ is shown as a solid black line and
dashed lines indicate energy levels E1 and E2. The expected position in the ground (first
excited) state is approx. 11 (46) nm above the surface. (c) A stable electron trap must
have a force F pointing towards an electrostatic potential minimum, indicated by a red star.
This means there must be a net flux of electric field lines through the surface around the
potential minimum (solid black line), which contradicts Maxwell’s equations for electrostatic
potentials in vacuum. Electrons on helium can be trapped using electrostatic potentials since
the helium provides a restoring force.

where the first term in Eq. (1.2) represents the zero-point energy of the electron and the

second term represents the energy to warp the surface, with σ and R the surface tension of

liquid helium and radius of the bubble, respectively. Experiments performed by Sommer in

1964 [1] measured the energy for electrons to penetrate the surface and form such bubbles

to be 1.3 eV.

An electron on helium and its positive image charge resemble the canonical quantum

mechanical system of a hydrogen atom, where instead of an electron orbiting the positively

charged proton, an electron on helium is bound to the surface by its image charge, resulting

in the potential energy

V (z) = V0θ(−z)− Λ

z + z0
θ(z) + eE⊥z, (1.3)

2



where V0 ≈ 1 eV is the helium penetration barrier, θ(z) is the step function, E⊥ is the

electric field always present in experiments, z0 ≈ 1.01 Å is an offset to avoid the singularity

at the helium surface z = 0 and

Λ =
e2

4πε0εHe

1

4

εHe − 1

εHe + 1
. (1.4)

The analogy between an electron on helium and the hydrogen atom becomes more clear

when we solve the Schrodinger equation for an electron on helium:

− ~2

2me
∇2ψ(r, z) + V (z)ψ(r, z) = Eψ(r, z). (1.5)

Without confinement in the plane of the helium surface, the wavefunction ψ(r, z) must be

a plane wave normalized by the surface area S: ψ(r, z) = 1√
S
eik·rχn(z). Plugging in this

ansatz gives an equation for the wavefunction in the z-direction:

dχn(z)

dz2
+

2me

~2
(En − V )χn(z) = 0. (1.6)

In the simplest case of no electric field (E⊥ = 0), this equation can be solved by approxi-

mating the helium surface as an infinite potential barrier (V0 →∞ and z0 → 0). This yields

eigenenergies

En = − me

2~2n2
Λ2 (n = 1, 2, 3, . . .) (1.7)

which resemble the spectrum of the hydrogen atom:

En = − me

2~2n2

(
e2

4πε0

)2

. (1.8)

The transition energies of an electron on helium can therefore be straightforwardly mapped

onto those of the hydrogen atom with a modified Rydberg constant.

In an experimental setting, an electric field E⊥ is always present to control the two-

3



dimensional electron density. Solving Eq. (1.6) with the full expression for V (z) can be done

numerically, and results in a linear Stark shift for electrons on helium:

∆En ≈ eE⊥〈n|z|n〉. (1.9)

Note that the Stark shift is positive, indicating that the transition frequencies increase with

E⊥, which was experimentally verified by Grimes et al. in 1976 [2].

In the absence of E⊥, the energy difference between the ground and first excited state

amounts to approximately (E2 − E1)/h ≈ 119 GHz, and (E3 − E1)/h ≈ 141 GHz. The

ground state wave function has its expected value 〈1|z|1〉 ≈ 11 nm above the helium surface

(Fig. 1.1b) and for higher excited states, the average distance to the helium surface 〈n|z|n〉

increases. For example, the first excited state floats approximately 〈2|z|2〉 ≈ 46 nm above the

surface. This dependence can be exploited for vertical state detection, for example by using

a nearby capacitor which detects small changes in induced charge. Control and read-out

of these states is an important requirement for an electron-on-helium quantum computer,

which has been proposed almost two decades ago [3, 4] and is still actively explored today

[5].

The transition frequency (E2 − E1)/h is much larger than conventional microwave fre-

quencies but smaller than optical frequencies, and lack of available off-the-shelf technology in

this regime has slowed down progress towards coherent control of the vertical energy states

of electrons on helium. On the other hand, the large transition frequency also implies that

at temperatures below T � (E2 − E1)/kB ≈ 6 K, an electron on helium is well cooled to

its vertical ground state. Such low temperatures are easily reached in commercial cryogenic

systems, opening the door for exploring other degrees of freedom, such as its motion parallel

to the helium surface.

With the electron’s vertical degree of freedom frozen in the ground state, the electron can

move effortlessly across the helium surface unless it is further confined in the plane of the

4



helium surface. Confining the electron in the x, y plane fully quantizes the electron states,

and forms the basis of an electron-on-helium motional state qubit. Unlike trapped ions,

electrons on helium are trapped by direct current (DC) electrostatic potentials, rather than

alternating current (AC) potentials. At first glance, this seems to contradict Earnshaw’s

theorem, which states that point charges in vacuum cannot be trapped using only a DC

voltage. Let us briefly discuss why this does not hold for electrons on helium.

From Maxwell’s equations, any DC electric field E used to create a stable trap must be

divergence free: ∇ · E = 0. In other words, the flux of electric field lines through a surface

around a potential minimum most add to zero. However, a stable electrostatic trap must

have a force pointing towards a potential minimum, as depicted in Fig. 1.1c. This requires a

net flux of electric field lines through this surface, and thus contradicts the first requirement.

Therefore, according to Earnshaw’s theorem, a stable trap generated by DC potentials does

not exist in vacuum.

For electrons on helium it is possible to create a stable trap with electrostatic potentials,

since the electron is bound the the helium surface. The helium surface therefore provides a

restoring force for the electric field perpendicular to the helium surface that would otherwise

create an unstable trap in vacuum. An electron on helium can therefore be trapped simply

by applying a positive DC voltage to a submersed electrode.

1.1.2 Electron interactions on liquid helium

Electrons floating above a helium surface behave differently from electrons in a metal or

a semiconductor, because electrons reside in the vacuum rather than a high-ε dielectric

substrate. This has a number of important consequences for interactions between electrons

above the helium.

Interactions between electrons in semiconductors are often screened, meaning that their

5



interaction energy U(r) is not described by the familiar Coulomb interaction

U(r) =
e2

4πε0εs

1

r
, (1.10)

but is modified to the so-called Yukawa potential:

U(r) =
e2

4πε0εs

e−r/λ

r
, (1.11)

where λ is the screening length and εs is the dielectric constant of the substrate. Without

nearby charges or dielectrics, the screening length is infinite and U(r) reduces to the typical

Coulomb interaction. A finite screening length arises when electrons are placed near a

dielectric substrate or conducting surface, such that λ ≈ 2d, where 2d is the distance between

the electrons and their induced image charges. Physically, a finite screening length reduces

the repulsion between electrons, since image charges divert electric field lines into the nearby

dielectric. This reduces the inter-electron distance, causes the electron wavefunctions to

overlap and makes it harder to observe strongly-correlated electron physics. In addition,

these high-ε semiconductors are often artificially grown in a cleanroom and often come with

impurities that destroy long-range order.

An ensemble of electrons on helium resides in the vacuum and the closest dielectric is

liquid helium, which has a low dielectric constant εHe = 1.056. Interactions between elec-

trons on helium are therefore almost purely Coulombic. The dominant corrections to the

Coulomb interaction do not come from the helium surface, but rather originate from conduct-

ing electrodes below the helium surface, which are needed to provide a trapping potential or

pressing field E⊥ for the ensemble. However, these corrections are small compared to those

in semiconductors, since electrons typically float far above the electrodes (approx. 1 µm).

Coulomb interactions are long-range and can give rise to long-range order. At sufficiently

low temperatures, electrons on helium arrange into a two-dimensional hexagonal lattice,

called a Wigner crystal or Wigner solid. Electrons on helium are one of the few physical

6



systems that exhibit this behavior, since the liquid helium substrate is atomically smooth

and free of defects that may destroy long-range order.

Analogously to freezing a liquid, a Wigner crystal forms if the potential energy (i.e. inter-

action energy) of an electron ensemble dominates the kinetic energy. The first measurements

performed by Grimes and Adams in 1979 [6], established that when the ratio of the potential

to kinetic energy

Γ =
U

Ekin
=

e2√πns
4πε0εHekBT

(1.12)

exceeds 137, the ensemble forms a Wigner solid. In Eq. (1.12) ns is the surface electron

density in m−2 and kB is Boltzmann’s constant. In contrast, for Γ < 137 the thermal en-

ergy kBT is large enough to introduce crystal defects and destroy long-range order, such

that the ensemble transitions into an electron fluid. These two different regimes are tradi-

tionally studied with capacitive transport measurements, where the Wigner crystal phase is

distinguished from the liquid phase by its lower conductivity [7–9].

The Wigner solid phase is an example of a strongly-correlated electron system, since the

interaction energy is over one hundred times larger than the kinetic energy. In this regime

the typical electron density ranges from ns = 109 m−2 to 1013 m−2, which corresponds

to a Wigner crystal lattice spacing of order r = (πns)
−1/2 ≈ 0.1 − 10 µm. Under these

conditions a Wigner crystal melts at a few hundred milliKelvin. The melting behavior of a

Wigner crystal and how this is affected by Wigner crystal confinement, applied voltage and

commensurability, are still active research topics in this field [9–13].

1.1.3 Properties of the liquid helium substrate

The Wigner solid phase is destroyed if long-range order is interrupted by substrate defects, so

we typically do not observe the Wigner solid phase in semiconductors, except in ultra clean

one-dimensional carbon nanotubes [14, 15]. In contrast to even the cleanest semiconductors,

liquid helium offers an atomically smooth interface that supports long-range order and the
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formation of a two-dimensional Wigner solid. There are a number of other important prop-

erties that make liquid helium a unique electronic substrate. In this section, we highlight the

superfluid properties from an experimentalist’s point of view and discuss possible alternative

electronic substrates to liquid 4He.

When gaseous 4He is cooled below Tλ = 2.1 K, it first condenses and then transforms

into a superfluid. In the two-fluid model of superfluidity, liquid helium consists of a normal

fluid and a superfluid. The normal fluid fraction decreases exponentially with temperature

and below 100 mK, the entire fluid can be thought of a superfluid, which has zero viscosity

and flows through microscopic holes inaccessible to the normal component, as long as the

velocity of superfluid flow does not exceed a critical value1. As a result, superfluid helium

leaks may spontaneously appear at low temperatures and cause inadvertent heating. Luckily

they can be prevented by properly sealing the liquid helium container with indium seals or

by using film burners [16].

The persistent flow of superfluid helium also causes superfluid film creep, a phenomenon

where a thin superfluid film seemingly defies gravity by creeping up the walls of its container.

The thickness of this film d depends on the height h measured from the superfluid-vacuum

interface

d =

(
αHe

mgh

)1
3

, (1.13)

where αHe is the van der Waals constant, and d typically amounts to 30 nm. In the experi-

ments presented in this thesis, we rely on the superfluid film creep to fill our micro-channels

with superfluid helium (section 4.1).

Liquid helium is host to a range of excitations, such as first, second and third sound,

rotons and ripplons. Electrons on helium are most affected by phonons (i.e. bulk density

waves) and ripplons (i.e. surface waves), which limit the mobility of surface electrons and

affect the coherence properties of the vertical Rydberg states [3, 4] and electron motional

states [17] (section 1.3.2).

1. This critical velocity is much like the critical current density for superconductors.
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Classicaly, ripplons can be thought of as capillary waves on the liquid helium surface,

similar to surface acoustic waves in piezo-electric substrates. However, unlike these Raleigh

waves ripplons follow an anomalous dispersion relation (ω 6= ck), which consists of two parts:

ω2
k =

σ

ρ

(
k2 + κ2

)
|k| tanh (|k|d) , (1.14)

where ωk/2π is the ripplon frequency, k is the wave vector, κ2 = ρ/σ
(
g + 3αHe/ρd

4
)

and

d is the liquid helium film thickness. The first part in Eq. (1.14) is the contribution of

capillary waves and becomes dominant for short wavelengths (large k), whereas the second

part describes the gravity waves with dispersion ωk ≈
√
g|k|. Ripplons are important to

electrons on helium because they distort electronic wavefuctions and cause energy relaxation

and dephasing of quantized electron-on-helium states.

Liquid helium is an excellent electron substrate but it is not the only cryogenic substrate

known to bind electrons. Solid hydrogen (εH2
= 1.28 [18]) and solid neon, which freeze

at 14.0 K and 24.5 K, respectively also bind electrons and are attractive, because they

can support much larger electron densities; unlike the liquid helium surface, a solid cannot

buckle under the electron pressure. In addition, these substrates are insensitive to external

vibrations. On the other hand, solid H2 or Ne crystallize in micron-sized domains such that

the free surface is not as smooth as that of liquid 4He. As a consequence, electrons on solid

substrates typically have lower mobilities than on liquid helium [7] and are not studied as

extensively.

1.1.4 Strongly correlated few-electron states

At low temperatures and electron densities below ns ∼ 1013 m−2 a large electron ensemble

on helium forms a Wigner crystal. Under approximately similar conditions, a small number

of trapped electrons also forms a strongly interacting state of matter, which resembles an

electron molecule rather than a crystal (Fig. 1.2). Accessing the interesting few-electron
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Figure 1.2: Electron molecule (Wigner molecule) configurations for 2, 3, 5, 8 and 11-electron
molecules in a harmonic electrostatic potential.

regime, where the molecule’s symmetry changes drastically upon adding or subtracting a

single electron, requires precise control over single electrons in an electrostatic trap.

Experimental control over single electrons on helium was established in the late 2000’s

in the experiments by Papageorgiou et al., who used a micron-sized pool with a concentric

guard electrode to trap only a few electrons [19, 20]. With the detection of Wigner molecules

in a similar quantum dot, Rousseau et al. introduced electron-on-helium dots as a platform

for strongly correlated electron-on-helium physics [21]. Below, we briefly discuss the defining

properties of Wigner molecules and the conditions for which they appear.

Wigner molecules

Wigner molecules are strongly correlated electron states that form if a small number of elec-

trons are trapped in an electrostatic potential, while they are subject to weak confinement

and low temperatures. They are easily distinguished from few-electron states in semicon-

ductors, where the electron wavefunctions overlap and form a more homogeneous charge

distribution inside the dot. The charge distribution of a Wigner molecule peaks sharply

around the classical electron positions and the symmetry of a Wigner molecule changes

drastically with the number of electrons N and shape of the confinement potential.

Before describing the formation of Wigner molecules, it is instructive to solve for the

quantum mechanical wavefunction of the simplest Wigner molecule, which consists of two

electrons in a harmonic potential. These wavefunctions will show characteristic Wigner

molecule features, and the relevant parameters for Wigner molecule melting become appar-

ent.
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Two electrons in a one-dimensional trap

Schrödinger’s equation for two electrons in a one-dimensional harmonic well eV (x) = 1
2meω

2
trapx

2

is given by

[
~2

2me

(
∂2

∂x2
1

+
∂2

∂x2
2

)
+

e2

4πε0

1

|x1 − x2|
+

1

2
meω

2
trap(x2

1 + x2
2)

]
Ψ(x1, x2) = EΨ(x1, x2)

(1.15)

where x1 and x2 are the position of the two electrons. To solve this equation, we may

transform to a common coordinate xc = x1 +x2 and a differential coordinate xd = x1−x2.

[
~2

me

(
∂2

∂x2
c

+
∂2

∂x2
d

)
+

e2

4πε0

1

|xd|
+

1

4
meω

2
trap(x2

c + x2
d)

]
Ψ(xc, xd) = EΨ(xc, xd) (1.16)

In this form Eq. (1.16) becomes separable2 if we let Ψ(xc, xd) = ψ(xc)φ(xd). This leaves

two equations for ψ(xc) and φ(xd):

− ~2

me

ψ′′

ψ
+

1

4
meω

2
trapx

2
c = λ1 (1.17)

− ~2

me

φ′′

φ
+

e2

4πε0|xd|
+

1

4
meω

2
trapx

2
d = λ2, (1.18)

where λ1,2 are the eigenenergies corresponding to the common and differential motion, re-

spectively. Eqs. (1.17) and (1.18) can be solved numerically by discretizing xc,d and solving

the corresponding system of equations in matrix form. The eigenmodes ψ(xc) are shown in

Fig. 1.3, represent common-mode electron motion and closely resemble Hermite polynomi-

als. The eigenmodes φ(xd) are more interesting and indicate that the average separation

2. This transformation is not specific to the Coulomb interaction but works for any interaction that only
depends on the distance between the two electrons. For anharmonic potentials V (x), this transformation
breaks down, unless the V (x1) + V (x2) = f(xc) + g(xd) separates into two separate functions of xc and xd.
For example, adding an x4 term to V (x) does not result in a separable equation.
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between the electrons is sharply peaked around the classical position (see Fig. 1.2)

r2 =

(
e2

2πε0meω2
trap

)1
3

. (1.19)

Since the extent of the wavefunction l0 is much smaller than the electron separation r2, the

overlap between individual electron wavefunctions is negligible, which is a direct result of

the strong Coulomb interaction. The sharply peaked, non-overlapping wavefunctions are

characteristic features also seen in larger Wigner molecules.
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Figure 1.3: (a) Two types of motion for two electrons trapped in a harmonic electrostatic
potential with trap frequency ωtrap/2π = 10 GHz. (b) The wavefunctions for common
motion ψ(xc) are centered around xc = x1 + x2 = 0, meaning x1 = −x2 and the spectrum
is equally spaced with frequency ωc = ωtrap. The potential energy V (xc) = 1

2meω
2
trapx

2
c is

shown as a solid black line. (c) Same as in (b) for the relative (differential) electron motion
xd = x1 − x2. The potential energy eV (xd) is shown in log-scale to show the divergence
of the Coulomb interaction at xd = 0 and the minimum of the potential at xd ≈ 0.5 µm.
The two electrons are separated by r2 ≈ 0.5 µm for ωtrap/2π = 10 GHz. The size of the

wavefunction is given by l0 =
√

~/(meωtrap). The frequency ωd/2π = 17 GHz is larger than
the common mode frequency ωc = ωtrap, since the Coulomb interaction stiffens the spring
constant.

Phase diagram of Wigner molecules

Eq. (1.19) suggests that the electron separation varies with confinement via ωtrap. For

very large ωtrap the electron separation is so small that wavefunctions will start to over-

lap, which initiates Wigner molecule melting. In addition, finite temperature broadens the
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eigenfunctions φ(xd) and may also melt Wigner molecules.

The concept of Wigner molecule melting due to confinement and finite temperature, for

arbitrary number of electrons N , is more generally parametrized by the two variables

Γ =
Ec
kBT

=
e2

4πε0r0kBT
(1.20)

n̄ =
√

2

(
l0
r0

)2

, (1.21)

where l0 =
√

~/meωtrap is the spatial extent of the electron wavefunction and r0 ≈ r2 is

the average electron separation. A Wigner molecule phase diagram, which can be found

in Refs. [21, 22], shows that for low n̄ . 1/
√

37 and large Γ > 137 (i.e. low T ) electrons

arrange into Wigner molecules. This is consistent with previous statements, since n̄ is a

measure of wavefunction overlap and 1/Γ a measure of temperature. It should be noted

that the melting transition is broad, occurs in two stages [22], and the melting temperature

of a Wigner molecule depends strongly on the number of electrons N and the shape of the

potential V (x), if it is not harmonic. We can estimate however, that for a harmonic potential

with ωtrap/2π = 6.5 GHz, Wigner molecules are expected to form when T . 0.2 K.

The established method of detecting Wigner molecules is through the unequal spacing

in the addition spectrum of an electron-on-helium dot. The addition spectrum is usually

measured by varying the dot’s trap depth while monitoring changes in occupation of the dot.

While the unequal step size signals the presence of Wigner molecules it is not a sensitive

probe for the internal charge distribution of Wigner molecules. The coherent motion of these

molecules parallel to the helium surface can serve as an additional, more sensitive probe of

the internal structure of Wigner molecules. However to date, the common and differential

motion of Wigner molecules have never been observed due to a lack of a microwave interface.

By designing an electron trap in the microwave range (ωtrap/2π ≈ 0 − 10 GHz) and by

integrating it with a microwave resonator, measurement of the electron motion becomes

feasible. This could shed light on the two-stage melting process and could lead to a qubit

13



based on the orbital state of an electron on helium [17].

1.1.5 Electrons on helium as quantum bits

A single electron floating in vacuum is far away from substrate impurities and voltage

noise from electrodes, making it a well-isolated quantum system and therefore, a poten-

tially promising building block for a solid-state quantum computer. Using any quantum

system as a resource for quantum computation requires two clearly defined states, which are

long-lived and can be manipulated to perform single qubit gates for quantum algorithms [23].

Quantum algorithms make use of superposition and entanglement to solve a special subset

of problems more efficiently than classical computers [24]. It is important that the quan-

tum states do not decay or loose their phase information during a computation. Therefore,

quantum bits (qubits) are often ranked by their T1 (decay) and T2 (dephasing) coherence

times. Electrons on helium possess three degrees of freedom that have been studied for their

potential as qubits: the vertical degree of freedom, the electron spin and the orbital (lateral)

motion (Fig. 1.4).
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Figure 1.4: One electron on helium, three different qubits. For each type of qubit, the
ground state and excited state are shown in blue and orange, respectively. (a) Electron-on-
helium qubit composed of the vertical ground state |0〉 and first excited state |1〉. In the first
excited state, the expected electron position is approx. 46 nm above the helium surface. (b)
Electron-on-helium spin qubit. The splitting between the qubit states tunes with the applied
B field. (c) The electron motional state forms a qubit when an electron is confined in an
anharmonic electrostatic trap. The qubit frequency ωe is set by the trap (gray) curvature.

The vertical ground and excited state are natural candidates for a quantum bit due to the
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anharmonic hydrogenic excitation spectrum, given by Eq. (1.7). The transition energy of

such a qubit is 119 GHz and tunes with voltage via a Stark shift. The lifetime of the vertical

excited state is limited by coupling to ripplons on the liquid helium surface. Fortunately,

this coupling is small, resulting in a rather long T2 ≈ 10−4 s [3]. Even though this vertical

qubit was proposed over two decades ago, little progress has been made due to the lack of

experimental technology in this frequency range.

The electron spin is another straightforward qubit candidate, since its spectrum splits

into two distinct eigenstates (ms = ±1
2) in the presence of a magnetic field, labeled as | ↑〉

and | ↓〉. The energy difference between these states is given by the Zeeman energy and can

thus be tuned with the static magnetic field B:

~ωs = E↑ − E↓ = gµBB, (1.22)

where µB = e~/2me is the Bohr magneton and g = 2.0023 . . . is the Landé g-factor for

electrons. For an applied field of B = 0.2 T, the qubit transition frequency is ωs/2π ≈ 5 GHz,

which allows for qubit manipulation with conventional microwave equipment. The electron

spin is unique, since it is extremely well isolated: its dominant dephasing mechanism is due

to Johnson noise in trap electrodes which only limits dephasing to T2 ≈ 1.5 s [25].

Because the electron spin is so isolated, signals from single spins are hard to detect. One

way to detect such small signals is by imprinting the signatures of the target spin onto an

auxilary spin. However, achieving a reasonable spin-spin interaction rate requires very small

inter-electron distances, which is only possible on very thin helium films. This is technically

challenging, since any roughness in the trapping electrodes could result in unwanted electron

traps. Instead of using an auxilary electron for spin manipulation and detection, one can also

use the electron orbital state in conjunction with a magnetic field gradient, which is discussed

in more detail in section 6.2. To date, no one has performed electron spin resonance with

electrons on helium, so observing a coherent signal of a single electron spin on helium would
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be a monumental result.

Analogously to the mechanical motion of a trapped ion, the lateral motion of a trapped

electron in an anharmonic potential also constitutes a qubit (Fig. 1.4c) [17]. In this case, the

qubit consists of the ground and first excited state of the electron motion in an electrostatic

trap. This electrostatic trap is formed by submersed electrodes and is naturally anharmonic,

such that the first excited state can be addressed without exciting higher motional states.

The qubit frequency depends on the trap curvature, varies with voltage and is nominally in

the GHz regime, allowing for integration with planar on-chip microwave resonators for fast

manipulation and read-out of electron motion [17]. This thesis deals with the experimental

implementation of such a qubit using circuit quantum electrodynamics, the field of physics

that studies light-matter interactions using microwave photons.

1.2 Introduction to circuit quantum electrodynamics

1.2.1 The Jaynes-Cummings Hamiltonian

Cavity quantum electrodynamics (cavity QED) uses photons confined in optical cavities to

study atoms (or other particles), which can couple to the electric field of photons inside the

cavity. Under these conditions, the quantum nature of photons as well as the atoms becomes

important and experimentally accessible. This has sparked a huge advancement in the fields

of quantum optics, quantum information processing and the understanding of fundamental

quantum physics.

Circuit quantum electrodynamics (circuit QED) was developed as a variant of cavity

QED [26], and studies the interaction between photons and matter at microwave frequencies

(Fig. 1.5). Instead of optical cavities, microwave photons can be confined in superconducting

microwave resonators. These photons are much less energetic than their optical counterparts,

but can be confined in a much smaller volume than an optical photon, resulting in an

increased coherent interaction rate with “atoms”.
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Figure 1.5: A cavity (circuit) QED system consists of an atom embedded in an optical
(microwave) cavity. The intracavity field (denoted by a) leaks out at a rate κc + κint, where
κc is the mirror transparency and κint encompasses photon absorption or photon emission
into modes not captured by the detector. The intracavity field couples to the two-level
system at a rate g, which in turn decays to the environment at rate γ.

Circuit QED is extremely versatile, since the microwave resonators used to confine the

photons can be lithographically defined and the “atom” can be replaced by any two-level

system that couples to light via a dipole coupling. This has enabled quantum computing and

quantum optics experiments with electron spins in quantum dots [27–29], defect centers in

solids [30, 31], electrons on helium [32], and many more exotic systems. However, circuit QED

is probably most well known for its impact in the development of a superconducting quantum

computer with the transmon qubit. A transmon qubit is a lithographically defined artificial

atom which features a strong atom-photon coupling and a long coherence time. Currently,

it has been adopted as one of the most promising systems for quantum computation.

No matter the type of “atom”, in its simplest form each circuit QED system is described

by the Jaynes-Cummings Hamiltonian, which consists of three parts:

HJC = ~ω0

(
a†a+

1

2

)
+

~ωe
2
σz +Hint. (1.23)

The first part describes the microwave cavity with resonance frequency ω0 and photon low-

ering operator a, the second part describes the two-level system with transition frequency ωe

and the last part describes the interaction between the cavity field and the two-level system.

This interaction arises from the dipole energy Hint = −d ·E, where d is the electrical dipole

moment and E is the microwave electric field at the location of the atom. The electric field
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of single mode cavity scales with (a + a†), which can be derived from second quantization

of the harmonic oscillator [33]. In addition, d scales with the atomic raising and lowering

operators (σ− + σ+), resulting in

Hint = ~g
(
a+ a†

)
(σ− + σ+) , (1.24)

where we have grouped the prefactors into the coherent interaction rate g. We will see how

to work out the coupling strength to electrons on helium in Section 1.3.1.

In the interaction picture the operators a(t) = a(0)e−iω0t and a†(t) = a†(0)eiω0t rotate

rapidly at frequency ω0, and σ±(t) = σ±(t)e±iωet rotate at frequency ωe. Therefore,

Hint = ~g
(
aσ−e−i(ω0+ωe)t + aσ+e

i(ω0−ωe)t + a†σ−e−i(ω0−ωe)t + a†σ+e
i(ω0+ωe)t

)
(1.25)

It is clear that in the so-called interaction picture the aσ− and a†σ+ terms oscillate much

faster than the other two terms. Since any dynamics in these terms averages out on the

relevant timescale 1/(ω0−ωe), we may safely drop these terms, which leaves a†σ− and aσ+.

These terms describe the conversion of a cavity photon to an excitation of the two-level

system and vice versa. Transforming back gives us the more familiar form of the Jaynes-

Cummings Hamiltonian under the rotating wave approximation

HJC = ~ω0a
†a+

~ωe
2
σz + ~g

(
a†σ− + aσ+

)
. (1.26)

Since the a†σ−+aσ+ term in Hint can cause transitions between the atom ground-excited

states while emitting or absorbing a single cavity photon, it makes sense to express HJC in

the basis {|g, n+ 1〉, |e, n〉}, which yields

HJC =

(
a†a+

1

2

)
~ω0 + ~

 −∆
2 g

√
n+ 1

g
√
n+ 1 ∆

2

 (1.27)

18



Atom in |g›
(uncoupled)

Atom in |e›
(uncoupled)

ω0

|0›

|1›

|2›

|3›

|0›

|1›

|2›

|3›

2g

2√2 g

ωe = ω0

ω0

Coupled
(∆ = 0)

2√3 g

ω0

|-,0›
|+,0›

|+,1›
|-,1›

|-,2›

|+,2›
C

av
ity

 p
ho

to
n 

st
at

e
a b

Atom in |g›
(uncoupled)

Atom in |e›
(uncoupled)

ω0

|0›

|1›

|2›

|3›

|0›

|1›

|2›

Coupled
(∆ >> g)

C
av

ity
 p

ho
to

n 
st

at
e

ω0

ω0 + g2/∆

ω0 - g2/∆

ωe

ω0

ω0

|4›

|-,0›
|+,0›|-,1›

|-,2›

|-,3›
|+,2›

|+,1›

Figure 1.6: Spectrum of the Jaynes-Cummings Hamiltonian in two regimes. (a) In the
resonant regime (∆ = 0), the atom and cavity states fully hybridize to the dressed states
|±, n〉, which are pairwise split by 2g

√
n+ 1. (b) In the dispersive regime, where the atom

stays far detuned from the cavity, the effect is a state-dependent cavity frequency shift. If
the atom is in the ground (excited) state, the cavity frequency shift is pulled down (pushed
up) by g2/∆. This feature forms the basis of non-destructive atom-state detection.

where ∆ = ω0−ωe is the cavity-atom detuning. In this form it is straightforward to calculate

the eigenenergies for arbitrary g,∆

E±n =

(
n+

1

2

)
~ω0 ±

1

2

√
∆2 + (2g

√
n+ 1)2 (1.28)

The dynamics hidden inside HJC depends sensitively on the energy scales of ω0, ωe and

g. Therefore, before calculating the eigenstates, we distinguish two regimes based on the

cavity-atom detuning ∆ = ω0− ωe. For ∆ = 0 the energy to excite the atom is equal to the

energy of a cavity photon, which causes the atom and cavity to fully hybridize as shown in

Fig. 1.6a. On the other hand, for ∆� g the eigenstates and eigenenergies are only weakly

modified, which is schematically depicted in Fig. 1.6b. We will now briefly highlight the

main aspects of both regimes.
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1.2.2 Resonant regime (∆ = 0)

In the resonant case, the dressed states |±, n〉 correspond to coherent mixtures of cavity and

photon states. As a result, an excitation in a dressed state spends an equal amount of time

as a cavity photon and as atom excitation:

|+, n〉 =
1√
2

(|g, n+ 1〉+ |e, n〉) (1.29)

|−, n〉 =
1√
2

(|g, n+ 1〉 − |e, n〉) (1.30)

Setting ∆ = 0 in Eq. (1.28) gives us a simple spectrum corresponding to these eigenstates

E±n =

(
n+

1

2

)
~ω0 ± ~g

√
n+ 1. (1.31)

The |+, n〉 and |−, n〉 states are separated in frequency by 2g
√
n+ 1, where Ω0 = 2g is

sometimes called the vacuum Rabi rate, because it is the rate at which energy is exchanged

between an atom and a cavity populated with n = 0 photons. For an experimentalist, the

splitting of the cavity peak in two distinguishable peaks separated by 2g
√
n+ 1 is a hallmark

of the Jaynes-Cummings Hamiltonian and provides a way to measure the coupling g.

1.2.3 Dispersive regime (∆� g)

In the dispersive regime the atom remains far detuned from the cavity, but still makes its im-

print on cavity photons. Using perturbation theory one can show that HJC is approximated

by

Hdisp = ~
(
a†a+

1

2

)(
ω0 +

g2

∆
σz

)
+

~ωe
2
σz. (1.32)
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The spectrum of this Hamiltonian shows that the cavity is weakly perturbed by the atom,

changing the cavity frequency by g2/∆ based on the state of the atom:

E+
n = n~

(
ω0 +

g2

∆

)
+
ωe
2

(1.33)

E−n = (n+ 1)~
(
ω0 −

g2

∆

)
− ωe

2
(1.34)

E+
n and E−n are associated with an atom mostly in the excited and ground state, respectively.

This can also be seen from the associated eigenstates, which are again only weakly perturbed

from the uncoupled eigenstates |g, n+ 1〉 and |e, n〉

|+, n〉 =
g
√
n+ 1

∆
|g, n+ 1〉+ |e, n〉 (1.35)

|−, n〉 = |g, n+ 1〉 − g
√
n+ 1

∆
|e, n〉 (1.36)

The fact that |±, n〉 are eigenstates of Hdisp can be used to perform non-destructive atom

read-out via the cavity. This is referred to as quantum non-demolition (QND) read-out and

is widely used in today’s version of the superconducting quantum computer.

1.2.4 Coupling to the environment: impact of decoherence

The physics we have discussed above is valid in the absence of a coupling to the environment,

which one inevitably needs to transfer signals from the cavity to the measurement apparatus.

If done improperly, unintended couplings to the environment can lead to decoherence and

obscure the coherent effects. Common sources of decoherence in circuit QED can be split up

two ways: those related to the microwave cavity and those related to the atom. The former

are captured by the cavity decay rate κtot = κc+κi, which includes the effects of transparent

input and output couplers (κc) and coupling to other microwave modes and absorption (κi).

The atom’s decoherence rate is γ = γ1
2 + γϕ, which captures energy relaxation γ1 and

dephasing γϕ.
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The decoherence rate of the cavity and atom ought to be compared to the coherent

interaction rate g. If g � γ, κtot the coupling rate dominates all loss rates in the system

and coherent interactions involving single photons are observable3. In this strong coupling

regime the characteristic dressed state splitting for ∆ = 0 is still intact. In contrast, if

either κtot or γ exceeds g, coherent quantum effects are washed out quickly, including the

dressed state splitting. The success of circuit QED with the superconducting transmon qubit

has been propelled by extremely large coupling strengths g/2π > 100 MHz, combined with

advancements in materials science that have pushed κi and γ to values below 10 kHz. In the

next section we explore the potential of electrons on helium for integration with circuit QED

and in particular, we discuss potential sources of decoherence that may prevent operation in

the strong coupling regime.

1.3 Circuit quantum electrodynamics with the motional state of

an electron on helium

A single electron can couple strongly to a single microwave photon, since the electron mo-

tional state has a small coupling to the helium substrate [4, 17] while we expect a relatively

large coherent coupling g, due to a concentrated electric field mode and the large zero-point

motion of a trapped electron. In this section we calculate the expected coupling strength

and decoherence of a single electron on helium coupled to a microwave resonator.

1.3.1 Coupling to the lateral motion of a single electron on helium

A single electron on helium couples to a microwave resonator via the microwave electric field

E. In the simplified LC-resonator shown in Fig. 1.7 all the electric field is concentrated

in between the capacitor plates, and oscillates with frequency ω0 = 1/
√
LC. The electron

3. For any circuit QED system one can write down the cooperativity C to quantify the ratio of γ, κtot to
g. For C = g2/(κtotγ) � 1, the system is usually in the strong coupling regime, whereas C < 1 represents
an overdamped system.
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Figure 1.7: Schematic of the coupling mechanism of a single electron on helium to an LC
microwave resonator. The microwave electric field E interacts with the oscillating electron
represented by an electrical dipole (red). In the absence of a driving field, which can be
applied through the coupling capacitor Cin, the electron wavefunction has an extent (zero-
point motion) of yzpf .

couples to the resonator, since it experiences a force F(t) = −eEeiω0t, which drives an

electron oscillation at frequency ω0. We can also understand the origin of the electron-

photon coupling from the viewpoint of the electron. In the absence of an electric driving

field, the electron still fluctuates with amplitude yzpf , which changes the induced charge on

the capacitor plates as the electron moves towards and away from the capacitor plates. This

induced charge generates photons at the electron frequency ωe.

To understand why the electron-photon coupling can be large even for a single electron

on helium, we write the interaction energy as

Hint = ~g = −d · E = eyzpfEyVzpf . (1.37)

where d = −eyzpf ŷ is the dipole moment, yzpf =
√

~/2meωe ≈ 30 nm is the zero point

motion of the electron in the ŷ-direction, Ey is the electric field in the y-direction generated

by 1 V potential difference across the capacitor and finally Vzpf is the amplitude of vacuum

fluctuations across the capacitor. We see from Eq. (1.37) that g can be large, since the zero-

point motion yzpf is large due to the small electron mass me, and the electric field strength

can be very concentrated in two-dimensional resonator geometries: Ey ≈ 1/d ≈ 106 V/m.

To estimate g, we determine Vzpf in Eq. (1.37) from the fact that on resonance half of
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the cavity’s zero point energy (~ω0/2) is stored in the capacitor, such that

1

4
~ω0 =

1

2

1

T

∫ T

0
dt cos2(ω0t)

∫
d3rεE2(r) =

1

4
CV 2

zpf =
1

2
CV 2

rms. (1.38)

This can be further simplified using the relations ω0 =
√

1/LC and Z =
√
L/C, such that

Eq. (1.38) yields Vrms = ω0

√
~Z/2. Therefore, the resonator impedance is an additional

variable to enhance the coupling strength; by designing the resonator with a large inductance

and small capacitance, one can achieve a larger coupling strength for the same resonance

frequency. Plugging this in Eq. (1.37) gives

g/2π =
1

2
eEyf0

√
Z

meωe
. (1.39)

For typical values of Ey ≈ 106 V/m, Z ≈ 50 Ω and f0 = 6 GHz we find g/2π ≈ 18 MHz,

which can be enhanced even further with a high-impedance resonator design [29, 34, 35].

1.3.2 Sources of decoherence for an electron-on-helium qubit

Microwave emission and absorption in two-dimensional microwave cavities has been studied

extensively to the point where microwave cavities can routinely achieve internal quality

factors Qi = ω0/κi over one million. Therefore, the total cavity loss rate κtot ≈ κc ≈

2π× 1 MHz is set by the designed transparency of the output mirror (i.e. Cout in Fig. 1.7).

The requirement g > κtot is therefore easily satisfied for circuit QED with an electron on

helium. To satisfy the other condition for strong coupling (g > γ), we identify and quantify

decoherence channels for a single electron on helium.

The dominant decay processes of an electron-on-helium orbital state are due to emission

of ripplons on the surface of liquid helium and phonons inside the bulk liquid helium, as

depicted in Fig. 1.8. The matrix elements that describe these processes for the vertical

states are well-documented in Ref. [4], and form a good starting point for calculating similar
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Figure 1.8: (a) Two decay processes of the electron-on-helium orbital state. En electron in its
excitated orbital state can decay via phonons or ripplons. The dominant phonon and ripplon
decay processes are sketched in red and yellow, respectively. The dominant ripplon process
is one where two ripplons with nearly opposite momentum each carry half the excitation of
the motion ~ωe. The dominant phonon process occurs due to modulation of the dielectric
constant inside the helium. A phonon with total wavenumber Q and energy ~ωQ is emitted
nearly perpendicular to the surface. (b) Summary of decay γ1/2 (solid lines) and dephasing
γϕ (dashed lines) processes due to phonons (red) and ripplons (blue) as function of the
electron orbital frequency ωe/2π. Taken from Ref. [17].

rates for the motional state4 We summarize the results of these calculations [17] below and

in Fig. 1.8b.

Decay via ripplons

A single electron couples to helium surface waves (ripplons), since a curved surface (i) deforms

the wavefunction of the vertical state (the vertical wavefunctions must remain zero at the

helium interface) and (ii) changes the polarization energy [4]. A single ripplon can only

interact with an electron if its wavelength 2π/q is approximately the electron localization

length ax = (~/meωe)
1/2. For longer wavelengths q � a−1

x , the matrix element in Fermi’s

4. Most of the assumptions made in Ref. [4] still hold, but instead of calculating transitions between
different vertical states, we assume that the electron remains in the vertical ground state. For example,
the matrix element 〈1z|Vq|2z〉 becomes 〈1z|Vq|1z〉, where |1z〉 represents the vertical ground state labeled as
χ1(z) in Fig. 1.1.
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golden rule decays exponentially with q ax,y:

Γ
(1r)
1 ∝

∑
q

|〈0|eiq·r|1〉|2 ∝ e−(q2a2
x+q2a2

y). (1.40)

For an electron-on-helium with ωe/2π ≈ 5 GHz, the ripplon wavenumber q ≈ 10a−1
x , so

decay via single ripplons does not play a significant role.

The dominant ripplon process emits two ripplons with nearly equal but opposite momenta

q1 ≈ −q2 (see Fig. 1.8a), which follows from the first term in Fermi’s golden rule

Γ
(2r)
1 =

2π

~
∑
q1,q2

|〈0|ξq1ξq2e
i(q1+q2)·r|1〉|2︸ ︷︷ ︸

Two-ripplon emission

〈1z|Vq1,q2 |1z〉|
2︸ ︷︷ ︸

Coupling matrix element

(1.41)

δ(~ωe − ~ωq1 − ~ωq2)︸ ︷︷ ︸
Energy conservation

(
1 + n̄(ωq1) + n̄(ωq2)

)︸ ︷︷ ︸
Thermal ripplon density of states

From similar arguments as in Eq. (1.40), this term peaks sharply around q1 + q2 ≈ 0, such

that two ripplons must be emitted in opposite directions and each carry ~ωq1 = ~ωq2 = ωe/2

of energy. The other terms in Γ
(2r)
1 represent energy conservation and reflect the density of

states at ripplon frequency ωq1,2 . After evaluating the integrals the decay rate amounts to

Γ
(2r)
1 = 4.5× 102 Hz at ωe/2π = 5 GHz.

Decay via phonons

An excitation of the orbital state can decay into a phonon inside the helium, either via

the electron’s coupling to surface deformations or via the modulation of the image charge.

The former process involves similar coupling terms as single ripplon decay, and evaluates to

approximately Γ
(ph,s)
1 = 1.8 kHz. The modulation of the image charge causes a modulation

of the helium density ρ and in turn causes a modulation of the dielectric constant δεHe ≈

(εHe − 1)δρ/ρ. Even though εHe = 1.056 is small, this process has the dominant phonon

decay rate.
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Phonons travel relatively slowly in liquid helium, with a speed of c = 2.4 × 102 m/s.

Therefore, the phonon wavenumber Q = ωe/c is almost ten times larger than the in-plane

momentum q ≈ a−1
x , which follows from momentum conservation. However, unlike ripplons

phonons are not constrained to the surface. Therefore, phonons are emitted almost perpen-

dicular to the surface as shown by the yellow arrow in Fig. 1.8a. The decay rate is given

by

Γ
(ph,m)
1 =

2π

~
∑
Q

|〈0|φQeiq·r|1〉|2︸ ︷︷ ︸
Single phonon emission

|VQ|2 δ(~ωe − ~ωQ)︸ ︷︷ ︸
Energy conservation

, (1.42)

where VQ is the expectation value of the electron-phonon coupling for the vertical ground

state |1z〉 and φQ = (~c/ρV Q)1/2 is the phonon zero-point amplitude. This rate exceeds the

contribution from phonon-induced surface displacement and evaluates to Γ
(ph,m)
1 = 2.7 ×

104 Hz at ωe/2π = 5 GHz.

Electron dephasing

The electron dephases due to any process that changes the orbital frequency ωe, but Ref.

[17] predicts voltage noise on the bias electrodes as the main source of dephasing. The orbital

frequency tunes with voltage according to ωe ∝
√
V , such that small changes in V cause a

frequency shift

∆ω = −ωe
∆V

2V
. (1.43)

Johnson noise, with spectral density SV = 〈∆V 2〉/∆f = kBTRe(Z), is very small at T =

20 mK and results in a negligible contribution to the linewidth:

Γ
(J)
ϕ =

(
∂ωe
∂V

)2

SV =
ω2kBTRe(Z)

4V 2
e

< 90 Hz (1.44)

Besides Johnson noise, 1/f -noise is another common noise source, originating from trapped

charge carriers inside the substrate, for example. It can be estimated from typical values

27



measured in other experiments (Sq(1Hz) ≈ 10−4 e/
√

Hz) [17, 36] and leads to an estimated

linewidth of Γ
(1/f)
ϕ = 8× 103 Hz.

Summary

The total expected decay rate for an electron on helium γ1 ≈ Γ
(2r)
1 + Γ

(ph,s)
1 + Γ

(ph,m)
1 is

dominated by the phonon contribution Γ
(ph,m)
1 (see Fig. 1.8b), and much smaller than the

value of g/2π = 18 MHz we calculated in Section 1.3.1. The theoretical dephasing rate

γϕ ≈ Γ
(1/f)
ϕ seems limited by 1/f -noise. From these estimates, we can conclude that circuit

QED with electrons on helium in the strong coupling regime is possible.

1.3.3 Cavity input-output theory for a single electron on helium

We have already seen that in the resonant strong coupling regime, the spectrum of a cavity

coupled to an electron splits into dressed states separated by 2g
√
n+ 1. Experimentally,

we reach the resonant regime by adjusting the electron frequency ωe while monitoring the

transmission through a two-sided microwave cavity. If we understand the cavity response

for various ωe, we may be able to deduce important parameters such as g, κtot and γ, even

in the weak coupling regime. The input-output formalism of quantum optics [37] provides

a powerful description of a cavity subject to a drive tone. Below, we follow the approach of

Refs. [38, 39] and show how we deduce circuit QED parameters from the spectrum of the

cavity output field.

The Hamiltonian of a resonator coupled to a two-level system, in the frame rotating with

a drive tone at frequency ωd is

Hd/~ = (ω0 − ωd)a†a+ (ωe − ωd)
σz
2

+ g(σ−a† + σ+a) + ε(a+ a†), (1.45)

where ω0 is the cavity frequency, ωe is the electron frequency, σ+,− are the electron raising

and lowering operators and ε is the drive strength expressed in units of s−1. The unitary
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dynamics of the cavity photons and trapped electron is governed by the Heisenberg equations

for a and σ−, respectively. For the operator a, this equation yields

ȧ =
i

~
[Hd, a] = i(ω0 − ωd)[a†a, a] + i (gσ− + ε) [a†, a]. (1.46)

Using the bosonic commutation relations [a, a†] = 1, we find [a†a, a] = −a, such that

ȧ = −i(ω0 − ωd)a+−i (gσ− + ε) = −i∆cda− igσ− − iε, (1.47)

where ∆cd = ω0 − ωd is the cavity-drive detuning. We can now follow the same procedure

for the electron lowering operator σ−:

σ̇− =
i

2
(ωe − ωd)[σz, σ−] + ig[σ+, σ−]a, (1.48)

where we must use the proper commutators for the Pauli matrices [σz, σ−] = −2σ− and

[σ+, σ−] = i
2 [σy, σx] = σz. With the electron-drive detuning defined as ∆ = ωe − ωd the

equation of motion for σ− reads

σ̇− = i∆σ− + igσza. (1.49)

We can now add dissipation to both the cavity and electron. Loss from the cavity happens at

rate κtot = κ1 + κ2 + κint, where κ1 and κ2 represent leakage through the imperfect mirrors

of the cavity, and κint covers microwave absorption inside the cavity. Additionally, we may

add electron loss using the term −γσ−, such that Eqs. (1.47) and (1.49) become

ȧ = −
(κtot

2
+ i∆cd

)
a− igσ− − iε (1.50)

σ̇− = − (γ + i∆)σ− + igσza (1.51)

An experimentalist can only observe expectation values of operators, and let us for now
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neglect fast transients in these expectation values. The steady-state equations for the cavity

field 〈a〉 and electron lowering operator 〈σ−〉 are

(κtot

2
+ i∆cd

)
〈a〉 − ig〈σ−〉 − iε = 0 (1.52)

− (γ + i∆) 〈σ−〉+ ig〈σza〉 = 0 (1.53)

These equations are mostly linear, except for the correlator 〈σza〉. For a classical drive with

many photons (〈a〉 � 1), quantum correlations between photon and electron can be safely

ignored [39] such that we can approximate this correlator as 〈σza〉 ≈ 〈σz〉〈a〉. Solving for

the intra-cavity field 〈a〉 gives

〈a(ωd)〉 =
−iε

i∆cd + κtot/2− g2〈σz〉/ (γ + i∆)
(1.54)

a

|0›

|1›
ωe gγ

ᴋ2

κint

ain,1 aout,2

ain,2aout,1

ᴋ1

Figure 1.9: Input-output theory for a cavity coupled to a single electron. Schematic of the
cavity with inputs ain,1, ain,2 and output fields aout,1 and aout,2. The intra-cavity field is
denoted with a and depends on the state of the electron and the input and output fields.

Eq. (1.54) gives a description of the field amplitude inside the cavity with a coherent

microwave drive ε, which can be used to calculate the number of intra-cavity photons nph,

for example. However, the only way to probe the intra-cavity field is via reflection or trans-

mission of external probe fields. Using input-output theory we define an expression for the

transmission through a two-sided cavity (schematically depicted in Fig. 1.9):

S21(ωd) =
aout,2(ωd)

ain,1(ωd)
, (1.55)
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where aout,2(ωd) is the field amplitude at port 2 (output) of the cavity and ain,1(ωd) is the

input field amplitude at port 1 of the cavity. Input-output theory gives us the relations

between the input, output and the intra-cavity field at both ports

aout,2(ωd) =
√
κ2〈a(ωd)〉 (1.56)

ain,1(ωd) + aout,1(ωd) =
√
κ1〈a(ωd)〉, (1.57)

which are valid in the absence of a cavity drive at port 2 (ain,2(ωd) = 0). Finally, using

ε = i
√
κ1ain,1(ωd), we arrive at the expression for the transmission through the cavity:

S21 =

√
κ1κ2

i(ω0 − ωd) + κtot/2 + ig2〈σz〉/ (∆− iγ)
=

√
κ1κ2

i(ω0 − ωd) + κtot/2 + iχ(ωe)
. (1.58)

χ(ωe) is known as the susceptibility and describes the electron interaction with the resonator,

through the coupling strength g and linewidth γ. The top row of Fig. 1.10 depicts three

cavity transmission spectra as function of the electron frequency fe = ωe/2π, and shows that

if the electron is far off-resonant χ(ωe) = 0, and the transmission reduces to the familiar

Lorentzian cavity response

|S21|2 =
κ1κ2

(ω0 − ωd)2 + (κtot/2)2
. (1.59)

If the electron is resonant with the cavity (fe = f0), the transmission depends strongly on

the coupling strength and electron linewidth. In the strong coupling regime, g > γ, κtot, the

transmission |S21| shows two peaks separated by twice the coupling strength, as expected

from section 1.2.2. In the opposite case, γ > g, κtot, the electron still changes the transmis-

sion spectrum significantly, as shown by the Lorentzian of reduced peak amplitude, but the

characteristic double peak splitting has disappeared.

The double peak splitting shown in Fig. 1.10 is a tell-tale sign of strong electron-photon

coupling, and it has been used to claim strong coupling of photons to transmon qubits [40],
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Figure 1.10: Simulated resonator transmission spectra as function of the electron frequency
for different cavity QED parameters g/γ. The bottom row shows spectra on resonance
(fe ≈ f0 = 6.5 GHz blue) and off resonance (fe � f0, gray). For all curves the resonator
transmission |S21| changes significantly when the electron frequency fe approaches the res-
onance frequency. The other cavity QED parameters were chosen according to our best
estimates for a single electron on helium: g/2π = 5.0 MHz and κtot/2π = 0.5 MHz. In the
different columns we explore the effect of increasing decoherence on the resonator spectra,
where in (a) γ/2π = 0.5 MHz, (b) γ/2π = 5 MHz and (c) γ/2π = 50 MHz.
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electrons in a double quantum dot [35, 41], and more recently also an ensemble of electrons

on helium [42]. Observation of this double peak splitting for the orbital state of a single

electron on helium is one of the outstanding goals for the field of electrons on helium, and

for the experiments presented in this thesis.

1.4 Goal of this thesis

The previous sections have described the remarkable properties of electrons on helium, and

shown their potential as building blocks of an electron-on-helium quantum computer. The

motion of electrons parallel to the helium surface shows particular promise, since its frequency

is in the microwave regime and it can couple strongly to a microwave resonator, forming a

circuit QED system in the strong coupling regime. In the strong coupling regime, coherent

manipulation of the electron motion becomes possible and existing techniques developed for

superconducting quantum computers can be applied to an electron-on-helium qubit.

A circuit QED system with few electrons on helium is also a great platform to study

the quantized motion of Wigner molecules. Measurement of the mode spectrum of Wigner

molecules may deepen our understanding of their internal structure and can be compared

against many theoretical models. Finally, such a system may shed light on the Wigner

molecule melting transition and the role of quantum fluctuations.

The goal of this thesis is to construct a circuit QED platform with the orbital state of few

electrons on helium, that allows us to address an orbital state electron-on-helium qubit and

explore strongly correlated electron physics. In order to do this, we must be able to confine

single electrons in an electrostatic trap and couple their motion to a microwave resonator.

In Chapter 2, we present the design of an electron-on-helium quantum dot, integrated with

a superconducting microwave resonator. This device is designed to work at temperatures

near absolute zero, where the quantum effects of the electron, single photons and the liquid

helium should be visible. In Chapter 3 we discuss the experimental setup needed to supply

superfluid helium to the sample cell, and the equipment that is used to perform low-noise
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microwave measurements to detect the electron motion.

Our first measurements of Wigner molecules and of a single electron are presented in

Chapter 4, where we load the dot with single electron precision and observe Wigner molecule

spectra. With a single electron in the dot, we carefully characterize our circuit QED system

to retrieve the coupling strength and electron linewidth. As will become clear, these mea-

surements beg for a more thorough understanding and control of the helium substrate, which

we attempt in Chapter 5. We conclude this thesis with an outlook that discusses several

paths to reach the strong coupling regime with the electron orbital state, which should leave

the reader with an optimistic view of the future of circuit QED with electrons on helium.
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CHAPTER 2

DESIGN OF AN ELECTRON-ON-HELIUM DOT

2.1 General strategy for trapping a single electron

Controlling the quantized states of a single electron on helium requires an electrostatic island

(i.e. dot) to reliably isolate and trap a single electron. Experimentally, electrons are produced

by thermal emission from a tungsten filament, but since this is a violent process which releases

many electrons, it is difficult to charge the dot with a single electron via thermal emission.

After thermal emission we usually end up with a large electron ensemble containing thousands

or millions of electrons. To isolate single electrons from such an ensemble we draw inspiration

from semiconducting quantum dots, where appropriately shaped electrodes create electron

depletion regions which serve as quantum dots that allow for single electron trapping.

In our approach, we choose to store the electron ensemble on top of a microwave cavity.

While electrons on helium can be trapped on top of any electrode with a DC voltage, storing

an ensemble above the microwave resonator allows us to detect their presence, retrieve the

number of electrons in the ensemble, the collective electron motion frequency and the en-

semble coupling from the measured resonance frequency shift [43]. Therefore, our resonator

will serve two roles, as electron detector and as a home to the electron reservoir.

This chapter first deals with the design of the microwave resonator (section 2.2), which

determines the microwave properties (e.g. resonance frequency, characteristic impedance)

as well as the behavior of the electron reservoir. From there, we discuss the design of our

electron-on-helium dot (section 2.3); an electrostatic island that can only hold a few electrons

and where we hope to observe the Wigner molecule physics of chapter 1. Finally, we discuss

the integration of this dot with the microwave resonator, which allows us to detect the

microwave response of Wigner molecules.
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2.2 Design of the resonator

The microwave resonator is an indispensable part of circuit QED, and in our system it serves

both as an electron detector and as home to an electron-on-helium reservoir. Resonator

design plays an important role in the sensitivity of our electron detector and determines

the behavior of the electron reservoir. Maximizing the electron sensitivity, requires a large

characteristic impedance, strong transverse microwave electric field and a high resonator

quality factor. In addition, trapping an electron reservoir above the microwave resonator

requires a DC bias voltage on the resonator center pin. Fulfilling this requirement while

maintaining a high resonator quality factor is a challenge.

In this Section, we introduce a resonator design with two center pins capable of detecting

single electrons and a single row of electrons. We derive the most important properties of

such a resonator and consider the behavior of the reservoir electrons based on the electrostatic

potential above the resonator.

2.2.1 Resonator microwave properties

To couple to the orbital electron state we use a superconducting microwave resonator con-

sisting of two center pins surrounded by a ground plane. This geometry, also known as a

coplanar stripline geometry (Fig. 2.1) supports two types of microwave modes. For the mode

of interest, the pins carry an equal but opposite microwave potential at any point along the

cross section. Therefore, the microwave electric field is concentrated in between the center

pins, such that in principle it can couple strongly to the lateral motion of a single electron

or a single row of electrons floating above the resonator.

The resonator center pins are situated approximately 1.2 µm below the ground plane, at

the bottom of a 3.5 µm-wide channel. The micro-channel stabilizes the liquid helium surface

due to surface tension, and allows for storing higher electron density reservoirs [44]. Without

this channel, the electron reservoir would be much more sensitive to external vibrations, so
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Figure 2.1: (a) Schematic representation of the capacitances Cij and inductances Lij involved
in a differential pair with two Nb center pins (red) and a ground plane (gray) on a Si substrate
(dark gray). The microwave electric field Ey (red) is evaluated at the helium filling height
z = 1.2 µm and a dashed line indicates Ey = 0. (b) Top view of the microwave resonator
design, showing the two center pins and the transverse microwave electric field Ey of the
differential mode. A DC bias voltage is applied at the location of a voltage node (Ey = 0),
such that photon loss through the DC bias port is minimal.

it is a crucial feature of our design.

The most essential microwave properties, e.g. the impedance Z and resonance frequency

f0, can be extracted from the capacitances and inductances from Fig. 2.1a. The inductances

and capacitances can be written in a matrix as follows:

L =

L11 L12

L21 L22

 and C =

C11 C12

C21 C22

 , (2.1)

where diagonal elements represent self-inductance and capacitance to ground, and off-diagonal

elements represent mutual inductance and capacitance. Given our model geometry, each of

the entries can be simulated using a finite element simulation package (e.g. Ansys Electronics

Desktop) by adding a positive excitation to the left pin and an equally negative excitation

to the right pin. We obtain the following values: L11 = 515 nH/m, L12 = 199 nH/m,

C11 = 103 pF/m and C12 = 166 pF/m. The impedance of the microwave differential mode
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is given by

Zdiff = 2

√
L11 − L12

C11 + |C12|
. (2.2)

Without kinetic inductance we estimate the characteristic impedance Zdiff ≈ 90 Ω. Addition-

ally, we find an expression for the expected resonance frequency for the quarter wavelength

differential mode:

fdiff
0 =

1

4`

1√
(L11 − L12)(C11 + |C12|)

, (2.3)

where ` is the length of the resonator measured from the tip to the point where the two

center pins meet.

The other supported mode in a coplanar stripline geometry is a common mode, where the

center pins carry an equal microwave potential. The microwave properties of the common

mode are as follows

Zcomm =

√
L11 + L12

C11 − |C12|
(2.4)

fcomm
0 =

1

4`

1√
(L11 + L12)(C11 − |C12|)

(2.5)

For the common mode, the microwave electric field approximately cancels between the center

pins, making it not suitable for coupling to single electrons. Typically, the resonance fre-

quency fdiff
0 is sufficiently different from fcomm

0 , such that we can safely ignore the common

mode, and Eqs. (2.3) and (2.5) provide a way to distinguish the common and differential

modes in our experiment.

Trapping an electron ensemble above the resonator requires a DC bias voltage. Con-

necting a DC bias lead to the center pins of the resonator introduces a source of loss for

intracavity photons, since the impedance of the bias leads is small (Z ≈ 50 Ω). To minimize

this loss and maintain a high resonator quality factor, we attach the bias lead at a voltage
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node, as shown in Fig. 2.1b. Our design allows for loaded quality factors exceeding 2× 104,

which demonstrates the low photon loss rate through the DC bias port.

2.2.2 Considerations for the electron reservoir

Electrons floating above the resonator induce image charges in the resonator center pins

below the helium surface and as such, the resonator and reservoir can be thought of as a

parallel plate capacitor. The capacitance is given by

C =
Q

Vres
=

Ne

Vres
, (2.6)

where Vres is the applied bias voltage to the resonator center pin and N is the number of

reservoir electrons. If the electrons float a distance tHe above the resonator, we have the

following equality

C =
Ne

Vres
=
ε0εHeA

tHe
. (2.7)

Eq. (2.7) shows that the electron density ns = N/A varies smoothly with the applied voltage

according to

ns =
ε0εHeVres

etHe
. (2.8)

The parallel plate capacitor model of the electron reservoir provides a simple estimate of

the reservoir electron density as function of the resonator voltage. However, approximating

the electron density as a continuous variable neglects that electrons are discrete particles,

which becomes important for electrons in and near the dot. A more sophisticated model, also

required to accurately describe the electron interaction with the cavity, takes into account

the electrostatic potential generated by the DC voltage on the resonator center pins. At a

distance tHe above the center pins it takes on the form

V (x, y) = (α0 + α1y
2 + α2y

4)Vres, (2.9)
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Figure 2.2: The electrostatic potential (black) produced by two electrodes on the bottom
of a micro-channel (red) can trap an electron reservoir (dark blue). The maximum electron
density depends on the trap depth α0Vres.

where the dimensionless constant α0 determines the trap depth, α1 determines the trap

curvature (units: m−2) and α2 contains an anharmonic component (units: m−4). The

relative magnitude and sign of α2 compared to α1, depend on the parameters d0 and wcp

(Fig. 2.2), determine if the electrostatic potential has a double or single well and greatly

affect how electrons spread across the channel. For the design shown in Fig. 2.2, α2 and α1

have the same sign, the potential has a single minimum and therefore, electrons can arrange

into a single file along the channel at low electron densities (Fig. 2.3c). This facilitates the

process of isolating electrons from the reservoir [45].

Reservoir electrons cause a frequency shift that depends on the frequency of the collective

electron motion parallel to the helium surface. The eigenfrequencies of the ensemble depend

on the equilibrium positions of the electrons and the potential curvature. We can find the

equilibrium positions by minimizing the total energy of the electron ensemble

H =
∑
i

p2
i

2me
+
∑
i

eV (xi, yi) +
∑
i<j

e2

4πε0|ri − rj |
, (2.10)

where the sum runs over the electrons in the reservoir. This minimization is typically per-

formed by molecular dynamics simulations, a method that solves Newton’s equations of
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motion at finite temperature. By repeatedly minimizing H for decreasing temperature (a

process called annealing) molecular dynamics finds a close approximation to the true ground

state of the electron ensemble. A poor man’s version neglects the kinetic component in Eq.

(2.10) and to first order gives similar results at T = 0 K. The advantage is that the total en-

ergy can now be minimized rather quickly since the gradients can be calculated analytically.

A result of the minimization procedure implemented in Python is shown in Fig. 2.3b.

With the electron positions at hand, the collective mode frequencies can be calculated

via the eigenvalue equation

M−1K|ηi〉 = ω2
i |ηi〉, (2.11)

where M and K are the mass and kinetic energy matrix and ωi/2π is the eigenfrequency

corresponding to eigenmode |ηi〉 [43]. These equations contain the electron positions, the

curvature of the electrostatic trap (α1) as well as the charge on the resonator, and fully

describe the interaction between the resonator and ensemble in a non-perturbative fashion.

The minimum eigenfrequency ωi,min corresponds to the mode where all electrons move

in concert, and is given by

ωi,min =

√
2eα1Vres

me
. (2.12)

Other modes contain electron interaction terms involving
∑
i<j e

2/4πε0|ri − rj | which act

as an increased spring constant and therefore have higher mode frequencies.

The electrostatic potential produced by the resonator center pins should be designed such

that the minimum collective mode frequency ωi,min greatly exceeds the microwave resonator

frequency ω0. Otherwise, if ωi,min ≈ ω0, a single trapped electron can decay via the electron

reservoir mode, thereby increasing the electron linewidth γ. This phenomenon is also known

as the Purcell effect. If the reservoir remains sufficiently far detuned from the resonance

frequency f0, we can consider the electron motion in the dot and reservoir separately, which

simplifies modeling. Additionally, according to section 1.2.3 we can write down a simple,
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Figure 2.3: (a) Simulated electrostatic potential evaluated tHe = 1.1 µm above the center
pins. The voltage at the center pins was Vres = 1.0 V and the curvature of the potential gives
rise to a minimum ensemble frequency of ωi,min/2π = 25 GHz, which is expected to scale

with
√
Vres. (b) Result of the reservoir electron minimization for a small number of electrons

N and low Vres. Electrons (black dots) are located in the center of the micro-channel, near
the minimum of the electrostatic potential (shades of blue). For the eigenmode |ηi〉 that
couples strongest to the cavity, all electrons oscillate in concert, as depicted by the black
arrows. (c)-(d) Electron histograms for the reservoir electron positions across the channel,
for two different number of electrons N . (c) Number of electrons: 120 electrons / 40 µm
resonator length (d) 600 electrons / 40 µm resonator length. Both histograms show that at
large Vres the ensemble is more confined, resulting in fewer electron rows along the micro-
channel. As the voltage decreases, the ensemble spreads across the channel and it becomes
energetically more favorable to arrange into multiple rows. These simulations are consistent
with earlier work [43, 46].
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Figure 2.4: Measurements of the cavity resonance frequency shift due to an electron reservoir
with varying number of electrons N . N decreases by repeatedly sweeping Vres to -1.5 V.
(a) The cavity frequency shift follows the approximated form of Eq. (2.13) and decreases
in magnitude as electrons leave the reservoir after each sweep to Vres = −1.5 V (inset).
(b) The cavity quality factor decreases rapidly as the ensemble mode frequency approaches
the microwave resonance frequency. This behavior is also in accordance with a model that
predicts Q−1 = Q−1

L +κγ/f0, where QL ≈ 2×104 is the loaded quality factor in the absence
of electrons and κγ is given by Eq. (2.14).

approximate expression for the cavity frequency shift due to the electron ensemble :

∆f0 ≈
Ng2

ωens − ω0
, (2.13)

where g and ωens are the eigenfrequency and coupling strength of the mode that couples

strongest to the cavity.

Fig. 2.4a confirms that the measured cavity frequency shift is proportional to the number

of electrons in the reservoir N , and shows that N can be controlled by repeatedly sweeping

the resonator bias voltage negative. The dip in quality factor at Vres ≈ 0.4 V (Fig. 2.4b)

occurs due to a broadening of the linewidth as ωens approaches ω0

κγ =
Ng2

(ωens − ω0)2
κ, (2.14)

and restricts the usable bias voltage to values larger than Vres > 0.6 V. To summarize, Fig.

2.4 demonstrates that the coplanar stripline resonator can harbor an electron reservoir with

variable electron density, and for voltages above Vres > 0.6 the ensemble mode frequency
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stays sufficiently far detuned from the resonator to avoid a negative impact on the single

electron coherence time.

2.3 Design of the dot

The dot’s main purpose is to trap a small number of electrons and isolate them from the

electron reservoir on top of the resonator. This requires a number of additional electrodes

to carefully craft the electrostatic potential.

We show a dot design that allows for trapping of single electrons and Wigner molecules

in Fig. 2.5. The dot’s electrostatic potential in the oblong-shaped region is determined by

the voltages on the resonator guard, trap guard, resonator and trap electrodes. A negative

voltage on either the resonator guard or trap guard raises a barrier around the dot. Therefore,

the primary function of these electrodes is to control electron transport to and from the dot,

and to contain electrons in the dot. The other two electrodes (resonator and trap electrode)

control the trap frequency and the minimum value of the electrostatic potential in and around

the dot.

2.3.1 Trap depth

To trap a single electron, the trap depth, defined as the energy difference between the smallest

energy barrier and the potential minimum, must be larger than other classical disturbances

or electron energies. Since a single electron minimizes its energy when it is located at the

potential minimum, the barrier should be larger than thermal excitations (kBT ≈ 2 µeV),

Johnson noise on the electrodes (
√
kBTZ∆f < 1 µeV) and the electron’s zero-point motion

(~ωe/2 ≈ 25 µeV). Therefore, the electrostatic trap must be at least 100 µeV deep to confine

a single electron.

With more than one electron in the dot, the largest energy scale is set by the Coulomb

interaction and reaches e2/4πε0r ≈ 0.7 meV for two electrons with r = 0.2 µm. Larger
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Figure 2.5: Tilted angle scanning electron micrograph of the dot with the relevant dimensions
shown in red. A single electron can be trapped in the center of the dot, which consists of the
oblong-shaped region, bounded by the resonator guards, trap guards and ground plane. The
dot is fabricated by micro-machining a silicon substrate (black, details about the process in
Appendix A) and by depositing superconducting electrodes (gray). The resonator electrode
dimensions are wch = 3.5 µm, wcp = 0.9 µm, d0 = 1.2 µm and wg = 0.5 µm. The dot
dimensions are wrg = 0.3 µm, `rg = 0.4 µm, (wdot, `dot) = (2, 8) µm and wtrap = 2.25 µm.

Wigner molecules have even larger energies and require correspondingly deeper traps, which

can be generated by larger electrode voltages.

It is important that the potential inside the dot is smooth on the scale of the zero-point

energy, since a rough electrostatic potential with unpredictable minima could trap electrons

in unwanted locations and could significantly distort the electron-cavity response. Pinning

sites can originate from lithographic imperfections in the electrodes and from unwanted

trapped charges in the silicon substrate. We do not expect these charge traps for our electron-

on-helium dot, since (i) the fabricated electrodes look smooth and should therefore give rise

to a smooth potential (ii) electrons float at least 1 µm from the nearest electrodes such that

fabrication imperfections are further attenuated, and (iii) we have minimized the surface

area of exposed Si by covering it with a superconductor.

The trap depth also plays a role in the lifetime of trapped electrons, here defined as the

time electrons are confined within the dot. Electrons on helium can be contained almost
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indefinitely inside our dot, since the quantum tunneling rate of electrons through the barrier

is negligible. This can be seen from the spatial wavefunction decay

exp

(
−

`rg√
~2/2me(U0 − E)

)
, (2.15)

where `rg = 0.4 µm is the barrier length and U0 ≈ 5 meV is a typical trap depth. Since√
~2/2meU0 ≈ 3 nm, the tunneling length is very small compared to the barrier length `rg

and tunneling can be ignored.

2.3.2 Trap frequency

For a single electron, the orbital frequency is exclusively set by the curvature of the electro-

static potential. In the center of the dot the electrostatic potential can be approximated by

V (x, y) = α0 + α1y
2 + α2y

4 + β1x
2, (2.16)

and α0, α1 and α2 all vary linearly with the resonator and trap voltage:

αi = αres
i Vres + α

trap
i Vtrap (2.17)

Having two electrodes to control the electrostatic potential is advantageous compared

with a single electrode, because with the two-electrode design of Fig. 2.6 the trap depth and

trap curvature can be set independently. This is not possible with a single electrode and

as a consequence, the voltage for which a single electron is on resonance with the resonator

often coincides with a very small trap depth. For our design, the electron frequency in the

y-direction depends on both the resonator and trap curvatures:

f
y
e =

1

2π

√√√√2e
(
αres

1 Vres + α
trap
1 Vtrap

)
me

, (2.18)
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Figure 2.6: Contributions of the trap (green) and resonator (red) electrodes to the electro-
static potential, evaluated at the dashed line shown in (a). (b) The electrostatic potential
shown in red (green) is obtained by finite element modeling with Vres = 1 V (Vtrap = 1 V),
while the other electrode is kept at ground. The curvatures of both potentials at the expected
electron position (black dot) have opposite sign, allowing us to bring the electron frequency
into resonance with the microwave resonator, while maintaining a large trap depth. The black
curve is the sum of both potentials and represents a realistic potential for when fe ≈ f0.

and due to the electrode geometry of Fig. 2.6, the resonator curvature αres
1 is negative

whereas the trap curvature α
trap
1 and αres

0 , α
trap
0 are all positive. Therefore, for a given

resonator voltage V ∗res we can always find a trap voltage V ∗trap such that f
y
e = f0. Since the

trap depth only increases for larger V ∗res and V ∗trap a single electron in such a dot can be

resonant at much larger trap depths, allowing for a more stable single electron trap.

We choose the shape of the dot such that the electron is more likely to oscillate in the

y-direction where it couples with the resonator. Motion in the x-direction can be excited by

unforeseen xy-coupling terms in Eq. (2.16), but is unlikely if the frequency in the x-direction

is far off-resonant from f
y
e . Because the width of the dot (wdot = 8 µm) is much larger than

the length of the dot (`dot = 2 µm), the motional frequency fxe = 1/2π
√

2eβ1/me is typically

twice as large as f
y
e . The electron is therefore much more likely to oscillate in the y-direction.

In Fig. 2.7, we show quantitatively that this dot provides an appropriate electrostatic

trap with a trap frequency that is adjustable with voltage. Numerical simulations of the

trap depth and trap frequency show that over a large range of Vtrap and Vrg, the trap depth

is more than 10 meV and the electron frequency can be tuned into resonance with the
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resonator. In addition, these simulations confirm that the trap frequency in the x-direction

remains far detuned from f
y
e at the resonance condition. In the next section we discuss the

final figure of merit for the dot: the anharmonicity.
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Figure 2.7: Summary of the trap depth and trap frequency for Vres = 0.6 V. (a) In color,
we show the trap frequency in the y-direction as function of the resonator guard and trap
voltage. The solid red contour shows for which voltages the electron will be resonant with
the resonator if f0 = 6.5 GHz. The white region indicates that the barrier height is too
small to separate the electron reservoir from electrons in the dot. This region is divided in
two subregions, I and II. In region II the electron reservoir is unstable, since electrons can
flow from the resonator electrode towards the trap electrode. In region I, the reservoir can
be contained on top of the resonator without issue. The trap depth (in meV) decreases for
smaller Vtrap and more positive Vrg, as shown by the solid black contours. Since, in region
III the trap depth is too small to trap electrons inside the dot, trapping electrons is only
possible in the colored area with a positive trap depth. (b) Same as in (a), except here we
plot the trap frequency in the x-direction. At the resonance condition (f

y
e = f0), fxe ≈ 2f

y
e

such that the electron is much more likely to oscillate in the y-direction.

2.3.3 Trap anharmonicity

To selectively address the ground and first excited motional states without populating higher

energy levels, the electrostatic potential must contain an anharmonic y4 term. A large

anharmonicity is desirable, since one can quickly inverse the population of the qubit without

populating higher energy levels. For superconducting qubits the anharmonicity typically

exceeds 100 MHz, such that qubit inversion within 10 ns is possible [47]. To quantify the

amount of anharmonicity for our electron-on-helium dot, we define it as the energy difference
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between the 1→ 2 and 0→ 1 transition, which can be estimated by treating the y4 term as

a perturbation to the harmonic oscillator Hamiltonian in second quantized form1:

~α =
(
Ẽ2 − Ẽ1

)
−
(
Ẽ1 − Ẽ0

)
. (2.19)

Ẽn = En+α2〈n|(a+a†)4|n〉 are the perturbed eigenenergies. After the commutator algebra

from the (a+ a†)4 term, we arrive at

〈n|(a+ a†)4|n〉 =
3~2

4m2
eω

2
e

(2n2 + 2n+ 1) (2.20)

Plugging this into Eq. (2.19) gives

α

2π
=

1

2π

3eα2~
m2
eω

2
e

(2.21)

For simulated values of α2 we obtain α/2π ≈ 85 MHz, on par with a typical values for

superconducting transmon qubits.

2.4 Integration of the dot with the resonator

The resonator serves as the electron detector and must therefore be integrated with the

electron-on-helium dot. Successful integration means that the dot can be loaded from the

electron reservoir above the resonator, and the electron motion inside the dot couples to

the resonator. In addition, a successful integration minimizes decoherence due to electron

decay into the DC bias electrodes and due to capacitive coupling between resonator and bias

electrodes.

1. We can obtain a more direct estimate of the anharmonicity by solving the full Schrödinger equation
of a single electron in the anharmonic potential. These calculations typically agree well with the estimate
from perturbation theory.
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2.4.1 Loading the dot from the reservoir

Electron transport from the reservoir to the dot occurs when the chemical potential of the

reservoir exceeds the electrostatic barrier between the resonator and the dot. To change

the barrier height independently of the reservoir’s chemical potential, we use the resonator

guard electrodes. The barrier height can be controlled with applied voltage and also depends

on how far the resonator guard electrodes extend towards the center of the channel (wrg in

Fig. 2.5). With the electrodes slightly protruding into the channel there is a barrier even

at Vrg = 0 V, which helps to keep trapped electrons inside the dot. However, it also bars

electron transport at low electron densities and if the electrodes extend too far inwards, it

could block electron transport altogether.

To isolate single electrons from the reservoir, the length of the resonator guard electrode

`rg must be smaller than the average electron spacing in the reservoir r. If `rg � r the

resonator guard electrode affects the electrostatic potential on a scale that is larger than

the inter-electron spacing, which makes isolating individual electrons difficult. The electron

spacing can be estimated from the reservoir electron density ns

r =
1
√
πns
≈
√

etHe

πε0εHeVres
, (2.22)

which varies only weakly with Vres and for a typical reservoir density of ns ≈ 6× 1012 m−2

amounts to r ≈ 0.23 µm. Electrodes with this dimension are easily fabricated using electron

beam lithography.

The reservoir chemical potential −eVe depends on the bias voltage and the number of

electrons in the reservoir and is given by −eVe = −eVres + e2nstHe/ε0εHe [10]. If the

chemical potential exceeds the barrier −eVb electrons can enter the dot (Fig. 2.8b). The

barrier is mostly controlled by the resonator, resonator guard and trap electrodes, since those

electrodes have a large relative contribution Ci/CΣ at the location of the barrier (Fig. 2.8a).

50



Dot Resonator

Barrier
Reservoir

Figure 2.8: Electrode lever arms (top) and electrostatic potential (bottom) along the center
of the channel near the dot for Vres = 0.6 V, Vtrap = 0.35 V and Vrg = −0.2 V. The shaded
region (−1.5 < x < 1.5 µm) represents the dot. The barrier between the dot and resonator
controls electron transport from the reservoir to the dot. Its height can be most effectively
controlled by the resonator, resonator guard and trap electrodes, since those electrodes have
the largest lever arm Ci/CΣ at the location of the barrier (black circles in the top figure).
Note that the resonator guard and trap guard have symmetric lever arms around x = 0, due
to the symmetric dot design.

We may therefore write

Vb ≈
(
Cres

CΣ

)
Vres +

(
Ctrap

CΣ

)
Vtrap +

(
Crg

CΣ

)
Vrg, (2.23)

where CΣ = Cres + Ctrap + Crg + Cgnd is the total capacitance of the barrier. Therefore,

loading of the dot is possible for those Vrg, Vtrap that satisfy

(
Ctrap

CΣ

)
Vtrap +

(
Crg

CΣ

)
Vrg > Vres

(
1− Cres

CΣ

)
− enstHe

ε0εHe
(2.24)

The boundary of this region is represented by a straight line in Vrg, Vtrap-space that depends

on the electron density. We will see the return of this straight line in chapter 4.
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2.4.2 Single electron coupling strength

In Section 1.3.1 we have already seen that the single-electron photon coupling strength can

be large, due to a large zero-point motion and a concentrated microwave electric field Ey.

However, Ey depends strongly on the resonator geometry and how the dot is integrated with

the resonator. The most accurate way to evaluate the single-electron coupling strength for

our dot is to calculate the wavefunctions by solving the Schrödinger equation of an electron

in an electrostatic potential. In addition, the eigenenergies of this Hamiltonian yield the

anharmonicity, such that we can verify the estimates from perturbation theory in section

2.3.3.

The Schrödinger equation in two dimensions, discretized on a Cartesian lattice with point

spacing ∆x,∆y, reads

ψn(xk −∆x, yk)− 2ψn(xk, yk) + ψn(xk + ∆x, yk)

∆x2
+

ψn(xk, yk −∆y)− 2ψn(xk, yk) + ψn(xk, yk + ∆y)

∆y2
+ (2.25)

2me

~2
eV (xk, yk)ψn(xk, yk) =

2me

~2
Enψn(xk, yk)

ψn(xk, yk) are the two-dimensional wave functions and En = ~ωn are the eigenenergies.

The electrostatic potential V (xk, yk) is obtained by solving Poisson’s equation using the

finite element method. Next, we export the potential values near the dot, at height tHe

from the bottom of the channel and cast the values to a regular Cartesian grid using linear

interpolation (Fig. 2.9b). We then diagonalize Eq. (2.25) to find the eigenmodes and mode

frequencies.

In Fig. 2.9a we plot the transition frequencies from the ground state and show that the

transition frequency of the first excited state varies from 0 − 10 GHz by varying Vtrap. If

our microwave resonator has a resonance frequency f0 = 6.5 GHz, a single electron would

be resonant with the microwave mode for Vtrap ≈ 0.18 V. All higher frequency transitions

correspond with higher excited states, which we label according to their dominant direction
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of motion. For example, ψ1(x, y) = |1y〉 is the first excited state which predominantly

oscillates in the y-direction. These eigenmodes (Fig. 2.9c-f) closely resemble the eigenmodes

of a harmonic oscillator with different trap curvatures in the x and y directions.

The color of each line in Fig. 2.9a reflects the coupling strength of each transition, which

is calculated from the differential mode amplitude VRF(x, y) and the ground and excited

state wavefunctions ψn = |n〉. Mathematically it takes on the form

g0n/2π =
e

2π

∫∫
〈0|
(
x
∂VRF

∂x
+ y

∂VRF

∂y

)
|n〉dx dy (2.26)

=
e

2π

∑
j,k

ψ
†
0(xj , yk)

(
xjEx(xj , yk) + ykEy(xj , yk)

)
ψn(xj , yk) (2.27)

It is clear that the ground state |0〉 couples strongest to the first excited state in the y-

direction (i.e. |1y〉) and the coupling strength reaches several MHz. Direct transitions from

the ground state to other states are either forbidden by symmetry (e.g. |0〉 ⇐⇒ |2y〉) or

extremely weakly coupled due to vanishing Ex (e.g. |0〉 ⇐⇒ |1x〉).

Although the eigenmodes look like those of a harmonic oscillator, closer inspection of the

transition frequencies reveals that the frequency spacing is non-uniform. In Fig. 2.9g we

plot the anharmonicity, defined as the difference between f|1y〉→|2y〉 and f|0〉→|1y〉. At the

crossing (Vtrap ≈ 0.18 V) the anharmonicity exceeds 0.1 GHz, which is close to the estimate

from section 2.3.3 (α/2π ≈ 85 MHz). This large anharmonicity is due to a significant y4

term in the electrostatic potential and indicates that the electron can be approximated as a

two-level system.

The coupling strength of this design is slightly smaller than our naive estimate in section

1.3.1 (g/2π ≈ 18 MHz), because the transverse microwave field is smaller than 106 V/m. To

increase the coupling strength in future designs, we can increase wcp or decrease wtrap or d0.

However, this affects the crossing voltage V ∗trap and we must be careful that electrons can

remain in the dot at this new crossing voltage. One can also increase the coupling strength

with a larger resonator impedance Z, e.g. through the use of thinner superconducting films
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Figure 2.9: Quantum mechanical calculation of a single electron on helium (a) Transition
frequencies for a single electron in the ground state, calculated by solving the Schrödinger
equation in a two-dimensional electrostatic potential. The color of each line reflects the
coupling strength g0n for each state. The resonator frequency is shown as a black dashed
line. (b) Simulated electrostatic potential at z = 1.15 µm and Vtrap = 0.184 V. A red
rectangle shows the extent of the single-electron wavefunctions shown in (c)-(f). (c)-(f)
Wave functions of the excited states of a single electron near the crossing voltage Vtrap =
0.184 V. The red and blue regions are non-zero wave function amplitudes of opposite sign.
(g) Inferred anharmonicity of a single electron as function of trap voltage. A red star marks
the anharmonicity at the crossing voltage.
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or high-kinetic inductance superconductors [34] (see section 6.1.1).

2.4.3 Minimizing microwave loss through DC electrodes

In the dot area, the resonator is surrounded by bias electrodes which are only a few microns

away. As a result, capacitive coupling between the resonator and electrodes forms an un-

wanted loss channel for resonator photons, broadening the cavity linewidth κint. This poses

a threat to circuit QED with an electron on helium in the strong coupling regime, especially

when the unwanted capacitance is large. To better understand how much capacitive coupling

we can tolerate, we have simulated the effect of this parasitic capacitance using the ABCD

matrix formalism [48].

Cin Cout

Z0, β

a

b

c

Cin Cout

Z0, β

Cp

ZL

Cp

ZL

Cin Cout

Z0, β

Cp

ZL

Cp

CfLf LfCf

ZL

λ/2 d
Filters

Figure 2.10: Suppression of microwave radiation through DC bias electrodes. (a)-(c) Circuit
models of increasing complexity used to simulate the effect of impedance engineering of the
bias electrodes. The parasitic capacitance Cp describes the unwanted coupling of microwave
radiation from the resonator (depicted as a lossless transmission line) to the DC bias elec-
trodes. With an LC-filter this radiation can be suppressed, as shown in (c). (d) Simulated
transmission spectra for the circuit models depicted in (a)-(c). Compared to the isolated
resonator (blue) the addition of parasitic capacitance results in a decrease in resonator Q,
visible as a decreased peak transmission. The resonator transmission can be recovered by
adding LC filters (orange). For this simulation Cin = Cout =3.5 fF, Cp = Cin, Lf = 2.5 nH,
Cf = 4 pF, ZL = 50 Ω and the designed resonance frequency was f0 = 6.5 GHz.

For simplicity, we model the microwave resonator as a lossless transmission line of length

` = λ/2, as shown in Fig. 2.10a. Similar to the differential coplanar stripline resonator,

the voltage eigenmodes of this resonator have antinodes at the tip(s) of the resonator and

therefore correctly model the physics of our coplanar stripline resonator. Upon addition of
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the bias electrodes, resonator photons can decay to the bias leads via the capacitance Cp,

which is connected to a low impedance (ZL = 50 Ω) environment (Fig. 2.10b). The input

impedance of the bias line as seen by resonator photons is

Zeff = ZL +
1

iωCp
. (2.28)

To model the transmission through this resonator we construct the ABCD matrix of the

total system:

A B

C D

 =

1 1
iωCin

0 1


 1 0

1
Zeff

1


 cos(β`) iZ0 sin(β`)

i
Z0

sin(β`) cos(β`)


 1 0

1
Zeff

1


1 1

iωCout

0 1

 ,

(2.29)

where β = ω/c is the wave number. The resulting transmission spectrum |S21| for a pes-

simistic scenario Cp = Cin is depicted in Fig. 2.10d and shows a reduction in peak amplitude

due to a decrease in internal Q. Since the internal quality factor scales as 1/(ω0ZLCp)
2, it

is important to keep Cp as small as possible during the design of the dot, for example by

keeping the electrodes away from the resonator or by keeping the surface area small.

By carefully engineering the impedance of the bias electrodes, it is possible to suppress

microwave leakage and thus restore the resonator internal Q, even when Cp is large. To

illustrate this concept we add an LC filter to each bias electrode, a technique that has been

very successful in achieving strong coupling with semiconductor double quantum dot devices

[41, 49, 50]. In these devices suppression of microwave radiation through the bias electrodes

is extremely important, since the bias electrodes are only 10-100 nm separated from the

resonator center pin.

By adding the LC filter (Fig. 2.10c), the input impedance of the bias electrode becomes

Zeff =
1

iωCp
+

1

iωCf + 1
iωLf+ZL

, (2.30)
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where Cf and Lf are the capacitance and inductance of the filter, respectively. The result-

ing transmission spectrum has unit transmission on resonance, indicating that the internal

quality factor is at least as large as the coupling quality factor. Therefore, by adding LC

filters, one can very effectively suppress radiation from the resonator to the bias electrodes,

even when the parasitic capacitance Cp is large.

We have designed and fabricated an on-chip LC-filter consisting of a two-dimensional

coil in series with an interdigitated capacitor (Fig. 2.11a). To verify its performance, we

measure the microwave transmission through the series network (Fig. 2.11b), and find that

the filter attenuates transmitted signals by 18 dB at the microwave resonance frequency

f0 = 6.5 GHz. Therefore, the filter acts as a microwave mirror and, when attached to bias

electrodes as in Fig. 2.11a, should prevent microwave leakage into each bias electrode.

a b

Figure 2.11: (a) Each bias electrode is equipped with an LC-filter, which consists of a two-
dimensional coil and interdigitated capacitor to ground. A close-up shows the relatively
small footprint of this filter. (b) Measured microwave transmission through the filter. The
solid red line shows the modeled transmission, derived from the circuit shown in the inset
with L = 2.5 nH and C = 4 pF. The oscillations in the measured transmission are likely due
to an impedance mismatch between the filter and the transmission line. At the microwave
resonance frequency, the transmission is attenuated by 18 dB.

2.4.4 Minimizing electron decoherence

The symmetric design of the dot ensures the potential minimum is in the center of the micro-

channel and plays an important role in the linewidth of a single electron. An electron in the

center of the channel can radiate into the bias electrodes via a differential mode, where the
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induced charge on a pair of electrodes is equal and opposite (Fig. 2.12a). We estimate the

increase in electron linewidth due to radiation into the bias electrodes by comparing it with

the estimated coupling to the resonator (Ediff
y ≈ 2 × 105 V/m and g/2π ≈ 5 MHz). Fig.

2.12c shows that the coupling to other bias electrodes is much weaker than the coupling to

the microwave resonator. Therefore, any microwave emission into the bias electrodes occurs

at a rate slower than g/2π, and should not pose a threat to reaching the strong coupling

regime.

Fabrication imperfections or trapped charges may shift the electron away from the center

of the channel. In that case, the electron may also radiate into a common mode of the

electrodes, where the induced charge on a pair is equal (Fig. 2.12a). Fig. 2.12b shows that

the trap electrode is the dominant pathway for decay. However, a pessimistic 100 nm offset

only yields a decay rate of a fraction of g. In addition, these estimates do not take into

account the LC-filters described in section 2.4.3, which should act as microwave mirrors and

prevent this type of leakage. Therefore, we conclude that a well designed symmetric trap

is important, but should not prevent circuit QED with electrons on helium in the strong

coupling regime.

−1.0 −0.5 0.0 0.5 1.0
−0.2

0.0

0.2
b

resonator
trap
resonator guard
trap guard

−1.0 −0.5 0.0 0.5 1.0
−0.2

0.0

0.2
c

resonator
resonator guard
trap guard

Across-channel position y (µm)

E
yco

m
 (M

V/
m

)

E
ydi

ff  (M
V/

m
)

Across-channel position y (µm)

a

y

x

0
e-

+
+

+
+

+
+

-
-

common differential

Figure 2.12: (a) Schematic of the electrode geometry in the dot area, showing the expected
electron position and an example of charge distributions on the trap guard and resonator
guard which correspond to common and differential microwave leakage, respectively. (b)
Common mode Ey simulated at the red dashed line in (a). The values of Ey at the electron
position provide an estimate for microwave leakage through each respective electrode. (c)
Same as in (b), but for the differential mode. Note that the trap electrode does not support
a differential mode.
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CHAPTER 3

EXPERIMENTAL SETUP

Strongly correlated electron physics and quantum mechanical effects in circuit QED are only

visible at very low temperatures, when the interaction energy and electron zero-point energy

dominate over the thermal energy. Therefore, all experiments presented in this thesis are

performed in a dilution refrigerator (Oxford Triton 200), a device with a minimum operating

temperature of only 20 mK.

The four components of circuit QED with electrons on helium (i.e. the microwave res-

onator, DC electrodes, liquid helium and electrons) must behave harmoniously at the mixing

chamber plate of the refrigerator. In this chapter, we describe how we interface these compo-

nents, without destroying the resonator Q or losing the liquid helium, for example. First, we

describe how to supply the liquid helium to our sample cell and how to contain the helium

inside the micro-channels (section 3.1). The sample cell (section 3.2) also provides a quiet

microwave environment, essential for sensitive microwave measurements. A good explana-

tion of the required microwave equipment can be found in most circuit QED theses (e.g. Ref.

[26]), so we only provide a concise description of the microwave setup in section 3.5. Finally,

in section 3.6 we show how we filter the bias electrodes to prevent electron dephasing due to

voltage noise.

3.1 Superfluid helium supply and thermalization

Liquid helium, which eventually fills the on-chip micro-channels, is supplied from a high-

purity 4He gas cylinder at room temperature. This cylinder is connected to a helium mani-

fold, which can repeatedly deliver controlled amounts of helium gas to the sample box inside

the dilution refrigerator.

The helium manifold has four ports controlled by solenoid valves, as depicted in the

schematic of Fig. 3.1a. These ports are used to evacuate and fill the control volume (Vc =
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Figure 3.1: (a) Schematic of the helium manifold, controlled by four solenoid valves (IMI
Norgren 141011 2WNC). The control volume (Swagelok SS-4CS-TW-10, Vc = 10 cm3) can
be filled with 4He gas or a dilute 3He-4He mixture while the pressure is monitored by a digital
pressure sensor (Swagelok PTI-S-NC30-22AQ). A safety relief valve limits the pressure inside
the manifold to approx. 3 bar. (b) Photograph of the apparatus, also showing the control
boards for switching the solenoid valves and pressure read-out.

10 cm3), and release the helium gas towards the helium fill line inside the refrigerator. The

sequence to deliver a single control volume of gas to the sample box (“puff”) consists of

evacuating the control volume with the turbo pump, briefly opening the helium gas port to

pump out the volume behind the needle valve and then closing the pump port. The pressure

is then monitored until the digital manometer reads P = 0.25 bar after which the helium

supply valve is closed and the puff is released to the cryostat.

From room temperature to the 4 K plate, the gas travels through wide stainless steel

tubing (0.080” ID), which acts as a cold trap for any remaining impurities such as water

vapor. We ensure the injected helium gas thermalizes to the refrigerator by brazing it to

OFHC copper cylinders bolted to the the 35 K and 4 K stage. Below the 4 K plate, the

inner diameter of the fill line is reduced (0.021” ID) and the tube length between stages is

increased by coiling the tubing as shown in Fig. 3.2. This reduces the heat load on the

colder stages, because the conductivity of the column of superfluid helium below the still
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Figure 3.2: Photograph of the helium fill lines inside the dilution refrigerator. The stainless
steel tubing is coiled between plates to reduce the heat load, and brazed to 0.25” diameter
copper cylinders to thermalize the superfluid helium inside the fill line.

plate scales linearly with the inner diameter of the tube d:

κ4 ∝ 20dT 3, (3.1)

where κ4 is the thermal conductivity in W/(K cm) [51]. Tubes with even smaller ID fur-

ther decrease the heat load from the superfluid helium column, but also make experiments

impractical, since evacuating the sample cell dead volume through smaller ID tubing takes

correspondingly longer.

Thermalizing liquid helium to the mixing chamber plate is not trivial, because liquid

helium has a large interfacial thermal (Kapitza) resistance, due to a mismatch in speed of

sound between liquid helium and solids [52]. Even though we have no direct way of measuring

the temperature of liquid helium, we expect the liquid helium to be well thermalized, since

the amounts used in the experiments are small and adding liquid helium does not increase

the mixing chamber plate temperature. To improve thermalization of the helium, we could

insert copper or silver sinter heat exchangers right before the sample cell. The metal powder

inside these heat exchangers increases the contact area with helium by orders of magnitude,

thereby reducing the Kapitza resistance [51].

As helium flows down to the mixing chamber it accumulates in a cylindrical reservoir

(diameter d ≈ 5 mm) inside a hermetic sample cell. The vertical distance from the reservoir
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liquid level to the on-chip micro-channel determines whether the micro-channels are filled

and sets the curvature of the helium-vacuum interface inside the micro-channel. Since the

microwave resonance frequency shift increases with the number of helium puffs, we determine

the appropriate amount of helium from the frequency shift as function of added helium. Since

this is very specific to the channel geometry, we will discuss this further in section 4.1 and

5.2.

3.2 Hermetic sample cell

The primary purpose of the sample cell is to contain the superfluid helium in a leak-tight

cell, while allowing DC and microwaves to pass through. The cell consists of two parts: a lid

and a pedestal (Fig. 3.3). The lid contains fourteen hermetic SMP microwave feedthroughs

(Corning Gilbert 0119-783-1), two connections for an electron source and a feedthrough for

a stainless steel helium fill line (1/16” OD, 0.021” ID). The fill line is brazed to an M4 screw

with a 1/16” hole and attaches to the lid of the sample cell with a hex nut.

Inside the cell, a custom designed printed circuit board (PCB), which offers room for a

2×7 mm chip, is mounted to the pedestal using 0-80 screws (Fig. 3.3b). We connect signals

from the hermetic connectors on the lid to the PCB with SMP bullets (e.g. Rosenberger

19K106-K00L5). This bullet allows for an axial misalignment between lid and PCB of up to

±0.3 mm.

Before cooling down we position an indium seal around the edge of the pedestal and

tighten the assembly from the bottom using eight 4-40 screws. The flattened indium wire

(diameter 0.020”) prevents superfluid helium leaks. All SMP microwave connectors are also

equipped with a similar seal and we have not observed superfluid helium leaks during our

experiments.

The second purpose of the cell is to decrease the microwave density of states at the

on-chip resonance frequency, such that higher microwave resonator quality factors can be

achieved. Inside the sample cell, the density of states is discrete rather than continuous,
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Figure 3.3: A hermetic sample cell for circuit QED with electrons on helium (a) 3D rendering
of the hermetic sample cell assembly. The PCB, normally mounted between the pedestal
and copper spacer is not shown. (b) Photograph of the pedestal and PCB (c) Photograph
of the inside of the lid, showing the microwave feedthroughs and SMP bullets which connect
to the SMP connectors on the PCB shown in (b). This photograph also shows the printed
circuit board with two filaments which serve as electron sources.

63



and the mode frequencies can be predicted by treating the sample cell as a cylindrical cavity

with inner radius R = 2.15× 10−2 m. The lowest frequency eigenmode is then

ωcell

2π
= 2.405

c

2πR
≈ 5.3 GHz. (3.2)

Ideally, the sample cell should not have eigenfrequencies below 10 GHz, otherwise low Q

sample cell modes may still couple to the on-chip resonance. To increase ωcell, we insert a

copper spacer inside the sample cell dead volume (Fig. 3.3a). With the spacer inserted, we

measure ωcell/2π ≈ 10 GHz, ensuring that our on-chip microwave resonator is not affected

by the eigenmodes of the sample cell.

3.3 Electron source

Our electron source is an exposed tungsten filament from a small light bulb found in model

train stores (Fig. 3.4). We extract the filament by carefully cracking the glass enclosure

with pliers. The two leads are then soldered to a separate printed circuit board that plugs

into the inside of the sample cell lid (Fig. 3.3c).

To emit electrons, we send a pulsed current through the filament while keeping the

filament negatively biased (Vfil ≈ −0.5 V). The pulse amplitude is large enough to overcome

tungsten’s work function (W ≈ 4.5 eV) and the negative bias ensures that emitted electrons

are directed towards the positively biased microwave resonator. The pulsed current also heats

the filament and generates a sizable helium vapor inside the sample cell, which scatters and

slows down emitted electrons. Hence, electrons land on the helium and accumulate above

the microwave resonator.

3.4 Design of a printed circuit board

The printed circuit board (PCB) connects microwave and DC signals to the on-chip mi-

crowave resonator and bias electrodes. To accommodate the large number of DC signals
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Figure 3.4: Two exposed filaments (one for backup), soldered to a printed circuit board
serve as our electron source. The filaments are very delicate and hardly visible, even in this
enlarged stereoscope image. After successful installation each filament has a resistance of
approx. 15 Ω.

that are necessary to create the appropriate trapping potential, we designed a custom PCB

with fourteen connections, which can carry high-frequency microwave signals as well as DC

voltages.

Our PCB design (Fig. 3.5a) has soldering pads for fourteen SMP connectors, through-

hole plated vias that short the front and back copper layers (Fig. 3.5b), and a cut-out for a

2×7 mm chip, such that the chip’s top surface sits flush with the copper. The high dielectric

constant of Arlon AD1000 (ε = 10.2) does not vary from 1-10 GHz and matches the dielectric

constants of common substrates, such as sapphire and silicon (ε ≈ 11). Additionally, in and

output signals traveling on the PCB transmission lines are minimally attenuated due to a

low loss tangent (tan δ = 2.3× 10−3). The center pin width and gap width of the traces are

5.9 and 3.5 mils, respectively, chosen to match the 50 Ω impedance of the microwave cables

and connectors.

We prepare our PCB for a cool down by soldering the SMP connectors to the PCB and

cleaning the top surface with isopropyl alcohol. To mount the chip, we first apply GE varnish

to the chip insert, which improves thermal contact between the copper bottom layer and the
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Figure 3.5: Printed circuit board (PCB) for microwave measurements with electrons on
helium. (a) Design of the PCB with different colors representing different operations. Pink
denotes the border of the PCB, cyan circles denote the location of through vias that connect
the front and back copper pours and the yellow rectangle is an insert for a 2×7 mm chip. (b)
The PCB dielectric is sandwiched between the front and back copper pours. An example of
a via and the chip insert are also shown. (c) Photograph of an assembled PCB with soldered
connectors and chip.

chip. After curing at room temperature for several hours, we make the electrical connections

to the chip using aluminum wirebonds. Finally, the PCB assembly is mounted to the sample

cell pedestal (Fig. 3.3) and is then ready to cool down.

3.5 Setup for low-noise microwave measurements

All experiments in this thesis are performed at temperatures near absolute zero to suppress

incoherent microwave radiation that would otherwise obscure quantum mechanical effects.

Even though at the mixing chamber plate (T = 20 mK) the average thermal intra-cavity

photon number is much less than one:

nth =
1

e~ω0/(kBT ) − 1
� 1, (3.3)
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microwave cables from room temperature can still cause heating. To thermalize the mi-

crowave input lines to T = 20 mK, we insert cryogenic attenuators (XMA Corp.) at the 4 K

and mixing chamber plate. These attenuators ensure that only coherent microwave tones

from a Keysight PNA-X Network Analyzer (see Fig. 3.6) reach the resonator input port. In

the same spirit, circulators (Quinstar OXE89) on the resonator output line redirect thermal

radiation from the 4 K plate to ground, but provide minimal attenuation for the output

signal from the resonator.

The resonator output (Fig. 3.6) is first amplified by a quantum limited Josephson Para-

metric Amplifier (JPA), which amplifies reflected photons with a gain of G1 ≈ 102 (20 dB)

while adding a minimum amount of noise. The JPA is relatively narrow band (linewidth

κ/2π ≈ 30 MHz (Fig. 3.7a), but its operating frequency can be adjusted from 6.67 GHz

to 4 GHz using magnetic flux through an array of superconducting quantum interference

devices (SQUiDs) that compose the JPA’s gain medium (Fig. 3.7b). Experimentally this

flux is adjusted using a DC current through an off-chip coil mounted directly below the

JPA. To ensure that stray magnetic fields do not affect the operating frequency, the JPA is

mounted inside a lead shield and high permeability mu-metal shield. Before the reflected

signal reaches the input of the network analyzer it is further amplified by a high electron

mobility transistor (HEMT) amplifier (Low Noise Factory LNF-LNC48C, gain 38 dB) at

T = 4 K and finally by a low-noise amplifier at room temperature (Miteq AFS3-00101200,

gain 28 dB).

The most important and defining quantity of the setup is the signal-to-noise ratio (SNR)

measured at the network analyzer. To maximize the SNR, it is important to both use low-

noise amplifiers and minimize attenuation of resonator output photons. Since optimizing the

SNR is such an often-encountered problem, it is worth analyzing the SNR for our three-stage

amplifier chain (see Fig. 3.6).

We first calculate the signal power at port 2 of the network analyzer, PS . This signal is

amplified by the three cascaded amplifiers (gains G1, G2 and G3) at different stages of the
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Figure 3.6: Schematic of the microwave and DC connections entering the dilution refrigera-
tor. The room temperature equipment is shown on the top and the 4 K (mixing chamber)
plate is shown in the purple (yellow) box. A Josephson Parametric Amplifier is the first
amplifier seen from the resonator output and reflects photons with approximately 20 dB of
gain (G1 ≈ 102). Circulators then route the signal towards the network analyzer, which
measures the phase and magnitude of the scattering matrix elements Sij as function of fre-
quency. The filtering of one pair of DC wires (signal and ground) is shown on the right, and
includes room temperature π filters of increasing cut-off frequency and a three-stage filter at
the mixing chamber (see Section 3.6)
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Figure 3.7: JPA calibration and tuning with current (a) Phase of microwaves reflected off the

JPA, measured at zero bias current. The solid red line is a fit to S11 =
i(ω−ωJPA)+(γ−κ)/2
i(ω−ωJPA)+(γ+κ)/2

and gives κ/2π = 30 MHz. The bandwidth of the JPA when it is operated as an amplifier is
approximately 0.1κ/2π. (b) Although the JPA is narrow band, the operating point can be
tuned over a wide range. The horizontal dashed line indicates the microwave resonator fre-
quency f0, while the dashed curve is the JPA frequency as function of bias current ωJPA/2π,
obtained from fits to JPA spectra, such as the one in (a). ωJPA/2π follows the predicted
shape from theory with a small current offset (0.4 mA) and approximately 9.6 mA needed
to thread one flux quantum through the SQUiD array. Finally, the JPA can be operated as
an amplifier for currents where f0 intersects with ωJPA/2π, here I ≈ −2.4,+2.0 mA.

refrigerator before it reaches the network analyzer. Therefore, PS = G1G2G3Pr, where Pr

is the power at the output port of a two-sided microwave cavity, with output coupling rate

κ2:

Pr = nph~ω0κ2. (3.4)

The average number of photons circulating in the cavity can be calculated from input output

theory (Section 1.3.3), provided the input power Pin at the sample is known [53]:

nph =
4κ1Pin

~ω0 (κ1 + κ2 + κint)
2

(3.5)

To calculate the noise power, we assume the main source of noise is Johnson noise at

T = 20 mK, and first neglect the noise floor of any imperfect measurement apparatuses.

We do take into account added noise from the amplifiers, which is characterized by the

noise factor Fi. Note that amplifiers are often specified by their noise figure NFi or noise
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temperature Ti which are related to the noise factor in the following ways:

Fi =

(
1 +

Ti
300 K

)
(3.6)

Fi = 10NFi/10 (3.7)

The total noise power from both amplified Johnson noise and added amplifier noise can be

calculated from Friis’ formula:

PN = kBT∆fG1G2G3

(
F1 +

F2 − 1

G1
+
F3 − 1

G1G2

)
. (3.8)

PN depends on the measurement bandwidth ∆f , usually set by the measurement equipment.

Eq. (3.8) shows that the added noise from the second amplifier is attenuated by a factor

G1 � 1, and can therefore be safely neglected. Of course, the same holds true for the added

noise from the last amplifier, which is attenuated by G1G2. The final expression for the

expected SNR (in dB) is thus

SNR = 10 log10

(
PS
PN

)
≈ 10 log10

(
nph~ω0κ2

kBT∆fF1

)
. (3.9)

To first order the SNR does not depend on the amplifier gains, since both signal and

noise are amplified equally. Furthermore, the SNR depends only on the noise factor of the

first amplifier in the chain. Of all amplifiers, the quantum-limited JPA adds the smallest

possible amount of noise (only half a noise quantum [54]) and therefore offers a considerable

boost in SNR, as long as G1 � 1.

In reality, the measurement apparatus may not be ideal and may have a finite noise floor

PA. In this case the SNR can be written as SNR = 10 log10 (PS/(PN + PA)), which now

weakly depends on the amplifier gains. In practice, with three amplifiers, the noise floor of

our vector network analyzer is so low (PA ≈ −114 dBm) that only for extremely small ∆f

the SNR is limited by PA.
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For a typical cavity output coupling of κ2/2π ≈ 0.5 MHz, Eq. (3.9) shows we can

achieve a single photon SNR of 0 dB within 0.1 µs. These fast measurement times illustrate

the advantage of circuit QED over traditional DC measurement techniques for electrons on

helium.

3.6 Filtering of DC electrodes

Noise on the bias electrodes distorts the dot’s electrostatic potential and thus leads to electron

dephasing (see section 1.3.2). The most common source of noise is the voltage source itself,

but electrical pick-up, ground loops and Johnson noise are also often encountered. Since

most of these types have a 1/f -like dependence, filters with a low corner frequency are key

to minimizing electron dephasing.

An effective low-pass filter only passes low frequency signals below fc and rejects all

other frequencies. Since it is difficult to find a single filter that rejects frequencies from fc to

well above 10 GHz, we designed and used three separate filters with complementary rejection

bands in series. The first two stages are combined on a custom designed printed circuit board,

which is situated in a copper enclosure (Fig. 3.8a) filled with Eccosorb CR117. The PCB

contains pairs of long meandering traces (similar to Ref. [55]) to increase the effective contact

length with the lossy ferrite, and RC-filters with cut-off frequencies fc ≈ (2π
√
R1R2C1C2)−1

in the range 2-400 Hz (Fig. 3.8b). The cut-off frequency for each electrode is chosen based

on the voltage sweep rate for each electrode. The final filter (Minicircuits ZX75LP-30+,

rejection band 30-3000 MHz) cancels self-resonances from the surface mount resistors and

capacitors, which typically have resonances in the regime 1-100 MHz.

The total room temperature transmission of a cascaded filter circuit is shown in Fig. 3.8c.

At frequencies below 10 kHz an RC-filter with fc = 320 Hz shows the expected roll-off. The

uptake in transmission past 10 MHz can be explained via the self-resonances of the surface

mount components, which unfortunately are only weakly attenuated by the Minicircuits

filter. For frequencies above 1 GHz the eccosorb is an extremely effective absorber and the
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Figure 3.8: Cryogenic low-pass filters for DC electrodes near the dot (a) DC filtering test
board mounted in copper enclosure for thermalization and shielding, before it is filled with
Eccosorb. (b) Schematic of the three cascaded DC filters (i.e. eccosorb filter, RC-filter and
Minicircuits π-filter) used to attenuate high-frequency voltage noise on each bias electrode.
(c) Measured transmission through the cascaded filter circuit shown in (b). The transmission
from 10 Hz - 10 kHz was measured using the NI 9260 DAQ, whereas the transmission from
100 MHz - 10 GHz was obtained using a network analyzer. We were not able to obtain the
transmission from 10 kHz - 10 MHz.

transmission is below the noise floor.
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CHAPTER 4

TRAPPING A SINGLE ELECTRON ON HELIUM USING A

SUPERCONDUCTING RESONATOR

In this chapter we experimentally realize the coupling of a single electron and Wigner

molecules on helium to a microwave cavity, which serves as an electron detector and har-

bors an electron reservoir. We transfer electrons from the reservoir to a small island where

we control the charge with single electron resolution, and perform spectroscopy of a single

electron and few-electron Wigner molecules. We observe unique spectra which allow us to

identify different molecules, and a large electron-photon coupling. These results open the

door to coherent control of the orbital and spin state of Wigner molecules on helium.

At the heart of our circuit QED platform lies a superconducting microwave resonator,

which is shown in Fig. 4.1a and was first introduced in section 2.2. This coplanar stripline

resonator consists of two niobium center pins, which are joined at one end (Fig. 4.1b) and

are situated below the ground plane at the bottom of a micro-channel (width w = 3.5 µm,

and depth d0 ≈ 1.2 µm). In the absence of helium and electrons, the differential mode

has a resonance frequency f0 = 6.44 GHz, linewidth κtot/2π = 0.4 MHz, and a strongly

concentrated RF electric field in between the two center pins suitable for coupling to single

electrons.

4.1 Helium dynamics

The resonator can be used as a sensitive probe of the liquid helium in the micro-channel,

since the presence of liquid helium disturbs the dielectric environment seen by the resonator.

Before depositing electrons, we operate the resonator as a liquid helium level meter and

characterize the filling behavior in the micro-channel with a transmitted microwave tone.

The measured resonance frequency shift as function of added helium reveals four different

filling regimes (Fig. 4.2). In region I, a ∼30 nm Vanderwaals film covers the entire sample

73



c

LC-filter

1 mm

3 μm

xy

b

−4 0 4

−0.4

1.2

d0

Si

d

Position across channel y (μm)

z 
(μ

m
)

c

a

+ -

E

Vrg

Vrg

Vtg

Vtrap
Vres

κ1

κ2

RF
Vtg

y
x

LNA

4He

wdot

trap
resonator

e-

d Vpinch

Vpinch

  0.0

LC-filter LC-filter

Figure 4.1: An electron-on-helium dot (a) Optical micrograph and (b) schematic of the
device. The resonator (red) can be probed with an RF tone via coplanar waveguides (yellow)
that couple (decay rates κ1,2) to the microwave resonator. The white arrows show the electric
field of the λ/4 microwave mode at the center of the channel. The transmission is amplified
with a low-noise amplifier (LNA). The electrostatic potential for electrons is controlled with
additional electrodes, which are all equipped with individual low-pass filters to reject noise
at the resonance frequency [50] . In (b), we only show these filters for the trap and resonator.
(c) Tilted, false-colored scanning electron micrograph of the dot showing the micro-machined
silicon substrate. The fabrication recipe for this device can be found in Appendix A. The
resonator (red) and trap electrode (green) are located on the bottom of a micro-channel,
which lies 1.2 µm below the level of the resonator guards (blue), trap guards (orange) and
ground plane. (d) Schematic cross-section of the dot shown in (c), depicting the resonator
center pins and trap electrode submersed in liquid helium. Wigner molecules are trapped
on the interface of liquid 4He and vacuum by the electrostatic potential (solid black line)
generated by electrodes near the dot. The electron orbital state couples to the transverse
microwave electric field E from the resonator.
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cell, resulting in only a small frequency shift. Next, a large frequency shift heralds the second

filling regime where liquid helium fills the channel according to Jurin’s law

ρgh =
σ

R
. (4.1)

Here, h is the vertical distance from the helium in the cylindrical reservoir to the chip,

ρ = 145 kg/m3 is the density of liquid helium, σ = 3.78 · 10−4 N/m2 is the surface tension

and R is the radius of curvature of the helium-vacuum interface. From 30 to 110 puffs, the

helium thickness is given by

tHe = d0 −
ρgh

2σ

w2

4
(4.2)

and barely increases from 1.0 to 1.2 µm, which explains the observed resonance frequency

plateau. Beyond 110 puffs, the channel overflows and the frequency continues to shift down-

wards (region III), until helium fills the entire mode volume of the resonator (region IV).

To study the stability of the helium surface in the micro-channel, we repeatedly measure

the resonance frequency shift at each point along the curve of Fig. 4.2a. The standard

deviation of these repeated measurements is a measure of both the resonator’s sensitivity to

changes in helium level and of helium surface vibrations. The sensitivity of the resonator is

greatest at the transition from region I to region II, which explains the large spike in Fig. 4.2b,

and decreases slowly to zero in region IV. Therefore, the smaller standard deviation observed

in region II compared with region III points to a more stable helium surface, explained by

the stabilizing effect of the capillary filling [44]. Since helium vibrations induce electron

dephasing, liquid helium behaves best as a substrate for electrons in region II. Therefore, all

measurements below are performed at the black arrow in Fig. 4.2b.

To further quantify the helium vibrations at this filling level, we monitor the resonance

frequency as function of time. We observe periodic oscillations with dominant frequencies

below 10 Hz (Fig. 4.3a,b). From the helium-resonator coupling ∂f0/∂tHe = 5 kHz/nm and

the integrated spectral density (6.8 kHz) we estimate the magnitude of classical helium fluc-
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Figure 4.2: Using the microwave resonator as a sensitive probe for liquid helium inside the
micro-channel (a) Resonance frequency f0 and (b) resonance frequency jitter σf as function

of the number of 4He gas puffs introduced to the sample cell. One puff corresponds to
approximately 25 cc of 4He gas at STP. The experiments in this chapter are performed at
the black arrow (100 puffs), where liquid helium has an appropriate thickness and forms a
stable electron substrate. (c) Schematics of the channel showing the helium level (light blue)
in each of the four regions denoted in (a) and (b). For a detailed description see the main
text.
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tuations to be ∆tHe = 1.4 nm. The resonator frequency fluctuations due to these vibrations

increases by a factor of five when reservoir electrons are present (Fig. 4.3c) because electrons

couple more strongly to the resonator than helium.
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Figure 4.3: (a) Resonance frequency jitter due to helium vibrations measured at T = 25 mK
without reservoir electrons. (b) Most of the spectral density for the data in (a) lies below 10
Hz. Nearly all of the resonance frequencies in this region can be associated with a multiple
of 1.4 Hz, the frequency of the pulse tube refrigerator. The quality factor of these modes are
at least a few hundred. (c) After depositing reservoir electrons the frequency jitter increases.
Note the difference in scale compared with (a). All time traces are taken with a microwave
tone on resonance and converting the phase fluctuations to resonance frequency fluctuations
using the resonator linewidth κtot.

Even though the magnitude of the jitter is less than a resonator linewidth κtot = 0.4 MHz,

the variation of the resonance frequency shift over time obscures small frequency shifts due

to electrons near the dot. To circumvent the issue of the resonator jitter, we sweep the trap

or guard voltages at a rate much faster than the dominant helium vibration frequency, such

that frequency shifts from electrons in the dot become quickly apparent after averaging.

4.2 Isolating electrons from the reservoir

We deposit electrons over the resonator through thermal emission from a tungsten filament

situated above the chip, while applying a positive voltage to the resonator DC bias electrode

and a negative bias voltage to the filament. We detect the deposited electrons as a dispersive

resonance frequency shift that depends strongly on the resonator bias voltage Vres (Fig. 4.4a)

and the number of electrons on the resonator [43]. For the experiments presented hereafter,
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we fix Vres at 0.6 V such that electrons on the resonator can be treated as a reservoir with

constant electron density. Furthermore, our measurements are performed at T = 25 mK

and low incident microwave power (nph ≈ 5) such that electrons respond linearly to the

resonator’s driving force.
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Figure 4.4: Separating electrons from the reservoir. (a) At T = 25 mK reservoir electrons are
detected through a dispersive resonance frequency shift which depends on Vres. According
to Eq. (2.8), the jump in ∆f0 at Vres ≈ 0.18 V signals electron loss from an ensemble with
density n ≈ 9 × 1012 m−2. The data presented hereafter are taken with the resonator bias
voltage fixed at 0.6 V, which is marked by a square. (b) Measured resonance frequency
shift while raising a barrier between the dot and reservoir as function of Vtrap. The dashed
line segments mark the border of a region where electrons can be trapped in the dot. The
largest ∆f0 are expected when the electron orbital frequency approaches f0. For Vtrap > 0.3
V electron trapping is unstable, because reservoir electrons can freely flow through the dot
onto the trap electrode. (c)-(e) Simulated potential energy along the channel for three
different values of Vrg, Vtrap, marked by the red dots in (b). Reservoir electrons (x > 2
µm) and electrons in the dot (−1.5 µm < x < 1.5 µm) are represented as a constant energy
(blue). Electrons are trapped in the dot in (d) and (e).

We use the dot in Fig. 4.1c to isolate individual electrons from the reservoir, which

requires fine control over the electrostatic potential. We achieve this using three sets of

electrodes near the tip of the resonator where the microwave electric field is strongest. The
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size of the electrodes near the dot is much larger than in semiconducting quantum dots,

because the unscreened electron interaction results in inter-electron distances exceeding 200

nm. With appropriate voltages applied to the electrodes, the smooth electrostatic potential

(Fig. 4.4d,e) allows for trapping of electrons. Furthermore, due to the dot’s oblong shape,

the lateral motion of trapped electrons is primarily in the y-direction (see Fig. 4.1d), such

that it couples to the transverse microwave field of the resonator.

To load the dot we use the trap electrode (Fig. 4.1c, green) to attract reservoir elec-

trons towards the dot, and the resonator guard (blue) to create a barrier between the dot

and reservoir. Only if the trap voltage is sufficiently positive, and the resonator guard is

sufficiently negative can electrons be loaded and contained in the dot, respectively. When

monitoring the resonance frequency shift ∆f0 in response to these two voltages, we only see

significant signal in an area that is marked by two converging dashed lines in Fig. 4.4b. The

dashed lines are obtained from simulation of the electrostatic potential near the dot (see Fig.

2.7), and indicate the presence of a barrier between reservoir electrons and electrons in the

dot. Well within the predicted trapping region, we observe resonance frequency shifts that

depend sensitively on Vtrap and Vrg, indicating that trapped electrons in the dot interact

with the resonator. The observed shift depends on the number of trapped electrons, which

increases for a larger trap voltage, as well as the shape of the electrostatic potential.

4.3 Signatures of Wigner molecules

To deterministically populate the dot with N electrons, we partially unload the dot using the

trap guard electrode (orange in Fig. 4.1c). A partial unload consists of briefly sweeping the

trap guard voltage to Vunload < 0, which decreases the trap depth (see Fig. 4.5a), followed by

a measurement of the resonator transmission at (Vtrap, Vtg) = (0.175, 0.0) V. The plateaus

in resonator transmission shown in Fig. 4.5b are reproduced after reloading the dot, but are

absent when the dot is initially empty. Therefore, each plateau is associated with a constant

number of trapped electrons, and the final change in transmission at Vunload = −0.305 V
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leaves the dot empty.

The sudden changes in transmission are consistent with single electrons leaving the dot.

We show this by modeling the trap as an axially symmetric harmonic well in which the

electron configurations can be calculated analytically [56, 57]. From the voltage at which

the last electron escapes, we estimate unloading voltages for two, three and four electrons,

using the effective trap curvature as the only free parameter (see Appendix B). Red arrows

in Fig. 4.5b indicate these estimates, and agree within 3 mV with the plateau edges. This

unloading method therefore allows us to deterministically populate the dot with one to four

electrons.
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Figure 4.5: Unloading the dot. (a) Schematic of the unloading procedure. At the unloading
voltage, the dot’s trap depth decreases for more negative Vunload. No electrons can occupy
the dot at Vtrap = −0.4V. (b) With decreasing Vunload, sudden changes in the resonator
transmission (black dots, measured at Vtrap = 0.175 V and Vtg = 0 V and averaged 500
times) indicate that electrons leave the dot. We observe five distinct plateaus that are
reproduced after reloading the dot eight hours later (white dots), and are associated with a
constant number of trapped electrons N . Red arrows indicate predicted escape voltages for
N = 4 to 1 electrons (left to right) from a single-parameter model, see Appendix B.

The increasing length of transmission plateaus ∆VN with decreasing N is a telltale sign of

strong electron interactions [58, 59], which originate from an unscreened interaction potential

on liquid helium [21]. The ratio of kinetic energy kBT to interaction energy U as well as
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confinement strength n̄, quantify electron interaction strength and wavefunction overlap, and

predict the formation of Wigner molecules for Γ−1
c = kBTc/U . 1/137 and n̄c . 1/37 [22,

60]. Since our experiment operates in the low-temperature (Γ−1/Γ−1
c ≈ 9), low-confinement

regime (n̄/n̄c ≈ 3), the irregular step size signals the presence of Wigner molecules inside

the dot.
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Figure 4.6: (a) Resonator transmission spectra of Wigner molecules consisting of up to
four electrons, measured by varying the trap curvature using Vtrap. Below Vtrap = 0.15 V
electron trapping is unstable. The solid black lines are simulated cavity responses and agree
qualitatively with the measured spectra. The discontinuity in the simulation for N = 3 is
due to a sudden change in position of the electrons, and is not expected to be visible in
the averaged data. (b) Simulated orbital frequencies associated with the simulated cavity
responses in (a). The strongest coupled electron eigenmode is highlighted and more weakly
coupled eigenmodes are shown in gray. For N = 1, the crossing of the electron orbital
frequency with the resonator explains the large measured signal in (a). (c) Simulated electron
configurations in the approximated electrostatic potential, shown for Vtrap = 0.175 V. The
arrows show the electron motion for the eigenmode that is most strongly coupled to the
resonator. The microwave electric field is in the y-direction.

While a Wigner molecule is trapped in the dot, we use the resonator to observe it’s unique

spectrum, which provides insight in the electron configurations and orbital frequencies. We

perform spectroscopy by monitoring the resonator’s transmission while varying the trap
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voltage, which deforms the trap and therefore controls the orbital frequencies. For this

measurement, a Wigner molecule can be trapped and studied for hours, since the trap

depth is large compared to the zero-point energy and thermal energy. Fig. 4.6a shows five

different spectroscopy traces, each corresponding to the different-sized Wigner molecules

from Fig. 4.5b. To retrieve electron configurations and orbital frequencies, we numerically

minimize the total energy of the ensemble and solve the coupled equations of motion (see

Appendix C). The electron configurations (Fig. 4.6c) change significantly as electrons are

added or removed from the dot, and show correlated electron motion, originating from

strong electron interactions. The largest signal in Fig. 4.6a occurs for a single electron

at Vtrap = 0.175 V when its orbital frequency fe is resonant with the resonator (Fig. 4.6b).

In our model, the orbital frequency of larger Wigner molecules remains detuned for all

Vtrap, which is due to a strong anharmonic component in the electrostatic potential. From

the quartic term in this potential, we estimate a single-electron anharmonicity of 85 MHz

(section 2.3.3), which holds promise for creating an electron-on-helium orbital state qubit.

4.4 Properties of a single electron in the dot

We now focus on a single trapped electron and investigate its properties by tuning the

orbital frequency into resonance with the resonator. Fig. 4.7a shows a crossing of the orbital

frequency with the resonator around Vtrap = 0.184 V, which is accompanied by a rapid

change in ∆f0 (Fig. 4.7c). By fitting the measured frequency shift to a model, which takes

into account one orbital mode coupled to a single resonator mode [38], we obtain a single-

electron-photon coupling strength g = 2π × (4.8 ± 0.3) MHz and electron linewidth γ =

γ1/2 + γϕ = 2π × (77± 19) MHz. The coupling strength is large compared to the resonator

linewidth (κ/2π ≈ 0.5 MHz), indicating that each photon measures the presence of the

electron, and the coupling is similar to that measured in semiconducting quantum dot circuit

QED architectures [41]. In addition, our estimate of the anharmonicity (see Fig. 2.9) is

similar to that in superconducting qubits, indicating that with a reduced linewidth the
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orbital state of a single electron on helium can be used as a qubit.
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Figure 4.7: Single electron resonator spectroscopy. (a) Normalized transmission amplitude
as function of trap voltage and microwave probe detuning fp−f0. (b) Resonator spectra for
two values of Vtrap, indicated by arrows on the horizontal axis in (a). For Vtrap = 0.184 V
(0.23 V) the electron is on (off) resonance with the cavity. The resonant trace illustrates the
sensitivity of our device to a single electron. (c) Resonance frequency shift (right axis) and
resonator decay rate (left axis) obtained by fitting the Lorentzian resonator spectra from
(a). The solid line is a fit to a model that yields a coupling strength near resonance of
g/2π = 4.8±0.3 MHz and total electron linewidth γ/2π = 77±19 MHz. The top horizontal
axis displays how the electron orbital frequency varies as function of Vtrap, and shows a
crossing with the resonator (fe = 6.4 GHz) at Vtrap = 0.184 V.

The total linewidth γ is three orders of magnitude larger than expected from the electron-

phonon coupling in 4He and charge noise from the bias electrodes, respectively (γ/2π < 0.1

MHz) [17]. We identify the dominant source of excess noise as classical helium fluctuations

in the dot, caused by the pulse tube refrigerator. This is corroborated by a measurement

of the crossing voltage as function of time, which shows spectral features of the pulse tube

refrigerator (see Fig. 4.8). To estimate the dephasing rate due to helium fluctuations,

we estimate an electron’s sensitivity to helium fluctuations from electrostatic simulations

(∂fe/∂tHe ≈ 80 MHz/nm) and independently measure helium fluctuations (∆tHe ≈ 1.4

nm), yielding γϕ/2π ≈ 110 MHz. Therefore, we expect the single electron linewidth to be

limited by dephasing due to helium level fluctuations.
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4.5 Evidence of a helium-limited linewidth

We verify the hypothesis that the single electron linewidth is limited by helium vibrations

by quickly and repeatedly bringing the electron in and out of resonance. If there were

no electron dephasing, the crossing voltage would be constant each time the electron is

brought into resonance. However, Fig. 4.8a,b clearly shows a spread in crossing voltages of

∆V ∗trap = 0.3 mV, from which we predict a dephasing

γ/2π = 2
√

2 ln 2
∂fe
∂Vtrap

∆V ∗trap = 67 MHz, (4.3)

which is consistent with the measured single electron linewidth γϕ/2π = (77±19) MHz from

Fig. 4.7. Moreover, the spectrum of crossing voltages (Fig. 4.8c) contains multiples of the

characteristic pulse tube frequency (1.4 Hz). Therefore, we conclude that the single electron

linewidth is limited by dephasing due to helium vibrations originating from the pulse tube.
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Figure 4.8: Quick and repeated measurements of the crossing voltage of a single electron.
(a) After loading a single electron we repeatedly sweep the electron in and out of resonance
while recording the resonator transmission. The crossing voltage as function of time is
found by fitting to the location of the minima in the measured resonator transmission. (b)
Statistics of 103 crossings with the resonator. The solid black line is a Gaussian fit with
standard deviation ∆V ∗trap = 0.28 mV. (c) Fourier transform of the crossing voltage time
series. The dashed lines at fk = 1.4 k Hz with k = 2, 4, 6, 8 indicate multiples of the pulse
tube refrigerator frequency and align with peaks in the crossing spectrum. The maximum
FFT frequency is set by the sweep time needed to bring the electron in and out of resonance
(45 ms), which in turn is limited by the corner frequency of the RC filter, the number of
measurement points and the re-trigger time of the PNAX.
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If the helium surface vibrates more slowly than the measurement time of Fig. 4.8a, it

should be possible to manually align the resonator transmission spectra to find the electron

linewidth in the absence of helium vibrations. We did not observe a decrease in linewidth

after refocussing the transmission spectra, possibly because helium vibrations with higher

frequencies limit the linewidth on the timescale of the sweep time. By increasing the corner

frequency of the RC filter of the trap electrode, it may be possible to measure the crossing

voltage fast enough to find the linewidth in the absence of vibrations.

4.6 Additional contributions to the electron linewidth

Besides helium vibrations, the electron linewidth is also broadened due to deleterious effects

of voltage noise and the presence of the electron reservoir. Taking into account the RC-filters

and the dot geometry allows for a more accurate estimate than in section 1.3.2 or Ref. [17],

and shows that both these contributions are smaller than the contribution due to helium

vibrations.

4.6.1 Voltage noise from the bias electrodes

The linewidth due to voltage noise depends on the magnitude of the noise, which is reduced

due to an RC filter on each bias electrode, and the electron’s sensitivity to voltage noise

from each electrode ∂fe/∂Vi. We determine the sensitivities from simulation of the electron

frequency near the resonant condition and they are summarized in Table 4.1. The large slope

associated with the trap electrode indicates fe can be tuned over a large range with a small

trap voltage, but also makes a single electron very vulnerable to noise on the trap electrode.

However, due to the low corner frequency of the RC filter (f3dB ≈ 300 Hz) we estimate only

5 µV of noise on each electrode, such that the estimated linewidth, determined by adding
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the contributions in quadrature

γnoise
ϕ

2π
=

√√√√∑
i

(
∂fe
∂Vi

)2

∆V 2
i , (4.4)

should not exceed 1 MHz.

Table 4.1: Effect of voltage noise on the electron orbital frequency fe and the resulting
contribution to the single electron linewidth γiϕ/2π, assuming a voltage noise on each elec-
trode of ∆Vi = 5 µV. The relative magnitudes of the simulated slopes ∂fe/∂Vi are equal
to the ratio of electrode lever arms, shown in Fig. 2.8a (the expected electron position is
x = −0.5 µm).

Electrode i ∂fe/∂Vi (GHz/V) γiϕ/2π (MHz)

Resonator -48 0.2
Trap 95 0.5
Resonator guard -7 <0.1
Trap guard -11 <0.1
Total 0.5

4.6.2 Helium vibrations on the resonator

Reservoir electrons above the resonator form a capacitor with the image charges induced

in the resonator electrode below and fluctuations in the helium level ∆tHe modulate the

capacitance Cres of the electron reservoir. Since the resonator electrode also extends into

the dot area, fluctuating image currents caused by the fluctuating capacitance cause single

electron decoherence.

The capacitance of the sheet of electrons above the resonator can be approximated by a

parallel plate capacitance: Cres = ε0εHeA/tHe, where tHe is the height of the electrons above

the electrode, and A the area of the electron reservoir. A change in the helium thickness

causes a change in the capacitance

∆Cres = −Cres

tHe
∆tHe. (4.5)
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Figure 4.9: Electrical schematic used to calculate the effect of a fluctuating electron reservoir
on a single electron. The reservoir is represented by the capacitor Cres, which fluctuates due
to classical helium fluctuations ∆tHe. The resonator electrode is biased using a voltage
source, which is hooked up to the electrode with leads that have impedance ZL. This
impedance also includes the bias source output impedance and filters.

The effect of ∆Cres on a single electron depends on the value of ZL (Fig. 4.9), which

includes the output impedance of the voltage source and the line impedance. If ZL → ∞,

the resonator potential is floating and fluctuating image currents do not dissipate via the

leads but dissipate entirely via the capacitors. An estimate of the single-electron linewidth

assuming ZL →∞ therefore gives an upper limit for the dephasing due to reservoir fluctu-

ations.

If the helium thickness fluctuations are quasi-static and ZL →∞, a small fluctuation in

capacitance results in voltage noise on the resonator electrode via V = Q/Ctot, such that

the voltage noise ∆Vres is given by:

∆Vres = − Vres

Ctot
∆Cres =

Vres

tHe

Cres

Ctot
∆tHe. (4.6)

In Eq. (4.6) we define the total capacitance of the resonator electrode Ctot ≈ Cres + Cgnd

and have assumed that (i) the capacitance to the single electron Ce is negligible and (ii)

Cgnd is approximately constant with tHe. The ratio Cres/Ctot equals the resonator electrode

lever arm at the location of the electron reservoir, and is approximately 0.6 from electrostatic

simulations (see Fig. 2.8a).

Finally, using Eq. (4.6), we estimate the dephasing from the electron sensitivity to the
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resonator electrode:

γres
ϕ

2π
=

∣∣∣∣ ∂fe∂Vres

∣∣∣∣∆Vres =

∣∣∣∣ ∂fe∂Vres

∣∣∣∣ Vres

tHe

Cres

Ctot
∆tHe (4.7)

With ∆tHe = 1.4 nm, tHe = 1.2 µm, Vres = 0.6 V and ∂fe/∂Vres from Table 4.1, we estimate

an upper limit for the single-electron linewidth γres
ϕ /2π ≈ 20 MHz. Furthermore, we assume

there are no electrons on the trap, resonator guards or trap guards, such that a similar

calculation for these electrodes does not result in additional dephasing. In a future device,

this source of dephasing can be completely eliminated by removing the reservoir electrons

or using an additional reservoir that does not couple to the resonator.

4.7 Towards strong coupling

Reducing the linewidth and increasing the coupling strength offers a path towards the strong

coupling regime, which has recently been achieved for the cyclotron motion of electron en-

sembles on liquid helium [32]. In the strong coupling regime, direct measurement of the

single electron and Wigner molecule orbital frequencies using two-tone spectroscopy [61]

may bring to light new microwave features of strongly correlated electron states [62]. Since

the orbital frequencies span tens of GHz (see Fig. 4.6b) this measurement would benefit

from a frequency tunable microwave resonator [35, 63–66], a feature that can be embedded

in a future device.

To reduce the linewidth, the pulse tube, which excites the helium surface, can be turned

off for a short period of time without noticeable heating of the mixing chamber plate. How-

ever, turning off the pulse tube has not resulted in a smaller linewidth, because the ringdown

time of surface vibrations at T = 20 mK is tens of seconds (see Appendix D). At tempera-

tures above T ≈ 0.3 K the ringdown time decreases as T−4 [67] due to damping from the

normal component in 4He. However, operating the experiment at elevated temperatures is

unfeasible, since thermal excitations also broaden the electron transition (Fig. 4.10).
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Figure 4.10: Resonator spectroscopy as function of temperature. (a) Single electron res-
onator spectroscopy for T = 20 mK (blue), 50, 75, 150 and 250 mK (red). (b) Fits to the
single-electron resonator spectroscopy with fixed g/2π, show an increased linewidth γ/2π
with increased temperature. Over the same temperature range helium fluctuations remain
constant and the Q of the superconducting Nb resonator is hardly affected, such that the
increased linewidth must be due to increased thermal occupancy of the excited state of the
single electron.

In an effort to dampen superfluid vibrations more quickly without heating the electron,

we have added small amounts of 3He to the sample cell. Due to a larger zero-point motion

3He atoms uniformly coat the surface of the 3He-4He substrate and its non-zero viscosity

should dampen surface vibrations [51, 68]. For 3He concentrations of 500 ppm, the substrate

is coated in multiple monolayers of 3He atoms, but we have not observed a decrease in

electron linewidth. For higher concentrations, we were unable to trap reservoir electrons due

to unexpected electron loss events.

A promising approach to decreasing the linewidth is via passive vibration isolation of

the sample cell at the mixing chamber, or via active noise cancellation of the sample cell

or the helium surface (see section 5.4). Both methods are challenging because the fill line

and microwave cables are rigid connections that transmit vibrations effectively. In addition,

passive vibration isolation of low-frequency vibrations requires long extended springs where

space is limited [69], and active noise cancelation suffers from reduced piezo travel distance

at temperatures below 4 K.

The most promising approach to reaching the strong coupling regime is to design a dot
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insensitive to helium vibrations (∂fe/∂tHe = 0). A preliminary design of a dot with a single

electrode on the bottom of the micro-channel shows a hundredfold reduction in linewidth,

although this comes at the expense of a smaller trap depth (see section 2.3.1). Such a dot

combined with a microwave resonator made of a high kinetic inductance superconductor,

which can enhance the coupling strength by more than three times via an increased charac-

teristic impedance [29, 34], could allow for circuit QED with a single electron on helium in

the strong coupling regime.

In conclusion, we have integrated an electron-on-helium dot with a superconducting mi-

crowave resonator and observed distinct resonator spectra of Wigner molecules consisting

of up to four electrons. The large anharmonicity and coupling strength of a single electron

on helium hold promise for creating an electron-on-helium qubit, which can be readily in-

tegrated with superconducting qubits while leveraging established protocols. Finally, when

combined with a magnetic field gradient, the orbital state offers a clear path towards control

of single electron and Wigner molecule spin states.
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CHAPTER 5

COUNTERACTING VIBRATIONS OF THE LIQUID HELIUM

SURFACE

Superfluid helium is host to many long-lived elementary excitations which hold great promise

as mechanical resonators [70–74]. Liquid helium can interact with electromagnetic fields via

a dielectrophoretic force, which attracts liquid helium towards locations where the modulus

of the electric field is maximum, similar to the trapping force on a dielectric particle from an

optical tweezer. This coupling is the main ingredient in superfluid helium optomechanics,

which studies the mechanical properties of liquid helium using photons [71, 73, 75]. The

same mechanism also allows for static control over the liquid helium film thickness, which

can be used to tune optomechanical mode frequencies in-situ or control helium film thickness

in ripplon studies on the helium surface [67, 76].

During experiments liquid helium is often subject to classical vibrations, which are due

to external excitation of the experimental device (e.g. from the refrigerator itself or the

laboratory environment) [43, 77]. Typically, at temperatures above 0.3 K the viscous damp-

ing in liquid helium is sufficient to attenuate these excitations in a reasonable timescale

[67], such that experiments are minimally affected [75]. However, electron-on-helium qubits

require temperatures below 0.1 K [17], where the liquid helium damping time exceeds min-

utes (appendix D) and classical fluctuations are the main source of dephasing, limiting the

linewidth to tens of MHz (section 4.5). Stabilization of the liquid helium surface using the

dielectrophoretic force could drastically reduce the linewidth of an electron on helium and

greatly increase the measurement duty-cycle for superfluid optomechanics experiments.

In this chapter, we identify the pulse tube (PT) as the main source of vibrations inside

the dilution refrigerator and measurements with a sub-pm/
√

Hz-sensitive helium level meter

suggest that on-chip helium vibrations are caused by PT-induced vibrations in the off-chip

helium reservoir. By applying only a moderate bias voltage to our helium level meter, we
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can vary the helium thickness by more than the vibration amplitude. This allows us to

actively cancel classical helium vibrations, which results in a fivefold reduction of on-chip

RMS vibrations. If implemented with with electrons on helium, this technique could bring

strong electron-photon coupling within reach.

5.1 Characterization of refrigerator vibrations

We first determine the cause of classical helium vibrations by measuring vibrations inside

the refrigerator with a geophone, a device which produces a time-dependent voltage propor-

tional to the speed of a small magnet suspended inside a coil. The voltage across the coil,

caused by environmental vibrations which excite magnet motion, depends on the geophone’s

resonance frequency fg, quality factor Qg and coil’s electrical properties. A measurement

of the geophone’s transfer function (Fig. 5.1b) calibrates these quantities and relates the

measured output voltage to the magnet displacement. The transfer function is large around

the geophone’s resonance frequency fg and from a fit we determine the geophone’s essential

properties, both at room temperature and T = 20 mK (Table 5.1). At cryogenic tempera-

tures the quality factor decreases notably, which results in a reduced sensitivity

S(f) =
Z12

(
f
fg

)2

1−
(
f
fg

)2
+ i
Qg

f
fg

, (5.1)

especially at frequencies below fg (Fig. 5.1c). Because the displacement is inversely pro-

portional to the sensitivity d(f) = Vout(f)/2πfS(f), a reduced sensitivity produces a more

noisy vibration spectrum at low frequencies, compared with room temperature.

During normal operation of the refrigerator, the geophone’s vibration spectrum d(f)

shows a series of peaks at frequencies predicted by multiples of the natural pulse tube

frequency (fk = 1.41 k Hz, see Fig. 5.2b). The peaks disappear when the pulse tube

(PT) is turned off and the root-mean-square (RMS) vibration amplitude decreases from
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Figure 5.1: Calibration of the geophone inside a dilution refrigerator. (a) Electrical circuit
used to calibrate the relevant parameters that determine the response of the geophone. The
electrical circuit is driven by a sine wave of frequency fd, and the geophone’s transfer function
is measured by recording Vin and Vout using a digitizer. In our circuit the series resistance
is Rs = 10 kΩ, the input impedance of the digitizer is Zi = 1 MΩ and Ze is the geophone’s
impedance to be determined. (b) Transfer function of the geophone at T = 300 K (green
dots) and T = 20 mK (blue dots). The solid lines represent fits to the theoretical response.
(c) The fits allow for extraction of the sensitivity at room temperature (green) and cryogenic
temperatures (blue). A slight decrease in sensitivity is observed at cryogenic temperatures.

Table 5.1: Comparison between geophone properties at room temperature and T = 20 mK.
The parameters were extracted using the calibration method from Ref. [78].

T = 300 K T = 20 mK

Natural frequency fg (Hz) 4.46 5.26
Quality factor Qg 1.47 0.98
Impedance Z12 (Ω) 33.0 29.4
Transducer coil resistance RT (Ω) 513 58
Coil inductance LT (Ω) 0.03 0.15

drms = 0.5 µm to drms = 0.2 µm. The slope in the spectra is consistent with voltage noise

with a 1/f -like dependence and tends to exaggerate vibrations below fg ≈ 5 Hz. The promi-

nent feature in both spectra at f ≈ 10 Hz originates from building vibrations which are

transmitted to the mixing chamber plate via the refrigerator frame. This was confirmed by

a frequency shift after loading the frame with sandbags.

Since the PT must stay turned on for continuous cooling, it is important to minimize

vibrations at the mixing chamber plate with the PT on. We identify three rigid connections

inside the refrigerator responsible for transmitting vibrations from the PT to the mixing

chamber plate. Firstly, since the cryostat is mounted on air bellows which deflate over time,
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gain G = 500 and recorded. (b) Two vibration spectra recorded with the pulse tube on
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pulse tube is turned off. The solid black line shows the contribution of voltage noise with
a 1/f -like scaling (V ∝ f−0.3). (c) Oxford Triton 200 schematic with the pulse tube (PT)
drawn in green. Vibrations from the pulse tube are transmitted to the mixing chamber
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(i.e. a touch) at the PT feedthrough, and through the precool circuit thermalization. (c)
Measurements of the vertical RMS displacement at the mixing chamber plate with the PT
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at the mixing chamber of a different refrigerator in the laboratory, labeled Bluefors, shows
much lower vibrations. This indicates that our measured vibration levels depend sensitively
on the fridge construction and environment. The displacement measured with the PT turned
off is comparable to the displacement measured with the geophone placed on the laboratory
floor. 94



the PT may touch the 50 K plate at the PT feedthrough (Fig. 5.2c). Secondly, the factory-

installed copper thermalization braids between the PT and plates are not flexible enough

to block PT vibrations from entering the plate. Replacing these braids with longer and

more flexible home-made braids in combination with fixing the physical touch at the PT

feedthrough reduces the RMS vibrations by an order of magnitude (Fig. 5.2d). The precool

circuit constitutes the final rigid connection, but it cannot be disconnected during cooling

and, moreover, disconnecting the precool circuit only slightly reduces the RMS vibrations.

With the refrigerator in working condition, the remaining RMS vibrations are drms = 0.5 µm.

The remaining RMS vibrations are a factor two larger compared with the PT turned

off, and are considerably larger than the those of a comparable dilution refrigerator in the

same laboratory space (Fig. 5.2d), suggesting it should be possible to further reduce the

RMS vibrations to below drms = 0.5 µm. This may be accomplished by repositioning the

PT motorhead to relieve tension in the braided hose attached to the PT, or disconnecting

the PT from the fridge frame by mounting it to the lab ceiling. However, the efficacy of

these passive vibration isolation methods remains to be tested and in general it is difficult to

isolate a device from low-frequency vibrations using only passive isolation techniques [69].

Active vibration cancellation can be very effective at cancelling low-frequency vibrations

[79]. In the next sections, we implement active vibration cancellation of the liquid helium

substrate in a micro-channel using electric fields. On-chip vibration cancellation is advanta-

geous over off-chip cancellation, since on-chip electric fields regularly exceed 1 MV/m and

thus produce a large dielectrophoretic force on the superfluid. In addition, the amount of

liquid helium on the chip is small, and in the case of superconducting electrodes, cancellation

does not dissipate heat.

5.2 A microwave resonator as superfluid helium levelmeter

We detect on-chip pulse-tube-induced liquid helium vibrations using a lumped element LC-

resonator, which consists of two meandering inductances and interdigitated capacitors (IDCs,
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see Fig. 5.3a). A 0.4 µm layer of hard-baked photoresist covers the entire 80 nm thick Al

resonator and ground plane, except at a narrow strip which aligns with the IDC. This

strip forms a micro-channel (width w = 17 µm and depth d0 = 0.4 µm) for liquid helium

and confines liquid helium above the IDC where most of the resonator’s microwave electric

field is concentrated (Fig. 5.3d). When liquid helium is present in the micro-channel, we

detect a change in the helium level as a negative resonance frequency shift, because the

dielectric constant of helium is slightly larger than ε0. Therefore, our microwave resonator

acts as a sensitive helium level meter with resonance frequency f0 = 6.06 GHz and linewidth

κ/2π = 160 kHz1.

The response of the level meter to liquid helium shows three distinct regions, each associ-

ated with a different filling regime (Fig. 5.3e). In region I, a thin layer of liquid helium coats

the entire sample cell including the resonator, which leads to a small resonance frequency

shift of ∆f0 < 0.1 MHz. In the second regime, there is enough helium to fill the gaps between

the fingers of the IDC and finally in region III, liquid helium fills the micro-channel as shown

in Fig. 5.3c. For the following experiments, we fix the helium level as indicated by the red

star in Fig 5.3e, where we estimate a helium thickness in the center of the micro-channel

tHe = 250 nm2.

Vibrations from the building and PT perturb the liquid helium level inside the off-chip

cylindrical reservoir (Fig. 5.3c) and subsequently modulate the helium level in the micro-

channel, which we detect as a time-dependent resonance frequency jitter σf (Fig. 5.3f).

The jitter increases by an order of magnitude during the transition from region I to region

II, because the level meter is most sensitive to small changes in helium level between the

1. We find that the loaded quality factor (QL ≈ 4× 104) is limited by the coupling capacitance, and not
(as one may expect) by the presence of the hardbaked photoresist, because the participation of the electric
field in the photoresist is minimized by removing the photoresist above the IDC. If the photoresist had also
covered the IDC, we expect an internal quality factor Qi ≈ 1/ tan δ ≈ 102 [80].

2. The maximum resonance frequency shift occurs when the entire upper half plane is filled with helium

and is given by ∆f0 = −f0
(

1−
√

(εsps + ε0pu)/(εsps + εHepu)
)
≈ −16.9 MHz, where ps and pu are the

energy of the electric field stored in the substrate and upper half plane, respectively. Because the energy
density E2(x, y, z) extends a few microns above the shallow micro-channel, the frequency shift does not
saturate when the channel is full.
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IDC fingers, and decreases again in region III, because surface tension stabilizes the liquid

helium surface. The large correlation between the resonator jitter and the derivative of the

data in Fig. 5.3d (∂f0/∂h) confirms that the observed jitter is caused by helium reservoir

vibrations of magnitude ∆h ≈ 50 µm. This large value is consistent with the PT vibrations

(drms = 0.5 µm) and an underdamped helium reservoir resonance of Q ≈ 102.

5.3 Liquid helium response to DC bias voltages

To gain control over the helium level in the micro-channel without adding helium to the

sample cell, we apply a bias voltage to the resonator center pin. The symmetric design of

the level meter allows for applying such a bias voltage while maintaining a narrow resonator

linewidth. For small voltages we observe a resonance frequency shift proportional to V 2
res

(Fig. 5.4), consistent with an electrostatic model which assumes the frequency shifts linearly

with a small change in tHe

∆f0 = gHe∆tHe =
w2

16σ
gHe (εHe − 1) ε0V

2
resE

2
V (x, y) = αV 2

res, (5.2)

where E2
V is the electric energy density above the IDC with an applied bias voltage of

Vres = 1 V, and gHe is the helium coupling strength. For larger voltages, the resonance

frequency increases faster than quadratic and the helium vibrations become more prominent,

which we attribute to the formation of a helium bubble above the IDC. The simple model

of Eq. (5.2) is therefore no longer appropriate.

The helium coupling strength is a key parameter of our level meter, since it determines the

smallest observable change in helium thickness. We determine gHe = 0.79 ± 0.03 kHz/nm

from a fit to the quadratic coefficient α and the average value of the simulated E2
V at

z = 0.4 µm above the capacitor (Fig. 5.3d). It is slightly smaller than for comparable

coplanar waveguide resonators [43] because the channel is wider and helium occupies a

smaller portion of the resonator’s mode volume in our design. Since the mode volume is
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Figure 5.3: (a) Schematic of the circuit used to characterize and mitigate on-chip helium
vibrations. The helium sensor consists of a symmetric lumped element LC-resonator, which
can be probed and read out by sending RF tones via the coupling capacitors Cin and Cout.
Due to the symmetric resonator design, the microwave mode has a voltage node at the
red dot, which we exploit to apply a bias voltage Vres to the resonator center pin without
destroying the resonator quality factor. (b) Zoomed in micrograph of one of the capacitors
of the LC-resonator. The interdigitated capacitor fingers are aligned with a micro-channel
(width w = 17 µm) such that liquid helium interacts with the electric fringing field from
the interdigitated capacitor. (c) Cross-section of the shallow (d0 = 0.5 µm) micro-channel
shown in (b), with the photoresist (SU8) micro-channels shown in brown. Off-chip helium
reservoir vibrations (∆h) change the helium surface curvature. (d) Simulated microwave
electric field along the micro-channel as function of the height above the IDC. When helium
fills the volume above the IDC the level meter responds with a negative frequency shift
until the mode volume, which extends up to approx. wf/2π, is filled. (e) The resonance
frequency shifts down after adding liquid helium to the sample cell and we recognize three
different filling regions. (f) The vibrating helium surface modulates the microwave resonance
frequency over a frequency range σf . Each black dot represents the resonance frequency jitter
measured by taking the standard deviation of N = 25 quick measurements of the resonance
frequency. The red dots are determined from the derivative of the data shown in (d), and
the correlation between both datasets suggests that the resonance frequency jitter is caused
by helium vibrations in the off-chip reservoir.
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related to the IDC finger spacing wf , we can increase gHe in a future design by decreasing the

IDC finger spacing. In addition, we can increase the coupling strength orders of magnitude

by creating a superfluid helium resonator, an approach that has been successful in the optical

domain and has allowed cooling of surface excitations [75].
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Figure 5.4: (a) Frequency shift (green) and helium fluctuations (red) of the level meter as
function of the bias voltage applied to the resonator center pin, measured at the helium level
indicated by the red star in Fig. 5.3d. For small bias voltages, the resonance frequency closely
follows a quadratic model ∆f0 = αV 2 (solid black line), where α = −1.87 ± 0.07 kHz/V2,
whereas for larger voltages the resonance shifts faster than the quadratic response. The
measured helium fluctuations in the micro-channel σt are approximately constant for small
voltages but increase for larger voltages.

5.4 Active stabilization of the superfluid interface

From the coupling strength we estimate that a small bias voltage of±5 V increases the helium

thickness in the micro-channel by 74 nm, which exceeds the helium fluctuations estimated

from the measured resonance frequency jitter σt = σf/gHe ≈ 26 nm. Therefore, it should be

possible to cancel the resonance frequency jitter σf by applying a time-dependent voltage

and using the level meter’s resonance frequency as the control signal. For a continuous

measurement of the resonance frequency, we construct a microwave interferometer shown in

Fig. 5.5a. We feed the interferometer output Q, which varies due the helium vibrations d,

into a control law K. For sufficiently large K, the control law attenuates helium vibrations

99



and ensures that the interferometer output follows the setpoint s, since

Q = (Ks+ d)
G

1 +KG
≈ s (5.3)

if KG� 1.

Successful stabilization of the helium surface depends on the detection sensitivity of

disturbances d(f) as well as our ability to correct for them. Assuming Johnson noise limits

the signal to noise of the detection chain, the smallest observable change in helium thickness

depends sensitively on the helium coupling strength gHe, on the noise figure of the first

amplifier in the chain (F1), and can be increased with a stronger microwave drive (which

increases the average intra-cavity photon number, nph):

∆t2He

∆f
=
π

2

kBTF1κ

g2
Henphhf0

. (5.4)

For a typical drive power just below the resonator’s bifurcation point (nph ≈ 105) we achieve

a detection sensitivity of 0.5 pm/
√

Hz, two orders of magnitude better than quartz tuning

fork helium surface probes [81, 82]. We can correct for the helium vibrations as long as

the vibration spectrum contains no frequency components above the resonator linewidth

κ/2π = 160 kHz, since the time for photons to leak out of the cavity is 1/κ. For helium

vibrations within the resonator bandwidth, the proportional gain must be large enough to

dampen vibrations and to avoid instabilities that arise due to higher-order resonances or time

delays (i.e. if KG = −1) [83]. We avoid time delays from sampling, often seen in digital

control loops, by implementing our control law K(f) using op-amps with a large bandwidth

and fast slew rate (see Appendix E).

The transfer function G(f) captures to what extent we can compensate for helium vi-

brations at different frequencies and encompasses the level meter with helium above the

IDC, amplifiers, filters and the IQ mixer on the output line. We experimentally determine

G by applying an oscillating voltage u(f) = udc + uac cos(2πft), where udc = 4.0 V and
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Figure 5.5: (a) When operating the microwave resonator in a closed loop configuration
(green, switch closed), a control law K(f) cancels liquid helium vibrations d(f) by applying
a voltage u(f) to the resonator center pin. Helium vibrations are detected as sidebands on a
resonant transmitted microwave tone t(f0+f), which is demodulated at the IQ-mixer using a
local oscillator (LO(f0)). The demodulated resonator transmission Q(f) and a setpoint s(f)
serve as inputs for the control law. A constant setpoint tunes the liquid helium level inside
the micro-channel. (b) By applying a voltage u(f) = udc + uac cos(2πft) and recording
the resonator transmission Q(f) we determine the system transfer function |G(f)| (green
dots). The transfer function follows the response of a second-order model (black line) with
f0 = 20.3 Hz, Q = 2.5 and a high frequency response described by a constant noise floor of
|G(f)| = 4× 10−6. (c) Comparison of closed and open loop operation of the feedback loop
shown in (a). The closed loop operation (green) shows a strong suppression of liquid helium
vibrations.
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uac = 1.0 V, while recording the demodulated microwave transmission Q(f). The reso-

nance in the transfer function at f0 = 20.3 Hz is likely associated with liquid helium in the

micro-channel, since we have observed different G for different micro-channel geometries.

The increased G around the resonance implies that vibrations around f0 are easily cancelled

with only a small voltage. However, the decrease in G at higher frequencies indicates that a

high-frequency drive hardly affects the helium surface, which negatively impacts cancelation

of any potential high frequency vibrations. Fortunately, there are hardly any vibrations with

frequency above 1 kHz (Fig. 5.2b), so the decrease in G(f) should not be an issue.

We now test the performance of the control loop by comparing the resonator output Q(f)

with the feedback turned on (closed loop) and off (open loop). The envelope of the open

loop spectrum (Fig. 5.5c, blue) follows the shape of the transfer function with a maximum

around the transfer function resonance. The additional structure between 101 and 102 Hz is

due to the PT and building vibrations, since they are also visible in the geophone spectra of

Fig. 5.2b. When the control loop is closed, all features disappear and the RMS vibrations

decrease from σt = 26 nm to σt = 5 nm, indicating that the control law successfully cancels

helium vibrations and stabilizes the surface to a quiet state. The remaining output signal

is dominated by measurement noise, and more averaging can provide insight into what

ultimately limits the closed loop vibration level.

A quiet helium surface would reduce noise in measurements with electrons on helium and

drastically reduce dephasing of a single electron trapped on helium. It is straightforward to

implement the control loop of Fig. 5.5a with a charged helium surface, although canceling

single electron vibrations requires a local measurement of the helium vibrations and therefore

requires a different resonator design than presented in chapter 4 or Ref. [43]. Alternatively,

since on-chip helium vibrations originate from the cylindrical reservoir, it may be possible

to cancel on-chip using a level meter inside the helium reservoir [77].

In conclusion, we have used a microwave resonator to stabilize the vibrating surface of

superfluid helium and achieved a fivefold reduction in vibrations. Application of these results
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to electrons on helium may help to reach the strong coupling regime of a single electron on

helium.
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CHAPTER 6

OUTLOOK

6.1 Strong electron-photon coupling

The measurements of chapter 4 suggest that by increasing the coupling strength and de-

creasing the electron linewidth, strong electron-photon coupling should be possible. Here

we present two promising strategies to achieve this, starting with the use of high-kinetic

inductance (KI) materials.

6.1.1 High-Kinetic Inductance materials

High-KI materials are a promising and convenient way to increase the electron-photon

strength. KI originates from the inertia of Cooper pairs, the charge carriers in a super-

conductor, and is particularly large for superconductors such as TiN, NbN and NbTiN,

because they have a large magnetic penetration length λL.

A large KI results in a large coupling strength, because a large (kinetic) inductance

increases the zero-point fluctuations Vrms = ω0

√
~Z/2 and according to Eq. (1.37), g is pro-

portional to the zero-point fluctuations across the capacitor. By increasing the resonator’s

inductance relative to the capacitance, for example through the use of high KI materials, we

can increase the electron-photon coupling strength. The use of high-impedance microwave

resonators has already led to strong electron-photon and spin-photon coupling in semicon-

ducting quantum dots [27, 29, 35].

Using materials with a large KI Lk is an attractive method to enhance the coupling

strength, because the kinetic inductance can be lithographically adjusted via the wire width

w and film thickness t:

Lk =
µ0`λ

2
L

wt
=
L�`

w
, (6.1)

where ` is the inductor length and L� is the sheet inductance. For example, resonators
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with thin, narrow titanium nitride inductors can easily reach sheet inductances of 0.1 nH/�

which result in characteristic impedances of Z ≈ 10 kΩ, while maintaining a high quality

factor (Qi > 105)[34]. Therefore, by fabricating our coplanar stripline resonators of tita-

nium nitride, and reducing the film thickness to t ≈ 15 nm, we expect a coupling strength

enhancement of

g′

g
=

√
Z ′

Z
=

(
1 +

L�
µ0w

)1
4

≈ 3, (6.2)

where we have assumed the geometric inductance can be approximated as µ0`, and a rea-

sonable sheet inductance is L� = 50 pH/�, which would correspond to a 15 nm TiN film

[34]. Note that the coupling strength can be further enhanced by reducing the center pin

width.

6.1.2 Vibration insensitive dot

The single electron linewidth γϕ is limited by classical helium fluctuations inside the dot,

and depends on the vibration amplitude ∆tHe as well as the electron’s sensitivity ∂fe/∂tHe.

Since attempts at reducing ∆tHe have been unsuccessful thusfar, or are not straightforward to

incorporate with our experimental system, we believe designing a vibration insensitive dot is

the most promising way to reduce γϕ. The sensitivity of the two-electrode design (discussed

in Fig. 2.6) is particularly large, because the curvature of the electrostatic potential changes

sign as tHe increases. Therefore, even though the two-electrode design offers a large trap

depth, it is very susceptible to an increased linewidth due to classical helium fluctuations.

Electrostatic simulations of a single-electrode design suggest we can decrease the sensitiv-

ity ∂fe/∂tHe by changing the electrode and channel dimensions. Fig. 6.1a depicts a prelimi-

nary design which shows a negligible sensitivity to helium vibrations over a ∆tHe ≈ 100 nm-

wide region (Fig. 6.1d). This single-electrode design also offers a 25-mV-deep trap near the

resonance condition (Fig. 6.1b), which according to Fig. 2.7 should be sufficient to keep

electrons contained in the dot.
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Figure 6.1: An improved dot design with a helium vibration-insensitive region. (a) A single
electrode on the bottom of the micro-channel creates an electrostatic potential (color) which
is less sensitive to classical helium fluctuations. Removing metal from the center of the trap
electrode slightly increases the anharmonicity of this design. The differential mode of the
resonator, which is located above the micro-channel (red), produces a transverse microwave
electric field Ey which couples to the electron. (b) Electrostatic potential evaluated at the
dashed line in (a) for the crossing voltage V ∗trap (i.e. where fe = f0). The trap depth

is 25 meV. (c) The electron frequency tunes over 15 GHz in 0.25 V and the dot has a
sensitivity of ∂fe/∂Vtrap = 70 GHz/V at the crossing with the resonator. (d) For a constant
voltage Vtrap = V ∗trap, the electron frequency approaches f0 as helium fills the channel.
Above a certain helium level tHe the sensitivity to small changes in tHe is negligible, but
the maximum filling level is set by the depth of the channel. This lower and upper bound
mark the blue shaded region, which depicts the desired operating regime where the linewidth
should be insensitive to helium vibrations.
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Since the electrons on the reservoir form the second largest contribution to the single

electron linewidth (γres
ϕ /2π ≈ 20 MHz), we also aim to reduce the coupling to the electron

reservoir by fabricating an additional “reservoir” electrode at the bottom of the micro-

channel, which displaces the electron reservoir from the trap electrode towards the reservoir

electrode. The improvements to the dot’s sensitivity as well as removing the electron reservoir

should reduce the linewidth to order of 1 MHz.

6.2 Coupling to the electron spin state

Achieving strong coupling to a single electron’s orbital state also allows for an indirect

coupling to the electron spin state. This is significant, because achieving a large direct spin-

photon coupling is very difficult due to the electron’s small magnetic moment. To illustrate

this, let us first derive the direct spin-photon coupling strength.

The coupling of a microwave photon to an electron spin is given by the interaction

Hamiltonian

Hspin = −µ ·B = gµBB · S, (6.3)

where g is the Landé g-factor for an electron spin and S = ~/2σ is the electron spin operator.

The magnitude and direction of the resonator’s B-field determine the coupling gspin:

~gspin =
~
2
gµBBII0, (6.4)

where we wrote the microwave B-field as a product of magnetic field per unit current (BI)

and vacuum fluctuations of the current (I0). On resonance, the zero-point energy 1
2~ω0 is

equally divided between the inductor and the capacitor, such that the vacuum fluctuations in

the current are I0 =
√
~ω0/2L = ω0

√
~/2Z. Therefore, the coupling spin-photon coupling

strength is
gspin

2π
= gµBBIω0

√
~

8Z
(6.5)
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Figure 6.2: A way towards addressing the electron spin state. (a) A micro-magnet deposited
on top of the ground plane creates an out-of-plane magnetic field Bmz that varies linearly
at the electron location. The resulting field gradient results in a spin-dependent force for
electrons in the dot. (b) Illustration of the magnetic force FB and electric force FE as seen
by a two-electron Wigner molecule inside the dot. The magnetic force on anti-aligned spins
excited differential electron motion, which is off-resonant from the center-of-mass mode due
to strong electron interactions. This principle could form the basis of a Wigner molecule
spin detection scheme.

Even in optimized resonator geometries with very low resonator impedance and concentrated

magnetic fields BI , the direct spin-photon coupling strength may only reach 100 Hz [84].

Coupling to the electron-spin via the electron orbital state can result in a much larger

coupling strength, because in the presence of a spatially inhomogeneous magnetic field1, the

strong electric dipole moment mediates coupling to the spin. An oscillating electron in an

inhomogeneous B-field experiences an oscillatory magnetic field, which can flip the electron

spin if the orbital frequency is resonant with the Larmor frequency ωL/2π. The resulting

spin-photon coupling is given by [17]

gspin = µByzpf
∂Bz
∂y

gorb

√
2

~ωe
(
1− ω2

L/ω
2
e

) , (6.6)

which can reach gspin/2π ≈ 1 MHz for sufficiently small detuning (ωL ≈ ωe).

Implementation of such a system is almost straightforward, for example by depositing a

strip of magnetic material on top of the ground plane (Fig. 6.2a). The permanent magne-

tization of such a strip creates a field gradient ∂Bmz /∂y, which establishes the spin-photon

coupling to the resonator.

1. This inhomogeneous magnetic field can be created with a deposited strip of cobalt (i.e. a micro-magnet)
[85] or a current-carrying wire [17].
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Our ability to trap Wigner molecules on helium could also allow for detection of their spin

state. In the presence of a large biasing field B0
y (oriented parallel to the thin superconducting

film), electron spins either point both in the same direction (| ↑↑〉 or | ↓↓〉) or in opposite

directions (| ↑↓〉 or | ↓↑〉). Now suppose we have adjusted the bias voltages such that the

center-of-mass motion is resonant with the resonator (ωe = ω0). Photons in the resonator

exert an electrostatic force FE on these electrons, causing the electrons to oscillate in concert

at frequency ωe. However, the direction of the magnetic force on the spins depends on σz

and therefore, the magnetic force on the anti-aligned electrons (e.g. | ↑↓〉) will try to excite

differential electron motion (Fig. 6.2b). Because the differential electron mode frequency is

off-resonant with the resonator due to the strong electron interactions, the electron motion

will be unaffected for anti-aligned spins. On the other hand, the magnetic force on aligned

spins adds to FE and therefore results in a much stronger resonator signal. Therefore, the

strong electron interactions within Wigner molecules in a magnetic field can be used to

distinguish different spin states, and could possibly be used to create entangled spin states

of Wigner molecules.

By now, it is hopefully clear that the future of circuit QED with strongly interacting

electrons looks bright, and has many future research directions. These projects are left as

an exercise for the interested reader of this thesis.
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APPENDIX A

FABRICATION OF AN ELECTRON-ON-HELIUM DOT

In this appendix, we outline the fabrication recipe for the electron-on-helium dot described

in chapters 2 and 4. Our recipe consists of four steps, which we summarize below.

First an 80 nm thick Nb ground plane is evaporated onto a high-resistivity (> 10 kΩcm)

Si 〈100〉 wafer, followed by deposition of a 100 nm thick silicon oxide sacrificial layer, which

is used to protect the Nb ground plane during the following etch steps. The micro-channels

are defined using a Raith EBPG-5000+ electron beam lithography system and etched using

a CHF3/SF6 chemistry, immediately followed by an HBr/O2 etch. In the second step the

resonator center pins are defined using e-beam lithography. After development, evapora-

tion of a 150 nm thick Nb layer and lift-off, the center pins remain on the bottom of the

micro-channel. To improve robustness of the device and avoid electrical breakdown at low

temperatures, we etch an additional ∼400 nm of Si substrate in between the resonator center

pins. To this end, another layer of 80 nm thick silicon oxide is deposited, after which the

additional Si is etched with the previously described etch chemistry. The silicon oxide layer

is removed using buffered HF and a DI water rinse.

A.1 Preparation of metal layer and hard mask

1. On a blank Si wafer, deposit 80 nm Nb at a rate of 0.9 nm/s using a Plassys e-beam

evaporator.

2. Deposit 80 nm of SiO2 using a PlasmaTherm Apex SLR HDPCVD. For consistency

we run the machine with the Si wafer mounted on a SiO2 carrier wafer, both for the

preconditioning as well as the actual deposition.

3. Spin 800 nm ARP 6200.13.

(a) 500 rpm @ 250 rpm/s for 5 s
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(b) 2000 rpm @ 1000 rpm/s for 60 s (gives 800 nm thickness)

4. Make sure the back of the wafer is relatively clean, then bake wafer at 150 ◦C for 60 s.

A.2 Defining the channels

1. We use a Raith electron beam lithography tool to write the patterns that define our

channels.

2. Develop in N-amyl acetate. Use a cold development plate with internal PID loop set

to 2.0 ◦C and develop for 60 s, no agitation.

3. Quickly transfer the wafer into a dish of IPA and agitate slightly for 10 s. Let sit for

another 2 minutes agitating now and then. Blow dry.

4. Using a CHF3 and SF6 chemistry etch through the Nb and SiO2. We used a Plas-

maTherm ICP Fluorine Etcher to do this step.

5. After transferring the wafer to a PlasmaTherm ICP Chlorine Etcher, use a Cl2 punch

through step to clear the native oxide from the now exposed Si substrate. Next use a

HBr and O2 based chemistry to etch into the Si.

6. After the HBr etch, the resist has been consumed fully and the SiO2 has done its job

as a hardmask to prevent the Nb from being etched. To remove the SiO2, but not the

Nb, we dip the wafer in a dish of buffered HF for 2:30 min. After this, we rinse the

wafer in a dish with DI water, making sure to agitate.

A.3 Defining the resonator center pin

1. Spin ARP 6200.13 at 4000 rpm and bake at 150 ◦C for 60 s.
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2. Align the layer that contains the microwave resonator center pin to the previously

written layer. Even though resist profile in the trenches is non-uniform we found a

similar dose as in the first layer gives good results.

3. Develop for 60 s with internal PID of the cold plate set to 2.0 ◦C.

4. Evaporate 150 nm of Nb on the developed wafer at 0.9 nm/s.

5. Use a teflon wafer holder to place the wafer upside down in a pre-heated bath (80 ◦C)

of NMP for 8 min and gently agitate.

6. Sonicate at 70 kHz at half power for 8 min.

7. Take out of the hot NMP, spray with cold NMP and transfer to IPA dish. Blow dry.

Figure A.1: Scanning electron microscope images after lift-off of the trap and resonator
electrodes.

The next steps are intended to prevent electrical break down between the resonator and

trap electrodes. The minimum distance between these electrodes is 200 nm, and typical

electric fields used in experiment can range up to 10 MV/m. To prevent electrical break

down we etch into the Si substrate in between the resonator and trap electrodes
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A.4 Etch in between the resonator and trap electrode

1. Deposit 80 nm of SiO2 with the wafer mounted on a 4” SiO2 carrier wafer using the

same process as in step a2.

2. Spin ARP 6200.13 at 2000 rpm and bake for 60 s at 150 ◦C.

3. Write the pattern and develop at 2.0 ◦C for for 60 s. When drying the wafer make

sure to be extremely gentle.

4. Use the previously used SF6 and CHF3 based chemistry to etch through the SiO2.

5. Use the previously used HBr and O2 based chemistry to etch in between the center

pins. The length of the Cl2 punch through step is extremely important, since the tall

resist structure is sensitive to deformation due to overheating.

6. Strip the resist by leaving the wafer in 80 ◦C NMP and sonicating for 10 min. Then

dip in HF for 2:30 min and dump rinse with DI water. Repeat the NMP and HF strip

step once more in order to make sure all the resist is removed from all electrodes.

Figure A.2: Scanning electron microscope images of the etch in between the resonator and
trap electrode. Left: image after step 3. The resist forms a mask that protects the electrodes
from being etched in the following steps. Right: image after step 6. The etch has removed
approximately 450 nm of Si in between the resonator center pins.
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APPENDIX B

MODEL FOR UNLOADING THE DOT

In the experiments presented in chapter 4, we unload the dot by sweeping the trap guard

to Vtg = Vunload < 0 while keeping all other electrodes constant at (Vres, Vtrap, Vrg) =

(0.6, 0.15,−0.4) V. We then ramp the electrodes back to (Vtrap, Vtg) = (0.175, 0) V in order

to probe the resonator transmission. A single unloading procedure takes about 10 ms, which

is limited by the corner frequency of the trap guard electrode RC-filter. The ramp speed

does not affect the charging diagram of Fig. 4.5b.

e(Vbar + βVunload
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Figure B.1: Electrostatic model for unloading of the dot. (a) One electron leaves the dot
if the average energy per electron Ēne exceeds the trap depth. (b) The simulated trap
depth depends linearly on the unloading voltage Vunload, and approaches zero for Vunload =
−0.305 V, which coincides with the measured voltage of the last jump in Fig. 4.5b. The inset
shows the electrostatic potential along the channel for two values of the unloading voltage:
Vunload = 0 (solid line) and Vunload = −0.40 V (dashed line).

To confirm that changes between transmission plateaus in Fig. 4.5b are associated with

single electron transport, we simulate electron unloading using a combination of electrostatic

simulations and analytical calculations. Even though the electrode geometry in the dot

produces a complex and anharmonic trapping potential on the scale of the dot (8× 4 µm),

the small extent of the electron ensemble (0.5 × 0.5 µm) justifies a model based on an

axially symmetric harmonic well with potential energy E = 1
2meω

2
er

2 (Fig. B.1a). In a

harmonic well, we can calculate the Wigner molecule energies analytically, which simplifies
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the calculation of the unloading voltages.

We predict unloading events when the average energy per electron exceeds the trap

depth Vb, which is expected to decrease linearly with more negative unloading voltages:

Vb = Vbar + βVunload. From finite element simulations of the electrostatic potential, we

confirm this linear dependence (Fig. B.1b) and we determine Vbar = 22 meV. Furthermore,

we determine β from the final jump in resonator transmission in Fig. 4.5b. Finally, using the

analytical expressions for the Wigner molecule energies [86], we find the unloading voltages

V
(N)
unload when N = 1− 4 electrons escape the dot:

V
(1)
unload = −Vbar

β
= −0.305 V

V
(2)
unload = V

(1)
unload +

3

4

E0

βe

V
(3)
unload = V

(1)
unload + 1.31037

E0

βe

V
(4)
unload = V

(1)
unload + 1.83545

E0

βe

where

E0 =

(
meω

2
ee

4

2 (4π)2 ε2
0ε

2
He

)1
3

(B.1)

depends only on the trap curvature at the unloading point (ωe), electron mass (me) and

other physical constants. We find best agreement between model and experiment with an

effective trap curvature ωe/2π = 26 GHz, which produces the red arrows in Fig. 4.5b.

If the dot had initially contained five electrons, our model would have predicted an

additional plateau starting at V
(5)
unload = -0.127 V. Since we did not observe this plateau we

concluded the trap was initially loaded with N = 4 electrons.
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APPENDIX C

MODELING OF WIGNER MOLECULE SPECTRA

We have modeled the Wigner molecule spectra of Fig. 4.6 in a two-step process, similar to

the process for modeling the equations of motion for an ensemble of electrons on helium,

which was briefly discussed in section 2.2.2. First, we solve for the equilibrium positions of

electrons in the electrostatic potential, which are then used to solve the coupled equations

of motion of the resonator and electrons. The shape of the electrostatic potential strongly

affects the electron positions and resonator transmission spectra, and therefore, finding the

electrostatic potential that matches the dot’s potential is crucial for reproducing the res-

onator transmission spectra.

We first attempted to simulate the electrostatic potential using a finite element solver

(Ansys Maxwell). In Maxwell we obtain a separate potential for each electrode by apply-

ing 1 V to an electrode while keeping all other electrodes grounded. We reconstruct the

experimental potential in Python by summing the separate potentials with the appropriate

electrode weights (i.e. the electrode voltages) and evaluating the potential on the two-

dimensional plane z = 1.15 µm. With this method, we were unable to reproduce the Wigner

molecule spectra of Fig. 4.6 for N = 3 and N = 4, because the numerical noise in the poten-

tial (approx. 0.1 mV) was too large to obtain clean higher order derivatives of the potential

(∂2V/∂x2 and ∂2V/∂y2). We tried to filter numerical noise by applying digital low-pass

filters, but were unable to both retain the shape of the potential and obtain a reasonable

signal-to-noise for the higher order derivatives.

To avoid numerical noise, we assume that for small x, y around the potential minimum,

the potential is given by an anharmonic potential with unknown voltage-dependent coeffi-

cients:

V (xi, yi) = α0(Vtrap)x2 + α1(Vtrap)y2 + α2(Vtrap)y4. (C.1)

This is a reasonable assumption, because V contains only even powers of x and y, and thus
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Figure C.1: To determine the electron positions inside the dot we simulate the electrostatic
potential using the finite element method. Since the dot is symmetric along the micro-
channel axis (left), we can speed-up the simulation (right) by a factor of two by implementing
a symmetric boundary condition. The numerical noise in the simulated potential is set
by the mesh density and the specified solution accuracy, and it is ultimately limited by
the computer’s RAM. Even though the model resembles the fabricated device and several
attempts have been made to reduce the numerical noise while reducing the computation
time, the simulated potential of this model did not reproduce the measured Wigner molecule
spectra.

reflects the symmetric design of the dot. Furthermore, the quartic term is justified because

without it, the method described below predicts crossings for all Wigner molecules at equal

V ?trap, which is inconsistent with experiment. Therefore, the quartic term in Eq. (C.1) is

necessary to reproduce the spectroscopy traces. The coefficients αi were determined by first

fitting Eq. (C.1) to the electrostatic potential obtained via finite element modeling, and

were then slightly adjusted to reproduce the spectroscopy traces from experiment, using the

following method.

For a particular trap voltage we find the Wigner molecule configurations by numerical

minimization of the total energy

H =
∑
i

eV (xi, yi) +
∑
i<j

e2

4πε0|ri − rj |
exp(−|ri − rj |/λ), (C.2)

which includes a small screening correction to the interaction energy (λ = 1.0 µm) due to the

superconducting electrodes below the electrons. In addition, we neglect the kinetic term in

Eq. (C.2), since at T = 25 mK the kinetic energy is approximately three orders of magnitude
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Figure C.2: Verification of the minimization routine by comparing the minimizer’s electron
configurations in a harmonic well with the theoretical prediction. The electron configurations
lie on the circles predicted by the theory.

smaller than the interaction energy. The numerical minimization is implemented in Python

and uses the built-in minimization routines of scipy. To speed up this minimization, we

explicitly provide the analytical gradient functions calculated from Eqs. (C.2) and (C.1). To

ensure that the minimization routine reaches the ground state, we repeat the minimization

multiple times with different initial conditions and keep the Wigner molecule configuration

with the lowest total energy. This artificial annealing method becomes important for larger

Wigner molecules, which tend to have nearly degenerate ground states [86].

To verify our minimization routine, we first run the minimizer with a harmonic electro-

static potential (α0 = α1, α2 = 0), neglect screening (λ → ∞) and compare the electron

configurations with theoretical predictions [57, 86]. For 2, 3 and 4 electrons, the electron

positions should fall on a circle with radius 0.5 r0, 0.66 r0 and 0.78 r0, respectively, where

r0 = (e2/α0ε)
1/3. The excellent agreement between the minimizer and harmonic theory

(Fig. C.2) boosts our confidence in the minimizer’s electron configurations for the anhar-

monic potential.

With the electron positions for the anharmonic potential at hand, we calculate the orbital

frequencies (Fig. 4.6b) and electron eigenmodes (Fig. 4.6c) by numerically diagonalizing the

linearized equations of motion of the coupled cavity-electron system (Eq. (2.11)). We include

the effects of screening in the kinetic and mass matrix by adjusting the values of k±ij and lij
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from Ref. [43] to

k±ij =
e−ξ

4

e2

4πε0

(1 + ξ + ξ2)± (3 + 3ξ + ξ2) cos(2θij)

r3
ij

(C.3)

lij =
e−ξ

4

e2

4πε0

(1 + 3ξ + ξ2) sin(2θij)

r3
ij

, (C.4)

where ξ = rij/λ = |ri − rj |/λ and θij is the angle between electrons i and j. Note that in

the absence of screening, ξ → 0 and we retrieve the familiar values of k±ij and lij from Ref.

[43].

To retrieve the resonator transmission spectra of Fig. 4.6a, we use the expression from

input-ouput theory (section 1.3.3):

A

A0
=

∣∣∣∣ √
κ1κ2

i(κ1 + κ2 + κint)/2− χ(ω0)

∣∣∣∣ , (C.5)

where we insert the orbital frequency of the strongest coupled eigenmode ωe into the sus-

ceptibility χ(ω0). In Eq. (C.5), κ1,2,int represents the coupling through port 1 and 2 of the

resonator and the internal loss rate, respectively. In addition, the susceptibility is given by

χ(ω0) =
g2

(ω0 − ωe) + iγ
, (C.6)

where g/2π is fixed at 5 MHz (based on the estimate from section 2.4.2) and γ/2π is adjusted

to get good agreement for N = 1. For larger Wigner molecules, we do not further adjust γ

because all modes remain far detuned from the cavity resonance and therefore, the modeled

traces depend only weakly on the linewidth1. This means we cannot make predictions

on the linewidth of larger Wigner molecules based on agreement between experiment and

simulation.

1. This also follows from the cavity frequency shift, which does not depend on γ if the orbital frequency
stays far detuned from the cavity frequency: ∆f0 = Re(χ(ω0)) = g2(ω0−ωe)/((ω0−ωe)

2+γ2) ≈ g2/(ω0−ωe)
[39].
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The simulated spectra for three and four-electron Wigner molecules do not agree as well

with the data, as the N = 1 and N = 2 spectra. We attribute this to the larger size of

the three and four-electron Wigner molecules, since the approximation of the electrostatic

potential in Eq. (C.1) only holds for small x, y around the potential minimum. In addition,

each measured Wigner molecule spectrum was averaged about 500 times which blurs sharp

features, such as the one in the modeled three-electron spectrum.
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APPENDIX D

ESTIMATE OF LIQUID HELIUM RINGDOWN TIME

It may seem surprising that turning off the pulse tube cooler has little effect on the coherence

of a single electron, as was stated in section 4.7. However, at T = 20 mK liquid helium is a

very low-viscosity superfluid whose excitations have been exploited in several optomechanics

experiments [71, 73, 75]. We estimate the damping time for liquid helium surface waves

below.

The damping time of the reservoir fluctuations can be estimated from τ = Q/ωHe,

where Q is the quality factor of the helium surface vibrations and ωHe the fundamental

vibration mode of the helium surface. We may treat the helium surface in the cylindrical

reservoir as a drum with clamped edges, and the fundamental vibration frequency is related

to the wavelength via the anomalous dispersion ω2
He = gkHe, where we neglect the short-

wavelength contribution due to surface tension (Eq. (1.14)). Clamped boundary conditions

imply kHe = p01/r, where p01 ≈ 2.4 is the first zero of the Bessel function J0. This gives

a fundamental frequency f0 = 1
2π

√
gp01/r ≈ 15 Hz, assuming a cylindrical reservoir of

diameter 5 mm. The dominant mode in the spectrum of Fig. 4.3b occurs at 5.6 Hz. This

discrepancy may be due to larger (r ≈ 15 mm), unexpected reservoirs inside the sample box.

Nevertheless, this estimate gives a fundamental frequency of the right order of magnitude.

We estimate the quality factor of the dominant mode in Fig. 4.3b and find Q ≈ 700

for the f0 = 5.6 Hz peak. We may compare this with the expression from Ref. [67], which

is valid for damping of short-wavelength surface waves. Extrapolation of their results to

longer wavelengths gives Q ∝ ωHe/kHe = 1/
√
kHe, and thus Q ∼ 102 − 103, which agrees

with our measured value. Plugging in these values yields an estimated damping time of

τ = Q
ωHe
≈ 20 s, which should scale linearly with the reservoir radius r.

We have tried to turn off the pulse tube for as long as 120 seconds before measuring

the electron coherence time and even though this is longer than the estimated damping

time, we have not observed a decrease in electron linewidth. It is possible that we have
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underestimated the quality factor, or the electron temperature increased during the period

the cooling was stopped. This could occur through heating from the fill lines, even though we

did not observe a direct increase in mixing chamber temperature. Further research is needed

to fully understand the observed results or alternatively, the experiment may be performed

in a wet dilution refrigerator (i.e. a refrigerator without pulse tube cooler).
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APPENDIX E

DESCRIPTION OF THE LOCKING CIRCUIT

The work presented in Chapter 5 showed that we were able to detect the microwave resonator

response due to varying amounts of helium on top of the resonator and control the amount

of liquid helium on the resonator using electric fields. We combined these two ingredients to

actively stabilize the liquid helium surface using an analog control circuit (Fig. E.1).

The electrical circuit of Figs. E.1 and E.2 consists of a cascade of standard operational

amplifiers circuits and transforms the demodulated resonator transmissionQ(f), which varies

due to the vibrations on the helium surface, into a control voltage u(f) that actively dampens

helium vibrations. Below we deconstruct this circuit into separate blocks and briefly describe

each block’s purpose.

The demodulated resonator transmission from the IQ-mixer Q(f) enters the circuit on

the left of Fig. E.2, where any common-mode noise is rejected first. The filtered signal is

then amplified by an inverting amplifier (orange block) with adjustable gain. The next stage

(green block) subtracts Q(f) from the setpoint s(f) using a summing circuit and returns

the error signal e(f) = Q(f) − s(f). Before passing on the error signal, a unity gain buffer

(light blue) resets the output impedance to Zout = 0.

The proportional feedback comes from the dark blue block labeled “Proportional gain”.

This op-amp circuit has a DC gain K(f) = Kp that can be adjusted in-situ by swapping out

the resistor or adjusting the potentiometer labeled “total gain”. The final stage sums the

error signal, an adjustable output offset, and the output of an external voltage ramp circuit

which can be turned on or off with a switch. This external circuit consists of op-amps and

diodes and produces a periodic ramp that can be used to verify that Q(f) follows the control

voltage u(f). When the feedback loop is closed to cancel vibrations, this circuit is turned

off.

With the feedback loop closed and set up properly, we can monitor residual noise due to

helium vibrations in the “error output” terminal of the circuit. We retrieve the spectra of
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Figure E.1: Photograph of the locking circuit used to cancel helium vibrations. The printed
circuit board contains the circuit shown in Fig. E.2 and is shielded by a metal box with
various feedthroughs for the power, control signal Q(f) and error output e(f). The setpoint
s(f), error offset and several gains are controlled with blue potentiometers in the top of the
figure. In addition, a separate circuit in the top right generates a voltage ramp which is used
to verify the resonator’s response before closing the feedback loop.

Fig. 5.5c by recording the error output as function of time (while the setpoint s(f) = 0) and

applying a Fast Fourier transform (FFT) to the measured time series. The power spectral

density of the error output e, sampled with N points over a time tmeas, is proportional to

the Fourier transform

PSD(f) =
tmeas

N2

∣∣∣∣∣∣
N∑
n=1

e[n]e−2πifn

∣∣∣∣∣∣
2

, (E.1)

and has units V2/Hz. We show the amplitude spectral density, which is the square root of the

PSD, in Fig. 5.5c. Since the integrated amplitude spectral density decreases dramatically

compared with the open feedback loop, we conclude that the analog circuit performs as

expected.
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