
PHYSICAL REVIEW A 95, 042318 (2017)

Speedup for quantum optimal control from automatic differentiation
based on graphics processing units

Nelson Leung,1,* Mohamed Abdelhafez,1 Jens Koch,2 and David Schuster1

1The James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
2Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA

(Received 20 December 2016; published 13 April 2017)

We implement a quantum optimal control algorithm based on automatic differentiation and harness the
acceleration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify
advanced optimization criteria and incorporate them in the optimization process with ease. We show that the
use of GPUs can speedup calculations by more than an order of magnitude. Our strategy facilitates efficient
numerical simulations on affordable desktop computers and exploration of a host of optimization constraints and
system parameters relevant to real-life experiments. We demonstrate optimization of quantum evolution based
on fine-grained evaluation of performance at each intermediate time step, thus enabling more intricate control on
the evolution path, suppression of departures from the truncated model subspace, as well as minimization of the
physical time needed to perform high-fidelity state preparation and unitary gates.

DOI: 10.1103/PhysRevA.95.042318

I. INTRODUCTION

The techniques and algorithms used to optimize the control
of quantum systems [1–17] and those underlying the field
of deep neural networks [18,19] share a number of common
elements. Both areas heavily use linear algebra operations
combined with gradient descent optimization. Thus, advanced
hardware and software technology recently emerging from the
rapid development of machine learning also paves the way for
a significant boost of optimal quantum control techniques.

A crucial factor for recent impressive progress in machine
learning has been the leveraging of massive parallelism native
to graphics processing units (GPUs) [20–24]. Similarly, GPUs
have been used to accelerate computations in many areas
of quantum physics and chemistry [25–31]. Specifically,
GPUs are extremely efficient in multiplying very large ma-
trices [32,33]. Such multiplications also form a central step
in the simulation and optimal control of quantum systems.
Exploiting this advantageous feature of GPUs, we achieve
significant speed improvements in optimizing control schemes
for systems at the current frontiers of experimental quantum
computation. As the number of qubits in these experiments
is increasing [34–36], it becomes increasingly important to
take advantage of optimal control techniques. Moreover,
recent advances in commercially available electronics—e.g.,
arbitrary waveform generators enabling base-band synthesis of
the entire microwave spectrum [37]—afford new capabilities
which quantum optimal control is uniquely well suited to
harness.

There have been numerous theoretical developments of
numerical and analytical methods for quantum optimal control
(see Ref. [1] for a recent review). The algorithms involved are
predominantly based on gradient methods, such as realized
in gradient ascent pulse engineering (GRAPE) [2,3], Krotov
algorithms [4–10], or rapid monotonically convergent algo-
rithms [11–17], and are available in several open-source pack-
ages, including QuTiP [38,39], DYNAMO [40], Spinach [41], and

*nelsonleung@uchicago.edu

SIMPSON [42]. Quantum optimal control has been remarkably
successful in determining optimized pulse sequences [43], de-
signing high-fidelity quantum gates [7,44–53], and preparing
entangled states [54–58].

Optimal control is a versatile concept which can be applied
to a vast variety of quantum systems. Typically, there is a
primary goal (e.g., maximizing fidelity to a target state or uni-
tary), as well as additional constraints and costs associated with
specific experimental systems. Examples of such constraints
include fixed maximum amplitudes of control pulses [59,60],
maximum overall power of control signals [61], and limited
time resolution of arbitrary waveform generator [62]. Further,
finite coherence of quantum systems motivates minimizing
the overall time needed for reaching the intended state or
unitary (time-optimal control) [63]. In certain cases, steering
the quantum system among an optimal path (time-dependent
target) may be desired [64]. Incorporating new constraints
in the optimization process often requires the analytical
derivation and implementation of additional contributions to
the gradient calculation, and may necessitate significant effort
to deploy on large computer clusters. This issue can greatly
impede the ability to quickly develop control strategies for new
problems.

To overcome these obstacles, we have implemented a
quantum optimal control scheme that incorporates constraints
via automatic differentiation [65,66] and utilizes GPUs for
boosting computational efficiency. Specifically, automatic
differentiation handles the updating of gradient calculations in
the backward-propagation algorithm [19], and thus eliminates
the need to hard code additional gradient contributions from
constraints. For the actual optimal control applications we
present in this paper, we find that the computational speedup
from utilizing GPUs becomes significant for Hilbert-space
sizes exceeding dimensions of the order of one hundred;
see Fig. 3. Together, these features allow a quick turnaround
for varying optimization constraints and system parameters,
rendering this approach invaluable for the study of quantum
optimal control. In this paper, we describe the implementation
of automatic differentiation, demonstrate its application to
quantum optimal control of example systems relevant to

2469-9926/2017/95(4)/042318(14) 042318-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.042318

LEUNG, ABDELHAFEZ, KOCH, AND SCHUSTER PHYSICAL REVIEW A 95, 042318 (2017)

TABLE I. Relevant contributions to cost functions for quantum
optimal control. Names of contributions indicate the quantity to be
minimized.

μ Cost-function contribution Cμ(u)

1 Target-gate infidelity 1 − | tr(K†
T KN)/D|2

2 Target-state infidelity 1 − |〈�T |�N 〉|2
3 Control amplitudes |u|2
4 Control variations

∑
j,k |uk,j − uk,j−1|2

5 Occupation of forbidden state
∑

j |〈�F |�j 〉|2
6 Evolution time (target gate) 1 − 1

N

∑
j | tr(K†

T Kj)/D|2
7 Evolution time (target state) 1 − 1

N

∑
j |〈�T |�j 〉|2

quantum computing and quantum optics, and discuss the
performance gains achieved by utilizing GPUs.

II. THEORY

We briefly review the essential idea of quantum optimal
control and introduce the notation used throughout our paper.
We consider the general setting of a quantum system with
intrinsic Hamiltonian H0 and a set of external control fields
{u1(t), . . . ,uM (t)} acting on the system via control operators
{H1, . . . ,HM}. The resulting system Hamiltonian is given
by H (t) = H0 + ∑M

k=1 uk(t)Hk . Optimal control theory aims
to minimize deviations from a target state or target unitary
by appropriate adjustments of the control fields uk(t). To
implement this optimization, the time interval of interest is
discretized into a large number N of sufficiently small time
steps δt . Denoting intermediate times by tj = t0 + j δt , the
Hamiltonian at time tj takes on the form

Hj = H0 +
M∑

k=1

uk,jHk. (1)

The control fields subject to optimization now form a set {uk,j }
of d = MN real numbers.

The quantum evolution from the initial time t = t0 to time
tj is described by a propagator Kj , decomposed according to

Kj = UjUj−1Uj−2 . . . U1U0, (2)

where

Uj = exp(−iHj δt) (3)

is the propagator for the short time interval [tj ,tj + δt]. (Here
and in the following, we seth̄ = 1.) Evolution of a select initial
state |�0〉 from t = t0 to t = tj then takes the usual form,

|�j 〉 = Kj |�0〉. (4)

In the decomposition of Kj , each short-time propagator Ui can
be evaluated exactly by matrix exponentiation or approximated
by an appropriate series expansion. Propagation methods
which go beyond the piecewise-constant approximation for
the propagation can further improve speed and accuracy [48].

Optimization of the discretized control fields u ∈ Rd can be
formulated as the minimization of a cost function C(u) where
C : Rd → R+. Table I shows some of the most important

cost-function contributions used for quantum optimal control.
The total cost function is a linear combination of these cost
functions, C = ∑

μ αμCμ. The weight factors αμ must be
determined empirically and depend on the specific problem
and experimental realization at hand. In the following, we
discuss these relevant cost-function contributions.

A. Important types of cost-function contributions

The first cost contribution C1(u) is the primary tool for
realizing a target unitary KT , such as a single- or multiqubit
gate. Cost is incurred for deviations between the target unitary
and the realized unitary KN at a given final time tN . For a
system with Hilbert-space dimension D, its expression 1 −
| tr(K†

T KN)/D|2 [2] represents the infidelity obtained from
the trace distance between the target unitary and the realized
unitary. Minimizing this cost function is the principle goal of
the quantum control problem.

The second cost function C2(u) = 1 − |〈�T |�N 〉|2 mea-
sures the distance between a desired target state |�T 〉 and
the state |�N 〉 realized at the final time tN , as obtained from
evolution of a given initial state |�0〉. In addition, generalizing
C2 to multiple initial and target states is useful for performing
a unitary KT which is only defined on some subspace HS
of the modeled Hilbert space. Such restriction to a selected
subspace is of practical importance whenever a desired unitary
is to be implemented within some computational subspace
only, as is common for quantum computation applications.
There, evolution of higher excited states or auxiliary systems
outside the computational subspace is immaterial. Optimal
control, then, can be achieved by simultaneous evolution of a
set of initial states {|�s

0〉} (s = 1,2, . . . ,S) that forms a basis of
HS . Optimal control fields are obtained from minimizing the
composite state infidelity C2�(u) = 1 − | 1

S

∑
s〈�s

T |PS |�s
N 〉|2

relative to the desired target states |�s
T 〉 = KT |�s

0〉. (Here, PS
is the projector onto subspace HS .)

This composite state-transfer cost function when used over
a complete basis is equivalent to the gate fidelity, but has
several advantages. Most importantly it is more memory
efficient requiring only the current state to be stored rather
than the whole unitary. In addition, it is very amenable to
distributed computing approaches. However, when the unitary
transfer matrix can be stored in memory, propagating the full
unitary can take advantage of the parallelism of the GPU for
smaller problems (see Fig. 3).

Like many optimization problems, quantum optimal control
is typically underconstrained. In order to obtain control fields
that are consistent with specific experimental capabilities and
limitations, it is often crucial to add further constraints on
the optimization. Control fields must be realizable in the
laboratory, should be robust to noise, and avoid large control
amplitudes and rapid variations based on signal output specifi-
cations of instruments employed in experiments. Exceedingly
strong control fields may also be problematic due to heat
dissipation which may, for instance, raise the temperature
inside a dilution refrigerator. These points motivate the
consideration of additional cost-function contributions in the
following.

One such contribution C3(u) = |u|2 suppresses large
control-field amplitudes globally and is commonly employed

042318-2

SPEEDUP FOR QUANTUM OPTIMAL CONTROL FROM . . . PHYSICAL REVIEW A 95, 042318 (2017)

in quantum optimal control studies [2,59,60,67]. (The general-
ization to more fine-grained suppression of individual control
fields is straightforward to implement as well.) Penalizing
the L2 norm of the control fields favors solutions with low
amplitudes. It also tends to spread relevant control fields
over the entire allowed time window. While C3 constitutes a
“soft” penalty on control-field amplitudes, one may also apply
a trigonometric mapping to the amplitudes to effect a hard
constraint strictly enforcing fixed maximum amplitudes [68].

The fourth type of contribution to the cost function, C4(u) =∑
j,k |uk,j − uk,j−1|2, penalizes rapid variations of control

fields by suppressing their (discretized) time derivatives [67].
The resulting smoothening of signals is of paramount practical
importance, since any instrument generating a control field has
a finite impulse response. If needed, contributions analogous
to C4 which suppress higher derivatives or other aspects of
the time dependence of fields can be constructed. Together,
limiting the control amplitudes and their time variation filters
out high-frequency “noise” from control fields, which is an
otherwise common result of less-constrained optimization.
Smoother control fields also have the advantage that essential
control patterns can potentially be recognized and given a
meaningful interpretation.

The contribution C5(u) = ∑
j |〈�F |�j 〉|2 to the cost func-

tion has the effect of suppressing occupation of a select “for-
bidden” state |�F 〉 (or a set of such states, upon summation)
throughout the evolution. The inclusion of this contribution
addresses an important issue ubiquitous for systems with
Hilbert spaces of large or infinite dimension. In this situation,
truncation of Hilbert space is needed or inevitable due to
computer memory limitations. (Note that this need even arises
for a single harmonic oscillator.) Whenever the evolution
generated by optimal control algorithms explores highly
excited states, truncation introduces a false nonlinearity which
can misguide the optimization. Including additional states
can, in principle, mitigate this problem, but is generally
computationally very expensive. An independent physics
motivation for avoiding occupation of highly excited states
consists of spontaneous relaxation in realistic systems: high-
energy states are often more lossy (as is usually the case,
e.g., for superconducting qubits) and possibly more difficult
to model. Active penalization of such states therefore has
the twofold benefit of keeping Hilbert-space size at bay and
reducing unwanted fidelity loss from increased relaxation. To
address these challenges, we employ an intermediate-time cost
function [64,69]: the cost function C5 limits leakage to higher
states during the entire evolution and at the same time prevents
optimization from being misinformed by artificial nonlinearity
due to truncation. We note that the efficacy of this strategy is
system dependent: it works well, for example, for harmonic
oscillators or transmon qubits [70] which have strong selection
rules against direct transitions to more distant states, but may
be less effective in systems such as the fluxonium circuit [71]
where low-lying states have direct matrix elements to many
higher states.

Customarily, algorithms minimizing the cost function
C = ∑

μ αμCμ for a given evolution time interval [t0,tN]
aim to match the desired target unitary or target state at
the very end of this time interval. To avoid detrimental
effects from decoherence processes during the evolution, it

is often beneficial to additionally minimize the gate duration
(or state preparation) time �t = tN − t0 itself. Instead of
running the algorithms multiple times for a set of different
�t , we employ cost-function contributions of the form
C6(u) = 1 − 1

N

∑
j | tr(K†

T Kj)/D|2 for a target unitary or

C7(u) = 1 − 1
N

∑
j |〈�T |�j 〉|2 for a target state, respectively.

These expressions penalize deviations from the target gate or
target state not only at the final time tN , but at every time
step. This contribution to the overall cost function therefore
guides the evolution towards a desired unitary or state in as
short a time as possible under the conditions set by the other
constraints, and thus results in a time-optimal gate.

We will demonstrate the utility of these cost-function
contributions in the context of quantum information processing
in Sec. V. The versatility of automatic differentiation allows
straightforward extension to other contexts such as optimiza-
tion of quantum observables.

B. Gradient evaluation

The weighted sum of cost functions, C = ∑
μ αμCμ, can

be minimized through a variety of gradient-based algorithms.
Such algorithms are a very popular means of optimization
thanks to their good performance and effectiveness in finding
optimized solutions for a wide range of problems. At the
most basic level, gradient-based algorithms minimize the cost
function C(u) by the method of steepest descent, updating the
controls u in the opposite direction of the local cost-function
gradient ∇uC(u):

u′ = u − η ∇uC(u). (5)

The choice of the step size η for the control field parameters
u plays an important role for the convergence properties of
the algorithm. A number of schemes exist which adaptively
determine an appropriate step size η in each iteration of
the minimization algorithm. Our implementation supports
second-order methods such as L-BFGS-B [73] as well as
gradient descent methods developed for machine learning such
as ADAM [74].

For the evaluation of the gradient ∇uC, we make use
of automatic differentiation [65,66] in reverse-accumulation
mode. In brief, this algorithm utilizes the decomposition of the
multivariable cost function C(u) into its computational graph
of elementary operations (addition, matrix multiplications,
trace, etc.), each of which has a known derivative. In reverse-
accumulation mode, all partial derivatives of C are evaluated in
a recursion from the top level (C) back towards the outermost
branches (variables u)—rather similar to the procedure of
obtaining a derivative with pencil and paper. For instance,
for the simple function shown in Fig. 1

C(u) = sin(u1) + u1
√

u2 = f+[sin(u1), f•(u1,
√

u2)],

one obtains all partial derivatives by a recursion starting with
the evaluation of

∂

∂uj

C = D1f+

[
∂

∂uj

sin

]
+ D2f+

[
∂

∂uj

f•

]
= · · · .

Here, Djf stands for the derivative of a multivariable
function f with respect to its j th argument; square brackets

042318-3

LEUNG, ABDELHAFEZ, KOCH, AND SCHUSTER PHYSICAL REVIEW A 95, 042318 (2017)

u1 u2

√·

•sin

+

C(u)

,

FIG. 1. Sample computational graph for automatic differentia-
tion. Automatic differentiation utilizes the decomposition of the
multivariable cost function C(u) into its computational graph of
elementary operations, each of which has a known derivative. In
reverse-accumulation mode, all partial derivatives of C are evaluated
in a recursion from the top level (C) back towards the outermost
branches (variables u).

denote subsequent numerical evaluation of the enclosed term.
(Function arguments are suppressed for brevity.)

Automatic differentiation has become a central tool in
machine learning [75] and equally applies to the problem of
optimal control of quantum systems. In this approach, the
gradient of a set of elementary operations is defined and more
complex functions are built as a graph of these operations. The
value of the function is computed by traversing the graph
from inputs to the output, while the gradient is computed
by traversing the graph in reverse via the gradients. This
methodology gives the same numerical accuracy and stability
of analytic gradients without requiring one to derive and
implement analytical gradients specific to each new trial cost
function.

All cost functions summarized in Table I can be conve-
niently expressed in terms of common linear-algebra opera-
tions. Figure 2 shows the network graph of operations in our
software implementation, realizing quantum optimal control
with reverse-mode automatic differentiation. For simplicity,
the graph only shows the calculation of the cost functions C2

and C5. The cost-function contributions C1,C6, and C7 are
treated in a similar manner. The suppression of large control
amplitudes or rapid variations, achieved by C3 and C4, is
simple to include since the calculation of these cost-function
contributions is based on the control signals themselves and
does not involve the time-evolved state or unitary. The host
of steps for gradient evaluation is based on basic matrix
operations such as summation and multiplication.

Reverse-mode automatic differentiation [19] provides an
efficient way to carry out time evolution and cost-function
evaluation by one forward sweep through the computational
graph, and calculation of the full gradient by one backward
sweep. In contrast to forward accumulation, each derivative is
evaluated only once, thus enhancing computational efficiency.
The idea of backward propagation is directly related to the
GRAPE algorithm for quantum optimal control pioneered by
Khaneja and co-workers [2]; see the Appendix. While the
original GRAPE algorithm bases minimization exclusively on

1− C5 = | |2=C | |2

2 Re(z) 2 Im(z)

|z|2

| |2

ΨF |

T

j

−iδte−iδtA

A + B

AA B

C

C

e−iδt

e−iδt e−iδt

++

0

ΨF

C5

N2

C5C5

H

×H1 ×H2 ×H3

+

1

I I

H

×H1 ×H2 ×H3

+

+

u1,1 u2,1 u3,1

+

+

ΨF

u1,2 u2,2 u3,2

A

A

B

B

AB e−iδtA

Re(z) Im(z)

forward (evolution) backward (gradient)

0 0

Ψ0 Ψ Ψ Ψ

Ψ 2

ΨF ΨF

2

Ψ |Ψ∗
F

jΨ

FIG. 2. Computational network graph for quantum optimal con-
trol. Circular nodes in the graph depict elementary operations with
known derivatives (matrix multiplication, addition, matrix exponen-
tial, trace, inner product, and squared absolute value). Backward
propagation for matrices proceeds by matrix multiplication or, where
specified, by the Hadamard product ◦. In the forward direction,
starting from a set of control parameters uk,j , the computational
graph effects time evolution of a quantum state or unitary, and the
simultaneous computation of the cost function C. The subsequent
“backward propagation” extracts the gradient ∇uC(u) with respect
to all control fields by reverse-mode automatic differentiation. This
algorithm is directly supported by TensorFlow [72], once such a
computational network is specified.

the fidelity of the final evolved unitary or state, advanced cost
functions (such as C5 through C7) require the summation of
cost contributions from each intermediate step during time
evolution of the system. Such cost functions go beyond
the usual GRAPE algorithm, but can be included in the
more general backward propagation scheme described above.
[The Appendix shows analytical forms for gradients for cost
functions that are based on time evolution ({C1,C2,C5}).]

042318-4

SPEEDUP FOR QUANTUM OPTIMAL CONTROL FROM . . . PHYSICAL REVIEW A 95, 042318 (2017)

III. IMPLEMENTATION

Our quantum optimal control implementation utilizes the
TensorFlow library developed by Google’s machine intelli-
gence research group [72]. This library is open source and is
being extended and improved upon by an active development
community. TensorFlow supports GPU and large-scale parallel
learning, critical for high-performance optimization. The sim-
ple interface to PYTHON allows those who are not software pro-
fessionals to implement high-performance machine-learning
and optimization applications without excessive overhead.

Typical machine-learning applications require most of the
same building blocks needed for quantum optimal control.
Predefined operations, along with corresponding gradients,
include matrix addition and multiplication, matrix traces, and
vector dot products. In addition, we have implemented an
efficient kernel for the approximate evaluation of the matrix
exponential and its gradient. Using these building blocks,
we have developed a fast and accurate implementation of
quantum optimal control, well suited to deal with a broad
range of engineered quantum systems and realistic treatment
of capabilities and limitations of control fields.

In common applications of quantum optimal control,
time evolving the system under the Schrödinger equation—
more specifically, approximating the matrix exponential for
the propagators Uj at each time step tj —requires the
biggest chunk of computational time. Within our matrix-
exponentiation kernel, we approximate e−iHj δt by series
expansion, taking into account that the order of the expansion
plays a crucial role in maintaining accuracy and unitarity. The
required order of the matrix-exponential expansion generally
depends on the magnitude of the matrix eigenvalues relative
to the size of the time step. General-purpose algorithms such
as expm() in the PYTHON SciPy framework accept arbitrary
matrices M as input, so that the estimation of the spectral radius
or matrix norm of M , needed for choosing the appropriate
order in the expansion, often costs more computational time
than the final evaluation of the series approximation itself.
Direct series expansion with only a few terms is sufficient for
Hjδ with spectral radius smaller than 1. In the presence of
large eigenvalues, series convergence is slow and it is more
efficient to employ an appropriate form of the “scaling and
squaring” strategy, based on the identity

exp M =
[

exp

(
M

2n

)]2n

, (6)

which reduces the spectral range by a factor of 2n at the cost
of recursively squaring the matrix n times [76]. Overall, this
strategy leads to an approximation of the short-time propagator
of the form

Uj ≈
[

p∑
k=0

(−iHj δt/2n)k

k!

]2n

, (7)

based on a Taylor expansion truncated at order p. Computa-
tional performance could be further improved by employing
more sophisticated series expansions [77,78] and integration
methods [79].

As opposed to the challenges of general-purpose matrix
exponentiation, matrices involved in a specific quantum

control application with bounded control field strength (iHjδt)
will typically exhibit similar spectral radii. Thus, rather than
attempting to determine individual truncation levels pj and
performing scaling-and-squaring at level nj in each time
step tj , we make a conservative choice for global p and n

at the beginning and employ them throughout. This simple
heuristic speeds up matrix exponentiation over the default
SciPy implementation significantly, primarily due to leaving
out the step of spectral radius estimation.

By default, automatic differentiation would compute the
gradient of the approximated matrix exponential via backprop-
agation through the series expansion. However, for sufficiently
small spectral radius of M , we may approximate [2]

d

dx
eM(x) ≈ M ′(x) eM(x), (8)

neglecting higher-order corrections reflecting that M ′(x) and
M(x) may not commute. (Higher-order schemes taking into
account such additional corrections are discussed in Ref. [3].)
Equation (8) simplifies automatic differentiation: within this
approximation, only the same matrix exponential is needed
for the evaluation of the gradient. We make use of this in
a custom routine for matrix exponentiation and gradient-
operator evaluation, further improving the speed and memory
performance.

The TensorFlow library currently has one limitation rel-
evant to our implementation of a quantum optimal control
algorithm. Operators and states in Hilbert space have natural
representations as matrices and vectors which are generically
complex valued. TensorFlow, designed primarily for neural
network problems, has currently only limited support for
complex matrices. For now, we circumvent this obstacle by
mapping complex-valued matrices to real matrices via the

isomorphism H
∼=�−→ 1 ⊗ Hre − iσy ⊗ Him, and state vectors

�� ∼=�−→ (��re, ��im)t . Here, 1 is the 2 × 2 unit matrix and σy

is one of the Pauli matrices. Real and imaginary part of
the matrix H are denoted by Hre = Re H and Him = Im H ,
respectively; similarly, real and imaginary parts of state vectors
are ��re = Re �� and ��im = Im ��. Written out in explicit block
matrix form, this isomorphism results in

H �� ∼=�−→
(

Hre −Him

Him Hre

)(��re

��im

)
, (9)

rendering all matrices and vectors real valued. For the Hamilto-
nian matrix, this currently implies a factor two in memory cost
(due to redundancy of real- and imaginary-part entries). There
are promising indications that future TensorFlow releases may
improve complex-number support and eliminate the need for
a mapping to real-valued matrices and vectors.

IV. PERFORMANCE BENCHMARKING

Obtaining a fair comparison between CPU-based and GPU-
based computational performance is notoriously difficult [80].
We attempt to provide a specific comparison under a unified
computation framework. TensorFlow allows for straightfor-
ward switching from running code on a CPU to a GPU. For
each operation (matrix multiplication, trace, etc.), we use the
default CPU and GPU kernel offered by TensorFlow. Note

042318-5

LEUNG, ABDELHAFEZ, KOCH, AND SCHUSTER PHYSICAL REVIEW A 95, 042318 (2017)

ru
nt

im
e

pe
r i

te
ra

tio
n

(s
)

No. of qubits

ru
nt

im
e

pe
r i

te
ra

tio
n

(s
)

No. of qubits

×19 ×6(a) target unitary (b) target state

100

10-2

102

104

2 4 6 8 10

101 102 103
Hilbert space dimension

2 4 6 8 10 12

100

10-2

102

101 102 103
Hilbert space dimension

FIG. 3. Benchmarking comparison between GPU and CPU for (a) a unitary gate (Hadamard transform) and (b) state transfer (GHZ state
preparation). Total runtime per iteration scales linearly with the number of time steps. For unitary-gate optimization, the GPU outperforms
the CPU for Hilbert-space dimensions above ∼100. For state transfer, GPU benefits set in slightly later, outperforming the CPU-based
implementation for Hilbert-space dimensions above ∼300. The physical system we consider, in this case, is an open chain of N spin-1/2
systems with nearest-neighbor σzσz coupling, and each qubit is controlled via fields
x and
y .

that properly configured, TensorFlow automatically utilizes all
threads available for a given CPU, and GPU utilization is found
to be near 100%. Not surprisingly, we observe that the intrinsic
parallelism of GPU-based matrix operations allows much more
efficient computation beyond a certain Hilbert-space size;
see Fig. 3.

In this example, we specifically inspect how the compu-
tational speed scales with the Hilbert-space dimension when
optimizing an n-spin Hadamard transform gate and n-spin
Greenberger-Horne-Zeilinger (GHZ) state preparation for a
coupled chain of spin-1/2 systems presented in Sec. V D.
(Details of system parameters are described in the same
section.) We benchmark the average runtime for a single
iteration for various spin-chain sizes and, hence, Hilbert-
space dimensions. We find that the GPU quickly outperforms
the CPU in the unitary-gate problem, even for a moderate
system size of ∼100 basis states. For optimization of state
transfer, we observe that speedup from GPU usage, relative to
CPU performance, sets in for slightly larger system sizes of
approximately ∼300 basis states.

The distinct thresholds for the CPU and GPU performance
gain stem from the different computational complexities of
gate vs state-transfer optimization. Namely, optimizing unitary
gates requires the propagation of a unitary operator (a matrix),
involving matrix-matrix multiplications, while optimizing
state transfer only requires the propagation of a state (a vector),
involving only matrix-vector multiplications:

Uj |�〉 ≈
p∑

k=0

(−iδt)k

k!
{Hj . . . [Hj (Hj |�〉)]}. (10)

Computing the matrix-vector multiplication is generally much
faster than computing the matrix exponential itself [81]. For
an n-dimensional matrix, the computation of the matrix ex-
ponential involves matrix-matrix multiplication, which scales
as O(n3). The computation of state transfer only involves
matrix-vector multiplication, which scales as O(n2) [or even
O(n) for sufficiently sparse matrices].

For optimization of the Hadamard transform as well as the
GHZ state preparation, we observe a 19-fold GPU speedup
for a 10-qubit system (Hilbert-space dimension of 1024)

in the former case, and a sixfold GPU speedup for an
11-qubit system (Hilbert-space dimension of 2048) in the latter
case. Since matrix operations are the most computationally
intensive task in our software, this speedup is comparable
to other GPU application studies that heavily use matrix
operation [20–24,80,82]. We emphasize that these numbers
are indicative of overall performance trends, but detailed
numbers will certainly differ according to the specific system
architecture in place. The CPU model we used was an Intel R©
CoreTM i7-6700K CPU @ 4.00 GHz, and the GPU model was
an NVIDIA R© Tesla R© K40c. In this study, all computations
are based on dense matrices. Since most physically relevant
Hamiltonians are sparse (evolution generally affects sparsity,
though), future incorporation of sparse matrices may further
improve computation speed for both CPUs and GPUs [83,84].

V. SHOWCASE APPLICATIONS

In this last section, we present a set of example applications
of experimental relevance. The first application demonstrates
the importance of cost functions suppressing intermediate
occupation of higher-lying states during time evolution, as
well as cost functions accounting for realistic pulse-shaping
capabilities. In a second application, we show how the cost
function C6 can yield high-fidelity state transfer within a
reduced time interval. Third, we discuss the application
of Schrödinger cat state preparation—an example from the
context of quantum optics and of significant interest in recent
schemes aiming at quantum information processing based on
such states [67,85,86]. This application combines considerable
system size with a large number of time steps and utilizes
most of the cost functions discussed in Sec. II A. In the
fourth application, we demonstrate the algorithm performance
in finding optimal solutions for GHZ state preparation and
implementation of a Hadamard transform gate in a chain of
qubits with a variable number of qubits. We use either the
Adam [74] or L-BFGS-B optimization algorithm [73] for pulse
optimization and achieve a minimum fidelity of 99.9% in all
of our following examples.

042318-6

SPEEDUP FOR QUANTUM OPTIMAL CONTROL FROM . . . PHYSICAL REVIEW A 95, 042318 (2017)

(a) (b) (c)
po

pu
la

tio
n

co
nt

ro
l (

G
H

z)

0

0

0.5

1

-0.3

0.3

5 10 5 10 5 10
time (ns)

|10
|11

others

“forbidden”

time (ns) time (ns)

others others

|11 |11|10 |10

“forbidden” “forbidden”

FIG. 4. Control pulses and evolution of quantum state population for a CNOT gate acting on two transmon qubits, (a) only targeting the
desired final unitary, (b) employing an additional cost function suppressing occupation of higher-lying states (C5), and (c) including additional
pulse-shape cost functions (C3,C4). Here, only the evolution of state |11〉 is shown, as the evolution of state |11〉 is most susceptible to the
occupation of higher-level states. In all three cases, the CNOT gate converged to a fidelity of 99.9%. The results differ in important details:
in (a), both high-frequency “noise” on the control signals and significant occupation of “forbidden” states (third and fourth excited transmon
level), shown as dashed red line, are visible throughout the evolution; in (b), forbidden-state occupation is suppressed at each time step during
evolution; in (c), this suppression is maintained and all control signals are smoothened. The maximum occupation of forbidden states is
reduced from (a) ∼20% to (b),(c) ∼3%. The population of “others” states (non- |11〉, |10〉 or “forbidden”) is also shown for completeness.
For demonstration purposes, all three examples use the same gate duration of 10 ns, despite being subject to different constraints. In practice,
one would typically increase the gate time for a more constrained problem to achieve the best result in maximizing gate fidelity, minimizing
forbidden-state occupation, and achieving a realistic control signal.

A. CNOT gate for two transmon qubits

In the first example, we study the realization of a two-qubit
CNOT gate in a system of two coupled, weakly anharmonic
transmon qubits. For each transmon qubit (j = 1,2) [70],
we take into account the lowest two states spanning the
qubit computational space, as well as the next three higher
levels. The system Hamiltonian, including the control fields
{
x1 (t),
x2 (t),
z2 (t)}, then reads

H (t) =
∑
j=1,2

[ωjb
†
j bj + 1

2αj b
†
j bj (b†j bj − 1)]

+ J (b1 + b
†
1)(b2 + b

†
2)

+
x1 (t)(b1 + b
†
1) +
x2 (t)(b2 + b

†
2) +
z2 (t)b†2b2.

(11)

Here, the ladder operators bj and b
†
j are truncated at the

appropriate level. (The qubit frequencies ωj/2π are chosen
as 3.5 and 3.9 GHz, respectively; both transmons have an
anharmonicity of α/2π = −225 MHz; and the qubit-qubit
coupling strength used in the simulation is J/2π = 100 MHz.)
Consistent with recent circuit QED experiments utilizing
classical drives as well as parametric modulation, we inves-
tigate control fields acting on Hx1 = b1 + b

†
1,Hx2 = b2 + b

†
2,

and Hz2 = b
†
2b2.

We next optimize control fields for the realization of a
CNOT gate, with transmon qubit j = 1 acting as the control
qubit. Our control-field optimization reaches a prescribed
fidelity of 99.9% for a 10 ns gate duration in all cases, as
seen in Fig. 4. Results shown in Fig. 4(a) are obtained with
the standard target-gate infidelity cost function (C1) only.
It is evident that the solution encounters two issues: the

occupation of the third and fourth excited transmon level
(“forbidden”) is significant and control fields are polluted
by high-frequency components. Including a cost-function
contribution of type C5 succeeds in strongly suppressing
occupation of higher levels; see Fig. 4(b). This both reduces
exposure to increased relaxation rates and ensures that the
evolution is minimally influenced by our numerical truncation
of Hilbert space. In the final improvement step, shown in
Fig. 4(c), our optimization additionally suppresses excessive
control amplitudes and derivatives via cost contributions of
type C3 and C4. The inclusion of these terms in the overall
cost lessens superfluous “noise” in the control signals and
also helps improve convergence of the algorithm—without
reducing the achieved target-gate fidelity.

B. Reducing duration of |0〉 to |1〉 state transfer

In this second example, we illustrate the use of cost-function
contributions (types C6, C7) in minimizing the time needed
to perform a specific gate or prepare a desired state. To this
end, we consider a two-level spin qubit (ω/2π : 3.9 GHz). The
system and control Hamiltonians combined are taken to be

H = ω

2
σz +
(t) σx. (12)

We allow for a control field acting on the qubit σx degree
of freedom and constrain the maximum control-field strength

max/2π to 300 MHz. When the evolution time needed to
perform the state transfer is fixed (rather than subject to
optimization itself), we observe that control fields generically
spread across the prescribed gate duration time. The desired
target state is realized only at the very end of the allowed
gate duration. When we incorporate a C6- or C7-type cost
contribution, the optimal control algorithm also aims to

042318-7

LEUNG, ABDELHAFEZ, KOCH, AND SCHUSTER PHYSICAL REVIEW A 95, 042318 (2017)

|

|

(a) (b)

po
pu

la
tio

n
co

nt
ro

l (
G

H
z)

time (ns) time (ns)
0 1 2 3 0 1 2 3

0

0.5

1

-0.3

0.3

| |

FIG. 5. Minimizing evolution time needed for a high-fidelity state
transfer. (a) No time-optimal award function. (b) With time-optimal
award function. (a) Without penalty for the time required for the gate,
the control field spreads across the entire given time interval. (b) Once
evolution over a longer time duration is penalized with a contribution
of type C6 or C7 (see Table I), the optimizer achieves target state
preparation in a shorter time, without loss of fidelity.

minimize the overall gate duration, so as to realize the target
unitary or state in as short a time as possible, given other active
constraints. In our example, this reduces the time for a state
transfer from 3 ns to less than 1.5 ns; see Fig. 5. We note that it
is further possible to adaptively change the overall simulation
time during optimization. For instance, if further optimization
was desired in the case of Fig. 5(b), then the simulation time
interval could be adaptively reduced to ∼1.5 ns—resulting in
a significant cutback in overall computation time.

C. Generating photonic Schrödinger cat states

As an example of quantum state transfer, we employ our
optimal control algorithm to the task of generating a photonic
Schrödinger cat state. The system we consider to this end is
a realistic, and recently studied [85,86], circuit QED setup,
consisting of a transmon qubit capacitively coupled to a
three-dimensional microwave cavity. External control fields
are restricted to the qubit. Working in a truncated subspace
for the transmon (limiting ourselves to levels with energies
well below the maximum of the cosine potential), the full
Hamiltonian describing the system is

H (t) = ωqb
†b + 1

2α b†b(b†b − 1) + ωra
†a

+ g(a + a†)(b + b†) +
x(t)(b + b†) +
z(t)b
†b.

(13)

Here, a and b are the usual lowering operators for pho-
ton number and transmon excitation number, respectively.
The frequencies ωq/2π = 3.5 GHz and α/2π = −225 MHz
denote the transmon 0-1 splitting and its anharmonicity.
The frequency of the relevant cavity mode is taken to be
ωr/2π = 3.9 GHz. Qubit and cavity are coupled, with a
strength parameterized by g/2π = 100 MHz. In our simu-
lation, the overall dimension is 154 = (7 transmon levels) ×
(22 resonator levels). Note that the rotating wave approxima-
tion is not applied in order to reflect the capabilities of modern
arbitrary waveform generation.

The state-transfer task at hand, now, is to drive the joint
system from the zero-excitation state |0〉q ⊗ |0〉r (the ground
state if counter-rotating terms in the coupling are neglected)
to the photonic cat state |0〉q ⊗ |cat〉r . Here, the cat state in the
resonator corresponds to a superposition of two diametrically
displaced coherent states: |cat〉r = 1√

2
(|λ〉 + | − λ〉). Coherent

states are defined in the usual way as normalized eigenstates
of the photon annihilation operator a, and correspond to
displaced vacuum states |λ〉 = e−|λ|2/2eλa† |0〉. The cat state
|cat〉r is approximately normalized for sufficiently large λ. As
our concrete target state, we choose a cat state with amplitude
λ = 2 (normalization error of ∼0.03%). The state transfer is
to be implemented by control fields
x(t) and
z(t) acting
on the transverse and longitudinal qubit degrees of freedom,
Hx = (b + b†) and Hz = b†b, respectively. Matching
experimental realizations of multimode cavity QED
systems [87], we do not allow for any direct control of the
cavity degrees of freedom.

This state-transfer problem provides an excellent test for
an optimal control algorithm. It incorporates the simultaneous
challenges of a large number of time steps (8000), a consider-
able evolution time (40 ns), and the application of most of the
cost functions we discussed in Sec. II A and summarized in
Table I. Specifically, in addition to minimizing the target state
infidelity (C2), we penalize occupation of transmon levels 3
to 6 and cavity levels 20 and 21 (C5) to avoid artifacts from
truncation, and penalize control variations (C4) [88]. Results
from the optimization are presented in Fig. 6, which shows the
control-field sequence as well as the induced state evolution.
At the end of the 40 ns time interval, the control fields generate
the desired cat state with a fidelity of 99.9%. The maximum
populations at the truncation levels of transmon and cavity are
∼6 × 10−6 and ∼7 × 10−10, respectively. We independently
confirm convergence with respect to truncation by simulating
the obtained optimized pulse for enlarged Hilbert space
(8 transmon and 23 cavity levels) and find that the evolution
continues to reach the target state with 99.9% fidelity.

D. Hadamard transform and GHZ state preparation

We present a final set of examples illustrating the algorithm
performance for increasing system size. To that end, we
consider a coupled chain of N qubits, or spin-1/2 systems. We
assume that all spins are on-resonance in the multiple-rotating
frame. This system is described by the Hamiltonian

H (t) =
N∑

n=1

[

(n)

x (t)σ (n)
x +
(n)

y (t)σ (n)
y + J σ (n)

z σ (n+1)
z

]
, (14)

where the coupling term is understood to be dropped for the
final summand (n = N). The qubit-qubit coupling strength is
fixed to J/2π = 100 MHz. Each qubit (n) is controlled via
fields
(n)

x and
(n)
y , with a maximum allowed drive strength

of
(n)
x,y/2π = 500 MHz.

As a first optimization task, we search for control fields
to implement the unitary realizing a Hadamard transform,
commonly used in various quantum algorithms. The gate time
we allow for the Hadamard transform is (2N) ns, simulated
with 10N time steps. Figure 7(a) shows the number of
iterations and wall-clock time required to converge to the

042318-8

SPEEDUP FOR QUANTUM OPTIMAL CONTROL FROM . . . PHYSICAL REVIEW A 95, 042318 (2017)

W
ig

ne
r f

un
ct

io
n

 (
ca

vi
ty

)
po

pu
la

tio
n

co
nt

ro
l (

G
H

z)

-3 0 3 -3 0 3 -3 0 3 -3 0 3 -3 0 3 -3 0 3

-3

0

3
0 ns 8 ns 16 ns 24 ns 32 ns 40 ns

40 ns30201003020100

0.5

1.0

-0.2

0

0.2

40 ns3020100

transmon cavity0

1
2

3

0

1 2 4

5
6cavity0

1 2 4

5
6

FIG. 6. Cat state generation. Control pulse, state evolution in Fock basis, and Wigner function tomography of the cavity evolution. Photonic
cat state generation is shown as a test of state transfer, challenging the quantum control algorithm with a system of considerable size, large
number of required time steps, and inclusion of multiple types of cost function. The desired Schrödinger cat state in the resonator is created
indirectly, by applying control fields to a transmon qubit coupled to the resonator, and reached within a prescribed evolution time of 40 ns with
a fidelity of 99.9%. (Note that occupation of transmon level 4, 5, 6 remains too small to be visible in the graph.)

desired 99.9% process fidelity. For the same spin-chain system,
we have also employed our code to optimize control fields
for transferring the system ground state to a maximally
entangled GHZ state. The overall time and time steps we
allow for the GHZ state preparation is identical to that used
for the Hadamard transform gate. Figure 7(b) shows the
number of iterations necessary and the total wall-clock time

(b) GHZ state prep.

(a) Hadamard gate

No. of qubits

ite
ra

tio
ns

 to
 c

on
ve

rg
en

ce

to
ta

l w
al

l-c
lo

ck
 ti

m
e

(s
)

2 4 6 8 100

200

400

600
0

200

400

600

2 4 6 8 10

101

103

105

101

103

105

FIG. 7. Performance of optimal control algorithm as a function
of qubit number for (a) a Hadamard transform gate and (b) GHZ
state preparation. As system size increases, total time and number of
iterations for the algorithm grow rapidly. The larger number of control
parameters and complexity of the target state add to the challenge of
quantum optimal control for systems with many degrees of freedom.

spent for reaching convergence to a result with 99.9% state
fidelity. For both examples, we employed computation on
either CPU or GPU, depending on which one is faster. (This
performance benchmarking data was shown in Sec. IV.) We
note that when using a modest desktop PC with graphics card,
optimal control problems for small Hilbert-space size converge
within seconds. For a 10-qubit Hadamard gate (Hilbert-space
dimension of 1024) or 11-qubit GHZ state (Hilbert-space
dimension of 2048), it takes ∼1 day to obtain a solution
meeting the 99.9% fidelity threshold. The total wall-clock time
could likely have been reduced significantly by the appropriate
choice of optimizer, hyperparameters, and/or initial control
fields. In the case of spin-chain system, like many quantum
information systems, as the number of elements increases, not
only does the Hilbert space grow exponentially, but the number
of control fields and the required number of time steps also get
larger. This further increases the complexity of the problem.

VI. CONCLUSION

In conclusion, we have presented a quantum optimal control
algorithm harnessing two key technologies that enable fast
and low-overhead numerical exploration of control signal
optimization. First, we have demonstrated that automatic
differentiation can be leveraged to facilitate effortless inclusion
of diverse optimization constraints, needed to obtain realistic
control signals tailored for the specific experimental capabili-
ties at hand. Automatic differentiation dramatically lowers the
overhead for adding new cost functions, as it renders analytical
derivations of gradients unnecessary. For illustration, we have
presented concrete examples of optimized unitary gates and
state transfer, using cost functions relevant for applications
in superconducting circuits and circuit QED. We emphasize

042318-9

LEUNG, ABDELHAFEZ, KOCH, AND SCHUSTER PHYSICAL REVIEW A 95, 042318 (2017)

that this is but one instance within a much larger class of
quantum systems for which optimal control is instrumental,
and the methods described here are not limited to the specific
examples shown in this paper.

The second key technology we have incorporated is the
implementation of GPU-based numerical computations, which
offers a significant speedup relative to conventional CPU-
based code. The use of the TensorFlow library [72] hides the
low-level details of GPU acceleration, allowing implemen-
tation of new cost functions at a high level. The reduction
in computational time will generally depend on a number
of factors including system type, Hilbert-space size, and the
specific hardware employed by the user. We observe that
runtime speedup by an order of magnitude is not unusual when
using a standard desktop PC, enabling the development of
sophisticated quantum control without enormous investments
into powerful computing equipment. The underlying libraries
also have support for high-performance distributed computing
systems for larger optimizations. Our software implementation
is open source; see Ref. [89].

The increased efficiency and ease of optimal quantum
control due to the employment of GPUs and automatic differ-
entiation makes our work valuable to a broad range of research.
Future work will address sparse-matrix implementations, as
well as the deployment of adaptive step size and Runge-Kutta
methods for time evolution.

ACKNOWLEDGMENTS

The authors thank J. Kutasov for help in comparing
optimization performance with existing frameworks as well as
T. Berkelbach and D. Mazziotti for discussions. We gratefully
acknowledge the support of NVIDIA R© Corporation through
the donation of the Tesla R© K40 GPU used for this research, and
support from the David and Lucile Packard Foundation. This
material is based upon work supported by the U.S. Depart-
ment of Defense under Contracts No. H98230-15-C0453 and
No. W911NF-15-1-0421.

APPENDIX: ANALYTICAL GRADIENTS
AND ALGORITHMS

In the following, we outline the analytical calculation of
gradients for cost functions such as those summarized in
Table I. We stress that our automatic-differentiation imple-
mentation evaluates these gradients autonomously, without the
need of these analytical derivations or hard coding any new
gradients. The following derivations are thus merely intended
as illustrations for a better mathematical understanding (and
appreciation) of the gradients calculated without user input by
means of automatic differentiation.

For a systematic treatment of the different types of cost
functions, we note that most cost functions involve an absolute
value squared of an inner product between target and final
states or target and final unitaries (Hilbert-Schmidt inner
product). To obtain the gradients of expressions such as
C1(u) = 1 − | tr(K†

T KN)|2 with respect to the control param-
eters, we note that control parameters enter via the final
states or unitaries through the evolution operators, KN =
UN (u)UN−1(u) · · ·U1(u)U0. To streamline our exposition,

we first summarize multiple matrix-calculus relations of
relevance.

Consider two complex-valued matrices A and B, compati-
ble in row and column format such that the matrix product AB

is defined. Then, one finds

∂ tr(AB)

∂Bji

= ∂(AnmBmn)

∂Bji

= Aij . (A1)

Throughout this Appendix, we use Einstein convention for
summation and follow the Jacobian formulation (also known
as numerator layout) for derivatives with respect to matrices.
We will further encounter expressions of the following form,
involving a third matrix C of the same dimensions as Bt :

tr

{
∂[| tr(AB)|2]

∂B
C

}

= ∂[tr(AB) tr(AB)∗]

∂Bji

Cji

= ∂ tr(AB)

∂Bji

tr(AB)∗Cji = Aij tr(AB)∗Cji

= tr(AC) tr(AB)∗. (A2)

In the framework of Wirtinger derivatives in complex analysis,
derivatives treat quantities X and X∗ as independent variables,
and Eq. (A1) is used in the step from line 1 to line 2.

The evaluation of cost-function gradients requires the
application of the chain rule to expressions of the type
∂

∂ui
c[M(u)]. Here, c maps a complex-valued � × � matrix M

(e.g., the propagator KN with � denoting the Hilbert-space
dimension) to a real number (the cost). The matrix M = (Mmn)
itself depends on the real-valued control parameters u ∈ Rd .
The subscript in ui is understood as a multi-index i = (k,j)
encoding the control-field label k and discretized-time index j .
The matrix-calculus result

∂

∂ui

c[M(u)] = ∂c

∂Mmn

∂Mmn

∂ui

+ ∂c

∂M∗
mn

∂M∗
mn

∂ui

= tr

(
∂c

∂M

∂M

∂ui

)
+ c.c. (A3)

is straightforward to derive with the “regular” chain rule
by reinterpreting the functions involved as c:C�2 → R and
M:Rd → C�2

. In the following, Eqs. (A2) and (A3) are used
to obtain the analytical expressions for several examples of
cost-function gradients.

1. Gradient for C1: Target-gate infidelity

The cost function C1 = 1 − | tr[K†
T KN (u)]/D|2 penalizes

the infidelity of the realized unitary KN = UNUN−1 . . . U1U0

with respect to the target propagator KT . In the following, we
omit the constant factor D since it affects all the gradients only
by a constant factor. The cost function then has the gradient

∂C1

∂uk,j

(A3)= tr
∂C1

∂KN

∂KN

∂uk,j

+ c.c.

= − tr

{
∂[| tr(K†

T KN)|2]

∂KN

∂KN

∂uk,j

}
+ c.c.

042318-10

SPEEDUP FOR QUANTUM OPTIMAL CONTROL FROM . . . PHYSICAL REVIEW A 95, 042318 (2017)

(A2)= − tr

(
K

†
T

∂KN

∂uk,j

)
tr(K†

T KN)∗ + c.c.

= tr

(
K

†
T

[∏
j ′>j

Uj ′
]
i δt HkKj

)
tr(K†

T KN)∗ + c.c.

= −2 δt Im

{
tr

(
K

†
T

[∏
j ′>j

Uj ′
]
HkKj

)
tr(K†

T KN)∗
}
,

(A4)

where
∏

is understood to produce a time-ordered product.
This expression shows that automatic reverse-mode differ-

entiation requires the propagators Kj from every time step.
Within TensorFlow, the set of intermediate propagators {Kj } is
stored in memory during the forward evolution. The resulting
memory demand therefore scales as O(�2 × N).

Memory-efficient algorithm. We note that storage of {Kj }
can be avoided by applying the strategy introduced in the
original GRAPE paper [2]: since the evolution is unitary, one
may time reverse the evolution step by step and recalculate
the intermediate propagator via Kj = U

†
j+1Kj+1. Here, each

short-time propagator Uj is regenerated locally in time,
using only the control fields at time tj . Such a backwards-
propagation algorithm leads to an increase in computation time
by roughly a factor of 2 (each Uj is then calculated twice), but
has a memory demand of only O(�2)—which does not scale
with N , the number of time steps. Thus, for large problems, the
memory-efficient algorithm is superior. This memory-efficient
algorithm, currently not realized in this implementation, is
given by the following algorithm.

Algorithm 1 C1 gradient via backwards propagation

1: P = tr(K†
T KN)∗K†

T

2: X = KN

3: for j = N to 0 do
4: for all k do
5: ∂C1/∂uk,j = −2δt Im[tr(P Hk X)]
6: end for
7: X = U

†
j X

8: P = P Uj

9: end for
10: return ∂C1/∂u

2. Gradient for C2: Target-state infidelity

For state preparation or unitaries specified only in a
subspace, it is sufficient to optimize the evolution for only
a few initial states, rather than for the complete basis.
This is achieved by minimizing a cost function based on
C2(u) = 1 − |〈�T |�N 〉|2, where the realized final state |�N 〉
depends on the control parameters u. Again applying Eqs. (A3)
followed by (A2) (and using that the trace of a number results
in that number), we obtain

∂C2

∂uk,j

= −2 δt Im

{
〈�T |

[∏
j ′>j

Uj ′
]
Hk|�j 〉〈�T |�N 〉∗

}
.

Memory-efficient algorithm. In the TensorFlow-based auto-
matic differentiation algorithm here, the intermediate states
{|�j 〉} are stored, leading to a memory requirement of
O(� × N), rather than O(�2 × N) for the full propagators.
By using the same backward-propagation strategy as above,
a more memory-efficient algorithm with memory requirement
O(�) independent of the time-step number is possible:

Algorithm 2 C2 gradient via backwards propagation

1: P = 〈�T |�N 〉∗〈�T |
2: X = |�N 〉
3: for j = N to 0 do
4: for all k do
5: ∂C2/∂uk,j = −2δt Im[P Hk X]
6: end for
7: X = U

†
j X

8: P = P Uj

9: end for
10: return ∂C2/∂u

3. Gradient for C5: Occupation of forbidden state

Occupation of a “forbidden” state is discouraged by the
cost function C5 = ∑

j | tr(�†
F �j)|2. This cost function differs

qualitatively from the gate and state infidelity cost functions:
the latter are evaluated based on the result at the final time,
while forbidden-state occupation involves intermediate states
at every time step. Accordingly, the corresponding gradient
takes a different form. First, Eq. (A3) is replaced by

∂

∂ui

c
[
�0(u),�1(u), . . . ,�N (u)

] = tr
∂c

∂�j

∂�j

∂ui

+ c.c.,

(A5)

where introduction of the trace of a c number is convenient for
direct application of Eq. (A2). We then obtain

∂C5

∂uk,j

(A5)=
∑

J

tr
∂C5

∂�J

∂�J

∂uk,j

+ c.c.

=
∑
J�j

∑
j ′

tr

{
∂[| tr(�†

F �j ′)|2]

∂�J

∂�J

∂uk,j

}
+ c.c.

(A2)=
∑
J�j

tr

(
�

†
F

∂�J

∂uk,j

)
tr(�†

F �J)∗ + c.c.

= 2 δt
∑
J�j

Im

{
〈�F |[∏J

j ′=j+1 Uj ′
]
Hk|�j 〉〈�J |�F 〉

}
.

(A6)

The double sum of Eq. (A6) makes it appear as though
the computation of this gradient would take O(N2); however,
after simplification, the relationship between the limits of the
sum and product allow it to be calculated in O(N) time. The
corresponding backward-propagation algorithm then takes the
following form.

042318-11

LEUNG, ABDELHAFEZ, KOCH, AND SCHUSTER PHYSICAL REVIEW A 95, 042318 (2017)

Algorithm 3 C5 gradient via backwards propagation

1: P = 〈�N |�F 〉〈�F |
2: X = |�N 〉
3: for j = N to 0 do
4: for all k do
5: ∂C5/∂uk,j = 2 δt Im[PHkX]
6: end for
7: X = U

†
j X

8: P = P Uj + 〈X|�F 〉〈�F |
9: end for

10: return ∂C5/∂u

This cost function and gradient is also used as the time-
optimal award function, using a negative cost to reward rather
than penalize the target state at every time step (rather than
just at the end). The gradients of cost functions involving only
control fields do not involve the time propagation, so we also
omit their derivation.

4. Summary

Algorithms for each cost function along with their computa-
tion and memory costs have been presented. The computation

time of the algorithms all scale linearly with the number N

of time steps. Automatic gradient calculation which requires
caching of each step causes memory to scale like N , while
reducing the run time by a constant factor of 2. By contrast,
algorithms which directly exploit the unitary structure of
quantum evolution can have memory requirements that do not
scale with the number of time steps. Hence, it may be worth
implementing analytic gradients for very long computations
which otherwise would not fit in memory.

Computing the fidelity and gradient for the whole unitary
evolution as in Algorithm 1 requires O(�2), whereas state
transfer requires O(�) memory. It should be noted that
full unitary evolution fidelity can also be calculated as �2

state-transfer computations over a complete basis. This has
the memory requirements of state transfer and the same
computation requirements as Algorithm 1, though is less
efficient by a constant factor. In principle, each state transfer
can be performed in parallel and assembled to compute the
total cost and gradient. In addition, the Hamiltonians of many
physical problems can be represented sparsely, allowing a
significant speedup in computation as well. For practical
problems, the number of time steps required may scale with
the size of the problem, as more complex quantum gates and
algorithms require more time than simple ones.

[1] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W.
Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer,
T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, Eur. Phys.
J. D 69, 1 (2015).

[2] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and
S. J. Glaser, J. Magn. Reson. 172, 296 (2005).

[3] P. de Fouquieres, S. G. Schirmer, S. J. Glaser, and I. Kuprov,
J. Magn. Reson. 212, 412 (2011).

[4] S. E. Sklarz and D. J. Tannor, Phys. Rev. A 66, 053619
(2002).

[5] R. Eitan, M. Mundt, and D. J. Tannor, Phys. Rev. A 83, 053426
(2011).

[6] C. Gollub, M. Kowalewski, and R. de Vivie-Riedle, Phys. Rev.
Lett. 101, 073002 (2008).

[7] R. Nigmatullin and S. G. Schirmer, New J. Phys. 11, 105032
(2009).

[8] D. M. Reich, M. Ndong, and C. P. Koch, J. Chem. Phys. 136,
104103 (2012).

[9] J. P. Palao and R. Kosloff, Phys. Rev. A 68, 062308 (2003).
[10] D. Tannor, V. Kazakov, and V. Orlov, in Time-Dependent

Quantum Molecular Dynamics, Nato ASI Series, Vol. 299,
edited by J. Broeckhove and L. Lathouwers (Springer, New
York, 1992), pp. 347–360.

[11] W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953
(1998).

[12] W. Zhu and H. Rabitz, J. Chem. Phys. 109, 385 (1998).
[13] Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509

(2004).
[14] Y. Maday and G. Turinici, J. Chem. Phys. 118, 8191

(2003).
[15] Y. Ohtsuki, Y. Teranishi, P. Saalfrank, G. Turinici, and H. Rabitz,

Phys. Rev. A 75, 033407 (2007).

[16] A. Borzì, J. Salomon, and S. Volkwein, J. Comput. Appl. Math.
216, 170 (2008).

[17] P. Ditz and A. Borzi, Comput. Phys. Commun. 178, 393
(2008).

[18] S. Haykin, Neural Networks: A Comprehensive Foundation,
1st ed. (Prentice Hall PTR, Upper Saddle River, NJ, 1994).

[19] R. Hecht-Nielsen, International Joint Conference on Neu-
ral Networks, 1989 (IEEE, New York, 1989), pp. 593–605,
Vol. 1.

[20] K.-S. Oh and K. Jung, Pattern Recog. 37, 1311 (2004).
[21] B. Catanzaro, N. Sundaram, and K. Keutzer, Proceedings of

the 25th International Conference on Machine Learning, ICML
2008 (ACM, New York, 2008), pp. 104–111.

[22] T. Sharp, in Computer Vision ECCV 2008, Lecture Notes
in Computer Science, Vol. 5305, edited by D. Forsyth, P.
Torr, and A. Zisserman (Springer, Berlin, 2008), Chap. 44,
pp. 595–608.

[23] R. Raina, A. Madhavan, and A. Y. Ng, Proceedings of the 26th
Annual International Conference on Machine Learning, ICML
2009 (ACM, New York, 2009), pp. 873–880.

[24] D. Steinkraus, I. Buck, and P. Y. Simard, in Eighth Inter-
national Conference on Document Analysis and Recognition
(ICDAR, 039;05), ICDAR 2005 (IEEE, Washington, DC, 2005),
pp. 1115–1120, Vol. 2.

[25] B. Block, P. Virnau, and T. Preis, Comput. Phys. Commun. 181,
1549 (2010).

[26] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and C. Rebbi,
Comput. Phys. Commun. 181, 1517 (2010).

[27] K. A. Wilkinson, P. Sherwood, M. F. Guest, and K. J. Naidoo,
J. Comput. Chem. 32, 2313 (2011).

[28] I. S. Ufimtsev and T. J. Martinez, Comput. Sci. Eng. 10, 26
(2008).

042318-12

https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2011.07.023
https://doi.org/10.1016/j.jmr.2011.07.023
https://doi.org/10.1016/j.jmr.2011.07.023
https://doi.org/10.1016/j.jmr.2011.07.023
https://doi.org/10.1103/PhysRevA.66.053619
https://doi.org/10.1103/PhysRevA.66.053619
https://doi.org/10.1103/PhysRevA.66.053619
https://doi.org/10.1103/PhysRevA.66.053619
https://doi.org/10.1103/PhysRevA.83.053426
https://doi.org/10.1103/PhysRevA.83.053426
https://doi.org/10.1103/PhysRevA.83.053426
https://doi.org/10.1103/PhysRevA.83.053426
https://doi.org/10.1103/PhysRevLett.101.073002
https://doi.org/10.1103/PhysRevLett.101.073002
https://doi.org/10.1103/PhysRevLett.101.073002
https://doi.org/10.1103/PhysRevLett.101.073002
https://doi.org/10.1088/1367-2630/11/10/105032
https://doi.org/10.1088/1367-2630/11/10/105032
https://doi.org/10.1088/1367-2630/11/10/105032
https://doi.org/10.1088/1367-2630/11/10/105032
https://doi.org/10.1063/1.3691827
https://doi.org/10.1063/1.3691827
https://doi.org/10.1063/1.3691827
https://doi.org/10.1063/1.3691827
https://doi.org/10.1103/PhysRevA.68.062308
https://doi.org/10.1103/PhysRevA.68.062308
https://doi.org/10.1103/PhysRevA.68.062308
https://doi.org/10.1103/PhysRevA.68.062308
https://doi.org/10.1063/1.475576
https://doi.org/10.1063/1.475576
https://doi.org/10.1063/1.475576
https://doi.org/10.1063/1.475576
https://doi.org/10.1063/1.476575
https://doi.org/10.1063/1.476575
https://doi.org/10.1063/1.476575
https://doi.org/10.1063/1.476575
https://doi.org/10.1063/1.1650297
https://doi.org/10.1063/1.1650297
https://doi.org/10.1063/1.1650297
https://doi.org/10.1063/1.1650297
https://doi.org/10.1063/1.1564043
https://doi.org/10.1063/1.1564043
https://doi.org/10.1063/1.1564043
https://doi.org/10.1063/1.1564043
https://doi.org/10.1103/PhysRevA.75.033407
https://doi.org/10.1103/PhysRevA.75.033407
https://doi.org/10.1103/PhysRevA.75.033407
https://doi.org/10.1103/PhysRevA.75.033407
https://doi.org/10.1016/j.cam.2007.04.029
https://doi.org/10.1016/j.cam.2007.04.029
https://doi.org/10.1016/j.cam.2007.04.029
https://doi.org/10.1016/j.cam.2007.04.029
https://doi.org/10.1016/j.cpc.2007.09.007
https://doi.org/10.1016/j.cpc.2007.09.007
https://doi.org/10.1016/j.cpc.2007.09.007
https://doi.org/10.1016/j.cpc.2007.09.007
https://doi.org/10.1016/j.patcog.2004.01.013
https://doi.org/10.1016/j.patcog.2004.01.013
https://doi.org/10.1016/j.patcog.2004.01.013
https://doi.org/10.1016/j.patcog.2004.01.013
https://doi.org/10.1016/j.cpc.2010.05.005
https://doi.org/10.1016/j.cpc.2010.05.005
https://doi.org/10.1016/j.cpc.2010.05.005
https://doi.org/10.1016/j.cpc.2010.05.005
https://doi.org/10.1016/j.cpc.2010.05.002
https://doi.org/10.1016/j.cpc.2010.05.002
https://doi.org/10.1016/j.cpc.2010.05.002
https://doi.org/10.1016/j.cpc.2010.05.002
https://doi.org/10.1002/jcc.21815
https://doi.org/10.1002/jcc.21815
https://doi.org/10.1002/jcc.21815
https://doi.org/10.1002/jcc.21815
https://doi.org/10.1109/MCSE.2008.148
https://doi.org/10.1109/MCSE.2008.148
https://doi.org/10.1109/MCSE.2008.148
https://doi.org/10.1109/MCSE.2008.148

SPEEDUP FOR QUANTUM OPTIMAL CONTROL FROM . . . PHYSICAL REVIEW A 95, 042318 (2017)

[29] L. Vogt, R. Olivares-Amaya, S. Kermes, Y. Shao, C. Amador-
Bedolla, and A. Aspuru-Guzik, J. Phys. Chem. A 112, 2049
(2008).

[30] R. Olivares-Amaya, M. A. Watson, R. G. Edgar, L. Vogt, Y.
Shao, and A. Aspuru-Guzik, J. Chem. Theory Comput. 6, 135
(2009).

[31] Z. Hou, H.-S. Zhong, Y. Tian, D. Dong, B. Qi, L. Li, Y. Wang,
F. Nori, G.-Y. Xiang, C.-F. Li, and G.-C. Guo, New J. Phys. 18,
083036 (2016).

[32] X. Cui, Y. Chen, and H. Mei, 15th International Conference
on Parallel and Distributed Systems (ICPADS), 2009 (IEEE,
Washington, DC, 2009), pp. 42–48.

[33] K. Fatahalian, J. Sugerman, and P. Hanrahan, in Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware, HWWS 2004 (ACM, New York, 2004),
pp. 133–137.

[34] A. D. Córcoles, E. Magesan, S. J. Srinivasan, A. W. Cross, M.
Steffen, J. M. Gambetta, and J. M. Chow, Nat. Commun. 6, 6979
(2015).

[35] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright,
and C. Monroe, Nature (London) 536, 63 (2016).

[36] J. Kelly et al., Nature (London) 519, 66 (2015).
[37] M8196A 92 GSa/s Arbitrary Waveform Generators—

Keysight (formerly Agilent’s Electronic Measurement)
(unpublished).

[38] J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys.
Commun. 183, 1760 (2012).

[39] J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys.
Commun. 184, 1234 (2013).

[40] S. Machnes, U. Sander, S. J. Glaser, P. de Fouquières, A.
Gruslys, S. Schirmer, and T. Schulte-Herbrüggen, Phys. Rev.
A 84, 022305 (2011).

[41] H. J. Hogben, M. Krzystyniak, G. T. P. Charnock, P.
J. Hore, and I. Kuprov, J. Magn. Reson. 208, 179
(2011).

[42] Z. Tošner, T. Vosegaard, C. Kehlet, N. Khaneja, S. J. Glaser, and
N. C. Nielsen, J. Magn. Reson. 197, 120 (2009).

[43] T. W. Borneman, M. D. Hürlimann, and D. G. Cory, J. Magn.
Reson. 207, 220 (2010).

[44] A. Spörl, T. Schulte-Herbrüggen, S. J. Glaser, V. Bergholm,
M. J. Storcz, J. Ferber, and F. K. Wilhelm, Phys. Rev. A 75,
012302 (2007).

[45] P. Rebentrost and F. K. Wilhelm, Phys. Rev. B 79, 060507
(2009).

[46] V. Nebendahl, H. Häffner, and C. F. Roos, Phys. Rev. A 79,
012312 (2009).

[47] J. Kelly, R. Barends, B. Campbell, Y. Chen, Z. Chen, B.
Chiaro, A. Dunsworth, A. G. Fowler, I.-C. Hoi, E. Jeffrey, A.
Megrant, J. Mutus, C. Neill, P. J. J. O’Malley, C. Quintana, P.
Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A.
N. Cleland, and J. M. Martinis, Phys. Rev. Lett. 112, 240504
(2014).

[48] S. Machnes, D. J. Tannor, F. K. Wilhelm, and E. Assémat,
arXiv:1507.04261.

[49] D. J. Egger and F. K. Wilhelm, Supercond. Sci. Technol. 27,
014001 (2014).

[50] P. J. Liebermann and F. K. Wilhelm, Phys. Rev. Appl. 6, 024022
(2016).

[51] P. Rebentrost, I. Serban, T. Schulte-Herbrüggen, and F. K.
Wilhelm, Phys. Rev. Lett. 102, 090401 (2009).

[52] D. J. Egger and F. K. Wilhelm, Phys. Rev. Lett. 112, 240503
(2014).

[53] R. L. Kosut, M. D. Grace, and C. Brif, Phys. Rev. A 88, 052326
(2013).

[54] F. Dolde et al., Nat. Commun. 5, 3371 (2014).
[55] F. Platzer, F. Mintert, and A. Buchleitner, Phys. Rev. Lett. 105,

020501 (2010).
[56] P. Watts, J. Vala, M. M. Müller, T. Calarco, K. B. Whaley, D. M.

Reich, M. H. Goerz, and C. P. Koch, Phys. Rev. A 91, 062306
(2015).

[57] M. H. Goerz, G. Gualdi, D. M. Reich, C. P. Koch, F. Motzoi,
K. B. Whaley, J. Vala, M. M. Müller, S. Montangero, and T.
Calarco, Phys. Rev. A 91, 062307 (2015).

[58] M. H. Goerz, F. Motzoi, K. B. Whaley, and C. P. Koch,
arXiv:1606.08825.

[59] T. E. Skinner, T. O. Reiss, B. Luy, N. Khaneja, and S. J. Glaser,
J. Magn. Reson. 167, 68 (2004).

[60] K. Kobzar, T. E. Skinner, N. Khaneja, S. J. Glaser, and B. Luy,
J. Magn. Reson. 170, 236 (2004).

[61] K. Kobzar, T. E. Skinner, N. Khaneja, S. J. Glaser, and B. Luy,
J. Magn. Reson. 194, 58 (2008).

[62] F. Motzoi, J. M. Gambetta, S. T. Merkel, and F. K. Wilhelm,
Phys. Rev. A 84, 022307 (2011).

[63] Q. M. Chen, R. B. Wu, T. M. Zhang, and H. Rabitz, Phys. Rev.
A 92, 063415 (2015).

[64] I. Serban, J. Werschnik, and E. K. U. Gross, Phys. Rev. A 71,
053810 (2005).

[65] M. Bartholomew-Biggs, S. Brown, B. Christianson, and L.
Dixon, J. Comput. Appl. Math. 124, 171 (2000).

[66] R. E. Wengert, Commun. ACM 7, 463 (1964).
[67] R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H.

Devoret, and R. J. Schoelkopf, arXiv:1608.02430.
[68] J. D. Farnum and D. A. Mazziotti, Chem. Phys. Lett. 416, 142

(2005).
[69] J. P. Palao, R. Kosloff, and C. P. Koch, Phys. Rev. A 77, 063412

(2008).
[70] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,

J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Phys. Rev. A 76, 042319 (2007).

[71] V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret,
Science 326, 113 (2009).

[72] M. Abadi et al., arXiv:1603.04467.
[73] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, SIAM J. Sci. Comput.

16, 1190 (1995).
[74] D. Kingma and J. Ba, arXiv:1412.6980.
[75] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,

arXiv:1502.05767.
[76] C. Moler and C. Van Loan, SIAM Rev. 45, 3 (2006).
[77] M. Arioli, B. Codenotti, and C. Fassino, Linear Algebra Applic.

240, 111 (1996).
[78] W. J. Cody, G. Meinardus, and R. S. Varga, J. Approx. Theory

2, 50 (1969).
[79] A. Jameson, W. Schmidt, and E. Turkel, 14th Fluid and Plasma

Dynamics Conference (1981), p. 1259.
[80] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim,

A. D. Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P.
Hammarlund, R. Singhal, and P. Dubey, SIGARCH Comput.
Archit. News 38, 451 (2010).

[81] R. B. Sidje, ACM Trans. Math. Softw. 24, 130 (1998).
[82] Theano Development Team, arXiv:1605.02688.

042318-13

https://doi.org/10.1021/jp0776762
https://doi.org/10.1021/jp0776762
https://doi.org/10.1021/jp0776762
https://doi.org/10.1021/jp0776762
https://doi.org/10.1021/ct900543q
https://doi.org/10.1021/ct900543q
https://doi.org/10.1021/ct900543q
https://doi.org/10.1021/ct900543q
https://doi.org/10.1088/1367-2630/18/8/083036
https://doi.org/10.1088/1367-2630/18/8/083036
https://doi.org/10.1088/1367-2630/18/8/083036
https://doi.org/10.1088/1367-2630/18/8/083036
https://doi.org/10.1038/ncomms7979
https://doi.org/10.1038/ncomms7979
https://doi.org/10.1038/ncomms7979
https://doi.org/10.1038/ncomms7979
https://doi.org/10.1038/nature18648
https://doi.org/10.1038/nature18648
https://doi.org/10.1038/nature18648
https://doi.org/10.1038/nature18648
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/nature14270
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1103/PhysRevA.84.022305
https://doi.org/10.1103/PhysRevA.84.022305
https://doi.org/10.1103/PhysRevA.84.022305
https://doi.org/10.1103/PhysRevA.84.022305
https://doi.org/10.1016/j.jmr.2010.11.008
https://doi.org/10.1016/j.jmr.2010.11.008
https://doi.org/10.1016/j.jmr.2010.11.008
https://doi.org/10.1016/j.jmr.2010.11.008
https://doi.org/10.1016/j.jmr.2008.11.020
https://doi.org/10.1016/j.jmr.2008.11.020
https://doi.org/10.1016/j.jmr.2008.11.020
https://doi.org/10.1016/j.jmr.2008.11.020
https://doi.org/10.1016/j.jmr.2010.09.003
https://doi.org/10.1016/j.jmr.2010.09.003
https://doi.org/10.1016/j.jmr.2010.09.003
https://doi.org/10.1016/j.jmr.2010.09.003
https://doi.org/10.1103/PhysRevA.75.012302
https://doi.org/10.1103/PhysRevA.75.012302
https://doi.org/10.1103/PhysRevA.75.012302
https://doi.org/10.1103/PhysRevA.75.012302
https://doi.org/10.1103/PhysRevB.79.060507
https://doi.org/10.1103/PhysRevB.79.060507
https://doi.org/10.1103/PhysRevB.79.060507
https://doi.org/10.1103/PhysRevB.79.060507
https://doi.org/10.1103/PhysRevA.79.012312
https://doi.org/10.1103/PhysRevA.79.012312
https://doi.org/10.1103/PhysRevA.79.012312
https://doi.org/10.1103/PhysRevA.79.012312
https://doi.org/10.1103/PhysRevLett.112.240504
https://doi.org/10.1103/PhysRevLett.112.240504
https://doi.org/10.1103/PhysRevLett.112.240504
https://doi.org/10.1103/PhysRevLett.112.240504
http://arxiv.org/abs/arXiv:1507.04261
https://doi.org/10.1088/0953-2048/27/1/014001
https://doi.org/10.1088/0953-2048/27/1/014001
https://doi.org/10.1088/0953-2048/27/1/014001
https://doi.org/10.1088/0953-2048/27/1/014001
https://doi.org/10.1103/PhysRevApplied.6.024022
https://doi.org/10.1103/PhysRevApplied.6.024022
https://doi.org/10.1103/PhysRevApplied.6.024022
https://doi.org/10.1103/PhysRevApplied.6.024022
https://doi.org/10.1103/PhysRevLett.102.090401
https://doi.org/10.1103/PhysRevLett.102.090401
https://doi.org/10.1103/PhysRevLett.102.090401
https://doi.org/10.1103/PhysRevLett.102.090401
https://doi.org/10.1103/PhysRevLett.112.240503
https://doi.org/10.1103/PhysRevLett.112.240503
https://doi.org/10.1103/PhysRevLett.112.240503
https://doi.org/10.1103/PhysRevLett.112.240503
https://doi.org/10.1103/PhysRevA.88.052326
https://doi.org/10.1103/PhysRevA.88.052326
https://doi.org/10.1103/PhysRevA.88.052326
https://doi.org/10.1103/PhysRevA.88.052326
https://doi.org/10.1038/ncomms4371
https://doi.org/10.1038/ncomms4371
https://doi.org/10.1038/ncomms4371
https://doi.org/10.1038/ncomms4371
https://doi.org/10.1103/PhysRevLett.105.020501
https://doi.org/10.1103/PhysRevLett.105.020501
https://doi.org/10.1103/PhysRevLett.105.020501
https://doi.org/10.1103/PhysRevLett.105.020501
https://doi.org/10.1103/PhysRevA.91.062306
https://doi.org/10.1103/PhysRevA.91.062306
https://doi.org/10.1103/PhysRevA.91.062306
https://doi.org/10.1103/PhysRevA.91.062306
https://doi.org/10.1103/PhysRevA.91.062307
https://doi.org/10.1103/PhysRevA.91.062307
https://doi.org/10.1103/PhysRevA.91.062307
https://doi.org/10.1103/PhysRevA.91.062307
http://arxiv.org/abs/arXiv:1606.08825
https://doi.org/10.1016/j.jmr.2003.12.001
https://doi.org/10.1016/j.jmr.2003.12.001
https://doi.org/10.1016/j.jmr.2003.12.001
https://doi.org/10.1016/j.jmr.2003.12.001
https://doi.org/10.1016/j.jmr.2004.06.017
https://doi.org/10.1016/j.jmr.2004.06.017
https://doi.org/10.1016/j.jmr.2004.06.017
https://doi.org/10.1016/j.jmr.2004.06.017
https://doi.org/10.1016/j.jmr.2008.05.023
https://doi.org/10.1016/j.jmr.2008.05.023
https://doi.org/10.1016/j.jmr.2008.05.023
https://doi.org/10.1016/j.jmr.2008.05.023
https://doi.org/10.1103/PhysRevA.84.022307
https://doi.org/10.1103/PhysRevA.84.022307
https://doi.org/10.1103/PhysRevA.84.022307
https://doi.org/10.1103/PhysRevA.84.022307
https://doi.org/10.1103/PhysRevA.92.063415
https://doi.org/10.1103/PhysRevA.92.063415
https://doi.org/10.1103/PhysRevA.92.063415
https://doi.org/10.1103/PhysRevA.92.063415
https://doi.org/10.1103/PhysRevA.71.053810
https://doi.org/10.1103/PhysRevA.71.053810
https://doi.org/10.1103/PhysRevA.71.053810
https://doi.org/10.1103/PhysRevA.71.053810
https://doi.org/10.1016/S0377-0427(00)00422-2
https://doi.org/10.1016/S0377-0427(00)00422-2
https://doi.org/10.1016/S0377-0427(00)00422-2
https://doi.org/10.1016/S0377-0427(00)00422-2
https://doi.org/10.1145/355586.364791
https://doi.org/10.1145/355586.364791
https://doi.org/10.1145/355586.364791
https://doi.org/10.1145/355586.364791
http://arxiv.org/abs/arXiv:1608.02430
https://doi.org/10.1016/j.cplett.2005.09.062
https://doi.org/10.1016/j.cplett.2005.09.062
https://doi.org/10.1016/j.cplett.2005.09.062
https://doi.org/10.1016/j.cplett.2005.09.062
https://doi.org/10.1103/PhysRevA.77.063412
https://doi.org/10.1103/PhysRevA.77.063412
https://doi.org/10.1103/PhysRevA.77.063412
https://doi.org/10.1103/PhysRevA.77.063412
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1126/science.1175552
https://doi.org/10.1126/science.1175552
https://doi.org/10.1126/science.1175552
https://doi.org/10.1126/science.1175552
http://arxiv.org/abs/arXiv:1603.04467
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
http://arxiv.org/abs/arXiv:1412.6980
http://arxiv.org/abs/arXiv:1502.05767
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1016/0024-3795(94)00190-1
https://doi.org/10.1016/0024-3795(94)00190-1
https://doi.org/10.1016/0024-3795(94)00190-1
https://doi.org/10.1016/0024-3795(94)00190-1
https://doi.org/10.1016/0021-9045(69)90030-6
https://doi.org/10.1016/0021-9045(69)90030-6
https://doi.org/10.1016/0021-9045(69)90030-6
https://doi.org/10.1016/0021-9045(69)90030-6
https://doi.org/10.1145/1816038.1816021
https://doi.org/10.1145/1816038.1816021
https://doi.org/10.1145/1816038.1816021
https://doi.org/10.1145/1816038.1816021
https://doi.org/10.1145/285861.285868
https://doi.org/10.1145/285861.285868
https://doi.org/10.1145/285861.285868
https://doi.org/10.1145/285861.285868
http://arxiv.org/abs/arXiv:1605.02688

LEUNG, ABDELHAFEZ, KOCH, AND SCHUSTER PHYSICAL REVIEW A 95, 042318 (2017)

[83] N. Bell and M. Garland, Efficient Sparse Matrix-Vector Multi-
plication on CUDA, NVIDIA Technical Report NVR-2008-004
(NVIDIA Corporation, Santa Clara, CA, 2008).

[84] W. Liu and B. Vinter, 2014 IEEE 28th International Parallel and
Distributed Processing Symposium (IEEE, Washington, DC,
2014), pp. 370–381.

[85] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J.
Schoelkopf, L. Jiang, and M. H. Devoret, New J. Phys. 16,
045014 (2014).

[86] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio,
S. M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J.
Schoelkopf, Science 342, 607 (2014).

[87] D. C. McKay, R. Naik, P. Reinhold, L. S. Bishop, and D. I.
Schuster, Phys. Rev. Lett. 114, 080501 (2015).

[88] A cost function for reducing evolution time (C7) was not
included in this example.

[89] Download at http://github.com/SchusterLab/quantum-optimal-
control.

042318-14

https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1126/science.1243289
https://doi.org/10.1126/science.1243289
https://doi.org/10.1126/science.1243289
https://doi.org/10.1126/science.1243289
https://doi.org/10.1103/PhysRevLett.114.080501
https://doi.org/10.1103/PhysRevLett.114.080501
https://doi.org/10.1103/PhysRevLett.114.080501
https://doi.org/10.1103/PhysRevLett.114.080501
http://github.com/SchusterLab/quantum-optimal-control

