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ABSTRACT

This thesis describes our work on optimizing quantum control and scaling up quantum computers.

We demonstrate the application of automatic differentiation in quantum optimal control, which

allows us to specify advanced optimization criteria and incorporate them in the optimization pro-

cess of quantum control with ease. These criteria enable more intricate control on the evolution

path, suppression of departures from the truncated model subspace, as well as minimization of the

physical time needed to perform high-fidelity state preparation and unitary gates. We subsequently

present our experimental efforts in efficiently scaling up a quantum computer. The innovation of

quantum random access memory (qRAM) architecture with multimode circuit QED establishes a

promising path towards expanding the information processing power of a quantum device, without

introducing control-resources overhead. Using a single Josephson junction transmon circuit serv-

ing as the central processor, we demonstrate universal operations on a nine-qubit random access

memory. We further present our experimental results in establishing bidirectional and deterministic

photonic communication between two remote superconducting multimode processors, connected

through a one-meter long coaxial cable. This device demonstrates a prototype of setting up a scal-

able and distributed quantum computing cluster that could solve a harder computational problem.
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PREFACE

With a finite amount of control resources, how can we improve information processing capabil-

ities? With multiple computational units in hand, how can they be combined to solve a larger

problem? How can we improve the control efficiency of a computational device? Classical com-

puting seems to have answers to all these problems. Rarely a classical computing architecture

would exclusively use expensive transistors for computation. There are usually components of

random access memory (RAM) and storage device. A more powerful supercomputer is not just

formed by a more advanced individual processing chip, it is also formed by a larger and more con-

nected network of chips. The optimization of software compilation has been crucial in pushing the

limit of computational performance. How could these classical ideas be transferred to the realm of

quantum computing technologies is not straightforward, since the physics of quantum computing

are governed by the laws of quantum mechanics, and its nature is very different from the classi-

cal computing world. This thesis presents our effort in tackling these challenging problems for

quantum computers, with the goal of building a scalable universal quantum computer.

1



CHAPTER 1

QUANTUM COMPUTING

1.1 Introduction to Quantum Computing

For an n-qubit system, the quantum state |ψ〉 can be mathematically described by

|ψ〉 =
1∑

i1,i2...in=0

ai1i2...in |i1i2 . . . in〉 (1.1)

1∑
i1,i2...in=0

|ai1i2...in |2 = 1 (1.2)

〈i′1i′2 . . . i′n|i1i2 . . . in〉 = δ
i′1
i1
δ
i′2
i2
. . . δ

i′n
in

(1.3)

The space of the quantum state is span by 2n orthogonal basis vectors |i1i2 . . . in〉. The ai1i2...in

are complex numbers, with the condition that the sum of L2-norm of ai1i2...in is normalized to 1.

A quantum gate can be described by a unitary transformation acting on the state |ψ〉, which would

update the coefficients ai1i2...in but preserve the normalization condition. The fact that the state

size of an n-qubit system scales exponentially with n is the reason that a quantum computer is very

difficult to simulate with classical resources.

That does not imply a quantum computer necessarily have exponentially large computational

power. A caveat of the former description is the coefficients ai1i2...in are not directly observable.

After a measurement, an n-qubit system would collapse to one of the basis state |i1i2 . . . in〉, where

the quantity of |ai1i2...in|2 is the probability of obtaining the basis state |i1i2 . . . in〉 in a single

measurement. Thus, the coefficients can only be interpreted through an exponentially large number

of repeated state preparations and measurements. Only specially designed quantum algorithms

could provide a speedup over classical algorithms, and we will describe a few examples in the next

section. For a comprehensive introduction of quantum computing, the reader should consult the

2



book written by Isaac and Nielsen [137].

1.2 High-Level Description of Some Quantum Algorithms

1.2.1 Grover’s algorithm

Given a function with a domain of N discrete elements each represented by a log2N bit binary

string, with an output

fω(x) =


−1, if x = ω

1, else
(1.4)

The ω is a member of the N discrete elements, and its identity is unknown to us a priori. The

Grover’s algorithm can be used for inverting this given function (i.e., providing the identity of ω)

with the number of queries scaling as
√
N [69]. It works through amplitude amplification, which

iteratively amplifies the magnitude of the coefficient corresponding to |ω〉. A classical algorithm

can perform no better than brute force search with repeated trial-and-error, which has a scaling of

N . The quadratic speedup of Grover’s algorithm can be used to accelerate classical brute force

search for hard problems, which could have a wide range of applications.

1.2.2 Shor’s algorithm

Shor’s algorithm is an integer factorization algorithm, which finds the prime factors of a given

integer N [168]. Shor’s algorithm runs with a time-complexity polynomial of logN , which is

almost exponentially faster than the fastest known classical algorithm, the general number field

sieve. Factoring large integers is believed to be classically intractable and forms the theoretical

basis of security for the widely used public-key cryptography scheme RSA. This became a strong

motivator for the design and construction of quantum computers. It has also induced research

on new cryptography schemes that are secure from powerful quantum computers, known as post-

3



quantum cryptography.

1.2.3 Variational Quantum Eigensolver (VQE)

The Variational Quantum Eigensolver (VQE) is a classical-quantum hybrid algorithm that can be

used as an eigensolver for the ground state of a Hamiltonian H [116]. Recent progress in the

application of chemistry with near-term quantum hardware was largely driven by this algorithm.

The algorithm consists of two major steps:

1. Prepare a quantum state
∣∣∣ψ(~θ)

〉
in a quantum computer. The parameter ~θ determines the

variables of qubit controls. For example, the rotation angles of a set of single qubit gates or

C-phase gates.

2. Measure the expectation value of
〈
ψ(~θ)

∣∣∣H ∣∣∣ψ(~θ)
〉

with the quantum computer.

A classical optimization algorithm can thus interact with the quantum computer by providing

the parameter ~θ and obtain a numerical value
〈
ψ(~θ)

∣∣∣H ∣∣∣ψ(~θ)
〉

, which can be treated as the cost

function for the optimization. Mathematically, this can be expressed as

min
~θ

〈
ψ(~θ)

∣∣∣H ∣∣∣ψ(~θ)
〉

(1.5)

After the optimization converges, we obtain the ground eigenstate
∣∣∣ψ(~θ′)

〉
, which we can sub-

sequently calculate its properties.

1.3 Quantum Architectures

1.3.1 Trapped Ions

Trapped ion quantum computer consists of charged atomic particles (ions) confined and suspended

in free space with electromagnetic fields [33]. Qubits are defined with stable electronic states of

each ion, with relatively long coherence time. The trapped ion quantum computer is one of the
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earliest experimental platforms for quantum computing research and has remained to be one of the

most promising candidate architectures for a scalable universal quantum computer [90].

1.3.2 Silicon

One of the most promising silicon quantum computing architectures is based on an array of indi-

vidual phosphorus atoms embedded in pure silicon lattice, which each phosphorus atoms can be

used as a qubit [85]. The process to fabricate such architecture involves using a scanning tunnel-

ing microscope (STM) for atomically-precise fabrication for the placement of phosphorus atoms

[165]. The silicon quantum computer is readily scalable to a large array of qubits and maintaining

a clean environment with the pure silicon environment.

1.3.3 Superconducting qubits

Superconducting quantum computing is one of the most popular and promising architectures for

realizing a scalable universal quantum computer and is currently pursued by industrial efforts in-

cluding Google, IBM, Intel, Raytheon, Rigetti Computing, etc. Several qualities of superconduct-

ing architecture made it an attractive candidate. While most other architectures use natural atoms,

superconducting qubits are made of human-designed electrical circuits, which is the reason some-

times they are called artificial-atoms [40]. This allows physicists to easily design and engineer

atomic properties they desire. The macroscopic nature of these quantum circuits made it relatively

easy to control and scale up. Moreover, the fabrication techniques required for superconducting

qubits is very similar to the existing technology developed by the semiconductor industry. Our lab,

and thus this thesis, focuses on the development of superconducting quantum computing technolo-

gies.
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1.4 Thesis Overview

This chapter summarizes the basic theories, algorithms and experimental architectures of quantum

computing. Chapter 2 describes the physical theory of how qubits can be formed with supercon-

ducting circuits. Chapter 3 discusses the theory and experimental setup for controlling supercon-

ducting qubits. The subsequent three Chapters report my published work during my doctoral re-

search in Schuster Lab. They involve numerical optimization of qubit control (Chapter 4), design

and implementation of quantum random access memory (Chapter 5), and establishing photonic

quantum communications between remote devices (Chapter 6).
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CHAPTER 2

CIRCUIT QUANTUM ELECTRODYNAMICS

This chapter describes the basic theories of superconducting qubits. We begin our discussion

with the theory of quantizing a quantum harmonic oscillator, and how the collection of electrons

in a LC resonator would behave like a single particle. We then introduce the circuit element

Josephson junction, which serves as a crucial component for realizing superconducting qubits. We

subsequently describe the quantization theory of a Transmon qubit and coupled resonators. The

dispersive shift between Transmon and resonator allows one to conveniently measure the transmon

state.

2.1 Quantization of Quantum Harmonic Oscillator

One of the most elementary and fundamental systems in quantum mechanics is the quantum har-

monic oscillator. The theory used for solving a simple quantum harmonic oscillator is essential

for understanding the mechanisms of quantum bits (qubits). Here, we begin our discussion with a

simple Harmonic oscillator in the position (x) and momentum (p) space, with the Hamiltonian

H =
kx2

2
+

p2

2m
=

1

2
mω2x2 +

p2

2m
, (2.1)

where ω =
√

k
m is the angular frequency of the oscillator. One obtains the following relationships

∂H

∂x
= mω2x = kx = −ṗ (2.2)

∂H

∂p
=

p

m
= ẋ

Thus the variables x and p are canonical conjugate variables. A fundamental relation in quan-

tum mechanics is the canonical commutation relation between canonical conjugate quantities. For

position and momentum, we have the relation
7



[x, p] = i~. (2.3)

This is the only proposition we assume to be true a priori. Every derivation in this section can

be derived from this proposition. We can thus decompose the Hamiltonian to be

H =
mω2

2
(x− i 1

mω
p)(x+ i

1

mω
p)− i1

2
ω[x, p] (2.4)

= ~ω[

√
mω

2~
(x− i 1

mω
p)][

√
mω

2~
(x+ i

1

mω
p)] +

1

2
~ω.

We can defined the operators a and its adjoint a† as

a =

√
mω

2~
(x+ i

1

mω
p) (2.5)

a† =

√
mω

2~
(x− i 1

mω
p)

Using equation 2.3, we obtain

[a, a†] = 1 (2.6)

[a†a, a†] = a†

[a†a, a] = −a

(2.7)

We may rewrite the Hamiltonian at equation 2.4 to be

H = ~ω(a†a+
1

2
) (2.8)

From this equation, it is obvious that the eigenstate a†a is the eigenstate of H . Let |n〉 be the

8



eigenstate of a†a with eigenvalue n. |n〉 is just a notation of an eigenstate, and n is a real number

associated with the eigenstate. At this point, we make no assumption of the nature of n (such as

whether it is an integer). Now consider the relation

(a†a)a† |n〉 = (a†a†a+ [a†a, a†]) |n〉 (2.9)

= (a†a†a+ a†) |n〉

= (n+ 1)a† |n〉

(2.10)

Similarly,

(a†a)a |n〉 = (n− 1)a |n〉 (2.11)

Therefore, a† |n〉 and a |n〉 are eigenstates of a†a. For any given eigenstate |n〉, one can apply

the operators a and a† to generate new eigenstates of a†a.

One can obtain the norm of the eigenstate a |n〉 by the following equations:

n = 〈n| (a†a |n〉) (2.12)

= (〈n| a†)(a |n〉) (2.13)

= (a |n〉)†(a |n〉) (2.14)

Since a |n〉 satisfies (a†a)a |n〉 = (n− 1)a |n〉 and (a |n〉)†(a |n〉) = n, we can express a |n〉 as

a |n〉 =
√
n |n− 1〉 , (2.15)

which automatically satisfies the above relations. Similarly, one can obtain the relation
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a† |n〉 =
√
n+ 1 |n+ 1〉 . (2.16)

Now, assume n is non-integer and positive valued λ, we can apply the a operator indefinitely

to generate infinite number of eigenstates with infinitely negative eigenvalues. For instance, for an

integer k,

ak |λ〉 =
√

(λ)(λ− 1)(λ− 2) . . . (λ− k) |λ− k〉 . (2.17)

The coefficient
√

(λ)(λ− 1)(λ− 2) . . . (λ− k) is non-zero if and only if λ is a non-integer.

if λ is a non-integer, when k tends to 8, the eigenvalues tend to − 8 without bound, which is

unphysical as every realistic physical system has a stable ground state. Therefore, we conclude

that λ must be an integer, with the ground state equal to |0〉. Thus, a harmonic oscillator has

eigenvalues ~ω(n+ 1
2) with n being integers. The harmonic oscillator is considered to be a linear

system as it has an equal spacing of energy differences.

2.2 Circuit Quantum Harmonic Oscillator

The aforementioned harmonic oscillator is common to most Physicists, which the wave functions

can be understood as describing a single particle confined in a harmonic field. On the other

hand, one rarely encounters the quantization of another popular harmonic oscillator we learned

in Physics: the LC oscillator formed by an inductor (L) and a capacitor (C). The LC oscillator

has a Hamiltonian very similar to the aforementioned harmonic oscillator:

H =
1

2
CV 2 +

1

2
LI2 =

q2

2C
+
φ2

2L
, (2.18)

with q = V C and φ = LI . The capacitor and inductor are assumed to be non-dissipative elements,

which can be realized by using superconductors.

A distinct feature of the LC oscillator is the variables q and φ are formed by a larger collection
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of electrons. Remarkably, the collective motion of electrons forms a single set of conjugate vari-

ables! This has been experimentally demonstrated numerous times. The following shows how this

can be understood theoretically.

The inductor and capacitor of an LC oscillator share the same voltage, therefore

V = −Lİ =
q

C
. (2.19)

We obtain

∂H

∂q
=

q

C
= −Lİ = −φ̇ (2.20)

∂H

∂φ
=

φ

L
= I = q̇.

Thus the variables q and φ are canonical conjugate variables, which they must satisfy the commu-

tative relation

[φ, q] = i~ (2.21)

Using a similar procedure resulting equation 2.5, the annihilation and creation operators of a

LC oscillator are given by

a =
1√

2~Zc
(φ+ iZcq) (2.22)

a† =
1√

2~Zc
(φ− iZcq),

where Zc =
√
L/C.

By rearranging the equations of 2.22, we can obtain a set of useful expressions of the conjugate

variables (charge and flux) in terms of creation and annihilation operators as
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q = i

√
~

2Zc
(a† − a) (2.23)

φ =

√
~Zc

2
(a† + a),

These equations would be used for some following derivations.

Everything we derived from the last section can be applied here in the same fashion. We obtain

the quantized Hamiltonian with angular frequency ω = 1/
√
LC. The inductor and capacitor are

macroscopic objects, where piecing them together remarkably makes them behave like a single

particle in a harmonic field. This forms the basis of creating an artificial atom, which has atomic

properties designed by Physicists and quantum engineers. To make an artificial atom useful for

quantum computation, we require an additional circuit element: the Josephson junction.

2.3 Josephson Junction

It is probably not an overstatement that non-linear interaction is what makes the world interesting,

and what makes computation and information processing possible. To be more specific in the case

of quantum computation, it is impossible to construct a universal quantum computer with only the

LC oscillator, since it does not permit conditional operations, a crucial part of realizing universal

operations. In quantum circuits, the non-linear elements must also obey the additional requirement

of being non-dissipative in order to preserve the coherence of quantum states.

Josephson junction is the only known circuit element that is non-dissipative and strongly non-

linear at low temperature [41]. It consists of two superconductors coupled by a weak link, typically

consists of a thin insulating barrier. Contrasting to the linear inductor current-flux relation I =

φ/L, the Josephson junction has a relation expressed as
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I = I0 sin
2πφ

Φ0
(2.24)

E = −EJ cos
2πφ

Φ0
,

where I0 is the Josephson critical current, EJ is the Josephson energy, and Φ0 is the the magnetic

flux quantum constant h/2e. These relations resemble linear inductor at the first order, seen from

performing a Taylor expansion on the sin and cos term

I = I0(
2πφ

Φ0
+O(φ3)) (2.25)

E = −EJ (1− 1

2
(
2πφ

Φ0
)2 +O(φ4)).

These equations closely resemble the behavior of an inductor. In fact, the element can be

thought as a non-linear inductive element, which its inductance is highly dependent on the excita-

tion present in the circuit. For the next section, we replace the linear inductor with the Josephson

junction in our LC circuit, and discuss how this can form a qubit.

2.4 Quantization of Transmon Qubit

The Hamiltonian of a system formed by a capacitor and a Josephson junction can be expressed as

H =
q2

2C
− EJ cos

2πφ

Φ0
= 4ECn

2 − EJ cos
2πφ

Φ0
, (2.26)

where EC = e2/2C, and n is the number of cooper pairs.

We can re-express the equations in 2.23 to be
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n = i
1

2e

√
~

2Zc
(a† − a) (2.27)

φ =

√
~Zc

2
(a† + a).

Given Ec = e2/2C, we can express C = e2/2Ec. We begin our analysis by approximating the

Josephson junction as a linear inductor. By comparing the second order term of EJ in equation

2.25 with the energy of a linear inductor, one can obtain the relation

EJ
1

2
(
2πφ

Φ0
)2 =

φ2

2L
(2.28)

Thus,

L = (
Φ0

2π
)2 1

EJ
(2.29)

By substituting Φ0 = h/2e, we obtain

L = (
h

2π2e
)2 1

EJ
= (

~
2e

)2 1

EJ
(2.30)

Then,

L

C
= (

~
2e

)2 1

EJ

2EC
e2

(2.31)

= (
~

2e2
)2 2EC
EJ

Zc =

√
L

C
=

~
2e2

√
2EC
EJ

Thus we can express the n and φ operators as
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n = i
1

2e

√
~

2Zc
(a† − a) = i

1

2
(
EJ

2EC
)1/4(a† − a) (2.32)

φ =

√
~Zc

2
(a† + a) =

~
2e

(
2EC
EJ

)1/4(a† + a),

which directly implies

2πφ

Φ0
= (

2EC
EJ

)1/4(a† + a). (2.33)

Keeping terms up to fourth order for the Josephson energy of 2.26, we obtain the Hamiltonian

H = 4ECn
2 − EJ +

EJ
2

(
2πφ

Φ0
)2 − EJ

24
(
2πφ

Φ0
)4. (2.34)

This Hamiltonian can be viewed as a harmonic oscillator with a fourth order perturbation in-

ducing anharmonicity. Within this harmonic oscillator approximation, we can substitute n and φ

by annihilation and creation operators defined in equation 2.32.

H = 4EC(i
1

2
(
EJ

2EC
)1/4(a† − a))2 − EJ +

EJ
2

((
2EC
EJ

)1/4(a† + a))2 (2.35)

−EJ
24

((
2EC
EJ

)1/4(a† + a))4

=
√

8EJEC(a†a+
1

2
)− EJ −

EC
12

(a† + a)4

The first term is recognized as a linear harmonic oscillator with angular frequency
√

8EJEC .

The second term is simply a constant. The third term gives rise to a fourth order correction to the

eigenenergies, given by

E1
j = −EC

12
〈j| (a† + a)4 |j〉 = −EC

12
(6j2 + 6j + 3). (2.36)
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We thus obtain an anharmonicity α = (E2 −E1)− (E1 −E0) = −EC . In general, (Em+1 −

Em)− (Em−Em−1) = −EC . This forms the basic theoretical description of the transmon qubit.

2.5 Quantization of Split Junction Transmon Qubit with External Flux

From equation 2.35 we learn that the transmon qubit can be understood as a linear harmonic os-

cillator with angular frequency
√

8EJEC , with anharmonicity equal to −EC . The ability to tune

EJ would allow one to tune the transmon frequency, which is important to many applications in

this thesis. The ability to tune EJ is enabled by splitting the junction (making it as a SQUID), and

threading external flux to the inner loop of the SQUID.

Each Josephson junction has a characteristic tunneling energy (EJ1, EJ2) and superconducting

phase (φ1, φ2) across it. The Josephson part of the Hamiltonian is thus

HJ = EJ1 cosφ1 + EJ2 cosφ2. (2.37)

With magnetic flux Φ threading inside the center of SQUID, the phases φ1 and φ2 are related

by

2πΦ

Φ0
= φ1 − φ2 (2.38)

Therefore HJ can be expressed as

HJ = EJ1 cosφ1 + EJ2 cos(φ1 −
2πΦ

Φ0
), (2.39)

and thus the full Hamiltonian is

H = 4ECn
2 + EJ1 cosφ1 + EJ2 cos(φ1 −

2πΦ

Φ0
). (2.40)

The next natural step is to quantize this Hamiltonian with the creation and annihilation opera-

tors (a and a†). Recall that the physical origin of the quantization representation of transmon is the
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approximation of a harmonic oscillator. In that case, φ = 0 represents the point of minimal energy

of the harmonic oscillator, which we subsequently represent φ by the creation and annihilation

operators. Therefore, we need to find an expression of φ which φ = 0 represents the minimal of

HJ . To find the minimal point of φ1 of HJ , we can simply differentiate HJ against φ1:

∂HJ
∂φ1

= −EJ1 sinφ1 − EJ2 sin(φ1 −
2πΦ

Φ0
) (2.41)

Setting this derivative to be zero, we obtain

0 = −EJ1 sin φ̄− EJ2 sin(φ̄− 2πΦ

Φ0
) (2.42)

EJ1 sin φ̄ = −EJ2 sin φ̄ cos(
2πΦ

Φ0
) + EJ2 cos φ̄ sin(

2πΦ

Φ0
)

[EJ1 + EJ2 cos(
2πΦ

Φ0
)] sin φ̄ = EJ2 sin(

2πΦ

Φ0
) cos φ̄

tan φ̄ =
EJ2 sin(2πΦ

Φ0
)

EJ1 + EJ2 cos(2πΦ
Φ0

)

Thus,

sin φ̄ =
EJ2 sin(2πΦ

Φ0
)√

E2
J1 + E2

J2 + 2EJ1EJ2 cos(2πΦ
Φ0

)
(2.43)

cos φ̄ =
EJ1 + EJ2 cos(2πΦ

Φ0
)√

E2
J1 + E2

J2 + 2EJ1EJ2 cos(2πΦ
Φ0

)

We can thus express φ1 = φ+ φ̄, and obtain
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EJ = EJ1 cos(φ+ φ̄) + EJ2 cos(φ+ φ̄− 2πΦ

Φ0
) (2.44)

= EJ1[cosφ cos φ̄− sinφ sin φ̄]

+EJ2[cosφ(cos φ̄ cos(
2πΦ

Φ0
) + sin φ̄ sin(

2πΦ

Φ0
))

−EJ2[sinφ(sinφ̄ cos(
2πΦ

Φ0
)− cos φ̄ sin(

2πΦ

Φ0
))

=

√
E2
J1 + E2

J2 + 2EJ1EJ2 cos(
2πΦ

Φ0
) cosφ

Therefore, we obtain the Hamiltonian

H = 4ECn
2 +

√
E2
J1 + E2

J2 + 2EJ1EJ2 cos(
2πΦ

Φ0
) cosφ. (2.45)

We obtain an effective EJ =
√
E2
J1 + E2

J2 + 2EJ1EJ2 cos(2πΦ
Φ0

). This results in a transmon

frequency
√

8EC

√
E2
J1 + E2

J2 + 2EJ1EJ2 cos(2πΦ
Φ0

), which is tunable with the external mag-

netic flux. The anharmonicity remains to be −EC , independent to the external magnetic flux.

2.6 Coupling between Resonators

For two capacitively coupled LC oscillators. We have the Hamiltonian

H =
1

2
C1V

2
1 +

1

2
C2V

2
2 +

1

2
Cg(V2 − V1)2 +

1

2
L1I

2
1 +

1

2
L2I

2
2 . (2.46)

Substituting the relation LI = φ and V = −Lİ = −φ, we obtain

H =
1

2
C1φ̇1

2
+

1

2
C2φ̇2

2
+

1

2
Cg(φ̇2 − φ̇1)2 +

φ1

2L1
+

φ2

2L2
. (2.47)

Thus, the Lagrangian can be expressed as
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L =
1

2
C1φ̇1

2
+

1

2
C2φ̇2

2
+

1

2
Cg(φ̇2 − φ̇1)2 − φ1

2L1
− φ2

2L2
. (2.48)

The kinetic part of the Hamiltonian can be written as

T =
1

2
(C1 + Cg)φ̇1

2
+

1

2
(C2 + Cg)φ̇2

2 − Cgφ̇1φ̇2, (2.49)

or in matrix form

T =
1

2
φ̇TCφ̇ (2.50)

φ =

φ1

φ2

 (2.51)

C =

C1 + Cg −Cg
−Cg C2 + Cg

 (2.52)

The conjugate variable (charge) of φ is

q =

 ∂L
∂φ̇1

∂L
∂φ̇2

 =

 (C1 + Cg)φ̇1 − Cgφ̇2

−Cgφ̇1 + (C2 + Cg)φ̇2

 = Cφ̇ (2.53)

C−1q = φ̇. (2.54)

C−1 =
1

C1C2 + C1Cg + C2Cg

C2 + Cg Cg

Cg C1 + Cg

 (2.55)

We can thus express the total Hamiltonian as
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H = qφ̇− L (2.56)

=
1

2
qTC−1q +

φ1

2L1
+

φ2

2L2

=
q2
1

2C̄1
+

q2
2

2C̄2
+
q1q2
2C̄g

+
φ1

2L1
+

φ2

2L2

C̄1 = C1 +
C2Cg
C2 + Cg

(2.57)

C̄2 = C2 +
C1Cg
C1 + Cg

C̄g =
C1C2 + C1Cg + C2Cg

Cg

By substituting the creation and annihilation operator defined in equation 2.23, we can express

the coupling Hamiltonian as

Hg = − ~
2
√
Z1Z2C̄g

(a
†
1 − a1)(a

†
2 − a2), (2.58)

where Zi =
√
Li/C̄i = 1/ωC̄i

Thus,

g = − 1

2
√
Z1Z2C̄g

(2.59)

= −√ω1ω2

√
C̄1C̄2

2C̄g

= −√ω1ω2
Cg

2
√

(C1 + Cg)(C2 + Cg)

The total Hamiltonian can be written as
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~ω1a
†
1a1 + ~ω2a

†
2a2 + ~g(a

†
1 − a1)(a

†
2 − a2) (2.60)

2.7 Dispersive Shift between Transmon and Resonator

Recall that a Transmon and a resonator has an identical form of the capacitance part of the Hamil-

tonian. This implies the derivation of coupling between Transmon and oscillator is essentially

identical to the last section. Thus, the Hamiltonian of a Transmon and a resonator can be written

as

H = ~ωta
†
tat +

~
2
αta
†
tat(a

†
tat − 1) + ~ωra†rar + ~g(a

†
t − at)(a

†
r − ar), (2.61)

where ω[t,r] is the [Transmon, resonator] frequency and αt is the transmon anharmonicity. One

can easily verify this form of Hamiltonian has a frequency ωt with anharmonicity α. With rotating

wave approximation, we omit the coupling terms a†ta
†
r and atar.

H = ~ωta
†
tat +

~
2
αta
†
tat(a

†
tat − 1) + ~ωra†rar − ~g(a

†
tar + ata

†
r), (2.62)

Let |m,n〉 be the state with m transmon excitations and n resonator excitations. The first-order

perturbation of eigenenergies from g(a
†
tar+ata

†
r) is zero, because 〈m,n| g(a

†
tar+ata

†
r) |m,n〉 =

0. The second-order perturbation is

| 〈m− 1, n+ 1| g(ata
†
r) |m,n〉 |2

Em,n − Em−1,n+1
+
| 〈m+ 1, n− 1| g(a

†
tar) |m,n〉 |2

Em,n − Em+1,n−1
(2.63)

=
g2(m(n+ 1))

ωt + (m− 1)α− ωr
− g2((m+ 1)n)

ωt +mα− ωr

Thus, the eigenenergies of |0, n〉 are
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nωr −
g2n

ωt − ωr
= n(ωr −

g2

∆
), (2.64)

where ∆ = ωt − ωr, and the eigenenergies of |1, n〉 are

ωt + nωr +
g2(n+ 1)

ωt − ωr
− g22n

ωt + α− ωr
(2.65)

= (ωt +
g2

ωt − ωr
) + nωr +

g2n

ωt − ωr
− g22n

ωt + α− ωr
= (ωt +

g2

∆
) + nωr +

g2n

∆
− g22n

∆ + α

= (ωt +
g2

∆
) + n(ωr −

g2

∆
(

2

1 + α/∆
− 1)),

where (ωt + g2/∆) is the eigenfrequency of |1, 0〉. Comparing the two above equations, we

obtain

|1, n〉 − |1, 0〉 − |0, n〉 = n(−g
2

∆
(

2

1 + α/∆
− 2)) (2.66)

= n(
g2

∆

2α/∆

1 + α/∆
)

= n(
g2

∆2

2α

1 + α/∆
).

The dispersive shift is thus

χ =
g2

∆2

α

1 + α/∆
. (2.67)

As expected, the dispersive shift tends to zero as α tends to zero, matching our expectation for

two coupled linear oscillators. For the ground state and first excited state of the transmon, we can

write the Hamiltonian as

H = ~(ωr + χσz)a
†
ra+

1

2
~ωtσz (2.68)
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CHAPTER 3

CONTROLLING SUPERCONDUCTING QUBITS

This chapter describes how the quantum systems described earlier can be controlled and mea-

sured by quantum computing experimentalists or engineers. Next, we describe the importance of

a cryogenic environment in implementing superconducting qubits. We begin with the discussion

on the theory of charge and flux controls and their applications. We then describe the necessary

microwave components (filters, amplifiers, etc) that allow us to operate of the quantum system.

We next talk about the room temperature electronics we used for the control operations. The final

chapter puts all these components together and shows a complete setup for operating a quantum

computer.

3.1 Charge Control

The charge control is responsible for driving qubit excitations. This is achieved by coupling a

voltage source Vd(t) with the Transmon qubit by a capacitor Cd. The transmon Hamiltonian with

the voltage source can be written as

H =
1

2
CV 2 +

1

2
Cd(Vd(t)− V )2 +

LI2

2
. (3.1)

Substituting the relation LI = φ and V = −Lİ = −φ, the transmon Lagrangian can be written

as

L =
1

2
Cφ̇2 +

1

2
Cd(Vd(t)− φ̇)2 − φ2

2L
(3.2)

The conjugate variable of φ can be obtained by

q =
L
∂φ̇

= CΣφ̇− CdVd(t), (3.3)

where CΣ = C + Cd. Thus,
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φ̇ =
1

CΣ
(q + CdVd(t)) (3.4)

By expressing the Hamiltonian and a function of q and φ, we get

H = qφ̇− L (3.5)

=
q2

2CΣ
+
CdVd(t)q

CΣ
+
C2
dVd(t)

2

2CΣ
+
φ2

2L

We can then quantize the conjugate operators with creation and annihilation operators accord-

ing to equation 2.23. We discard the last term since it does not contain any conjugate variable. For

a Transmon, we have

H = ~ωa†a+
~
2
αa†a(a†a− 1) + i

CdVd(t)

CΣ

√
~

2Zc
(a† − a) (3.6)

The prefactor of the time-dependent driving term can be represented by Ω(t), thus the full

Hamiltonian is

H = ~ωa†a+
~
2
αa†a(a†a− 1) + iΩ(t)(a† − a) (3.7)

In the number basis of transmon state, one can understood the term a − a† to be coupling the

states |n〉 with |n− 1〉 and |n+ 1〉. By targeting the frequency of Ω(t) with the corresponding

transition energy between En and En−1 or En+1, the coupling term iΩ(t)(a† − a) can induce

Rabi oscillations between these states. By controlling the strength and coupling time of Ω(t), one

can control the degree of Rabi oscillations. This forms the basis of single qubit gate operations.
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3.2 Flux Control

From section 2.5 we found that for a split junction Transmon, EJ can be tunable with external

time-dependent magnetic flux Φ(t) in the SQUID loop, with the effective EJ equals to

√
E2
J1 + E2

J2 + 2EJ1EJ2 cos(
2πΦ(t)

Φ0
) (3.8)

The mechanism for applying magnetic flux is rather straightforward. We apply current to

an inductive element that has finite mutual inductance coupling with the SQUID loop. A time-

dependent magnetic flux in the SQUID loop can be obtained by varying the applied current. The

Transmon Hamiltonian can thus be written as

H =

√√√√8EC

√
E2
J1 + E2

J2 + 2EJ1EJ2 cos(
2πΦ(t)

Φ0
)(a†a+

1

2
) +

~
2
αa†a(a†a− 1) (3.9)

For simplicity, one can write the prefractor of a†a+ 1
2 to be ~ω(t). The Hamiltonian is thus

H = ~ω(t)(a†a+
1

2
) +

~
2
αa†a(a†a− 1) (3.10)

This forms the basis of flux control, which allows us to tune the Transmon frequency at will.

This ability enables one to bring qubits on- and off-resonance at will, which we leverage to form

two-qubit gates. We use the flux control in this thesis extensively for two-qubit gate operations.

3.3 Transmon State Measurement

From the section 2.7 we conclude that the resonator frequency is dependent on the transmon state.

This is basically the key to transmon state measurement. One can measure the transmon state

by coupling the transmon with a linear LC resonator. A change of transmon state results in a

shift of resonator frequency, which then results in a shift of transmission frequency and phase of a
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microwave pulse transmitting through the resonator.

3.4 Cryogenic Environment

Superconducting qubits require an operating environment with cryogenic temperature. This is

mainly due to two reasons. First, most superconductors have a very low critical temperature. For

example, aluminum and niobium have critical temperature of 1.2K and 9.3K respectively. The

superconductivity (zero-resistance) property is critical for a highly coherent circuit. Any introduc-

tion of unwanted resistive elements would damage the qubit coherence. Second, the suppression

of thermal noise is crucial to make the qubits well behaved. Thermal noise randomly excites the

qubit in a stochastic fashion, which highly impedes the execution of a target control sequence.

As an estimation, a typical superconducting qubit has a frequency of 8 GHz. This corresponds

to a thermal temperature of

h× 8 GHz
kB

≈ 384 mK, (3.11)

where h is the Planck constant and kB is the Boltzmann constant. Ideally, one would place the

qubit in an environment that is an order of magnitude colder than 384mK. A dilution fridge is able

to cooldown to a temperature down to 10 ∼ 20 mK, which is perfect for our application.

3.5 Microwave Control Electronics

3.5.1 Oscillator

An oscillator is used for outputting a set frequency and amplitude microwave signal. The switching

times of these settings are typically rather long (much longer than qubit coherence time). There-

fore, the oscillators are used as a static source of microwave signal. Most generators support

pulsing, meaning the on/off of signal output can be controlled by an external control signal. The

control signal can be provided by an arbitrary waveform generator.
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3.5.2 Arbitrary waveform generator

The arbitrary waveform generator is a generator that allows the output of programmable voltage or

current waveforms. These waveforms are not totally arbitrary. Typically, there are constraints in

amplitude, bandwidth, output resolution and time precision of the waveforms.

Some of the most expensive commercial arbitrary waveform generators have high enough clock

rate which allows direct synthesis of microwave pulses at the qubit frequencies (4 - 8 GHz). The

Schuster lab has resources to purchase a few of these, which I am fortunate to have first-hand

experience using these state-of-the-art electronics. For instance, the Keysight M8195A is able to

generate 16GSa/s waveform signals for 4 channels, which was perfect for some of our multi-qubit

experiments.

For a lower clock rate arbitrary waveform generator, it would require frequency up-conversion

to generate pulses at qubit frequencies. To be specific, one would use IQ mixers for the frequency

up-conversion, which we will describe in the next section.

3.5.3 IQ mixer

The IQ mixer is a 4-port device (L,R,I,Q). The L-port typically requires an input of microwave

signal from an oscillator at a fixed power (∼ 13 dBm). Given an input frequency ωl of the L-port.

The signal of (R,I,Q) ports are related by

R(t) = I(t) cos(ωlt) +Q(t) sin(ωlt) (3.12)

Remarkably, the R and I,Q ports can be used as input or output interchangeably. To use the

R-port as output, the I- and Q-ports are used as inputs, which the signals are generated by arbitrary

waveform generators. The R(t) have an envelope defined by I(t) and Q(t), with oscillation fre-

quency equals to ωl. In this case, the IQ mixer is used as a frequency up-converter. On the other

hand, the R-port can be used as input and the I- and Q-ports become outputs. The signals of I(t)

and Q(t) are defined by the same equation, which [I(t), Q(t)] is the [sin, cos] quadrature of R(t).
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In this case, the IQ mixer is used as a frequency down-converter, which is useful for qubit state

measurement.

3.6 Other Electronics

An analog-to-digital converter (ADC) is a system that converts an analog signal into a digital

signal. It is used for qubit state measurement, where we take the down-converted measurement

signal to ADC and use a computer to analyze the digital signals.

We use a DC-voltage source to tune the frequency of Transmon qubits, discussed in 2.5. The

stability of the DC-voltage source is crucial for high qubit coherence since any voltage noise would

result in qubit frequency noise. We also require the voltage source to be high precision and finely

tunable, such that we can tune qubit frequencies with high preciseness.

3.7 Microwave Components

3.7.1 Attenuator

While the quantum device operates in cryogenic temperature, most of our control electronics op-

erate in room temperature. It is thus unavoidable to bring in room temperature signals, which

contains a large amount of thermal noise. The attenuator, usually made of resistive (dissipative)

components, is thus employed to attenuate the thermal noise. A dilution fridge is multi-stage,

and typically each stage operating in temperatures 50K , 4K, 700mK, and 10mK. Attenuators are

typically placed in stages 4K, 700mK and 10mK to attenuate the thermal noise successively. Of

course, the signals would also be attenuated. Thus, the input signals at room temperature are set to

high amplitudes, and both signals and noises are attenuated as they propagate to the colder stage

of the fridge.

28



3.7.2 Filter

Filters are usually made of inductive and capacitive (non-dissipative) components, resulting in

different transmission amplitudes for a different range of frequencies. In most experiments, we

have a well-expected frequency range of signals for each control line. We can thus use the filters

to filter out any transmission from unwanted frequencies, thus lowering the total thermal noise

reaching the quantum device.

3.7.3 Isolator

A circulator is a passive non-reciprocal three-port device, in which a microwave or radio frequency

signal entering any port is transmitted to the next port in rotation. When one port of a three-

port circulator is terminated in a matched load, it can be used as an isolator, since a signal can

travel in only one direction between the remaining ports. The isolator is especially useful for the

measurement output channel, where signals are traveling from the quantum device towards room

temperature electronics. The isolator ensures that a minimal thermal noise from room temperature

can be conducted through the measurement channel.

3.7.4 Amplifier

The measurement signals at the quantum device are very weak and would be overwhelmed by

thermal noise if the signals are not amplified. Therefore it is critical to amplify the measurement

signals within the cryogenic environment, before reaching room temperatures. Special amplifiers

such as parametric amplifier, and High Electron Mobility Transistor (HEMT) are typically em-

ployed for amplification within the fridge. A proper amplification is crucial for obtaining high

measurement fidelity.

29



3.8 Software For Quantum Operations and Measurements

From our experience, having a well-structured software is extremely important for high produc-

tivity in performing physical experiments. I spent a good portion of time on building lab software

framework for executing experiments (which I really enjoyed). That involves writing drivers for

individual hardware, integration of various hardware components, measurement data analysis and

code instruction framework for generating physical waveforms. This chapter introduces the basic

components of software programming for controlling a quantum computer.

3.8.1 Hardware Drivers

Most programmable electronic hardware has a simple programming interface called The Stan-

dard Commands for Programmable Instruments (SCPI), which can commonly be communicated

through LANs or PCIs. Most operations can be set with a single line command, such as setting

the amplitude or frequency of an oscillator or setting the output voltage of a DC-voltage source.

Defining the output of an arbitrary waveform generator involves more sophisticated programming,

which most of the following sections in this chapter will be dedicated to this topic.

3.8.2 Essential properties

As seen from section 3.1, the voltage V (t) for controlling a qubit typical involves an oscillation

microwave pulse at some given frequency, amplitude and duration. Controlling a quantum com-

puter is essentially sending streams of microwave pulses into the system. We require a software

framework that has the following properties:

• Discrete gate abstraction: When performing gate sequence programming, one would rather

think and program in discrete gate set, and not prefer to think in terms of continuous streams

of microwave pulses.

• Flexibility in defining individual gate: Most of the numerically optimized pulses have a non-

analytic waveform. Thus the software is required to support the generation or arbitrarily
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defined waveforms.

• Incorporating generators with different requirements on waveforms: Most generator has

specifications on the sample size of waveforms, such as a minimum sample size and the

sample size must be an integer multiple of a certain value (e.g. 24 = 16).

• Incorporating generators at different clock rate: We typically have to group various models

of generators to perform an experiment. To synchronize the output of each generator, it

would be convenient to only think in terms of time, instead of dealing with the different

clock cycle of each generator.

• The software programming of each experiment should be agnostic to the underlying hard-

ware: This is closely related to the two above items. It is common to use different waveform

generators for a similar set of experiments. For example, almost every qubit related experi-

ment would require implementing the Rabi, Ramsey and T1 experiments. It would be highly

inefficient if one has to reprogram their experiments when one is given a different set of

hardware.

These are the guiding principles I followed when programming our lab’s quantum control soft-

ware, and so far it has been successful in applying the same software to various experimental

projects in the lab. Looking forward, the programming of a system with feedback operation would

introduce the next level of complexity, and would likely need some careful design on how one

should write software for that.
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3.9 Putting all together: Cryogenic setup and control instrumentation
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Figure 3.1: Detailed schematic of the cryogenic setup, control instrumentation, and the wiring of
microwave and DC connections to the device.

Here we put all the components together and describes an experimental setup we used for con-

ducting quantum computations. The quantum device is heat sunk via an OFHC copper post to

the base stage of a Bluefors dilution refrigerator (10-30 mK). The sample is surrounded by a can

containing two layers of µ-metal shielding and a layer of lead shielding, thermally anchored using

an inner close fit copper shim sheet, attached to the copper can lid. The schematic of the cryo-

genic setup, control instrumentation, and the wiring of the device is shown in Figure 3.1. Each

device is connected to the rest of the setup through three ports: a charge port that applies qubit and

readout drive tones, a flux port for shifting the qubit frequency using a DC-flux bias current and

for applying RF sideband flux pulses, and an output port for measuring the transmission from the

readout resonator. The readout pulses are generated by mixing a local oscillator tone (generated
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from an Agilent 8257D RF signal generator), with pulses generated by a Tektronix AWG5014C ar-

bitrary waveform generator (TEK) with a sampling rate of 1.2 GSa/s, using an IQ-Mixer (MARQI

MLIQ0218). The charge drive pulses are generated with Keysight M8195A arbitrary waveform

generator by direct synthesis, and subsequently combined with the readout drive pulse. The com-

bined signals are sent to the device, after being attenuated a total of 60 dB in the dilution fridge,

using attenuators thermalized to the 4K (20 dB), still (20 dB) and base stages (20 dB). The charge

drive line also includes a lossy ECCOSORB CR-117 filter to block IR radiation, and a low-pass

filter with a sharp roll-off at 6 GHz, both thermalized to the base stage. The flux-modulation pulses

are also directly synthesized by the Keysight M8195A arbitrary waveform generator and attenu-

ated by 20 dB at the 4 K stage, and bandpass filtered to within a band of 400 MHz - 3.4 GHz at the

base stage, using the filters indicated in the schematic. The DC flux bias current is generated by

a YOKOGAWA GS200 low-noise current source, attenuated by 20 dB at the 4 K stage, and low-

pass filtered down to a bandwidth of 1.9 MHz. The DC flux bias current is combined with the flux-

modulation pulses at a bias tee thermalized at the base stage. The state of the transmon is measured

using the transmission of the readout resonator, through the dispersive circuit QED readout scheme

[195]. The transmitted signal from the readout resonator is passed through a set of cryogenic cir-

culators (thermalized at the base stage) and amplified using a HEMT amplifier (thermalized at the

4 K stage). Once out of the fridge, the signal is filtered (narrow bandpass filter around the readout

frequency) and further amplified. The amplitude and phase of the resonator transmission signal are

obtained through a heterodyne measurement, with the transmitted signal demodulated using an IQ

mixer and a local oscillator at the readout resonator frequency. The heterodyne signal is amplified

(SRS preamplifier) and recorded using a fast ADC card (ALAZARtech).
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CHAPTER 4

QUANTUM OPTIMAL CONTROL

This chapter describes how numerical techniques can be employed to optimize the control effi-

ciency of a quantum computer. We implement a quantum optimal control algorithm based on au-

tomatic differentiation and harness the acceleration afforded by graphics processing units (GPUs).

Automatic differentiation allows us to specify advanced optimization criteria and incorporate them

in the optimization process with ease. We show that the use of GPUs can speedup calculations

by more than an order of magnitude. Our strategy facilitates efficient numerical simulations on

affordable desktop computers, and exploration of a host of optimization constraints and system

parameters relevant to real-life experiments. We demonstrate optimization of quantum evolution

based on fine-grained evaluation of performance at each intermediate time step, thus enabling

more intricate control on the evolution path, suppression of departures from the truncated model

subspace, as well as minimization of the physical time needed to perform high-fidelity state prepa-

ration and unitary gates. The content of this chapter is based on our work “Speedup for quantum

optimal control from GPU-based automatic differentiation” published in Physical Review A [105].

4.1 Introduction

The techniques and algorithms used to optimize the control of quantum systems [63, 89, 38, 174,

53, 66, 138, 159, 146, 184, 205, 206, 144, 114, 143, 17, 46] and those underlying the field of

deep neural networks [72, 73] share a number of common elements. Both areas heavily use linear

algebra operations combined with gradient descent optimization. Thus, advanced hardware and

software technology recently emerging from the rapid development of machine learning also paves

the way for a significant boost of optimal quantum control techniques.

A crucial factor for recent impressive progress in machine learning has been the leveraging of

massive parallelism native to graphics processing units (GPUs) [142, 23, 167, 151, 179]. Similarly

GPUs have been used to accelerate computations in many areas of quantum physics and chem-
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istry [14, 34, 202, 188, 194, 145, 76]. Specifically, GPUs are extremely efficient in multiplying

very large matrices [37, 56]. Such multiplications also form a central step in the simulation and

optimal control of quantum systems. Exploiting this advantageous feature of GPUs, we achieve

significant speed improvements in optimizing control schemes for systems at the current frontiers

of experimental quantum computation. As the number of qubits in these experiments is increasing

[36, 39, 87], it becomes increasingly important to take advantage of optimal control techniques.

Moreover, recent advances in commercially available electronics – e.g., arbitrary waveform gener-

ators enabling base-band synthesis of the entire microwave spectrum [88] – afford new capabilities

which quantum optimal control is uniquely well-suited to harness.

There have been numerous theoretical developments of numerical and analytical methods for

quantum optimal control (see Ref. [63] for a recent review). The algorithms involved are predomi-

nantly based on gradient methods, such as realized in gradient ascent pulse engineering (GRAPE)

[89, 38], Krotov algorithms [174, 53, 66, 138, 159, 146, 184] or rapid monotonically convergent

algorithms [205, 206, 144, 114, 143, 17, 46], and are available in several open-source packages,

including QuTiP [83, 84], DYNAMO [112], Spinach [75], and SIMPSON [187]. Quantum optimal

control has been remarkably successful in determining optimized pulse sequences [16], designing

high-fidelity quantum gates [176, 157, 138, 135, 86, 113, 51, 106, 156, 50, 98], and preparing

entangled states [47, 150, 198, 64, 65].

Optimal control is a versatile concept which can be applied to a vast variety of quantum sys-

tems. Typically there is a primary goal (e.g. maximizing fidelity to a target state/unitary), as well as

additional constraints/costs associated with specific experimental systems. Examples of such con-

straints include fixed maximum amplitudes of control pulses [173, 94], maximum overall power of

control signals [95], and limited time resolution of arbitrary waveform generators [132]. Further,

finite coherence of quantum systems motivates minimizing the overall time needed for reaching

the intended state or unitary (time-optimal control) [24]. In certain cases, steering the quantum

system among an optimal path (time-dependent target) may be desired [166]. Incorporating new

constraints in the optimization process often requires the analytical derivation and implementa-
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tion of additional contributions to the gradient calculation, and may necessitate significant effort

to deploy on large computer clusters. This issue can greatly impede the ability to quickly develop

control strategies for new problems.

To overcome these obstacles, we have implemented a quantum optimal control scheme that

incorporates constraints via automatic differentiation [7, 199] and utilizes GPUs for boosting com-

putational efficiency. Specifically, automatic differentiation handles the updating of gradient cal-

culations in the backward propagation algorithm [73], and thus eliminates the need to hard-code

additional gradient contributions from constraints. For the actual optimal control applications we

present in this paper, we find that the computational speed-up from utilizing GPUs becomes sig-

nificant for Hilbert space sizes exceeding dimensions of the order of one hundred, see Fig. 4.3.

Together, these features allow a quick turnaround for varying optimization constraints and system

parameters, rendering this approach invaluable for the study of quantum optimal control. In this

paper, we describe the implementation of automatic differentiation, demonstrate its application to

quantum optimal control of example systems relevant to quantum computing and quantum optics,

and discuss the performance gains achieved by utilizing GPUs.

4.2 Theory

We briefly review the essential idea of quantum optimal control and introduce the notation used

throughout our paper. We consider the general setting of a quantum system with intrinsic Hamil-

tonian H0 and a set of external control fields {u1(t), . . . , uM (t)} acting on the system via con-

trol operators {H1, . . . ,HM}. The resulting system Hamiltonian is given by H(t) = H0 +∑M
k=1 uk(t)Hk. Optimal control theory aims to minimize deviations from a target state or tar-

get unitary by appropriate adjustments of the control fields uk(t). To implement this optimization,

the time interval of interest is discretized into a large number N of sufficiently small time steps δt.
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Denoting intermediate times by tj = t0 + j δt, the Hamiltonian at time tj takes on the form

Hj = H0 +
M∑
k=1

uk,jHk. (4.1)

The control fields subject to optimization now form a set {uk,j} of d = M ·N real numbers.

The quantum evolution from the initial time t = t0 to time tj is described by a propagator Kj ,

decomposed according to

Kj = UjUj−1Uj−2 . . . U1U0 (4.2)

where

Uj = exp(−iHjδt) (4.3)

is the propagator for the short time interval [tj , tj + δt]. (Here and in the following, we set ~ = 1.)

Evolution of a select initial state |Ψ0〉 from t = t0 to t = tj then takes the usual form

|Ψj〉 = Kj |Ψ0〉. (4.4)

In the decomposition of Kj , each short-time propagator Ui can be evaluated exactly by matrix

exponentiation or approximated by an appropriate series expansion. Propagation methods which

go beyond the piecewise-constant approximation for the propagation, can further improve speed

and accuracy [113].

Optimization of the discretized control fields u ∈ Rd can be formulated as the minimization of

a cost function C(u) where C : Rd → R+. Table 4.1 shows some of the most important cost func-

tion contributions used for quantum optimal control. The total cost function is a linear combination

of these cost functions, C =
∑
µ αµCµ. The weight factors αµ must be determined empirically,

and depend on the specific problem and experimental realization at hand. In the following, we

discuss these relevant cost function contributions.
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4.2.1 Important types of cost function contributions

The first cost contribution, C1(u), is the primary tool for realizing a target unitary KT , such as

a single or multi-qubit gate. Cost is incurred for deviations between the target unitary and the

realized unitary KN at a given final time tN . For a system with Hilbert space dimension D, its

expression 1 − | tr(K†TKN )/D|2 [89] represents the infidelity obtained from the trace distance

between the target unitary and the realized unitary. Minimizing this cost function is the principle

goal of the quantum control problem.

The second cost function, C2(u) = 1− |〈ΨT |ΨN 〉|2 measures the distance between a desired

target state |ΨT 〉 and the state |ΨN 〉 realized at the final time tN , as obtained from evolution of a

given initial state |Ψ0〉. In addition, generalizing C2 to multiple initial and target states is useful for

performing a unitaryKT which is only defined on some subspaceHS of the modeled Hilbert space.

Such restriction to a selected subspace is of practical importance whenever a desired unitary is to be

implemented within some computational subspace only, as is common for quantum computation

applications. There, evolution of higher excited states or auxiliary systems outside the computa-

tional subspace is immaterial. Optimal control, then, can be achieved by simultaneous evolution

of a set of initial states {|Ψs
0〉} (s = 1, 2, . . . , S) that forms a basis of HS . Optimal control fields

are obtained from minimizing the composite state infidelity C2Σ(u) = 1− | 1S
∑
s〈Ψs

T |PS |Ψs
N 〉|2

relative to the desired target states |Ψs
T 〉 = KT |Ψs

0〉. (Here, PS is the projector onto subspaceHS .)

This composite state-transfer cost function when used over a complete basis is equivalent to the

gate fidelity, but has several advantages. Most importantly it is more memory efficient requiring

only the current state to be stored rather than the whole unitary. In addition, it is very amenable

to distributed computing approaches. However, when the unitary transfer matrix can be stored in

memory, propagating the full unitary can take advantage of the parallelism of the GPU for smaller

problems (see Fig. 4.3).

Like many optimization problems, quantum optimal control is typically underconstrained. In

order to obtain control fields that are consistent with specific experimental capabilities and lim-

itations, it is often crucial to add further constraints on the optimization. Control fields must be
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µ Cost function contribution Cµ(u)

1 Target gate infidelity 1− | tr(K†TKN )/D|2
2 Target state infidelity 1− |〈ΨT |ΨN 〉|2
3 Control amplitudes |u|2
4 Control variations

∑
j,k |uk,j − uk,j−1|2

5 Occupation of forbidden state
∑
j |〈ΨF |Ψj〉|2

6 Evolution time (target gate) 1− 1
N

∑
j | tr(K

†
TKj)/D|2

7 Evolution time (target state) 1− 1
N

∑
j |〈ΨT |Ψj〉|2

Table 4.1: Relevant contributions to cost functions for quantum optimal control. Names of contri-
butions indicate the quantity to be minimized.

realizable in the lab, should be robust to noise, and avoid large control amplitudes and rapid vari-

ations based on signal output specifications of instruments employed in experiments. Exceedingly

strong control fields may also be problematic due to heat dissipation which may, for instance, raise

the temperature inside a dilution refrigerator. These points motivate the consideration of additional

cost function contributions in the following.

One such contribution, C3(u) = |u|2 suppresses large control-field amplitudes globally, and is

commonly employed in quantum optimal control studies [89, 173, 94, 74]. (The generalization to

more fine-grained suppression of individual control fields is straightforward to implement as well.)

Penalizing the L2 norm of the control fields favors solutions with low amplitudes. It also tends to

spread relevant control fields over the entire allowed time window. While C3 constitutes a “soft”

penalty on control-field amplitudes, one may also apply a trigonometric mapping to the amplitudes

to effect a hard constraint strictly enforcing fixed maximum amplitudes [55].

The fourth type of contribution to the cost function, C4(u) =
∑
j,k |uk,j − uk,j−1|2, penalizes

rapid variations of control fields by suppressing their (discretized) time derivatives [74]. The result-

ing smoothening of signals is of paramount practical importance, since any instrument generating a

control field has a finite impulse response. If needed, contributions analogous toC4 which suppress

higher derivatives or other aspects of the time dependence of fields can be constructed. Together,

limiting the control amplitudes and their time variation filters out high-frequency “noise” from

control fields, which is an otherwise common result of less-constrained optimization. Smoother
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control fields also have the advantage that essential control patterns can potentially be recognized

and given a meaningful interpretation.

The contribution C5(u) =
∑
j |〈ΨF |Ψj〉|2 to the cost function has the effect of suppressing

occupation of a select “forbidden” state |ΨF 〉 (or a set of such states, upon summation) through-

out the evolution. The inclusion of this contribution addresses an important issue ubiquitous for

systems with Hilbert spaces of large or infinite dimension. In this situation, truncation of Hilbert

space is needed or inevitable due to computer memory limitations. (Note that this need even arises

for a single harmonic oscillator.) Whenever the evolution generated by optimal control algorithms

explores highly excited states, truncation introduces a false non-linearity which can misguide the

optimization. Including additional states can, in principle, mitigate this problem, but is generally

computationally very expensive. An independent physics motivation for avoiding occupation of

highly-excited states consists of spontaneous relaxation in realistic systems: high-energy states

are often more lossy (as is usually the case, e.g., for superconducting qubits), and possibly more

difficult to model. Active penalization of such states therefore has the two-fold benefit of keeping

Hilbert space size at bay, and reducing unwanted fidelity loss from increased relaxation. To address

these challenges, we employ an intermediate-time cost function [166, 147]: the cost function C5

limits leakage to higher states during the entire evolution, and at the same time prevents optimiza-

tion to be misinformed by artificial non-linearity due to truncation. We note that the efficacy of

this strategy is system dependent: it works well, for example, for harmonic oscillators or transmon

qubits [96] which have strong selection rules against direct transitions to more distant states, but

may be less effective in systems such as the fluxonium circuit [115] where low-lying states have

direct matrix elements to many higher states.
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Figure 4.1: Computational network graph for quantum optimal control. Circular nodes in the
graph depict elementary operations with known derivatives (matrix multiplication, addition, matrix
exponential, trace, inner product, and squared absolute value). Backward propagation for matrices
proceeds by matrix multiplication, or where specified, by the Hadamard product ◦. In the forward
direction, starting from a set of control parameters uk,j , the computational graph effects time
evolution of a quantum state or unitary, and the simultaneous computation of the cost function
C. The subsequent “backward propagation” extracts the gradient ∇uC(u) with respect to all
control fields by reverse-mode automatic differentiation. This algorithm is directly supported by
TensorFlow [1], once such a computational network is specified.
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Customarily, algorithms minimizing the cost function C =
∑
µ αµCµ for a given evolution

time interval [t0, tN ] aim to match the desired target unitary or target state at the very end of

this time interval. To avoid detrimental effects from decoherence processes during the evolution,

it is often beneficial to additionally minimize the gate duration (or state preparation) time ∆t =

tN −t0 itself. Instead of running the algorithms multiple times for a set of different ∆t, we employ

cost function contributions of the form C6(u) = 1 − 1
N

∑
j | tr(K

†
TKj)/D|2 for a target unitary,

or C7(u) = 1 − 1
N

∑
j |〈ΨT |Ψj〉|2 for a target state, respectively. These expressions penalize

deviations from the target gate or target state not only at the final time tN , but at every time

step. This contribution to the overall cost function therefore guides the evolution towards a desired

unitary or state in as short a time as possible under the conditions set by the other constraints, and

thus results in a time-optimal gate.

We will demonstrate the utility of these cost function contributions in the context of quantum

information processing in Section 4.5. The versatility of automatic differentiation allows straight-

forward extension to other contexts such as optimization of quantum observables.

4.2.2 Gradient evaluation

The weighted sum of cost functions, C =
∑
µ αµCµ, can be minimized through a variety of

gradient-based algorithms. Such algorithms are a very popular means of optimization thanks to

their good performance and effectiveness in finding optimized solutions for a wide range of prob-

lems. At the most basic level, gradient-based algorithms minimize the cost function C(u) by the

method of steepest descent, updating the controls u in the opposite direction of the local cost-

function gradient∇uC(u):

u′ = u− η∇uC(u). (4.5)

The choice of the update step size η for the control field parameters u, plays an important role

for the convergence properties of the algorithm. A number of schemes exist which adaptively

determine an appropriate step size η in each iteration of the minimization algorithm. Our im-
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plementation supports second order methods such as L-BFGS-B [20] as well as gradient descent

methods developed for machine learning such as ADAM [92].

u1 u2

√·
•sin

+

C(u)

,

Figure 4.2: Sample computational graph for automatic differentiation. Automatic differentiation
utilizes the decomposition of the multivariable cost function C(u) into its computational graph
of elementary operations, each of which has a known derivative. In reverse-accumulation mode,
all partial derivatives of C are evaluated in a recursion from the top level (C) back towards the
outermost branches (variables u).

For the evaluation of the gradient ∇uC we make use of automatic differentiation [199, 7] in

reverse-accumulation mode. In brief, this algorithm utilizes the decomposition of the multivari-

able cost function C(u) into its computational graph of elementary operations (addition, matrix

multiplications, trace, etc.), each of which has a known derivative. In reverse-accumulation mode,

all partial derivatives of C are evaluated in a recursion from the top level (C) back towards the

outermost branches (variables u) – rather similar to the procedure of obtaining a derivative with

pencil and paper. For instance, for the simple function

C(u) = sin(u1) + u1 ·
√
u2 = f+

[
sin(u1), f•(u1,

√
u2)

]

one obtains all partial derivatives by a recursion starting with the evaluation of

∂

∂uj
C = D1f+ [

∂

∂uj
sin] + D2f+ [

∂

∂uj
f•] = · · · .

Here, Djf stands for the derivative of a multivariable function f with respect to its j-th argument;

square brackets denote subsequent numerical evaluation of the enclosed term. (Function arguments
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are suppressed for brevity.)

Automatic differentiation has become a central tool in machine learning [8], and equally ap-

plies to the problem of optimal control of quantum systems. In this approach, the gradient of a set

of elementary operations is defined and more complex functions are built as a graph of these op-

erations. The value of the function is computed by traversing the graph from inputs to the output,

while the gradient is computed by traversing the graph in reverse via the gradients. This method-

ology gives the same numerical accuracy and stability of analytic gradients without requiring one

to derive and implement analytical gradients specific to each new trial cost function.

All cost functions summarized in table 4.1 can be conveniently expressed in terms of common

linear-algebra operations. Figure 4.1 shows the network graph of operations in our software im-

plementation, realizing quantum optimal control with reverse-mode automatic differentiation. For

simplicity, the graph only shows the calculation of the cost functions C2 and C5. The cost function

contributions C1, C6, and C7 are treated in a similar manner. The suppression of large control

amplitudes or rapid variations, achieved by C3 and C4, is simple to include, since the calculation

of these cost function contributions is based on the control signals themselves and does not involve

the time-evolved state or unitary. The host of steps for gradient evaluation is based on basic matrix

operations like summation and multiplication.

Reverse-mode automatic differentiation [73] provides an efficient way to carry out time evo-

lution and cost function evaluation by one forward sweep through the computational graph, and

calculation of the full gradient by one backward sweep. In contrast to forward accumulation, each

derivative is evaluated only once, thus enhancing computational efficiency. The idea of backward

propagation is directly related to the GRAPE algorithm for quantum optimal control pioneered by

Khaneja and co-workers [89], see Chapter 4.6. While the original GRAPE algorithm bases min-

imization exclusively on the fidelity of the final evolved unitary or state, advanced cost functions

(such as C5 through C7) require the summation of cost contributions from each intermediate step

during time evolution of the system. Such cost functions go beyond the usual GRAPE algorithm,

but can be included in the more general backward propagation scheme described above. [Chap-
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ter 4.6 shows analytical forms for gradients for cost functions that are based on time evolution

({C1, C2, C5}).]

4.3 Implementation

Our quantum optimal control implementation utilizes the TensorFlow library developed by Google’s

machine intelligence research group [1]. This library is open source, and is being extended and

improved upon by an active development community. TensorFlow supports GPU and large-scale

parallel learning, critical for high-performance optimization. The simple interface to Python allows

non-software professionals to implement high-performance machine learning and optimization ap-

plications without excessive overhead.

Typical machine-learning applications require most of the same building blocks needed for

quantum optimal control. Predefined operations, along with corresponding gradients, include ma-

trix addition and multiplication; matrix traces; and vector dot products. In addition, we have im-

plemented an efficient kernel for approximate evaluation of the matrix exponential and its gradient.

Using these building blocks, we have developed a fast and accurate implementation of quantum

optimal control, well-suited to deal with a broad range of engineered quantum systems and realistic

treatment of capabilities and limitations of control fields.

In common applications of quantum optimal control, time evolving the system under the

Schrödinger equation – more specifically, approximating the matrix exponential for the propa-

gators Uj at each time step tj – requires the biggest chunk of computational time. Within our

matrix-exponentiation kernel, we approximate e−iHjδt by series expansion, taking into account

that the order of the expansion plays a crucial role in maintaining accuracy and unitarity. The

required order of the matrix-exponential expansion generally depends on the magnitude of the ma-

trix eigenvalues relative to the size of the time step. General-purpose algorithms such as expm()

in Python’s SciPy framework accept arbitrary matrices M as input, so that the estimation of the

spectral radius or matrix norm of M , needed for choosing the appropriate order in the expansion,

often costs more computational time than the final evaluation of the series approximation itself.
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Direct series expansion with only a few terms is sufficient for Hjδ with spectral radius smaller

than 1. In the presence of large eigenvalues, series convergence is slow, and it is more efficient to

employ an appropriate form of the “scaling and squaring” strategy, based on the identity

expM =

[
exp

(
M

2n

)]2n

, (4.6)

which reduces the spectral range by a factor of 2n at the cost of recursively squaring the matrix n

times [128]. Overall, this strategy leads to an approximation of the short-time propagator of the

form

Uj ≈
[ p∑
k=0

(−iHjδt/2n)k

k!

]2n

, (4.7)

based on a Taylor expansion truncated at order p. Computational performance could be further

improved by employing more sophisticated series expansions [3, 35] and integration methods [81].

As opposed to the challenges of general-purpose matrix exponentiation, matrices involved in

a specific quantum control application with bounded control field strength (iHjδt), will typically

exhibit similar spectral radii. Thus, rather than attempting to determine individual truncation levels

pj , and performing scaling-and-squaring at level nj in each time step tj , we make a conservative

choice for global p and n at the beginning and employ them throughout. This simple heuristic

speeds up matrix exponentiation over the default SciPy implementation significantly, primarily

due to leaving out the step of spectral radius estimation.

By default, automatic differentiation would compute the gradient of the approximated matrix

exponential via backpropagation through the series expansion. However, for sufficiently small

spectral radius of M , we may approximate [89]

d

dx
eM(x) ≈M ′(x) eM(x), (4.8)

neglecting higher-order corrections reflecting that M ′(x) and M(x) may not commute. (Higher-

order schemes taking into account such additional corrections are discussed in Ref. [38].) Equation
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(4.8) simplifies automatic differentiation: within this approximation, only the same matrix expo-

nential is needed for the evaluation of the the gradient. We make use of this in a custom routine for

matrix exponentiation and gradient-operator evaluation, further improving the speed and memory

performance.

The TensorFlow library currently has one limitation relevant to our implementation of a quan-

tum optimal control algorithm. Operators and states in Hilbert space have natural respresentations

as matrices and vectors which are generically complex-valued. TensorFlow, designed primarily

for neural network problems, has currently only limited support for complex matrices. For now,

we circumvent this obstacle by mapping complex-valued matrices to real matrices via the isomor-

phism H
∼=7−→ I ⊗Hre − iσy ⊗Him, and state vectors ~Ψ

∼=7−→ (~Ψre, ~Ψim)t. Here, I is the 2×2 unit

matrix and σy one of the Pauli matrices. Real and imaginary part of the matrix H are denoted by

Hre = ReH and Him = ImH , respectively; similarly, real and imaginary parts of state vectors

are ~Ψre = Re ~Ψ and ~Ψim = Im ~Ψ. Written out in explicit block matrix form, this isomorphism

results in

H~Ψ
∼=7−→

Hre −Him

Him Hre


 ~Ψre

~Ψim

 , (4.9)

rendering all matrices and vectors real-valued. For the Hamiltonian matrix, this currently implies

a factor two in memory cost (due to redundancy of real and imaginary part entries). There are

promising indications that future TensorFlow releases may improve complex-number support and

eliminate the need for a mapping to real-valued matrices and vectors.
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4.4 Performance Benchmarking
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Figure 4.3: Benchmarking comparison between GPU and CPU for (a) a unitary gate (Hadamard
transform), and (b) state transfer (GHZ state preparation). Total runtime per iteration scales linearly
with the number of time steps. For unitary-gate optimization, the GPU outperforms the CPU
for Hilbert space dimensions above ∼ 100. For state transer, GPU benefits set in slightly later,
outperforming the CPU-based implementation for Hilbert space dimensions above ∼ 300. The
physical system we consider, in this case, is an open chain of N spin-1/2 systems with nearest
neighbor σzσz coupling, and each qubit is controlled via fields Ωx and Ωy.

Obtaining a fair comparison between CPU-based and GPU-based computational performance is

notoriously difficult [101]. We attempt to provide a specific comparison under a unified compu-

tation framework. TensorFlow allows for straightforward switching from running code on a CPU

to a GPU. For each operation (matrix multiplication, trace, etc.), we use the default CPU/GPU

kernel offered by TensorFlow. Note that properly configured, TensorFlow automatically utilizes

all threads available for a given CPU, and GPU utilization is found to be near 100%. Not surpris-

ingly, we observe that the intrinsic parallelism of GPU-based matrix operations allows much more

efficient computation beyond a certain Hilbert space size, see Fig. 4.3.

In this example, we specifically inspect how the computational speed scales with the Hilbert

space dimension when optimizing an n-spin Hadamard transform gate and n-spin GHZ state prepa-

ration for a coupled chain of spin-1/2 systems presented in Section 4.5.4. (Details of system param-

eters are described in the same section.) We benchmark the average runtime for a single iteration

for various spin-chain sizes and, hence, Hilbert space dimensions. We find that the GPU quickly

outperforms the CPU in the unitary gate problem, even for a moderate system size of ∼ 100 basis

states. For optimization of state transfer, we observe that speedup from GPU usage, relative CPU
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performance, sets in for slightly larger system sizes of approximately ∼ 300 basis states.

The distinct thresholds for the GPU/CPU performance gain stem from the different compu-

tational complexities of gate vs. state-transfer optimization. Namely, optimizing unitary gates

requires the propagation of a unitary operator (a matrix), involving matrix-matrix multiplications,

while optimizing state transfer only requires the propagation of a state (a vector), involving only

matrix-vector multiplications:

Uj |Ψ〉 ≈
p∑

k=0

(−iδt)k
k!

(Hj . . . (Hj(Hj |Ψ〉))), (4.10)

Computing the matrix-vector multiplication is generally much faster than computing the matrix

exponential itself [169]. For an n-dimensional matrix, the computation of the matrix exponential

involves matrix-matrix multiplication, which scales as O(n3). The computation of state transfer

only involves matrix-vector multiplication, which scales as O(n2) [or even O(n) for sufficiently

sparse matrices].

For optimization of the Hadamard transform as well as the GHZ state preparation, we observe

a 19-fold GPU speedup for a 10-qubit system (Hilbert space dimension of 1,024) in the former

case, and a 6-fold GPU speedup for an 11-qubit system (Hilbert space dimension of 2,048) in the

latter case. Since matrix operations are the most computationally intensive task in our software,

this speedup is comparable to other GPU application studies that heavily use matrix operation

[142, 23, 167, 151, 179, 185, 101]. We emphasize that these numbers are indicative of overall

performance trends, but detailed numbers will certainly differ according to the specific system

architecture in place. The CPU model we used was an Intel R© Core
TM

i7-6700K CPU @ 4.00 GHz,

and the GPU model was an NVIDIA R© Tesla R© K40c. In this study, all computations are based

on dense matrices. Since most physically relevant Hamiltonians are sparse (evolution generally

affects sparsity, though), future incorporation of sparse matrices may further improve computation

speed for both CPU and GPU [13, 108].
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Figure 4.4: Control pulses and evolution of quantum state population for a CNOT gate acting on
two transmon qubits, (a) only targeting the desired final unitary, (b) employing an additional cost
function suppressing occupation of higher-lying states (C5), and (c) including additional pulse-
shape cost functions (C3, C4). Here, only the evolution of state |11〉 is shown, as the evolution
of state |11〉 is most susceptible to the occupation of higher level states. In all three cases, the
CNOT gate converged to a fidelity of 99.9%. The results differ in important details: in (a), both
high-frequency “noise” on the control signals and significant occupation of “forbidden” states (3rd
and 4th excited transmon level), shown as dashed red line, are visibile throughout the evolution;
in (b), forbidden-state occupation is suppressed at each time step during evolution; in (c), this
suppression is maintained and all control signals are smoothened. The maximum occupation of
forbidden states is reduced from ∼ 20% in (a) to ∼ 3% in (b) and (c). The population of “others”
states (non- |11〉, |10〉 or ”forbidden”) is also shown for completeness. For demonstration purposes,
all three examples use the same gate duration of 10 ns, despite being subject to different constraints.
In practice, one would typically increase the gate time for a more constrained problem to achieve
the best result in maximizing gate fidelity, minimizing forbidden state occupation, and achieving a
realistic control signal.

4.5 Showcase Applications

In this last section, we present a set of example applications of experimental relevance. The first

application demonstrates the importance of cost functions suppressing intermediate occupation

of higher-lying states during time evolution, as well as cost functions accounting for realistic

pulse shaping capabilities. In a second application, we show how the cost function C6 can yield

high-fidelity state transfer within a reduced time interval. Third, we discuss the application of

Schrödinger-cat state preparation – an example from the context of quantum optics and of signif-

icant interest in recent schemes aiming at quantum information processing based on such states

[74, 125, 193]. This application combines considerable system size with a large number of time
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steps, and utilizes most of the cost functions discussed in Section 4.2.1. In the fourth application,

we demonstrate the algorithm performance in finding optimal solutions for GHZ state preparation

and implementation of a Hadamard transform gate in a chain of qubits with a variable number of

qubits. We use either the Adam [92] or L-BFGS-B optimization algorithm [20] for pulse optimiza-

tion, and achieve a minimum fidelity of 99.9% in all of our following examples.

4.5.1 CNOT gate for two transmon qubits

In the first example, we study realization of a 2-qubit CNOT gate in a system of two coupled,

weakly anharmonic transmon qubits. For each transmon qubit (j = 1, 2) [96], we take into account

the lowest two states spanning the qubit computational space, as well as the next three higher levels.

The system Hamiltonian, including the control fields {Ωx1(t), Ωx2(t), Ωz2(t)}, then reads

H(t) =
∑
j=1,2

[
ωjb
†
jbj + 1

2αj b
†
jbj(b

†
jbj − 1)

]
(4.11)

+ J(b1 + b
†
1)(b2 + b

†
2)

+ Ωx1(t)(b1 + b
†
1) + Ωx2(t)(b2 + b

†
2) + Ωz2(t)b

†
2b2.

Here, the ladder operators bj , and b†j are truncated at the appropriate level. (The qubit frequencies

ωj/2π are chosen as 3.5 and 3.9 GHz, respectively; both transmons have an anharmonicity of

α/2π = −225 MHz; and the qubit-qubit coupling strength used in the simulation is J/2π =

100 MHz.) Consistent with recent circuit QED experiments utilizing classical drives as well as

parametric modulation, we investigate control fields acting on Hx1 = b1 + b
†
1, Hx2 = b2 + b

†
2, and

Hz2 = b
†
2b2.

We next optimize control fields for the realization of a CNOT gate, with transmon qubit j = 1

acting as the control qubit. Our control-field optimization reaches a prescribed fidelity of 99.9% for

a 10 ns gate duration in all cases, as seen in Fig. 4.4. Results shown in Fig. 4.4(a) are obtained with

the standard target-gate infidelity cost function (C1) only. It is evident that the solution encounters
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two issues: the occupation of the 3rd and 4th excited transmon level (“forbidden”) is significant,

and control fields are polluted by high-frequency components. Including a cost function contribu-

tion of type C5 succeeds in strongly suppressing occupation of higher levels, see Fig. 4.4(b). This

both reduces exposure to increased relaxation rates and ensures that the evolution is minimally

influenced by our numerical truncation of Hilbert space. In the final improvement step, shown in

Fig. 4.4(c), our optimization additionally suppresses excessive control amplitudes and derivatives

via cost contributions of type C3 and C4. The inclusion of these terms in the overall cost lessens

superfluous “noise” in the control signals, and also helps improve convergence of the algorithm –

without reducing the achieved target-gate fidelity.
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Figure 4.5: Minimizing evolution time needed for a high-fidelity state transfer. (a) No time-optimal
award function. (b) With time-optimal award function. (a) Without penalty for the time required
for the gate, the control field spreads across the entire given time interval. (b) Once evolution over
a longer time duration is penalized with a contribution of type C6 or C7 (see table I), the optimizer
achieves target state preparation in a shorter time, without loss of fidelity.
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4.5.2 Reducing duration of state transfer

In this second example, we illustrate the use of cost function contributions (types C6, C7) in min-

imizing the time needed to perform a specific gate or prepare a desired state. To this end, we

consider a two-level spin qubit (ω/2π: 3.9 GHz). The system and control Hamiltonians combined

are taken to be

H =
ω

2
σz + Ω(t)σx. (4.12)

We allow for a control field acting on the qubit σx degree of freedom, and constrain the maximum

control-field strength Ωmax/2π to 300 MHz. When the evolution time needed to perform the state

transfer is fixed (rather than subject to optimization itself), we observe that control fields generi-

cally spread across the prescribed gate duration time. The desired target state is realized only at

the very end of the allowed gate duration. When we incorporate a C6 or C7-type cost contribution,

the optimal control algorithm also aims to minimize the overall gate duration, so as to realize the

target unitary or state in as short a time as possible, given other active constraints. In our example,

this reduces the time for a state transfer from 3 ns to less than 1.5 ns, see Fig. 4.5. We note that it is

further possible to adaptively change the overall simulation time during optimization. For instance,

if further optimization was desired in the case of Fig. 4.5(b), then the simulation time interval could

be adaptively reduced to ∼ 1.5 ns – resulting in a significant cutback in overall computation time.
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Figure 4.6: Cat state generation. Control pulse, state evolution in Fock basis, and Wigner function
tomography of the cavity evolution. Photonic cat state generation is shown as a test of state transfer,
challenging the quantum control algorithm with a system of considerable size, large number of
required time steps, and inclusion of multiple types of cost function. The desired Schrödinger cat
state in the resonator is created indirectly, by applying control fields to a transmon qubit coupled
to the resonator, and reached within a prescribed evolution time of 40 ns with a fidelity of 99.9%.
(Note that occupation of transmon level 4, 5, 6 remains too small to be visible in the graph.)

4.5.3 Generating photonic Schrödinger cat states

As an example of quantum state transfer, we employ our optimal control algorithm to the task

of generating a photonic Schrödinger-cat state. The system we consider to this end is a realistic,

and recently studied [125, 193] circuit QED setup, consisting of a transmon qubit capacitively

coupled to a three-dimensional microwave cavity. External control fields are restricted to the qubit.

Working in a truncated subspace for the transmon (limiting ourselves to levels with energies well

below the maximum of the cosine potential), the full Hamiltonian describing the system is

H(t) = ωqb
†b+ 1

2α b
†b(b†b− 1) + ωra

†a (4.13)

+ g(a+ a†)(b+ b†) + Ωx(t)(b+ b†) + Ωz(t)b
†b
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Here, a and b are the usual lowering operators for photon number and transmon excitation number,

respectively. The frequencies ωq/2π = 3.5 GHz and α/2π = −225 MHz denote the transmon 0-1

splitting and its anharmonicity. The frequency of the relevant cavity mode is taken to be ωr/2π =

3.9 GHz. Qubit and cavity are coupled, with a strength parameterized by g/2π = 100 MHz. In

our simulation, the overall dimension is 154 = (7 transmon levels) × (22 resonator levels). Note

that the rotating wave approximation is not applied in order to reflect the capabilities of modern

arbitrary waveform generation.

The state-transfer task at hand, now, is to drive the joint system from the zero-excitation state

|0〉q⊗|0〉r (the ground state if counter-rotating terms in the coupling are neglected) to the photonic

cat state |0〉q ⊗ |cat〉r. Here, the cat state in the resonator corresponds to a superposition of two

diametrically displaced coherent states: |cat〉r = 1√
2
(|λ〉+ | − λ〉). Coherent states are defined in

the usual way as normalized eigenstates of the photon annihilation operator a, and correspond to

displaced vacuum states |λ〉 = e−|λ|
2/2eλa

† |0〉. The cat state |cat〉r is approximately normalized

for sufficiently large λ. As our concrete target state, we choose a cat state with amplitude λ =

2 (normalization error of ∼ 0.03%). The state transfer is to be implemented by control fields

Ωx(t) and Ωz(t) acting on the transverse and longitudinal qubit degrees of freedom, Hx = (b +

b†) and Hz = b†b, respectively. Matching experimental realizations of multi-mode cavity QED

systems[120], we do not allow for any direct control of the cavity degrees of freedom.

This state-transfer problem provides an excellent test for an optimal control algorithm. It in-

corporates the simultaneous challenges of a large number of time steps (8,000), a considerable

evolution time (40 ns), and the application of most of the cost functions we discussed in Sect. 4.2.1

and summarized in Table 4.1. Specifically, in addition to minimizing the target state infidelity

(C2), we penalize occupation of transmon levels 3 to 6 and cavity levels 20 and 21 (C5) to avoid

artifacts from truncation, and penalize control variations (C4) 1. Results from the optimization are

presented in 4.6, which shows the control-field sequence, as well as the induced state evolution. At

the end of the 40 ns time interval, the control fields generate the desired cat state with a fidelity of

1. A cost function for reducing evolution time (C7) was not included in this example.
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99.9%. The maximum populations at the truncation levels of transmon and cavity are ∼ 6× 10−6

and ∼ 7× 10−10, respectively. We independently confirm convergence with respect to truncation

by simulating the obtained optimized pulse for enlarged Hilbert space (8 transmon and 23 cavity

levels), and find that the evolution continues to reach the target state with 99.9% fidelity.

4.5.4 Hadamard transform and GHZ state preparation

We present a final set of examples illustrating the algorithm performance for increasing system

size. To that end, we consider a coupled chain of N qubits, or spin-1/2 systems. We assume

that all spins are on-resonance in the multiple-rotating frame. This system is described by the

Hamiltonian

H(t) =
N∑
n=1

[
Ω

(n)
x (t)σ

(n)
x + Ω

(n)
y (t)σ

(n)
y + J σ

(n)
z σ

(n+1)
z

]
, (4.14)

where the coupling term is understood to be dropped for the final summand (n = N ). The qubit-

qubit coupling strength is fixed to J/2π = 100 MHz. Each qubit (n) is controlled via fields Ω
(n)
x

and Ω
(n)
y , with a maximum allowed drive strength of Ω

(n)
x,y/2π = 500 MHz.

As a first optimization task, we search for control fields to implement the unitary realizing a

Hadamard transform, commonly used in various quantum algorithms. The gate time we allow

for the Hadamard transform is (2N) ns, simulated with 10N time steps. Figure 4.7(a) shows the

number of iterations and wall-clock time required to converge to the desired 99.9% process fidelity.

For the same spin-chain system, we have also employed our code to optimize control fields for

transferring the system ground state to a maximally entangled GHZ state. The overall time and

time steps we allow for the GHZ state preparation is identical to that used for the Hadamard

transform gate. Figure 4.7(b) shows the number of iterations necessary and the total wall-clock

time spent for reaching convergence to a result with 99.9% state fidelity. For both examples, we

employed computation on either CPU or GPU, depending which one is faster. (This performance

benchmarking data was shown in Section 4.4). We note that, when using a modest desktop PC with

graphics card, optimal control problems for small Hilbert space size converge within seconds. For a
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10-qubit Hadamard gate (Hilbert space dimension of 1,024) or 11-qubit GHZ state (Hilbert space

dimension of 2048), it takes ∼1 day to obtain a solution meeting the 99.9% fidelity threshold.

The total wall-clock time could likely have been reduced significantly by appropriate choice of

optimizer, hyperparameters, and/or initial control fields. In the case of spin-chain system, like

many quantum information systems, as the number of elements increase, not only does the Hilbert

space grow exponentially, the number of control fields and the required number of time steps also

get larger. This further increases the complexity of the problem.
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Figure 4.7: Performance of optimal control algorithm as a function of qubit number for (a) a
Hadamard transform gate, and (b) GHZ state preparation. As system size increases, total time and
number of iterations for the algorithm grow rapidly. The larger number of control parameters and
complexity of the target state add to the challenge of quantum optimal control for systems with
many degrees of freedom.

4.6 Analytical gradients and algorithms

In the following, we outline the analytical calculation of gradients for cost functions such as those

summarized in Table 4.1. We stress that our automatic-differentiation implementation evaluates

these gradients autonomously, without the need of these analytical derivations or hard-coding any
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new gradients. The following derivations are thus merely intended as illustrations for a better

mathematical understanding (and appreciation) of the gradients calculated without user input by

means of automatic differentiation.

For a systematic treatment of the different types of cost functions, we note that most cost

functions involve an absolute value squared of an inner product between target and final states

or target and final unitaries (Hilbert-Schmidt inner product). To obtain the gradients of expres-

sions such as C1(u) = 1 − | tr(K†TKN )|2 with respect to the control parameters, we note that

control parameters enter via the final states or unitaries through the evolution operators, KN =

UN (u)UN−1(u) · · ·U1(u)U0. To streamline our exposition, we first summarize multiple matrix-

calculus relations of relevance.

Consider two complex-valued matrices A and B, compatible in row/column format such that

the matrix product AB is defined. Then, one finds

∂ tr(AB)

∂Bji
=
∂(AnmBmn)

∂Bji
= Aij . (4.15)

Throughout this Chapter, we use Einstein convention for summation, and follow the Jacobian for-

mulation (also known as numerator layout) for derivatives with respect to matrices. We will further

encounter expressions of the following form, involving a third matrix C of the same dimensions as

Bt:

tr

[
∂[| tr(AB)|2]

∂B
C

]
=
∂[tr(AB) tr(AB)∗]

∂Bji
Cji

=
∂ tr(AB)

∂Bji
tr(AB)∗Cji = Aij tr(AB)∗Cji

= tr(AC) tr(AB)∗. (4.16)

In the framework of Wirtinger derivatives in complex analysis, derivatives treat quantities X and

X∗ as independent variables, and Eq. (4.15) is used in the step from line 1 to line 2.

The evaluation of cost-function gradients requires the application of the chain rule to expres-
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sions of the type ∂
∂ui

c(M(u)). Here, c maps a complex-valued ` × ` matrix M (e.g., the propa-

gator KN with ` denoting the Hilbert space dimension) to a real number (the cost). The matrix

M = (Mmn) itself depends on the real-valued control parameters u ∈ Rd. The subscript in ui

is understood as a multi-index i = (k, j) encoding the control-field label k and discretized-time

index j. The matrix-calculus result

∂

∂ui
c(M(u)) =

∂c

∂Mmn

∂Mmn

∂ui
+

∂c

∂M∗mn
∂M∗mn
∂ui

= tr

(
∂c

∂M

∂M

∂ui

)
+ c.c. (4.17)

is straightforward to derive with the “regular” chain rule by re-interpreting the functions involved

as c : C`2 → R and M : Rd → C`2 . In the following, Eqs. (4.16) and (4.17) are used to obtain the

analytical expressions for several examples of cost-function gradients.

4.6.1 Gradient for C1: target-gate infidelity

The cost function C1 = 1 − | tr[K†TKN (u)]/D|2, penalizes the infidelity of the realized unitary

KN = UNUN−1 . . . U1U0 with respect to the target propagator KT . In the following, we omit the

constant factor D since it affects all the gradients only by a constant factor. The cost function then

has the gradient

∂C1

∂uk,j

(4.17)
= tr

∂C1

∂KN

∂KN
∂uk,j

+ c.c. (4.18)

= − tr

[
∂[| tr(K†TKN )|2]

∂KN

∂KN
∂uk,j

]
+ c.c.

(4.16)
= − tr

(
K
†
T

∂KN
∂uk,j

)
tr(K

†
TKN )∗ + c.c.

= tr

(
K
†
T

[ ∏
j′>j

Uj′
]
i δtHkKj

)
tr(K

†
TKN )∗ + c.c.

= −2 δt Im

{
tr

(
K
†
T

[ ∏
j′>j

Uj′
]
HkKj

)
tr(K

†
TKN )∗

}
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where
∏

is understood to produce a time-ordered product.

This expression shows that automatic reverse-mode differentiation requires the propagatorsKj

from every time step. Within TensorFlow, the set of intermediate propagators {Kj} is stored in

memory during the forward evolution. The resulting memory demand therefore scales as O(`2 ×

N).

Memory-efficient algorithm.— We note that storage of {Kj} can be avoided by applying

the strategy introduced in the original GRAPE paper [89]: since the evolution is unitary, one

may time-reverse the evolution step by step, and re-calculate the intermediate propagator via

Kj = U
†
j+1Kj+1. Here, each short-time propagator Uj is re-generated locally in time, using

only the control fields at time tj . Such a backwards-propagation algorithm leads to an increase in

computation time by roughly a factor of 2 (each Uj is then calculated twice), but has a memory

demand of only O(`2) – which does not scale with N , the number of time steps. Thus for large

problems the memory efficient algorithm is superior. This memory-efficient algorithm, currently

not realized in this implementation, is given by

Algorithm 1 C1 gradient via backwards propagation

1: P = tr(K
†
TKN )∗K†T

2: X = KN
3: for j = N to 0 do
4: for all k do
5: ∂C1/∂uk,j = −2δt Im[tr(P Hk X)]
6: end for
7: X = U

†
jX

8: P = P Uj
9: end for

10: return ∂C1/∂u

4.6.2 Gradient for C2: target-state infidelity

For state preparation or unitaries specified only in a subspace, it is sufficient to optimize the evolu-

tion for only a few initial states, rather than for the complete basis. This is achieved by minimizing

a cost function based on C2(u) = 1 − |〈ΨT |ΨN 〉|2, where the realized final state |ΨN 〉 depends
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on the control parameters u. Again applying equations (4.17) followed by (4.16) (and using that

the trace of a number results in that number), we obtain

∂C2

∂uk,j
= −2 δt Im

[
〈ΨT |

[ ∏
j′>j

Uj′
]
Hk|Ψj〉〈ΨT |ΨN 〉∗

]

Memory-efficient algorithm.— In TensorFlow-based automatic differentiation algorithm here,

the intermediate states {|Ψj〉} are stored, leading to a memory requirement ofO(`×N), rather than

O(`2 × N) for the full propagators. By using the same backward propagation strategy as above,

a more memory-efficient algorithm with memory requirement O(`) independent of the time-step

number is possible:

Algorithm 2 C2 gradient via backwards propagation

1: P = 〈ΨT |ΨN 〉∗〈ΨT |
2: X = |ΨN 〉
3: for j = N to 0 do
4: for all k do
5: ∂C2/∂uk,j = −2δt Im[P HkX]
6: end for
7: X = U

†
jX

8: P = P Uj
9: end for

10: return ∂C2/∂u

4.6.3 Gradient for C5: occupation of forbidden state

Occupation of a “forbidden” state is discouraged by the cost function C5 =
∑
j | tr(Ψ

†
FΨj)|2.

This cost function differs qualitatively from the gate and state infidelity cost functions: the latter

are evaluated based on the result at the final time, while forbidden-state occupation involves inter-

mediate states at every time step. Accordingly, the corresponding gradient takes a different form.
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First, Eq. (4.17) is replaced by

∂

∂ui
c
(
Ψ0(u),Ψ1(u), . . . ,ΨN (u)

)
= tr

∂c

∂Ψj

∂Ψj

∂ui
+ c.c. (4.19)

where introduction of the trace of a c-number is convenient for direct application of Eq. (4.16). We

then obtain

∂C5

∂uk,j

(4.19)
=

∑
J

tr
∂C5

∂ΨJ

∂ΨJ

∂uk,j
+ c.c. (4.20)

=
∑
J≥j

∑
j′

tr

[
∂[| tr(Ψ†FΨj′)|2]

∂ΨJ

∂ΨJ

∂uk,j

]
+ c.c.

(4.16)
=

∑
J≥j

tr
(

Ψ
†
F

∂ΨJ

∂uk,j

)
tr(Ψ

†
FΨJ )∗ + c.c.

= 2 δt
∑
J≥j

Im

[〈
ΨF

∣∣[∏J
j′=j+1 Uj′

]
Hk
∣∣Ψj
〉〈

ΨJ

∣∣ΨF
〉]

The double sum of eq. (4.20) makes it appear as though the computation of this gradient

would take O(N2), however after simplification, the relationship between the limits of the sum

and product allow it to be calculated in O(N) time. The corresponding backward propagation

algorithm then takes the following form:

Algorithm 3 C5 gradient via backwards propagation

1: P = 〈ΨN |ΨF 〉〈ΨF |
2: X = |ΨN 〉
3: for j = N to 0 do
4: for all k do
5: ∂C5/∂uk,j = 2 δt Im[PHkX]
6: end for
7: X = U

†
jX

8: P = P Uj + 〈X|ΨF 〉〈ΨF |
9: end for

10: return ∂C5/∂u
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This cost function and gradient is also used as the time-optimal award function, using a negative

cost to reward rather than penalize the target state at every time step (rather than just at the end).

The gradients of cost functions involving only control fields do not involve the time propagation,

so we also omit their derivation.

4.6.4 Discussion of the algorithms

Algorithms for each cost function along with their computation and memory costs have been pre-

sented. The computation time of the algorithms all scale linearly with the number N of time steps.

Automatic gradient calculation which requires caching of each step causes memory to scale like

N , while reducing the run time by a constant factor of 2. By contrast, algorithms which directly

exploit the unitary structure of quantum evolution can have memory requirements do not scale with

the number of time steps. Hence, it may be worth implementing analytic gradients for very long

computations which otherwise would not fit in memory.

Computing the fidelity and gradient for the whole unitary evolution as in algorithm 1, requires

O(`2), whereas state transfer requires O(`) memory. It should be noted that full unitary evolution

fidelity can also be calculated as `2 state transfer computations over a complete basis. This has

the memory requirements of state transfer, and the same computation requirements as algorithm

1, though is less efficient by a constant factor. In principle, each state transfer can be performed

in parallel and assembled to compute the total cost and gradient. In addition, the Hamiltonians of

many physical problems can be represented sparsely allowing a significant speedup in computation

as well. For practical problems, the number time steps required may scale with the size of the

problem, as more complex quantum gates/algorithms require more time than simple ones.

4.7 Conclusion

In conclusion, we have presented a quantum optimal control algorithm harnessing two key tech-

nologies that enable fast and low-overhead numerical exploration of control signal optimization.
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First, we have demonstrated that automatic differentiation can be leveraged to facilitate effortless

inclusion of diverse optimization constraints, needed to obtain realistic control signals tailored

for the specific experimental capabilities at hand. Automatic differentiation dramatically lowers

the overhead for adding new cost functions, as it renders analytical derivations of gradients un-

necessary. For illustration, we have presented concrete examples of optimized unitary gates and

state transfer, using cost functions relevant for applications in superconducting circuits and circuit

QED. We emphasize that this is but one instance within a much larger class of quantum systems

for which optimal control is instrumental, and the methods described here are not limited to the

specific examples shown in this paper.

The second key technology we have incorporated is the implementation of GPU-based numer-

ical computations, which offers a significant speedup relative to conventional CPU-based code.

The use of the TensorFlow library [1] hides the low-level details of GPU acceleration, allow-

ing implementation of new cost functions at a high level. The reduction in computational time

will generally depend on a number of factors including system type, Hilbert space size, and the

specific hardware employed by the user. We observe that runtime speedup by an order of mag-

nitude is not unusual when using a standard desktop PC, enabling the development of sophisti-

cated quantum control without enormous investments into powerful computing equipment. The

underlying libraries also have support for high-performance distributed computing systems for

larger optimizations. Our software implementation is open source and can be downloaded at:

github.com/SchusterLab/quantum-optimal-control.

The increased efficiency and ease of optimal quantum control due to the employment of GPUs

and automatic differentiation makes our work valuable to a broad range of research. Future work

will address sparse-matrix implementations, as well as the deployment of adaptive step size and

Runge-Kutta methods for time evolution.
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CHAPTER 5

MULTIMODE CIRCUIT QED

This chapter will focus on our development of a new component of quantum computing architec-

ture, the quantum random access memory. Qubit connectivity is an important property of a quan-

tum processor, with an ideal processor having random access – the ability of arbitrary qubit pairs to

interact directly. This is a challenge with superconducting circuits, as state-of-the-art architectures

rely on only nearest-neighbor coupling. Here, we implement a random access superconducting

quantum information processor, demonstrating universal operations on a nine-qubit memory, with

a Josephson junction transmon circuit serving as the central processor. The quantum memory uses

the eigenmodes of a linear array of coupled superconducting resonators. We selectively stimulate

vacuum Rabi oscillations between the transmon and individual eigenmodes through parametric

flux modulation of the transmon frequency. Utilizing these oscillations, we perform a universal set

of quantum gates on 38 arbitrary pairs of modes and prepare multimode entangled states, all using

only two control lines. We thus achieve hardware-efficient random access multi-qubit control in

an architecture compatible with long-lived microwave cavity-based quantum memories. The con-

tent of this chapter is based on our work “Random access quantum information processors using

multimode circuit quantum electrodynamics” published in Nature Communications [133].

5.1 Introduction

Superconducting circuit quantum electrodynamics (cQED) is rapidly progressing towards small

and medium-scale quantum computation [40]. Superconducting circuits consisting of lattices of

Josephson junction qubits [87, 30] have been used to realize quantum information processors re-

lying on nearest-neighbor interactions for entanglement. An outstanding challenge in cQED is

the realization of architectures with high qubit connectivity, the advantages of which have been

demonstrated in ion trap quantum computers [78, 39, 107]. Classical computation architectures

typically address this challenge by using a central processor which can randomly access a large
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memory, with the two elements often comprising distinct physical systems. We implement a quan-

tum analog of this architecture, realizing a random access quantum information processor using

cQED.

a
Transmon Resonator Array

Out
νread

νq(t)
νr

×n

νr

In

Φ(t) · · ·

b c

Central
Processor

Quantum
Memory

|g〉
|e〉
|f〉

C
on

tro
l

R
ea

do
ut

|0〉
|1〉
|2〉

|0〉
|1〉
|2〉

··
·

|0〉
|1〉
|2〉

Figure 5.1: Random access superconducting quantum information processor. a and b,
Schematic and optical image, respectively, of the superconducting microwave circuit. The circuit
comprises an array of 11 identically designed, co-planar waveguide (CPW) half-wave resonators,
capacitively coupled strongly to each other. The top end of the array is capacitively coupled to
a tunable transmon qubit. The transmon is measured with a separate resonator, whose input line
doubles as a charge bias for the transmon. The inset shows the tunable SQuID of the transmon, as
well as its flux bias above it. c, Random access with multiplexed control. The quantum memory
consists of the eigenmodes of the array, with each mode accessible to the transmon. This allows
for quantum operations between two arbitrary memory modes (such as those highlighted in green)
via the central processing transmon and its control lines.
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As in the classical case, quantum logic elements, such as superconducting qubits, are expen-

sive in terms of control resources and have limited coherence times. Quantum memories based on

harmonic oscillators, instead, can have coherence times two orders of magnitude longer than the

best qubits [154, 155, 141], but are incapable of logic operations on their own. This observation

suggests supporting each logic-capable processor qubit with many memory qubits. In the near

term, this architecture provides a means of controlling tens of highly coherent qubits with minimal

cryogenic and electronic-control overhead. To build larger systems compatible with existing quan-

tum error correction architectures [57, 60, 91, 130], one can connect individual modules consisting

of a single processor qubit and a number of bits of memory while still accessing each module in

parallel.

Here, we describe and experimentally demonstrate the use of a single non-linear element to

enable universal quantum logic with random access on a collection of harmonic oscillators. We

store information in distributed, readily accessible, and spectrally distinct resonator modes. We

show how to perform single qubit gates on arbitrary modes by using frequency-selective parametric

control [9, 181, 172, 117, 204, 136] to exchange information between a superconducting transmon

qubit [97] and individual resonator modes. Next, using higher levels of the transmon, we realize

controlled-phase (CZ) and controlled-NOT (CX) gates on arbitrary pairs of modes. Therefore,

we demonstrate all the ingredients necessary for universal quantum computation with harmonic

modes. Finally, we use these tools to prepare multi-mode entangled states as an important step

towards quantum error correction.

5.2 Multimode quantum memory

To build a multimode quantum memory we use the eigenmodes of a linear array of n = 11 iden-

tical, strongly coupled superconducting resonators [121] (see Figure 5.1). For a linear array, the

eigenmodes correspond to distributed “momentum” states (See Chapter 5.6). Importantly, every

mode has non-zero amplitude at the edge, allowing the transmon to couple to each mode. The
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Hamiltonian of the combined system is:

Ĥ = hνq(t)â†â +
1

2
hα â†â(â†â− 1) +

n∑
k=1

hνk b̂
†
k b̂k

+
n∑
k=1

hgk(b̂k + b̂
†
k)(â+ â†), (5.1)

where the transmon is treated as a Duffing oscillator [97] with anharmonicity α, coupled to the

modes with frequency νk (6 − 7 GHz) and coupling strength gk (50 − 200 MHz, Chapter 5.12).

The operators â† (â) and b̂†k (b̂k) create (annihilate) photons in the transmon and in eigenmode k,

respectively. While this implementation is straightforward, the idea of a multimode memory also

applies to related systems with many harmonic degrees of freedom, including long transmission-

line [182] or 3D waveguide cavities. We limit ourselves to the zero- and one-photon Fock states

of the eigenmodes. It is also possible to use more of the oscillator Hilbert space, allowing logical

encoding in terms of cat [126] and binomial code [124] states.
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Figure 5.2: Stimulated vacuum Rabi oscillations. a, Generation of stimulated vacuum Rabi
oscillations. |1〉k is the state with a single photon in mode k; all other modes are in the ground
state. (1) An excitation is loaded into the transmon via its charge bias. (2) The transmon frequency
is flux-modulated to create sidebands. (3) When a sideband is resonant with a mode, single-photon
vacuum Rabi oscillations occur between transmon and the mode. b, Experimental results obtained
from this protocol for a range of sideband modulation frequencies, with the transmon biased at
νq = 4.28 GHz. The length of the flux modulation pulse is swept for each frequency and the
excited state population of the transmon is measured after the pulse ends. Chevron patterns indicate
parametrically induced resonant oscillations with each of the memory modes. Two of the eleven
modes are weakly coupled to the transmon and are not visible at these flux modulation amplitudes.
The distribution of the modes can be understood through Hamiltonian tomography [111] (Chapter
5.13). c, Resonant oscillations between transmon and mode 6.
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Figure 5.3: Single-mode gate protocol and benchmarking. a, The sequence for generating arbi-
trary single-qubit gates of a memory mode: (1) The mode’s initial state, consisting of a superposi-
tion of 0 and 1 photon Fock states, is swapped to the transmon (initially in its ground state), using
a transmon-mode iSWAP (see text). (2) The transmon is rotated by the desired amount (Rφ) via
its charge control line. (3) The rotated state is swapped back to the mode, by reversing the iSWAP
gate in (1). Segments of this sequence are used to achieve state preparation [steps (2) and (3)] and
measurement [steps (1) and (2)] of each mode. b, Single-mode randomized benchmarking. We
apply sequences of varying numbers of consecutive Clifford gates, then invert each sequence with
a unique Clifford gate. We measure the transmon ground-state population after inversion and aver-
age over 32 different random sequences, with the standard deviation (s.d.) plotted as error bars for
each sequence length. c, From fitting the resulting data, we find single-mode gate fidelities from
89.0±2.9% to 96.3±0.7% and a transmon (T in the figure) gate fidelity of 98.9±1.3%. These are
consistent with the expected coherence-limited fidelities, plotted as gray bars (s.d. from fit plotted
as error bars.)

Given access to the multimode memory via the transmon, we demonstrate methods to address

each mode individually. In many circuit QED schemes, excitations are loaded into modes by adi-

abatically tuning the qubit frequency through or near a mode resonance [42]. This works well for

single modes, but for a multimode manifold, one must carefully manage Landau-Zener transitions

through several modes [121], to avoid leaving residual excitations elsewhere in the manifold. Also,

the qubit must be returned to the far-dispersive regime to minimize spurious unwanted interactions,

requiring longer gate durations.

5.3 Stimulated vacuum Rabi oscillations

We induce resonant interactions between the transmon and an individual mode by modulating the

transmon excitation energy via its flux bias. The modulation creates sidebands of the transmon

excited state, detuned from the original resonance by the frequency of the applied flux tone. When
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one of these sidebands is resonant with a mode of the memory, the system experiences stimulated

vacuum Rabi oscillations: parametrically induced exchange of a single photon between the trans-

mon and the selected mode. These are similar to resonant vacuum Rabi oscillations [160], but

occur at a rate that is controlled by the modulation amplitude [181, 9] geff,k = gkJ1 (ε/2νsb),

where J1 is the first Bessel function, ε and νsb are the amplitude and frequency of the modulation,

respectively, and gk is the bare coupling rate to eigenmode k (Chapter 5.7). The rate of photon

exchange is linear to lowest order in ε and can be as large as gk/2.

To illustrate the application of parametric control for addressing the multimode memory, we

employ the experimental sequence shown in Figure 5.2a. First, the transmon is excited via its

charge bias. Subsequently, we modulate the flux to create sidebands of the transmon excited state

at the modulation frequency. This is repeated for different flux pulse durations and frequencies,

with the population of the transmon excited state measured at the end of each sequence. When the

frequency matches the detuning between the transmon and a given eigenmode, we observe full-

contrast stimulated vacuum Rabi oscillations. In Figure 5.2b, we see the resulting characteristic

chevron patterns [181] as the modulation frequency approaches the detuning between the transmon

and each of the modes. For long modulation times, the excited state population approaches zero.

This is evident in the stimulated vacuum Rabi oscillation between the transmon and mode 6 shown

in Figure 5.2c. This indicates that the original photon is being exchanged between the transmon and

the mode and no other photons are being pumped into the system. We achieve photon exchange

between the transmon and individual modes in 20-100 ns, depending on the mode. This rate is

limited by spectral crowding arising from neighboring modes and sideband transitions involving

the transmon |f〉 level. This operation is coherent and can be used to transfer arbitrary qubit states

between the transmon and the memory mode, corresponding to a transmon-mode iSWAP [137] in

the single-excitation subspace.
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Figure 5.4: Controlled-phase gate between two arbitrary modes. a, Protocol for controlled-
phase (CZ) gate between an arbitrary pair of modes, with j indicating the control mode and k
indicating the target mode of the gate: (1) The state of mode j is swapped to the transmon via a
transmon-mode iSWAP pulse at the frequency difference between the transmon |g〉-|e〉 transition
and mode k. (2) A CZ gate is performed between mode k and the transmon, by applying two
frequency-selective iSWAPs from energy level |e1〉 to level |f0〉 and back, mapping the state |e1〉
to −|e1〉. (3) The state of the transmon is swapped back to mode j, reversing the iSWAP in
(1). b, Process matrix for the CZ gate between modes j = 6 and k = 8, corresponding to a
process fidelity of 82% (see Chapter 5.21 for details on state preparation and measurement.) c,
Fidelities from process tomography for 38 pairs of memory modes with k = 2, 5, 6, 8. The process
fidelities are extracted from sequences that include SPAM errors, and are conservative estimates
of the gate fidelities. For comparison, the dashed black and gray lines show the decay in fidelity
for a two-qubit gate between qubit 1 and qubit j in a corresponding linear array comprising only
nearest-neighbor gates with fidelities of 99.5 [6] and 98%, respectively.

5.4 Universal quantum control

The transmon-mode iSWAP and arbitrary rotations of the transmon state via its charge bias provide

a toolbox for universal state preparation, manipulation, and measurement of each mode of the

quantum memory. In Figure 5.3, we illustrate how to perform these operations. To characterize

the quality of our single-mode operations, we perform randomized benchmarking (RB) [93, 31].

We generate single-mode Clifford operations by sandwiching single-qubit Clifford rotations of the

transmon with transmon-mode iSWAPs (Chapter 5.16). We achieve RB fidelities ranging from

89.0±2.9% to 96.3±0.7%. These fidelities approach the expected coherence limit, indicated by

the gray bars in the figure. The coherence limits are estimated based on the qubit RB fidelity,

the iSWAP times (20 − 100 ns) and the coherence times (T1 = 1 − 5 µs, T ∗2 = 1 − 8.5 µs) of

individual modes (Chapter 5.14). Each single-mode gate consists of two transmon-mode iSWAPs,
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and a single transmon gate. From the error in the single-mode and transmon RB, we estimate the

fidelities of the individual transmon-mode iSWAP operations to range from 95 to 98.6%.

To achieve universal control of the quantum memory, we extend our parametric protocols to

realize two-mode gates. We perform conditional operations between the transmon and individual

modes by utilizing the |e〉-|f〉 transition of the transmon. A controlled-phase (CZ) gate between

the transmon and an individual mode consists of two sideband iSWAPs resonant to the |e1〉-|f0〉

transition, selectively mapping the state |e1〉 to -|e1〉, leaving all other states unchanged due to the

anharmonicity of the transmon (Chapter 5.10). To enact a CZ gate between two arbitrary modes,

the control mode is swapped into the transmon, a transmon-mode CZ is performed, and the mode

is swapped back as illustrated in Figure 5.4a. In our device, gate speeds (250-400 ns) are primarily

limited by crosstalk between iSWAP operations on the |g〉-|e〉 and |e〉-|f〉 transitions of modes

with difference frequencies approaching the anharmonicity of the transmon. This crosstalk can

be reduced by tailoring the frequency spacing of the memory modes and the anharmonicity of

the transmon. In addition to the CZ gate, we obtain controlled-X and Y gates (CX, CY) between

modes by swapping |e〉 and |f〉 transmon state populations in the middle of the pulse sequence

for the CZ gate. These gate protocols can be extended to realize two-mode SWAP gates (Chapter

5.17), as well as multi-qubit gates such as Toffoli and controlled-controlled-phase (CCZ) gates [77]

between arbitrary modes.

To perform high-fidelity gates between modes, several issues must be considered. These in-

clude: (1) DC shifts of the transmon frequency during iSWAP pulses (∼ 10 MHz), (2) dispersive

shift of the |e1〉 state (∼ 1 MHz), and (3) stimulated dispersive shifts of non-targeted modes during

iSWAP pulses (∼ 10−100 kHz). We fully compensate effect (1) and correct the phase error arising

from (2) by calibrating the phase errors and suitably adjusting the relative phases of the iSWAP

pulses (Chapter 5.18). The error from (3) is relatively small and currently adds to the gate error.

Our multimode architecture allows for straightforward measurements of arbitrary multi-bit cor-

relators, forming a basis for tomography, and for the stabilizer measurements required for error

correction. An arbitrary correlator comprises products of Pauli operators applied to each of the
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memory bits, and corresponds to a generalized parity measurement. This is exactly the back-action

on the phase measurement of a transmon while serving as the control of a CZ (CX) gate targeting a

memory mode [54]. The value of an arbitrary stabilizer can thus be measured by performing Ram-

sey interferometry of the transmon with a series of CZ (CX) gates applied to the desired memory

modes.

We use correlator measurements to characterize a CZ gate between a given pair of modes via

process tomography. We perform process tomography by applying the gate on 16 linearly inde-

pendent input states that form a basis for an arbitrary two-qubit density matrix [140]. The resulting

density matrices are reconstructed through state tomography. For two-qubit state tomography, we

map all correlators to individual measurements of the transmon, using combinations of single- and

two-mode gates.

In order to obtain a fair estimate of the gate fidelity, each of the process tomography sequences

has a single two-mode gate. Additional gates required for tomography are combined with the char-

acterized CZ gate (Chapter 5.21). The process matrix obtained using this protocol for a CZ gate

between modes 6 and 8 is shown in Figure 5.4b. We use this protocol to characterize the fidelities

for gates between 38 mode pairs, as shown in Figure 5.4c. The fidelities from full process tomog-

raphy range approximately from 60 − 80% for the CZ gates between the mode pairs indicated.

These fidelities incorporate state preparation and measurement (SPAM) errors, with the SPAM

sequences being of similar duration as the gates. Conservative estimates from single-mode and

transmon RB (see Figure 5.3c) give SPAM errors of 5− 10%, depending on the modes addressed.

The gate fidelities are largely limited by the coherence times of the modes (∼ 5− 15% error). Fu-

ture devices based on 3D superconducting cavities [154] may have up to three orders of magnitude

enhancement in memory mode coherence times. The process fidelities are additionally limited by

dephasing of the transmon (∼ 5% error), and residual coherent errors arising from bare and stimu-

lated dispersive shifts. The error from the dephasing can be reduced by coupling a fixed-frequency

transmon to the multimode memory using a tunable coupler [26, 117, 109]. Additionally, biasing

the tunable coupler at a point with small static coupling also reduces coherent errors from the the

75



bare dispersive shift.
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Figure 5.5: Multimode entanglement. a, Pulse sequence for generating n-mode maximally-
entangled states. Step (1) creates a superposition of the transmon |g〉 and |e〉 states, with the
relative amplitudes of the superposition controlled by the rotation angle θ. Steps (2) and (3) load
photons into modes of the memory, conditioned on the transmon state by utilizing the transmon
|f〉 state. These steps are repeated n − 1 times to entangle additional modes. Step (4) performs a
|g〉-|e〉 iSWAP to the last mode, disentangling the transmon from the modes. b, The real part of
the density matrix (ρ) of the |Φ+〉 Bell state of mode 6 and 8, obtained from tomography. c,(inset)
Correlated oscillations resulting from sweeping θ and measuring each mode individually. This
demonstrates control of the relative amplitudes of the entangled state superposition. c, Deviation
from expected mean populations of each of the modes, upon preparation of the GHZ state (θ = π

2 ).
The red filled circles and error bars indicate the average and s.d., respectively, over individual mode
measurements (black crosses).
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Figure 5.4c highlights the advantages of random access in a quantum computing architecture.

An entangling gate between the first and the jth qubit of an array with only nearest-neighbor cou-

pling would require 2j − 1 gates (such as CXs or iSWAPs). This results in an exponential decay

of the fidelity with increasing distance between the corresponding qubits. Conversely, in a random

access quantum information processor, there is no additional computational cost to perform gates

between arbitrary pairs of qubits. Even without considering potential improvements in the coher-

ence times, we see (Figure 5.4c) that the processor performs competitively with state-of-the-art

gates [6] between distant qubits in a nearest-neighbor architecture. While we have highlighted the

advantages of this processor in terms of random access and minimal control hardware, a resulting

requirement is the need to perform sequential operations. The number of modes which can be

multiplexed to a single qubit without loss of fidelity, is given by the ratio of the loss from idling in

a cavity mode to the loss in performing qubit operations, which for modern 3D cavities can be up

to 100 [154].

5.5 Multimode entanglement

We use universal control of the quantum memory to build maximally entangled states spanning

several modes, using the protocol described in Figure 5.5a. First, we create a superposition of the

transmon ground and excited states. Next, we add a photon to the desired mode, conditioned on

the transmon state. This is repeated for each mode in the entangled state. Finally, we disentangle

the transmon from the memory modes, transferring the remaining population into the final mode.

In Figure 5.5b, we show full state tomography for a Bell state [11] with state fidelity F = 0.75, in-

cluding errors from tomography (Chapter 5.20). In the inset of Figure 5.5c, we apply the protocol

to three modes and show populations of each of the modes as a function of the initial qubit rotation

angle, θ. Finally, in Figure 5.5c, we show the population error from the target state at θ = π/2,

corresponding to a photonic Greenberger-Horne-Zeilinger (GHZ) state [68] of up to seven modes.

While the three mode GHZ state can be demonstrated to be tripartite entangled through a mea-

surement of the Mermin witness [123, 42] (Chapter 5.23), full characterization of entangled states

77



of more than two modes is hampered by the additional gates required for tomography and the

gate fidelities of the current device. This protocol however illustrates the ease with which a ran-

dom access quantum information processor can be used to generate multimode entangled states

of arbitrary modes. Variants of this sequence can be used to create other classes of multimode

entangled states, including W states, Dicke states [44] and cluster states [153]. Such states are

valuable resources in several quantum error correction schemes and are useful for quantum optics

and sensing [15].

5.6 Multimode quantum memory Hamiltonian

The following sections describe in detail on the characterization and calibrations of the multimode

quantum random access memory. We begin with an in-depth discussion of our system Hamiltonian.

Our multimode quantum memory implementation uses the eigenmodes of a linear array of n = 11

identical, strongly coupled superconducting resonators [121], as shown in Figure 5.1. The array is

described by the Hamiltonian:

Ĥmm =
n∑
j=1

hνrĉ
†
j ĉj +

n−1∑
j=1

hgr(ĉ
†
j ĉj+1 + ĉj ĉ

†
j+1), (5.2)

where νr is the resonance frequency of the identical resonators, gr is the tunnel-coupling between

neighboring resonators, and ĉ†j (ĉj) is the operator that creates (annihilates) photons in the res-

onator at spatial index j. The coupling (gr ∼ 250 MHz) between neighboring resonators is larger

than the disorder in the resonator frequencies (νr = 6.45 ± 0.1 GHz). Thus, the single-photon

eigenmodes of this circuit are 11 distributed “momentum” states of the array, with eigenfrequen-

cies in a band from 6 to 7 GHz and mode spacing varying from 50 to 150 MHz. The eigenmodes
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and eigenfrequencies of the tight-binding Hamiltonian of Equation (5.2) are [121]:

|ψ〉k =
n∑
j=1

√
2

n+ 1
sin

(
jkπ

n+ 1

)
|1〉j , (5.3)

νk = νr − 2gr cos

(
kπ

n+ 1

)
k ∈ {1, n} , (5.4)

where |ψ〉k and νk are the kth eigenstate and eigenfrequency, respectively, and |1〉j is the state

with a single photon in the jth resonator of the array and with all other resonators in the ground

state. The coupling between the transmon and a given eigenmode is given by:

gk = gq

√
2

n+ 1
sin

(
kπ

n+ 1

)
. (5.5)

5.7 Parametric control Hamiltonian

The frequency of the transmon is tunable using the magnetic flux threading the SQuID loop of the

transmon, controlled by passing a current through a nearby flux line. For a sinusoidally modulated

flux, the transmon |g〉 − |e〉 transition frequency is:

νge (Φ (t)) = νge (Φb + εΦ sin (2πνsbt+ φ)) ∼ ν̄ge + ε sin (2πνsbt+ φm) (5.6)

where ν̄ge = νge (Φb) + δνDC(Φb, εΦ) is the mean qubit frequency during the flux modulation.

The relation between the frequency (ε) and flux (εΦ) modulation amplitudes and the DC-shift of

the transmon frequency during flux-modulation are:

ε = εΦ
dνge

dΦ

∣∣∣∣
Φb

and δνDC =
ε2Φ
4

d2νge

dΦ2

∣∣∣∣∣
Φb

, (5.7)

respectively. The frequency is shifted from its bare value due to the non-linear flux dependence of

the transmon frequencies, and is quadratic in the modulation amplitude.

We obtain a simple description for parametric control of this system by considering the Hamil-
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tonian of Equation (1) in the main text and restricting to the lowest two transmon levels. The

Hamiltonian then reduces to:

Ĥ =
n∑
k=1

hνk b̂
†
k b̂k +

1

2
hνq(t)σ̂z +

n∑
k=1

hgk(b̂k + b̂
†
k)(σ̂− + σ̂+), (5.8)

The lowest two levels form a qubit, whose frequency is modulated over time by using the flux bias.

In this work, we focus on iSWAP interactions between the transmon and the resonator mode. As

a result, we modulate the transmon frequency near the the difference frequencies of the memory

modes and transmon. The (b̂kσ̂− + c.c.) terms in Equation (5.8) can be therefore be dropped in

the rotating-wave approximation. When the modulation frequency is resonant with the detuning

between the eigenmode and the transmon, this realizes effectively resonant interactions and stim-

ulated vacuum Rabi oscillations of a single photon between the transmon and the mode. These

sidebands manifest in a rotating frame defined by the transformation [9, 181]:

U(t) = exp

[
−2πi

(
ν̄get−

ε

2νsb
cos (2πνsbt)

)
σ̂z − 2πiνk b̂

†
k b̂kt

]
. (5.9)

In this rotating frame, the Hamiltonian is transformed to:

Ĥ ′ = UĤU† − iU∂tU† =
n∑
j=1

hgkJ0

(
ε

2νsb

)(
e−2πi∆ktb̂

†
kσ̂− + e2πi∆ktb̂kσ̂+

)

+
n∑
j=1

hgk b̂
†
kσ̂−

( ∞∑
m=1

(−1)mJm

(
ε

2νsb

)
e2πi(mνsb−∆k)t

)
+ c.c.,(5.10)

where ∆k = νk − ν̄ge, is the detuning between the qubit and the kth eigenmode. When νsb = ∆k,

we obtain resonant first-order sideband transitions between the transmon and mode k, described

by:

H ′sb,k = hgkJ1

(
ε

2νsb

)(
b̂
†
kσ̂− + b̂kσ̂+

)
⇒ τiSWAP =

1

2gkJ1

(
ε

2νsb

) . (5.11)

We perform universal operations on the multimode memory using iSWAP operations between a
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given mode and both the |g〉 − |e〉 and |e〉 − |f〉 transmon transitions, with the latter allowing the

realization of entangling gates between arbitrary eigenmodes. The minimal description of our gate

operations on the multimode memory therefore involves three transmon levels, with the parametric

control of the eigenmodes described by an extension of the Hamiltonian of Equation (5.10) to a

single qutrit coupled to the harmonic memory modes. In addition to sideband transitions, the

Hamiltonian also includes dispersive shifts arising from photons in the memory modes, due to the

bare coupling between the eigenmodes and the transmon. We ignore the correction to the dispersive

shift due to the modulation amplitude dependence of the bare term (∝ J0(εm/2νsb)), whose lowest

order contribution is quadratic in ε/2ωm. These effects are described by the following simplified

Hamiltonian:

H̃ (t) = H̃sb + H̃q + H̃χ, (5.12)

H̃sb =
∑
k

∑
α∈ge,ef

(
gαeff,k(t)b̂

†
kσ̂
−
α e

2πi(νsb−∆α
k )t + c.c.

)
, (5.13)

H̃q =
∑

α∈ge,ef

(
Ωα (t) σ̂−α + c.c.

)
, (5.14)

H̃χ =
∑
k

(
χek |e〉 〈e|+ χ

f
k |f〉 〈f |

)
b̂
†
k b̂k. (5.15)

In the above, σ̂−ge = |g〉 〈e|, σ̂−ef = |e〉 〈f | and gαeff,k(t) = gαk J1

(
εαk (t)
2νsb

)
. εαk (t) for α ∈ {ge, ef}

are the strengths of time-dependent parametric frequency modulation tones addressing mode k and

∆α
k = νk − ν̄α is the detuning between mode k and the frequency of the corresponding transmon

transition frequency α ∈ {ge, ef}. Ωα(t) are the strengths of the transmon charge drives and χe,fk

are the dispersive shifts of the |e〉 and |f〉 levels resulting from the addition of a photon in mode

k. In addition to the dispersive shift, there are second-order tunneling terms of the form b
†
l bk for

l 6= k arising from the virtual hopping of photons between different eigenmodes via the transmon.

These terms are of the same order as the dispersive shift, but their effect can be ignored since

they correspond to off-resonant tunneling (∼ 1 MHz) between non-degenerate levels (spaced by

∼ 100 MHz). We note that there is also a shift (DC-offset) of the qubit frequency during the flux
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modulation, arising from the non-linear flux-frequency relation of the transmon. Given that the

flux pulses used in the experimental sequences in this work are sequential, we include their effect

as:

H̃DC =
∑

j;β∈{e,f}
δν
j,β
DC

(
ε
β
j (t)

)
|β〉 〈β| , (5.16)

with additional cross terms being present if different flux tones were turned on simultaneously. We

can further simplify the Hamiltonian above by ignoring off-resonant terms. If the transmon charge

and flux-modulation tones are of the form εq,sb cos
(
ωq,sbt+ φq,sb

)
, and we consider near resonant

operations with a single eigenmode k, the drive phases (φq,sb) enter the effective Hamiltonian as:

H̃sb,α(t) = gsb,α(t)â
†
kσ̂
−
α e
−iφsb + c.c. H̃q = Ωα(t)σ̂+

α e
−iφq + c.c. α ∈ {ge, ef} (5.17)

Reducing to 2 × 2 subspaces over which each of these terms act, and taking the top row to be the

state with the higher transmon level, and with θ(t) = 2Ωαt and 2gsb,αt for the sideband and qubit

drives, we obtain:

Ĥsb,ge(t) =

 0 gsb,gee
iφsb

gsb,gee
−iφsb 0

 (5.18)

⇒ Ûθsb,ge =

 cos
(
θ
2

)
−i sin

(
θ
2

)
eiφsb

−i sin
(
θ
2

)
e−iφsb cos

(
θ
2

)
 ,

Ĥq,ge(t) =

 0 Ωgee
−iφq

Ωgee
iφq 0

 (5.19)

⇒ Ûθq,ge =

 cos
(
θ
2

)
−i sin

(
θ
2

)
e−iφq

−i sin
(
θ
2

)
eiφq cos

(
θ
2

)
 .
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5.8 Device design and fabrication

The CPW resonators in the array have a center pin width of 12 µm and a gap width of 6 µm.

They are coupled to each other via interdigitated capacitors, where each side of the capacitor has

6 digits that are 107 µm long, 6 µm wide, and spaced by 6 µm. The capacitor coupling the array

to the qubit is identical to the intra-array capacitors to minimize disorder of the resonators in the

array. The transmon is capacitively coupled to ground via CPW capacitors on either side of the

SQuID, with a center pin width of 20 µm and gap of 10 µm. The SQuID is a 20 µm by 10 µm

loop, with two square junctions that are 170 nm and 125 nm wide. The flux bias line 6 µm from

the SQuID is dipolar, with 25 µm long and 2 µm wide wires on each end. The ground plane of the

chip has an array of 5 µm wide square holes spaced by 50 µm for flux vortex pinning [175]. The

linear elements of the full circuit design have been simulated with a commercial 3D finite element

analysis software (ANSYS HFSS).

The device (shown in Figure 5.1) was fabricated on a 430 µm thick C-plane sapphire substrate.

The base layer of the device, which includes the majority of the circuit (excluding the Joseph-

son junctions of the transmon), consists of 100 nm of aluminum deposited via electron-beam

evaporation at 1 Å/s, with features defined via optical lithography and reactive ion etch (RIE)

at wafer-scale. The wafer was then diced into 7x7 mm chips. The junction mask was defined via

electron-beam lithography with a bi-layer resist (MMA-PMMA) in the Manhattan pattern, with

overlap pads for direct galvanic contact to the optically defined capacitors. Before deposition,

the overlap regions on the pre-deposited capacitors were milled in-situ with an argon ion mill to

remove the native oxide. The junctions were then deposited with a three step electron-beam evap-

oration and oxidation process. First, an initial 35 nm layer of aluminum was deposited at 1 Å/s at

an angle of 29◦ relative to the normal of the substrate, parallel azimuthally to one of the fingers in

the Manhattan pattern [62] for each of the junctions. Next, the junctions were exposed to 20 mBar

of high-purity O2 for 12 minutes for the first layer to grow a native oxide. Finally, a second 120 nm

layer of aluminum was deposited at 1 Å/s at the same angle relative to the normal of the substrate,

but orthogonal azimuthally to the first layer of aluminum. After evaporation, the remaining resist
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was removed via liftoff in N-Methyl-2-pyrrolidone (NMP) at 80◦C for 3 hours, leaving only the

junctions directly connected to the base layer, as seen in the inset of Figure 1 of the main text. After

both the evaporation and liftoff, the device was exposed to an ion-producing fan for 15 minutes, in

order to avoid electrostatic discharge of the junctions.

The device is mounted and wirebonded to a multilayer copper PCB microwave-launcher board.

Additional wirebonds connect separated portions of the ground plane to eliminate spurious differ-

ential modes. The device chip rests in a pocketed OFHC copper fixture that presses the chip against

the launcher board. Notably, the fixture contains an additional air pocket below the chip to alter

3D cavity modes resulting from the chip and enclosure, shifting their resonance frequencies well

above the relevant band by reducing the effective dielectric constant of the cavity volume.

5.9 Transmon and readout resonator properties
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Figure 5.6: a, Qubit frequency as a function of applied DC flux bias in units of flux quanta.
b, Energy relaxation time (T1) as a function of transmon frequency, with the Purcell limit from
the readout resonator shown for comparison. c, Ramsey (T ∗2 ) coherence times as a function of
transmon frequency.

The parameters of the transmon are obtained by fitting the spectrum obtained as a function of

the applied DC flux. The Josephson and electrostatic charging energies extracted from these

fits are EJ,max = 22.2 GHz and EC = 192 MHz, while the SQuID loop junction asymmetry,

(EJ1 −EJ2)/(EJ1 +EJ2) = 0.1. These parameters correspond to maximum and minimum qubit
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frequencies of 5.84 GHz and ∼ 2 GHz, respectively. The experiments in this work were typically

performed with the transmon biased between 3.9−4.7 GHz (see Figure 5.6a). This frequency band

is ∼ 2 GHz away from the eigenmodes of the resonator array. As a result, photons in the multi-

mode manifold cause relatively small dispersive shifts of the transmon frequency. Additionally, the

slope of the flux-frequency curve in this regime allows for sufficiently large frequency modulation

amplitudes, while limiting sensitivity to flux noise to maintain transmon coherence. The transmon

qubit state is probed using a capacitively coupled CPW readout resonator. The frequency and the

quality factor of the readout resonator are νread = 5.255 GHz and Q = 15000, and the coupling

to the qubit is gread = 47 MHz. For the typical transmon frequency range, we obtain single-shot

readout fidelities between 0.3 − 0.85 using dispersive [196] and high-power [158] circuit QED

readout schemes. The readout signal is calibrated by appending a sequence with no pulse, and one

with a transmon |g〉 − |e〉 π pulse at the of each set of experimental sequences. Upon averaging

over 1000-2000 experiments, the readout signal results in a visibility of ∼ 99%, limited by the

fidelity of the single qubit gates, and consistent with the RB data.

The coherence of the transmon is characterized by standard lifetime (T1) and Ramsey (T ∗2 )

experiments. The measured T1 of the |e〉 state and T ∗2 of the |g〉 − |e〉 transition are show as a

function of the |g〉 − |e〉 transition frequency in Figure 5.6b and 5.6c. The T1 is found to show a

slight decrease with increasing frequency in this regime, explained partially by increased Purcell

loss from coupling to the readout resonator (see Figure 5.6b). The T1 at a given flux bias slowly

varies with time (over the course of weeks) by ∼ 25 − 30%. The T ∗2 is found to increase with

frequency, consistent with reduced sensitivity to flux noise due to the decreasing slope of the

frequency-flux curve transform. We note that T ∗2 showed no improvement from reducing the cutoff

frequency of the external cryogenic low-pass filter on the DC flux bias from 100 to 3 kHz. At

νq = 4.36 GHz, the T2 obtained from a spin-echo experiment with a single π pulse is 3.7 µs.

This time could be increased to ∼ 14 µs using a dynamical decoupling sequence (Carr-Purcell-

Meiboom-Gill with 61 pulses) [19]. We note that the measured T ∗2 jumped from 400 ns to 1.2 µs,

2-3 weeks following cooling the fridge to the base temperature (20 mK), coincident with a shift
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and stabilization of the applied current corresponding to a flux quantum. The coherence of the |f〉

level is characterized by analogous lifetime and Ramsey experiments. The lifetime of the |f〉 level

at νgeq = 4.3325 GHz is T1,ef = 3.7 µs while the phase coherence time is T ∗2,ef = 1.2 µs.
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Figure 5.7: a and b, Level diagrams and experimental protocols for probing sideband transitions
across |g〉 − |e〉 and |e〉 − |f〉, respectively. c and d, The corresponding stimulated vaccum Rabi
spectra with the transmon biased at νge = 4.3325 GHz. These spectra are taken at a fixed flux-
modulation amplitude, after correcting the distortion of the flux pulses due to the transmission
profile of the flux bias (see chapter 5.11). At this drive amplitude, only nine of the 11 modes can
be resolved, with the two remaining modes being weakly coupled. The locations of the two weakly
coupled modes, found by driving at higher flux-modulation amplitudes, are indicated by the white
dashed lines in c.
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5.10 Stimulated vacuum Rabi oscillations with multiple transmon levels

The eigenmodes of the resonator array are probed by sideband spectroscopy using the RF flux

bias. The flux-modulation pulses are directly synthesized using a Tektronix AWG70000A arbi-

trary waveform generator (AWG) with a sampling rate of 50 GSa/s. The target pulse waveform

envelopes are typically square, with Gaussian edges (σ = 10 − 20 ns, 2σ cutoff) added to reduce

the pulse bandwidth and thus minimize crosstalk between modes. The protocol used to the mea-

sure the |g〉 − |e〉 sideband spectrum is shown in Figure 5.2 and reiterated in Figure 5.7a, with the

corresponding measured spectrum shown in Figure 5.7c . The spectrum for |e〉 − |f〉 sideband

transitions are obtained using a similar protocol (see Figure 5.7b), beginning instead by first load-

ing the transmon in the |f〉 state. Following a sideband flux pulse with frequency νsb and duration

τ , we measure the population in the transmon |f〉 state. The |f〉 state population is obtained by

mapping |e〉− |f〉 to |g〉− |e〉, and subsequently measuring the |e〉 population as before. The spec-

trum thus obtained as a function of νsb and τ is plotted in Figure 5.7d. These spectra are taken at a

fixed frequency-modulation amplitude, after calibrating and correcting for the transfer function of

the RF flux bias as described in the following section.
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5.11 Correcting for the transmission profile of the flux bias line

a

b

c

Figure 5.8: a, Sideband spectrum on the |g〉 − |e〉 transition with the transmon biased at νge =
3.9225 GHz. b, Qubit DC-offset at a fixed drive amplitude as a function of sideband frequency
measured using a transmon Ramsey experiment on the |g〉−|e〉 transition with a flux pulse inserted
during the idle time. c, DC-offset as a function of drive amplitude for νsb = 2.63 GHz, showing
the expected quadratic dependence with drive amplitude.

We directly calibrate the frequency-modulation amplitude using the DC-shift of the qubit fre-

quency during flux modulation. This frequency shift is measured using a transmon Ramsey in-

terferometry experiment, with a flux pulse inserted during the idle time (Figure 5.8b inset). For a

fixed external RF voltage amplitude, the measured DC-offset as a function of the flux-modulation

frequency is shown in Figure 5.8b, along with the corresponding |g〉 − |e〉 sideband spectrum is

shown in Figure 5.8a. The stimulated vacuum Rabi chevrons for some modes are found to be

distorted from the expected shape [181] (see mode 0 and 10). These distortions are due to reso-

nances in the transmission profile of the flux bias line, as seen in the DC-offset spectroscopy. The

memory modes appear as avoided crossings in a Ramsey experiment on |g〉− |e〉 transition, due to
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interference of Ramsey fringes arising from the DC-offset and resonant stimulated vacuum Rabi

oscillations. At a given frequency, the DC-offset shows a quadratic dependence on the modula-

tion amplitude seen in Figure 5.8(c), as expected from equation (5.7). The amplitude profile of

the transfer function T (ν) of the flux bias line is obtained from the DC-offset at fixed AWG drive

voltage, with |T (ν)| ∝
√
|δνDC|.
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Figure 5.9: a, Stimulated vacuum Rabi spectrum on the |g〉 − |e〉 transition near mode 10 with the
transmon biased at 4.3325 GHz. b, Ramsey experiment on the |g〉−|f〉 transition with a flux-pulse
inserted during the idle time. This allows for a precise measurement of the line attenuation near the
modes. c, Real and Imaginary parts of the Transfer function obtained by fitting the experimentally
measured transfer function amplitude to Equation (5.20). This form is automatically constrained to
be causal, with the real and imaginary parts satisfying the Kramers-Kronig relations. d, Corrected
spectrum, revealing a chevron pattern.

For short pulse durations and large stimulated vacuum Rabi rates, the bandwidth of the pulse

becomes commensurate with the frequency scale over which the transfer function of the flux bias

varies significantly, causing distortion of the flux pulses. However, this effect is corrected using

the knowledge of the transfer function of the flux bias. The complete complex transfer function

(characterizing the amplitude and the phase of the flux bias distortion) is extracted only from the

amplitude of the transfer function, by assuming that the response of the line is causal and enforcing

the Kramers-Kronig relations [186]. We enforce these relations here by fitting the amplitude of the
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measured transfer function to the functional form:

|T (ν)| =
∣∣∣∣∣y0 +

∑
i

Ai
(ν2 − ν2

0,i)− iγν

∣∣∣∣∣ . (5.20)

We account for flux-pulse distortion by modifying the pulses generated by the AWG to account

for the transfer function of the flux bias line. The AWG waveform used to generate a given pulse

f(t) = Re[fc(t)] at the location of the qubit is:

fAWG(t) = Re

[
IFFT

(
FFT(fc(t))

T (ν)

)]
. (5.21)
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Figure 5.10: a, Ideal sideband pulse used perform a iSWAP between the transmon and mode 6. b,
Expected distorted pulse at the location of the sample based on the measured transfer function of
the flux line. c, Corrected AWG waveform calculated using Equation (5.21). d, Expected pulse at
the location of the sample due to distortion of the pulse in c through the flux line.

5.12 Coupling between the transmon and the multimode memory

The rate of stimulated vacuum Rabi oscillations are related to the modulation strength and the

bare coupling according to Equation (5.11) of the main text. We can therefore extract the bare

couplings from the measured sideband Rabi oscillation rates, particularly since the strength of the

modulation can be independently calibrated from spectroscopy of the DC-offset of the transmon

frequency (see Chapter 5.11).

Instead, we measure the eigenmode-state dependent dispersive shift of the transmon frequency.
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The shift for each mode k is measured with a transmon Ramsey interference experiment conducted

after loading a photon into mode k, according to the protocol shown in Figure 5.11(a).
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Figure 5.11: a, Dispersive shift χk as a function of mode index with the transmon biased at
νge = 4.3325 GHz. The qubit frequency is stabilized to 50 kHz prior to each measurement and
corresponds to the indicated error bar. b, The transmon-mode couplings gk, extracted from the
measured dispersive shift using equation (5.22), with the errors inferred from those in χ.

The dispersive shift is related to the measured oscillation frequency νosc and the Ramsey fre-

quency νRam according to δi = νosc − νRam, and is plotted as a function of mode number in

Figure 5.11(b). We extract the coupling rate gk from the measured dispersive shift χk, which are

related by [97]:

χk =
g2
kα

∆k(∆k + α)
, (5.22)

where α is the transmon anharmonicity and ∆k = νq−νk is the detuning between the transmon and

mode k. The gk’s extracted from this expression are shown in Figure 5.11(c). The bare coupling

rates extracted from the stimulated vacuum Rabi rate and from the dispersive shift are found to be

consistent.
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5.13 Hamiltonian tomography
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Figure 5.12: a, Bare resonator frequencies νr,i and b, nearest-neighbor tunnel couplings gr,i ob-
tained from Hamiltonian tomography. The error bars in the bare frequencies and the couplings are
obtained assuming a 25% uncertainty in the measured gk’s and a 0.5% uncertainty in the measured
eigenfrequencies.

We use Hamiltonian tomography [111] to extract the 2N − 1 parameters of a chain of N nearest-

neighbour coupled resonators. We assume Hamiltonian for this chain is given by equation (1)

of the main text, but allowing disorder of the individual resonator frequencies (νr,i) and tunnel

couplings (gr,i):

Ĥ =
N∑
i=1

νr,iâ
†
i âi +

N−1∑
i=1

gr,i

(
â
†
i+1âi + c.c.

)
(5.23)

We extract these parameters using the frequencies (νk) and couplings to the transmon (gk) of

the eigenmodes of the array (2N numbers). The coupling to the transmon is proportional to the

amplitude of the memory-mode wavefunction at the edge resonator (geff,k ∝ |φk1 |), where the

creation operator for eigenmode k is b̂†k =
∑
i φ
k
i â
†
i . The bare frequencies and tunnel-couplings

of the resonator are then extracted by iteratively solving the Schrödinger equation starting from

the transmon end of the chain, while imposing the constraints from wavefunction normalization
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(
∑
k

(
φki

)(
φkj

)∗
= δij ,

∑
i

(
φki

) (
φ
q
i

)∗
= δkq), as shown below:

νr,i =
∑
k

νk

∣∣∣φki ∣∣∣2 , φki =

(
νk − νr,i−1

)
φki−1 − gr,i−2φ

k
i−2

gr,i−1
, (5.24)

g2
r,i =

∑
k

(
νk − νr,i

)2 ∣∣∣φki ∣∣∣2 − g2
r,i−1.

The bare frequencies and tunnel couplings thus extracted are shown in Figure 5.12a and 5.12b. We

infer that two of the normal modes (see Figure 5.7) being extremely weakly coupled is likely a

result of coupler 7 and 9 being defective.

5.14 Coherence of the multimode memory

The coherence times of the memory modes are characterized through protocols analogous to those

for the transmon, with the qubit pulses sandwiched with a pair of transmon-mode iSWAP pulses

to transfer the quantum state between the transmon and the mode. The results of T1 and T ∗2

measurements for mode 1 of the memory are shown in Figure 5.13a and b, with the coherence

times for all the modes, summarized in Figure 5.13c. The T ∗2 is not found to be T1 limited for

many of the modes.
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Figure 5.13: a, Single-photon lifetime measurement on mode 1. b, Ramsey (T ∗2 ) experiment on
mode 1. The oscillation frequency of the Ramsey fringe can be used to infer the DC-shift of
the transmon frequency during the iSWAP pulse. c, T1 and T ∗2 for the modes in the multimode
memory. The error bars for individual points are as extracted from the fits. Because of insufficient
statistics, the figure includes all the coherence data obtained with the transmon biased at νq ∼ 4.59
GHz.

5.15 Single-mode gate calibration

The frequency of the iSWAP pulse acting on a particular mode is obtained by choosing the fre-

quency corresponding to maximum contrast of the stimulated vacuum Rabi chevrons, such as those

in Figure 5.7. The amplitude and pulse bandwidth of the flux-modulation pulses are optimized to

maximize the oscillation rate, while minimizing cross talk with neighboring modes and sideband

transitions across other transmon levels. The length of an iSWAP pulse is obtained using fits of

stimulated vacuum Rabi oscillations such as in Figure 5.2c. To achieve high fidelity gate opera-

tions, we also calibrate and correct phase errors arising during the sideband pulses.

The main phase error in the flux-modulation pulse is due to the DC-shift of the transmon

frequency during flux-modulation (δνDC in equation (5.7)). The frequency of the center of the

stimulated vacuum Rabi chevron is detuned from the difference frequency between the mode and
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the relevant transmon transition by −δνDC. Since the flux-pulse frequency is set to the center of

the chevron, the clock (rotating frame) of the drive generator is shifted from the the frame of the

Hamiltonian of equation 5.1. If the drive generator idles on resonance, there is an additional phase

that accrues during that time. In the Ramsey experiment measuring the coherence time (T ∗2 ) of

the modes (see Figure 5.13a (top)), the accrued phase shifts the frequency of the Ramsey fringes

by δνDC. We can then account for the misalignment of clocks by advancing the phase of the

subsequent pulse by 2πδνDCτ . This correction can be easily implemented by keeping the drive

clock aligned with the bare qubit-resonator system when the flux pulse is off, and incrementing the

drive frequency by δνDC during the iSWAP pulse to bring it into resonance with the DC-shifted

frame.

Fixing the drive clock to be in sync with the Hamiltonian of Equation (5.1) results in the

absence of idle-time dependent phase errors. We additionally need to calibrate an additional dy-

namical phase (σz error) that occurs due to the change in the qubit frequency during the ramp up

of the flux pulse. This phase is manifest in a rotating frame corresponding to the instantaneous

qubit frequency ν̄ge(t) in equation (5.9). Repeating the transformation of equation (5.10) with a

time-dependent qubit frequency results in an additional term:

δĤ = −1

2
h
∂ν̄ge (t)

∂t
tσ̂z. (5.25)

If we consider a square flux pulse with modulation amplitude corresponding to a DC-offset of

νDC and pulse duration of tπ, the additional term in the Hamiltonian results in a dynamical phase

of πνDCtπ. This error is calibrated using the sequence shown in Figure 5.14a and corrected by

adjusting the relative iSWAP pulse phases. The result of this calibration for one of the memory

modes is shown in Figure 5.14b. After calibrating the iSWAP phase (φπ−π), we add (subtract)

φπ−π
2 to every iSWAP pulse for loading (unloading) an excitation into each of the memory modes.

Subsequent |g〉 − |e〉 iSWAP pulses in all circuit diagrams include this phase correction, and are

represented by π̃ when represented in an equation.
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Figure 5.14: a, Circuit for calibrating phase of the iSWAP gate, where we sweep the phase δφ
2

added and subtracted from the iSWAP pulses used to load and unload the state to the memory
mode. We introduce an additional offset phase (φπ

2
) which corrects σz errors occurring in the

qubit pulse, ensuring that the mode state at the end of the first sideband pulse is free from all σz
errors. The optimal phase for the iSWAP pulses is obtained by minimizing P (δφ). b, iSWAP
phase calibration for mode 9 of the multimode memory, optimal phase (92.5± 0.1◦) indicated by
the black dashed line.

5.16 Randomized benchmarking

We characterize the fidelity of single-mode operations using randomized benchmarking (RB) [93].

As described in the main text (see Figure 5.3), single-mode Clifford gates are realized by sand-

wiching single-qubit Clifford gates (Ci) with transmon-mode iSWAP pulses.

C̃i = Uπ̃sb
CiUπ̃sb(φ=π) = Ci

To load the excitation to and from the transmon, we use σz error corrected sideband iSWAP pulses

that are 180◦ out of phase with each other, so that the mode Cliffords are mapped directly from

their transmon qubit counterparts. The Cliffords are generated by concatenating an operator each

from {0, π2 y, πy,−
π
2 y} and {0, π2 x, πx,−

π
2 x,

π
2 z,−

π
2 z}, to generate all 24 elements of the single

qubit Clifford group. The circuit showing the sequence used for RB of the modes is shown in

Figure 5.15.
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Figure 5.15: Randomized benchmarking (RB) characterizes the average random gate fidelity by
acting random sequences of single-mode Clifford gates of increasing length, inverting the se-
quence, and then measuring the qubit state as a function of length. The sequence is acted on
the multimode system initialized in the ground state, with the mode occupation error (ε) measured
at the end of each sequence. The RB fidelity is extracted from the decay of the occupation fidelity
(1− ε) as a function of the length of the benchmarking sequence. For the data shown in Figure 5.3,
we use sequence lengths corresponding to those in [93, 31] and average over 32 random sequences.

The RB fidelity (p) is extracted by fitting the decay curves to the form Apm + B, where m is

the sequence length. We estimate the coherence limit to the RB fidelity to be:

pi = pq − 2

(
1− exp

[
−
tπsb,k
T1,k

])
, (5.26)

where tπsb,k and T1,k are the iSWAP durations and lifetimes, respectively, of mode k, and pq is

the RB fidelity of the transmon. The experimentally measured fidelities approach these coherence

limits (Figure 5.3).

5.17 Two mode gates using sideband transitions

The level diagram describing the relevant multimode states and transitions involved in the CZ gate

are shown in Figure 5.16a. We break the 2π |e〉 − |f〉 sideband pulse used to provide a conditional

phase between the transmon and the second mode (|e1〉 → − |e1〉, see Figure 5.4a of main text)

into two π pulses. Control of the relative phases between these pulses allows for the correction of

additional phase errors arising from the dispersive shift and the realization of an arbitrary controlled

phase gate.

We obtain a CNOT gate by inserting an |e〉 − |f〉 transmon charge π pulse (πefq ) between the

two |e〉 − |f〉 sideband iSWAP pulses. This allows for mapping |e0〉 to |e1〉 (and vice versa) via
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the |f0〉 (qubit-mode CNOT), which again becomes a mode-mode CNOT gate when sandwiched

with two |g〉−|e〉 sideband iSWAP pulses. The pulse sequence, energy level diagram, and relevant

transitions for the CNOT gate are shown in Figure 5.16b.
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Figure 5.16: a and b, Energy level diagrams showing the multimode states and pulses involved in
CZ and CNOT gates, respectively. The eiπ phase factor arising from sideband SWAP operations
between |e01〉 ←→ |f00〉 is modified by the dispersive shift (χ) of |e01〉 level (red). The additional
phase arising from the dispersive shift is corrected by adjusting the phase of an ef sideband pulse
on mode 1. CY gates are realized by adjusting the phase of the πefq pulse.

Slight modifications of these pulse sequences allow the realization of other two-mode gates

such as the mode-mode CY and SWAP gates. The pulse sequences (without corrections from the

dispersive shift) for realizing these two-mode gates are summarized in Table 5.1.

5.18 Phase error corrections to two-mode gates

The previous discussion of two-mode gates only involved resonant first-order sideband transitions

and ideal transmon charge drive pulses. This idealized description is corrected by additional terms

in the Hamiltonian of equation (5.12). The dominant additional effects are from: (1) dispersive
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Two-mode gate Pulse Sequence

CZj,k π
ge
sb,j + π

ef
sb,k + π

ef
sb,k + π

ge
sb,j(φ = π)

CXj,k π
ge
sb,j + π

ef
sb,k + π

ef
q,y + π

ef
sb,k + π

ge
sb,j(φ = π)

CYj,k π
ge
sb,j + π

ef
sb,k + π

ef
q,x + π

ef
sb,k + π

ge
sb,j(φ = π)

SWAPj,k π
ge
sb,j + π

ef
sb,k + π

ge
sb,k + π

ef
sb,k + π

ge
sb,j

Table 5.1: Pulse sequences used for realizing various two-mode gates. j and k are indices corre-
sponding to the control and target mode, respectively.

shifts arising from photons in the multimode memory, (2) the qubit DC-offset due to flux modu-

lation, and (3) phases from AC Stark shifts due to off-resonant first-order sidebands. These shifts

result in corrections to the transmon rotation and transmon-mode iSWAP unitaries.

For the case of the dispersive shift, the corrections to the target unitaries depend on the quan-

tum state of the multimode memory and result in a transmon-mode ZZ error. If we ignore photons

in the rest of the memory, the effect of the dispersive shift on ther modes involved in a two-mode

entangling gate can be inferred from the energy level diagram of Figure 5.16. The dispersive shift

causes the |e10〉 and |e01〉 levels to be shifted (red) from their bare values (black). As a result,

sidebands resonant with |e00〉 ←→ |g10〉 are off-resonant from |e01〉 ←→ |g11〉.
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Figure 5.17: a, Error arising from the dispersive shift χ during an iSWAP pulse of duration tπ. The
linear order phase errors (∼ 25 − 60◦ over the course of a CZ gate) are corrected during the gate,
leaving residual amplitude error (∝ (χtπ)2). The error bar in χtπ is dominated by the error in the
measurement of χ. b, Error arising from T1 loss during a sideband, plotted for comparison to the
dispersive shift error. The T ′1s are the mean of the data in Supplemetary Figure 5.13, with the error
in tπ

T1
extracted from a 10% uncertainty in the T1 of each mode.

The dispersive shift results in a phase and population error in the |e01〉 state. For the dispersive

shifts χ and iSWAP times tπ used in this work, this population error is ∝ (χtπ)2 and, at worst,

∼ 5% over the course of a CZ gate. This error is uncorrected and factors into the total gate error.

The phase error on other hand is∝ (χtπ) and results in a more significant effect (see Figure 5.17a).

Given that the |e01〉 state affected by the dispersive shift is selectively addressed by the |e〉 − |f〉

sideband pulses used in the gate (see Figure 5.16), this phase error is calibrated and corrected

by adjusting the relative phase between these pulses. The experimental protocols used for the

gate calibration and phase error correction for the CZ gate are described in Note 5.19. The state

dependent phases arising in the gate can be calculated by considering the effective Hamiltonian of
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equation (5.15) in the 8× 8 subspace of levels relevant for the gates and shown in Figure 5.16:

H̃(t) =



0 0 0 0 Ω∗ge 0 0 0

0 0 0 0 g∗k,ge Ω∗ge 0 0

0 0 0 0 g∗j,ge 0 Ω∗ge 0

0 0 0 0 0 g∗j,ge g∗k,ge 0

Ωge gk,ge gj,ge 0 0 0 0 Ω∗ef

0 Ωge 0 gj,ge 0 δk 0 g∗k,ef

0 0 Ωge gk,ge 0 0 δj g∗j,ef

0 0 0 0 Ωef gk,ef gj,ef 0



|g〉 ⊗
∣∣0j0k〉

|g〉 ⊗
∣∣0j1k〉

|g〉 ⊗
∣∣1j0k〉

|g〉 ⊗
∣∣1j1k〉

|e〉 ⊗
∣∣0j0k〉

|e〉 ⊗
∣∣0j1k〉

|e〉 ⊗
∣∣1j0k〉

|f〉 ⊗
∣∣0j0k〉

(5.27)

Here, the multimode state is labeled
∣∣nj , nk〉 and the phases of equation (5.17) have been absorbed

into the g’s and Ω’s (which are time dependent), i.e.,

gi,α → gi,αe
iφsb,α , Ωα → Ωαe

−iφq,α , α ∈ {ge, ef} , i ∈ {j, k} . (5.28)

The |e〉 − |f〉 sideband pulses act only on one transition and are unaffected by the state dependent

shift when considering only two modes. We chose the |e〉 − |f〉 sideband freqeuncy to be resonant

with the |f00〉 and the dispersively shifted |e01〉 level. In the rotating frame of equation (5.27),

this corresponds to |e〉 − |f〉 first-order sidebands acquiring the following time-dependence:

gj,ef (t) = g̃j,efe
−2πiδkt , gk,ef (t) = g̃k,efe

−2πiδjt. (5.29)

g̃i,ef is proportional to the envelope of the |e〉−|f〉 sideband pulse, and δk and δj are the dispersive

shifts of
∣∣e0j1k〉 and

∣∣e1j0k〉 respectively.

We compute the action of the CZ and CNOT gate sequences by evolving the Hamiltonian

above, with time dependent coefficients and phases as per Table 5.2.

In these pulse sequences, only one of the drive terms is on at any given time and the corre-

sponding unitaries obtained upon integration of the Schrödinger equation are generalizations of
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Gate Pulse Sequence

CZ π̃
ge
sb,j(φa) + π̃

ef
sb,k(φb) + π̃

ef
sb,k(φc) + π̃

ge
sb,j(φd)

CNOT π̃
ge
sb,j(φa) + π̃

ef
sb,k(φb) + π

ef
q (φe) + π̃

ef
sb,k(φc) + π̃

ge
sb,j(φd)

Table 5.2: Nomenclature for the pulse phases used in the CZ and CNOT gates resulting in the
unitary operators in equation (5.31).

those in Equation (5.20), with corrections arising from the dispersive shift. The effective unitary

thus realized for the CZ and CNOT gates, to lowest order in χ/gsb and χ/Ω are;

UCZ =



1 0 0 0

0 1 0 0

0 0 −ei(φa−φd) 0

0 0 0 e
i
(
φa−φd+φb−φc−2πtπsb,j,geδk

)


(5.30)

UCNOT =



1 0 0 0

0 1 0 0

0 0 0 e
i
(
φa−φd+φb+φe−πtπsb,j,geδk

)
0 0 e

i
(
φa−φd−φc−φe−πtπsb,j,geδk

)
0


We see that one can choose sideband pulse phases that cancel phases arising from the dispersive

shift and thereby realize the target unitaries for the CZ and CNOT gates.

5.19 CZ gate phase calibration sequences

Here, we describe protocols used to calibrate and correct each of the additional phases arising in

the CZ gate. The phases of the iSWAP pulses used in the CZ gate are defined below, where φ1,2

are the controlled phases:

CZj,k(φ1, φ2) = π̃
ge
sb,j + π

ef
sb,k(φ1) + π

ef
sb,k(0) + π̃

ge
sb,j(φ2). (5.31)
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Sequence Phase error Initial state # CZ’s Measured mode

a Dispersive shift (SPAM) |10〉+ |11〉 1 Target (k)

b Dispersive shift (Gate) |10〉+ |11〉 2 Target (k)

c DC-offset during gate |01〉+ |11〉 1 Control (j)

d Off-resonant sidebands |00〉+ |01〉 1 Target (k)

Table 5.3: Summary of CZ gate phase calibration experiments that correct for each of the sources
of the phase errors. The initial states used to calibrate each of the phase errors are indicated.

j is the control mode and k is the target mode of the CZ gate, with the states labeled
∣∣nj , nk〉,

and π̃ indicating iSWAP pulses for which the DC-offset σz error is corrected within the pulse.

From equation (5.30), we see that only two relative phase adjustments (φa − φd and φb − φc) are

required to correct the dispersive shift error. Here, we adjust these relative phases by controlling

φ1 = φb and φ1 = φd, while leaving φa and φc fixed. We measure each phase error through

Ramsey experiments with initial states that are appropriate superpositions of the basis states, as

indicated in Table 5.3.

a
|g〉
|0〉j
|0〉k

|ψi〉

πq
2

πq

Z(δφ, 0)

πq
2

b
|g〉
|0〉j
|0〉k

|ψi〉

πq
2

πq

Z(φds
t , 0)Z(δφ, 0)

πq
2

c
|g〉
|0〉j
|0〉k

|ψi〉

πq
2

Z(φds
g , δφ)

πq
2

d
|g〉
|0〉j
|0〉k

|ψi〉

πq
2

Z

πq
2 (δφ)

Figure 5.18: CZ gate calibration sequences. a, Measures phase error from the dispersive shift
arising from the entire sequence. b, Isolates the error from the dispersive shift error occuring only
during the gate. c, Measures the phase error arising from the qubit dc-offset occuring during the
gate. d, Phase error arising from the AC Stark shift due to off-resonant first order sidebands.

The phase error from the dispersive shift is obtained by preparing the system in the state
∣∣ψp〉 =

|10〉+|11〉. We measure the relative phase between the basis states after applying the CZ gate, using

the sequence in Figure 5.18a. The dispersive shift results in the |11〉 acquiring an additional phase
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in the preparation (φp), gate (φg) and measurement segments (φm). Similar additional phases also

accrue during the gate (φg) and the measurement (φm) segments. We sweep the phase (δφ) of

the first |e〉 − |f〉 sideband pulse of the CZ gate (see Equation (5.31)). The phase that maximizes

the final measured transmon population provides the total added phase, φds
t = φp + φg + φm.

CZj,k(φds
t , 0) is a combination of an ideal CZ gate and the Cφ gate that cancels additional phases

arising from the dispersive shift over the entire sequence. We isolate the state-dependent phase

error arising only during the CZ gate by adding a second Cφ gate to the previous sequence, as

shown in Figure 5.18b. We sweep the phase (δφ) of the (first) |e〉 − |f〉 sideband pulse of the

second Cφ gate, with φ1 = φt
ds for the first Cφ gate. Given the same preparation and measurement

sequences, the SPAM phases are corrected by construction by the first Cφ gate. We find the phase

δφ that minimizes the population of the transmon, thus realizing a CZ gate that flips the sign of the

|11〉 state. The CZk,j(φg, 0) gate therefore is corrected for phases from dispersive shifts occurring

during the gate sequence.

We obtain a fully corrected CZ gate by correcting the relative phase between the {|00〉 , |01〉}

and {|10〉 , |11〉} manifolds. These state manifolds have a relative phase resulting from the trans-

mon frequency DC-offset occurring during the |e〉 − |f〉 sidebands of the CZ gate. We correct this

additional phase by adjusting the phase of the final |g〉 − |e〉 sideband pulse of the CZ gate (φ2 in

equation (5.31)), using the experimental sequence of Figure 5.18c. The resulting CZj,k(φds
g , φ

DC)

gate is therefore corrected of errors from dispersive shifts and qubit flux-modulation DC-offsets.

The phase error resulting from dispersive shifts due to off-resonant first-order sidebands are

measured by acting the CZ gate on the |00〉+|01〉 state. The CZ gate nominally does not change this

state, and we correct this phase error using subsequent qubit pulses as shown in Figure 5.18d. This

phase is significant only for gates between modes with spectral spacing near the anharmonicity of

the transmon.
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5.20 Two-mode quantum state tomography

Reconstructing the density matrix of an arbitrary two-qubit state requires the measurement of all

possible two-qubit correlations {〈XI〉, 〈XX〉 . . . 〈ZZ〉}, i.e.;

Ci,j = 〈Bi ⊗Bj〉 | Bi ∈ {I,X,Y,Z} (5.32)

These correlators can be measured through Ramsey interferometry, as described in the main text [54].

We equivalently measure all the necessary correlations with the aid of the single and two-mode

gate operations prior to measuring the state of the transmon. A sideband iSWAP pulse (πsb) on the

|g〉 − |e〉 transition, along with single qubit rotations alone can be used to measure all single-mode

correlators Cij ∈ {〈Bi ⊗ I〉 or 〈I ⊗Bi〉} | Bi ∈ {X,Y,Z}.

The entanglement information is present in two-mode correlators,

Ci,j = 〈Bi ⊗ Bj〉 | Bi ∈ {X,Y,Z}.

We measure these correlators by acting two-mode gates before measuring a single-mode correla-

tors. For instance, the 〈XX〉 correlator of a given state (|ψi〉) is measured by acting CX gate prior

to the measurement of 〈XI〉. In the Heisenberg picture [67], the transformation is shown below:

C =
〈
ψf
∣∣X ⊗ I ∣∣ψf〉 = 〈ψi|U†CX (X ⊗ I)UCX |ψi〉 = 〈ψi|X ⊗X |ψi〉 (5.33)

Here |ψi〉 is the two-mode state to be measured and
∣∣ψf〉 = UCX

∣∣ψf〉 is the state obtained fol-

lowing action of the CX gate. A summary of pulse sequences used for the measurement of each of

the correlations required for two-mode tomography are shown in Table 5.4.
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# Measured Correlation Pulse Sequence

0 −〈IX〉 πsb,k + π
2 y

1 〈IY〉 πsb,k + π
2 x

2 〈IZ〉 πsb,k

3 −〈XI〉 πsb,j + π
2 y

4 −〈XX〉 CX + πsb,j + π
2 y

5 −〈XY〉 CY + πsb,j + π
2 y

6 〈XZ〉 CZ + πsb,j + π
2 y

7 〈YI〉 πsb,j + π
2 y

8 〈YX〉 CX + πsb,j + π
2 x

9 〈YY〉 CY + πsb,j + π
2 x

10 −〈YZ〉 CZ + πsb,j + π
2 x

11 〈ZI〉 πsb,1

12 −〈ZX〉 CZ + πsb,k + π
2 y

13 〈ZY〉 CZ + πsb,k + π
2 x

14 〈ZZ〉 CX + πsb,k

Table 5.4: Pulse sequences used for the measurement of all two-qubit correlations between mode
pairs. These correlations are used to reconstruct a two-qubit density matrix using equation 5.34.
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|g〉transmon

mode 1

mode 2
|ψi〉

σ

σ′
φ

(or)

|g〉

|ψi〉
σ

σ′

φ

Figure 5.19: General two-mode correlator measurement sequence, where σ, σ′ ∈ {I,X,Y,Z}. To
measure and correct additional phase shifts (as described in Note 5.19) arising in the tomography
sequence, we sweep the phase, φ, of the final sideband pulse of the sequence used to measure each
correlator.

We extract the correlators and construct the density matrix of the two-mode state from the

measured transmon population Pij at the end of the sequence for each correlator Cij using;

Ci,j = 〈Bi ⊗Bj〉 = 2Pij − 1,

ρ =
∑
ij

CijBi ⊗Bj
4

. (5.34)

In general, fast measurement and reset [61] of the transmon would allow us to perform sequen-

tial measurements of two-mode correlations using the transmon without requiring mode-entangling

gate operations. For each mode, we would map the mode state to the transmon with an iSWAP,

measure the transmon, and reset it to the ground state. The transmon state could be reset with an

iSWAP back to the measured mode or to an auxiliary mode. The transmon can subsequently be

used to measure the next mode. Additionally, we can perform Wigner tomography [71] of the mul-

timode chain through direct measurements of the multimode fields and parametric amplification.

These techniques pose more stringent conditions on the measurement fidelity and speed and are

beyond the scope of this work.

We account for spurious phases arising in the Bell state tomography sequence by varying the

phase of the final sideband pulse used in each correlator measurement. The results of such phase

sweeps for the |Φ+〉 and |Ψ+〉 Bell states are shown in Figure 5.24a and b. We note that for these

states, the only correlators that are functions of the final sideband phase are XX,XY,YX,YY and

the |Φ+〉 and |Ψ+〉 Bell states give opposite answers for measurements of the two-mode parity
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ZZ. The optimal sideband phase that accounts for the additional phases shifts are indicated by

the dashed lines. We extract the density matrices from the results of these measurements using

equation (5.34). The state fidelities for the two states are calculated from the overlap of the ideal

ρid and measured ρm density matrices: Fp = Tr(ρidρm).

5.21 Process tomography of two-mode gates

Process tomography of a two-qubit gate consists of quantum state tomography after acting the gate

on a set of 16 linearly independent input states that form a basis for representing an arbitrary two-

qubit density matrix [140]. Process tomography of two-mode gates therefore consists of a set of

240 measurement sequences of the form shown in Figure 5.20.

|g〉transmon

|0〉jmode j

|0〉kmode k
|ψi〉

︸ ︷︷ ︸
state preparation

︸ ︷︷ ︸
gate

︸ ︷︷ ︸
tomography

R1 R2

Z σ1

σ2

Figure 5.20: Process tomography sequence for two-mode gates, broken down into preparation
(red), gate (green), and tomography (blue) segments. For the preparation sequence, we use qubit
rotations R1,2 =

{
I, Ry

(π
2

)
, Rx

(π
2

)
, Rx (π)

}
and DC-offset corrected sideband iSWAP pulses

with an additional −π2 phase, such that the target multimode state at the end of the preparation
sequence is |ψi〉 = R1 ⊗ R2

∣∣0j0k〉. We measure the density matrix of the gate outputs for given
input density matrices ρi = |ψi〉 〈ψi| using the state tomography protocols of Chapter 5.20 and
the sequences in Table 5.4, corresponding to σ1,2 = {I,X, Y, Z} in the sequence shown above.
We note that the iSWAP gate acts on mode k for some of the correlators, and that the tomography
sequences that measure single-mode correlators have no additional two-mode gate, corresponding
to σ1 = 1. The qubit and iSWAP operations that are indicated by the dashed lines have errors
arising from the dispersive shift.

The gate calibration protocols described in Chapter 5.19 for the CZ gate, and analogous proto-

cols for the CX gate, correct phase errors due to dispersive shifts and the transmon DC-offset from

flux modulation during the gate. We additionally correct errors arising from the dispersive shift

during the state preparation and tomography (SPAM) segments of the various process tomography
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sequences. These errors occur in the qubit and iSWAP operations indicated by dashed lines in

Figure 5.20. The dispersive shift causes amplitude and phase errors in the transmon and sideband

pulses. We again correct only phase errors to first-order in χ/Ωsb. These controlled-phase errors

can be formally incorporated as CΦ gates at the end of the preparation sequence (CΦp) and prior

the to measurement sequence (CΦm). These additional gates are concatenated into the gate and

tomography sequences as shown in Figure 5.21.

|g〉transmon

|0〉jmode j

|0〉kmode k
|ψi〉

︸ ︷︷ ︸
state preparation

︸ ︷︷ ︸
gate

︸ ︷︷ ︸
tomography

R1 R2

Φp Z̃ σ̃1 Φm

σ2

Figure 5.21: Protocol for correcting errors from the dispersive shift, in state preparation and mea-
surement during process tomography of multimode gates.

CZ̃ and Cσ̃1 are chosen to give phase-corrected CZ and Cσ1 gates when concatenated with

CΦp and CΦm, respectively. The preparation error is corrected through an added phase (φp) in

the first |e〉 − |f〉 sideband of the first gate, while the tomography error is corrected through an

added phase (φm) in the second |e〉 − |f〉 sideband of the last gate of the sequence. We thereby

correct the sequence to first-order in the dispersive-shift error. The sideband phases are chosen in

this manner in order to correct errors in both the |10〉 and |11〉 states (see equation (5.30), (5.31)).

The phase errors depend on the duration of the qubit and sideband pulses used in the sequence. In

the absence of loss, they can be calculated based on the dispersive shift and pulse shapes.

We calibrate the additional phase errors through process tomography of the Identity (1) gate

(idling for 10 ns). We find the optimal phases by sweeping the added controlled-phases of the Cφ

and Cσ gates, and comparing results for corresponding correlators with and without CX/CY gates

(such as XX and XI, respectively) as shown in Figure 5.22.

This scheme allows us to isolate state preparation and measurement errors (φp and φm). In

the Heisenberg picture, working backward from the transmon measurement, we consider how
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correlators are modified by the dispersive shift and the correcting two-mode gates.

|g〉transmon

|0〉jmode j

|0〉kmode k ︸ ︷︷ ︸
state preparation

︸ ︷︷ ︸
1,CZ

. . .

︸ ︷︷ ︸
tomography

|ψi〉

R1 R2

Φ(φc,1)

Φ(φc,2)

X̃(φc,2)

X

X = 〈X̃I〉

= 〈X̃X〉

Figure 5.22: Process tomography of the I gate, used to calibrate the additional SPAM phase errors.
We measuring the added phases to the |10〉 and |11〉 states by comparing the results of correlators
with and without CNOT gates, thereby isolating state preparation and measurement errors.

As an example, for the prepared state |x̂x̂〉 (R1,2 = Yπ
2

), the expected values of the correlators

XI and XX are:

〈X̃I〉 = cos2
(
φc,1 + φc,2 − φp − φm

2

)
, (5.35)

〈X̃X〉 = cos

(
φc,2 − φc,1 − φp − φm

2

)
cos

(
φc,2 + φc,1 + φp − φm

2

)
, (5.36)

where φp and φm are the phase errors of the |11〉 state (relative to the other computational basis

states) in state preparation and measurement, respectively. Finding and correcting φp and φm

amounts to choosing φc,1 and φc,2 such that 〈X̃I〉 = 〈X̃X〉 = 1.

The additional phases only depend on the shape of the qubit and sideband pulse waveforms.

As a result, we can calibrate φp and φm for all 240 sequences using a total of 13 unique experi-

ments. We can then extract the full process matrix by measuring at the optimal angles obtained

from the calibration experiments. We check that the validity of the calibrations by also additionally

sweeping the phase of the final sideband pulse. In order to reduce SPAM error from decoherence,
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we combine the state preparation and measurement correction gates (as indicated by the arrows in

Figure 5.22) during process tomography of the 1 and CZ gates, noting that CΦφc,1
commutes with

both of them.

We perform process tomography of the CZ gate by inserting it in place of the 1 in Figure 5.22,

after calibrating the tomography axes. A two-mode gate is fully characterized by the completely

positive map E ;

E(ρ) =
d2−1∑
m,n=0

χmnÂmρÂ
†
n. (5.37)

Âm = B̂i ⊗ B̂j , with B̂i ∈ {I,X, Y, Z}, forms a basis of operators acting on a two-mode state ρ.

χmn is the process matrix characterizing the two-mode gate, and is extracted from the measured

output density matrices ρoutj for 16 linearly independent input density matrices (ρj) as shown

below:

ρout
j = E(ρj) =

∑
k

λjkρk =
∑
m,n

χmnÂmρÂ
†
n =

∑
m,n,k

χmnβ
mn
jk ρk, (5.38)

⇒ λjk = Tr[ρkρ
out
j ] =

∑
mn

βmnjk αmn. (5.39)

Equation (5.39) is directly inverted to obtain the process matrix αmn. We do not impose the

completeness condition,
∑
mn χmnÂmÂ

†
n = 1 as a constraint. This constraint arises from the

probabilities of states in the relevant two-mode space summing to 1. This is not necessarily the

case when there are several memory modes. The process fidelities are extracted from the measured

(χm) and ideal process matrices (χt) using Fp = Tr
[
χmχt

]
.
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a b

Figure 5.23: a, Experimentally measured correlators after correcting for phase errors arising during
state preparation and measurement for process tomography of the CZ gate between mode j = 2
and k = 6. b, Process matrix extracted from the resulting measurements by inverting equation
(5.39).

5.22 Preparation of entangled states

We use a slight variant of the scheme described in the main text to prepare multimode entangled

states. We prepare Bell states [11] between two modes with the following protocol: starting with

the transmon in its excited state, we swap half of the excitation via a sideband pulse (
√

iSWAP) to

the first mode. This creates a |Ψ+〉 Bell state between the first mode and the transmon:

|Ψ+〉 =
1√
2

(|g100...0〉+ |e000...0〉) . (5.40)

We can rotate this state into the |Φ+〉 Bell state by flipping the transmon state via its charge bias

control:

|Φ+〉 =
1√
2

(|g000...0〉+ |e100...0〉) . (5.41)
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a b

c d

Figure 5.24: a and b, Transmon populations at the end of each of the two-mode correlator se-
quences for quantum state tomography of Ψ+ and Φ+ Bell states, respectively, as a function of
the phase of the final sideband pulse. For these states, the only correlators that depend on the
final sideband phase are XX,XY,YX,YY. Φ and Ψ Bell states are easily distinguished by a mea-
surements of the two-mode parity operator ZZ. We account for additional phases by performing
quantum state tomography using values measured at the sideband phase indicated by the dashed
lines. c and d, The real parts of the density matrices. The corresponding state fidelities are found
to be Fp = 0.74 and 0.75, respectively.

For either of the states in equations (5.40) and (5.41), we can create the corresponding Bell

states between two arbitrary modes by simply swapping the transmon state to another mode.

To extend this protocol and create a n-mode Greenberger-Horne-Zeilinger (GHZ) state [68],

we again utilize the anharmonicity of the transmon and map the population of |e〉 to |f〉. This

allows us to transfer this excitation to the second mode via a sideband of the |e〉 − |f〉 transition
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without disturbing the population in the ground state:

|ψ〉 =
1√
2

(|g000...0〉+ |e110...0〉) . (5.42)

These last two pulses can be repeated for each of the remaining eigenmodes before finally swap-

ping the transmon back to the nth mode to complete the GHZ state:

|ψGHZ〉 =
1√
2

(|g000...0〉+ |g111...1〉) . (5.43)

5.23 GHZ entanglement witness

We witness the entanglement of the 3-qubit GHZ states through a measurement of the Mermin

operator [123, 43],

W = XXX− YYX− YXY − XYY. (5.44)

For an ideal n-qubit GHZ state, the Einstein-Podolsky-Rosen (EPR) [52] bound for 〈W〉 is 2(n−1)/2,

while quantum mechanics predicts 〈W〉 = 2n−1. For the 3-qubit GHZ state, 〈W〉 > 2 demon-

strates tripartite entanglement.

We measure 3-qubit correlators by including an additional two-mode gate to the pulse se-

quences in Table 5.4 for measuring 2-qubit correlations. The XXX correlator is measured through

the experimental sequence shown in Figure 5.25a. We reduce tomography error by compiling con-

secutive |g〉−|e〉 iSWAP pulses between successive CNOT gates, as well as the CNOT gate and the

final iSWAP pulse. Additionally, we mitigate loss arising from transmon T ∗2 by inserting a π pulse

prior to the final π/2 qubit pulse, analogous to a spin-echo. The remaining correlators comprising

W are measured by changing the phases of the CX gates and the final π/2 pulse. The results of

the measurement of W , as a function of the time τ between the π and π/2 pulses are shown in

Figure 5.25b. The echo results in a revival of 〈W〉 at a time τ ∼ 530 ns. At the point indicated

by the red star, 〈W〉 = 2.35 ± 0.04, with the indicated error that arising from readout visibility
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(4×visibility error). While the echo mitigates errors from transmon dephasing, the measured value

of 〈W〉 is a lower bound that includes loss from tomography. The tomography sequence prior to

the echo includes 5 sideband and 2 qubit π pulses. Accounting for the loss in these pulses based on

the RB data for the |g〉−|e〉 iSWAPs and qubit pulses gives 〈W〉 > 2.65. This is still a conservative

estimate for the witness, since the |e〉 − |f〉 iSWAPs have a lower fidelity than the corresponding

|g〉 − |e〉 iSWAPs.
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Figure 5.25: (a) Gate sequence for measurement of the XXX correlator with a transmon echo. As
indicated by the pulse sequence, consecutive |g〉 − |e〉 iSWAP pulses on the same mode in the red
shaded region have been compiled and removed. (b) GHZ entanglement witness measured as a
functon of time τ following the echo π pulse. The blue shaded region indicates the EPR bounds
forW , corresponding to the states being biseperable. The memory modes used in the measurement
are j = 6, k = 8 and l = 2.

5.24 Conclusion

With minimal control-hardware overhead, we perform universal quantum operations between arbi-

trary modes of a nine-qubit memory using a single transmon as the central processor. The methods

described in this work extend beyond this particular implementation of a multimode memory and

in particular are compatible with the use of 3D superconducting cavities, which are naturally mul-

timodal and have demonstrated the longest coherence times currently available in cQED [154],

with the potential for even further improvements [163]. This architecture is compatible with the

error-correcting codes that use higher Fock states of a single oscillator, such as the cat [103, 141]
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and binomial [124] codes, as well as distributed qubit codes [21, 178], and is ideally suited to

explore the potentially rich space of multi-qudit error-correcting codes that lie in between the two

regimes [32, 148]. This makes cQED-based random access quantum information processors a

promising new module for quantum computation and simulation.
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CHAPTER 6

QUANTUM COMMUNICATIONS BETWEEN MULTIMODE MODULES

We further develop a more efficient and powerful quantum computer by connecting multiple quan-

tum random access processors introduced in the last chapter. This establishes a readily scalable lo-

cal quantum computing network. We propose and experimentally demonstrate an efficient scheme

for bidirectional and deterministic photonic communication between two remote superconducting

modules. The two chips, each consists of a transmon, are connected through a one-meter long

coaxial cable that is coupled to a dedicated “communication” resonator on each chip. The two

communication resonators hybridize with a mode of the cable to form a dark “communication

mode” that is highly immune to decay in the coaxial cable. We overcome the various restric-

tions of quantum communication channels established by other recent approaches in deterministic

communication for superconducting qubits. Our approach enables bidirectional communication,

and eliminates the high insertion loss and large volume footprint of circulators. We modulate the

transmon frequency via a parametric drive to generate sideband interactions between the transmon

and the communication mode. We demonstrate bidirectional single-photon transfer with a success

probability exceeding 60%, and generate an entangled Bell pair with a fidelity of 79.3 ± 0.3%.

The content of this chapter is based on our work “Deterministic bidirectional communication and

remote entanglement generation between superconducting qubits” published in npj Quantum In-

formation [104].

6.1 Introduction

A practical quantum computer requires a large number of qubits working in cooperation [58], a

challenging task for any quantum hardware platform. For superconducting qubits, there is an ongo-

ing effort to integrate increasing numbers of qubits on a single chip [139, 200, 27, 191, 59, 49, 164].

A promising approach to scaling up superconducting quantum computing hardware is to adopt a

modular architecture [129, 18, 28] in which modules are connected together via communication

117



channels to form a quantum network. This reduces the number of qubits required on a single chip,

and allows greater flexibility in reconfiguring and extending the resulting information processing

system. In such an architecture, each module is capable of performing universal operations on

multiple-bits, and neighboring modules are connected through photonic channels, allowing com-

munication and entanglement generation between remote modules.

Remote entanglement between superconducting qubits has been realized probabilistically [162,

134, 45]. A deterministic quantum communication channel is advantageous over a probabilistic

one because it lowers the threshold requirement for fault-tolerant quantum computation and can

achieve higher entanglement rates [82]. Realizing deterministic photonic communication requires

releasing a single photon from one qubit and catching it with the remote qubit. In the long-distance

limit, the photon emission and absorption are from a continuum density of states. In this limit,

static coupling limits the maximum transfer fidelity to only 54% [180, 197]. This limit is exceeded

by dynamically tailoring the emission and absorption profiles [203, 177, 149, 201]. These ca-

pabilities are presently being used to perform photonic communication between superconducting

qubits connected by a transmission line within a cryostat [4, 22, 45, 99]. In these experiments, the

use of a circulator enables the finite-length transmission line to be modeled as a long line with a

continuum density of states, at the cost of added transmission loss.

Here, we establish bidirectional photonic communication between two superconducting qubits

through a multimodal communication channel. Rather than inserting a circulator, the multimode

nature of the finite length transmission line is made manifest and exploited [79]. For intra-cryostat

communication, the required connection coaxial cable length of 1 m or less results in a free spectral

range on the order of hundreds of MHz. In this setting, the resonances of the coaxial cable form

hybridized normal modes with on-chip communication resonators, and photons are transferred co-

herently through the discrete modes of the channel in contrast to emission/absorption through a

continuum. We use parametric flux modulation of the qubit frequency to generate resonant side-

band interactions between the qubit and the communication channel [102, 10, 181, 170, 118]. This

approach avoids the loss due to the circulator that significantly limits the communication fidelity,
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and enables bidirectional quantum communication. Moreover, avoiding large volume footprint cir-

culators facilitates the establishment of communication channels between multiple devices within

a cryostat.

6.2 Photonic communication by parametric interaction
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Figure 6.1: Device circuit diagram. Each chip consists of a frequency-tunable transmon, a res-
onator included for readout, and a second resonator coupled to the coaxial cable (∼ 1 m) that pro-
vides the communication link between the chips. The cable we used is a Tin-dipped Hand-formable
Microwave Cable (UT-085C-Form) with the silver-plated copper wire. The two communication
resonators are designed to have identical frequencies. They are chosen to be coplanar waveguide
resonators with a large center pin and gap width to make the frequency insensitive to fabrication
variations [189]. The simple circuit diagram shows the circuit model of each module. We induce
resonant interactions between the transmon and the communication mode by modulating the trans-
mon frequency via its flux bias at the frequency difference (detuning) between the mode and the
transmon.

Each chip consists of a single flux-tunable transmon and two additional resonators [122]. The first

of these resonators is used for readout, and the second is coupled to the coaxial cable to enable

the inter-module communication. The transmon can resonantly couple to the communication res-

onator through parametric flux modulation to realize inter-module photonic communications. Fig-

ure 6.1 shows a schematic of our two modules. The readout resonators have frequencies [module
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1: 5.7463 GHz; module 2: 5.7405 GHz], and the communication resonators have frequencies [≈

7.88 GHz, see the Chapter 6.6 for detailed analysis of parameters]. We operate the transmons at the

static frequency of [1: 4.7685 GHz; 2: 4.7420 GHz] with an anharmonicity of [1: 109.8 MHz; 2:

109.9 MHz]. Each chip also has an eight-bit quantum memory [133] with eigenmode frequencies

spanning from 5.8 GHz to 7.7 GHz. These quantum memory modes can be utilized for universal

quantum computation on each module locally but are not used in this work.

We induce resonant interactions between the transmon and the communication channel by

modulating the transmon frequency via its flux bias. The modulation creates sidebands of the

transmon excited state, detuned from the original resonance by the frequency of the applied flux

tone. When one of these sidebands is resonant with a mode, the system experiences stimulated

vacuum Rabi oscillations [133]. This process is similar to resonant vacuum Rabi oscillations [161],

but occur at a rate that is controlled by the modulation amplitude [181, 10]. To illustrate the

application of parametric control, we employ the following experimental sequence. First, the

transmon is excited via its charge bias. Subsequently, we modulate the flux bias to create sidebands

of the transmon excited state at the modulation frequency. This is repeated for different flux pulse

durations and frequencies, with the population of the transmon excited state measured at the end

of each sequence. When the frequency matches the detuning between the transmon and a given

eigenmode, we observe full-contrast stimulated vacuum Rabi oscillations. Figure 6.2 shows that

the transmon can selectively interact with each of the eigenmodes of the communication channel by

choosing the appropriate modulation frequency. The photon transfer process between two remote

qubits is initiated by switching on the sideband interactions targeting the communication resonator

on each chip. As the bare frequencies of the transmon and the communication resonator are far

detuned (∆ ≈ 3 GHz, g ≈ 50 MHz), the sideband coupling scheme for photonic communication

achieves a high on/off ratio. The following section explain the details of the multimode nature of

our communication channel.
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6.3 Multimode communication channel
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Figure 6.2: Hybridized normal modes. a. The schematic showing the wavefunctions of the
coupled system involving the communication resonators and the coaxial cable. The three degen-
erate modes hybridize and form three normal modes with distinct signatures. The center normal
mode has minimal participation in the lossy cable mode and has high quality factor. b. Stimulated
vacuum Rabi oscillations around the communication modes. The near-degeneracy of the coaxial
cable with the two communication resonators give rise to this almost equally-spaced three-mode
structure. Being the two bright modes that include the lossy cable mode, and the dark “commu-
nication” mode of the two resonators. The latter couples more strongly to both qubits, and has a
lifetime that is ideally only limited by the internal quality factors of the communication resonators.
By fitting the simulation to experimental data, we found that the coaxial cable has a slightly higher
frequency than the on-chip communication resonators [see Chapter 6.6]. c., d. T1 and T ∗2 data
of the communication mode. The coherence time of the communication mode is characterized
through protocols analogous to those for the transmon. We characterize both T1 and T ∗2 of the
communication mode, and find T1 = 550ns and T ∗2 = 1µs.

The two communication resonators are designed to have identical frequencies. They are chosen

to be coplanar waveguide resonators with a large center pin and gap width to make the frequency

insensitive to fabrication variations [189]. These resonators are coupled via the one-meter long

coaxial cable, where the cable can be thought of as a multimode resonator with a free spectral range

of around 100 MHz. The coupling strength between the cable and the communication resonators

is gl ≈ 7 MHz. The cable mode that we use for communication has a frequency that is within gl of

the frequencies of the communication modes. Since the free spectral range of the coaxial cable is

an order of magnitude larger than gl, we consider the cable as a single mode nearly resonant with
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the communication resonators. The cable and the communication resonators thus together produce

three hybridized normal modes which are depicted in Figure 6.2. The near-degeneracy of the

coaxial cable with the two communication resonators give rise to this almost equally-spaced three-

mode structure, which can be seen from the three stimulated vacuum Rabi chevrons in Fig. 6.2 b.

The center normal mode used for communication ideally has no participation in the cable mode,

and as a result, its loss rate is limited by the internal quality factors of the communication resonators

and small Purcell losses from neighboring cable modes. The transfer fidelity is ultimately limited

by the single pass loss of the cable (see 6.9). In comparison to the neighboring modes, the center

normal mode couples more strongly to both qubits due to higher wavefunction participation at

the communication resonators. Thus, this communication mode has both the advantages of high

quality factor and high coupling rate. For any practical device, the center normal mode does

have a non-zero participation in the lossy coaxial cable due to a frequency mismatch between the

two on-chip communication resonators. For our device, we found this frequency mismatch to be

5 MHz (detailed in Chapter 6.6), resulting in a less than 7% of cable mode participation in the

communication mode.

The coherence time of the communication mode can be characterized using protocols analo-

gous to those for the transmon. For instance, for mode T1 one would first excite the transmon,

then apply an iSWAP to transfer the excitation to the mode. After some variable time, another

iSWAP is applied to transfer the excitation back to the transmon and we measure the transmon

state subsequently [133]. We find T1 = 550 ns and T ∗2 = 1µs, corresponding to a quality factor

of about 27000. This quality factor is reasonably high, considering that it involves losses from

the long lossy cable, wirebonds, solder of the SMA connector, and the copper leads of the sample

holder. The two neighboring normal modes have much lower coherence times due to the higher

participation of the lossy cable mode. From fitting to fig. 6.2b we estimate the T1 for the bare com-

munication resonator and the bare cable mode to be ∼ 5 us and ∼ 40 ns, respectively (see Chapter

6.6). The dark state communication mode explored in this work can thus be utilized to improve

transfer efficiency. In the following we demonstrate the use of the dark state communication mode
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for bidirectional photon transfer and Bell state generation.

6.4 Bidirectional communication
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Figure 6.3: Bidirectional excitation transfer. The inset at top right shows the pulse sequence
used to implement excitation transfer. The labels c1, c2 denote the charge drives on qubits 1 and
2, respectively, and f1, f2 the respective flux drives. We first apply a π pulse to excite one of
the qubits, then simultaneously switch on the sideband flux pulse to drive the transfer process.
Using the same sideband sequence, but instead applying the π pulse to the other qubit, we can
send a single photon in the opposite direction. The transfer fidelity is limited by qubit dephasing
and photon decay in the communication mode. Described in the following, the transfer process in
different directions have slightly different loss mechanisms. a. Excitation transfer from qubit 1 to
qubit 2. Notice that in this transfer process the sender qubit is not able to fully receive its excitation
(population of |eg〉 does not reach zero). As confirmed by the master equation simulation, this is
due to the dephasing of qubit 1. The remaining errors arise from communication cavity loss and
dephasing of qubit 2, which is less than that of qubit 1. b. Excitation transfer from qubit 2 to qubit
1. In this process, while qubit 2 releases most of its excitations (population of |ge〉 comes close to
zero), the dephasing of qubit 1 prevents it from capturing all the excitations in the communication
mode, resulting in a slightly higher final population in |gg〉. The resulting fidelities for the transfer
in the two directions are similar: {P|ge〉, P|eg〉} ≈ 61%, confirming the results from our numerical
simulation.
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To demonstrate photonic communication between the two chips, we send a single photon from

one chip to the other. First, we excite the sender qubit, then we switch on sideband interactions

simultaneously on both qubits, targeting the communication channel. This effectively creates a

Λ−system between single photon states of the qubits and the communication mode. We send a

photon in the reverse direction using the same sideband sequence but instead exciting the other

qubit, thus demonstrating bidirectional photon transfer. Figure 6.3 shows the transmon population

plotted as a function of the sideband pulse length. The master equation simulation results (solid

lines) are shown along with the experimental data (dots). We are able to obtain photon transfer

with a success rate of {P|ge〉, P|eg〉} ≈ 61%. We use simultaneous square pulses for the time-

envelopes of the sideband interactions. From the simulations detailed in Chapter 6.8, we found

that square pulses gave superior performance for our current circuit parameters. Note that the

achieved transfer fidelity exceeds 54%, the maximum fidelity for absorbing a naturally shaped

emission into a continuum [180, 197]. This demonstrates a qualitative difference in transferring

via a multimode cable compared to that of releasing and catching flying photonic qubits through a

continuum.

The transfer fidelity is limited by qubit dephasing and photon decay in the communication

mode. Qubit 1 has a higher dephasing rate (T ∗2 ≈ 700 ns) than qubit 2 (T ∗2 ≈ 1.4µs). The de-

phasing rate of qubit 1 is comparable to the sideband coupling rate, with the result that this qubit

is not able to fully release its excitation during the transfer process. Conversely, for transfer in the

other direction qubit 1 is not able to receive all of the excitations. This transfer infidelity can be

largely mitigated by using a fixed-frequency qubit less susceptible to the flux noise, with its cou-

pling strength to the communication mode parametrically controlled via a tunable coupler circuit

[2, 25, 171, 119, 110]. The remaining loss of transfer fidelity comes from the loss in the commu-

nication mode. From our numerical simulations detailed in the Chapter 6.8, we estimate that the

overall photon loss in both the qubits and the communication mode contribute to an infidelity of

24%, while the dephasing error of the two qubits accounts for an infidelity of 15%. The sideband

coupling rate of the transmon is limited by the range over which its frequency can be parametri-
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cally tuned, resulting in a maximum effective sideband coupling to the communication resonator

of ≈ 2 MHz. With improved qubit coherence time, our simulation shows that more sophisticated

transfer protocols such as STIRAP [70, 190] can be employed to boost transfer efficiency.

6.5 Bell state entanglement
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Figure 6.4: Bell pair creation. a. Real component of the density matrix. b. Expectation values
of two-qubit Pauli operators. We create a Bell state between two remote qubits, one on each
module. This is achieved by first applying the

√
iSWAP gate between the excited qubit 1 and the

communication mode, which is implemented by a sideband modulation pulse to qubit 1 to perform
a π/2 rotation. A similar pulse, this time a π rotation, applied to the second qubit performs an
iSWAP that transfers the entanglement from the communimation mode to the second qubit. As
shown in the inset, we implement the two pulses simultaneously to reduce decoherence. We obtain
the resulting Bell state with fidelity 〈Ψ+|ρexp|Ψ+〉 = 79.3 ± 0.3 %.

We now entangle two qubits by creating a Bell state between the transmons on the respective

chips [12]. We can create such a state by first applying the
√
iSWAP gate between the excited

qubit 1 and the communication mode, which generates the Bell state (|g1〉 + |e0〉)/
√

2 between

them. We implement the
√
iSWAP by applying a sideband modulation pulse to qubit 1 to perform a

π/2 rotation. Subsequently, we transfer the state of the communication mode to qubit 2 through the

iSWAP gate by applying a sideband modulation pulse to the latter to perform a π rotation. Ideally

125



this sequence prepares the Bell state |Ψ+〉 = (|ge〉 + |eg〉)/
√

2 shared between the two remote

qubits. To minimize decoherence the sender and receiver pulses can be applied simultaneously,

so long as the lengths and amplitudes of the pulses are adjusted appropriately. Choosing qubit 1

as the sender and using square pulses, we found — both in our simulation and in the experiment

— that maximal fidelity was obtained by setting both pulses at the same coupling rate and the

length of the receiver pulse to be slightly longer than twice that of the sender,demonstrated by the

pulse sequence diagram in Figure. 6.4b. The resulting Bell state has a fidelity of 〈Ψ+|ρexp|Ψ+〉 =

79.3 ± 0.3%. We obtained the density matrix ρexp using quantum state tomography with an over-

complete set of measurements complemented with the maximum likelihood method [80], and we

corrected the measurement error by constructing a confusion matrix (detailed in Chapter 6.10). It

can be inferred from the data that the fidelity is almost equally limited by photon decay in the cable

and the qubit dephasing errors. We also note that the Bell state fidelity is significantly higher than

the success probability we achieved for photon transfer. This is because the superposition state

that is transferred has less participation in the communication mode which is the primary source

of loss. The dephasing losses on both qubits are also reduced due to either shorter interaction time

or lower average excitations.
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6.6 Device Hamiltonian
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Figure 6.5: Full Device schematic and whole spectrum stimulated vacuum Rabi oscillations.
Each chip consists of a frequency-tunable transmon and two chains of four identically designed,
lumped-element resonators. In addition, a resonator is included for readout, and a second resonator
is coupled to the coaxial cable (∼ 1 m) that provides the communication link between the chips.
The cable we used is a Tin-dipped Hand-formable Microwave Cable (UT-085C-Form). The wire
is made of silver-plated copper. The dielectric is made of PTFE and the outer conductor is made
of Tin dipped braid. The simple circuit diagram shows the circuit model of each module. We
induce resonant interactions between the transmon and an individual mode by modulating the
transmon frequency via its flux bias at the frequency difference (detuning) between the mode and
the transmon. The chevron patterns indicate parametrically induced resonant oscillations with each
of the modes. These patterns are generated by sweeping the length of the flux modulation pulse
at each frequency and measuring the excited state population of the transmon after the pulse ends.
The sideband modulation of the frequency-tunable transmon can access resonators in each chip by
targeting their corresponding frequency detunings. On each chip, the lowest frequency corresponds
to the readout resonator, and the highest frequency corresponds to the communication resonator.
The eight memory mode frequencies are intermediate to these and spaced by ≈ 200 MHz. The
local memory on each processor can be used for local processing and entanglement distillation in
future work.

The following sections describe in detail on the characterization and calibrations of the two con-

nected multimode modules. We begin with an in-depth discussion of our system Hamiltonian.

Without connecting to the coaxial cable, the Hamiltonian of the i-th (i=1,2) circuit can be modeled

by
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Ĥ =hνi,q(t)â
†
i âi +

1

2
αiâ
†
i âi(â

†
i âi − 1) + hνi,r b̂

†
i,r b̂i,r + hνi,cb̂

†
i,cb̂i,c +

8∑
m=1

hνi,mb̂
†
i,mb̂i,m

+ hgi,r(b̂i,r + b̂
†
i,r)(âi + â

†
i ) + hgc(b̂i,c + b̂

†
i,c)(âi + â

†
i ) +

8∑
m=1

hgi,m(b̂i,m + b̂
†
i,m)(âi + â

†
i )

(6.1)

where âi, b̂i,r, b̂i,c and b̂i,m stand for the annihilation operators of the flux-tunable qubit, the

readout resonator, the communication cavity and the m-th multimode on the i-th chip. The commu-

nication cavities of the two chips are of identical coplanar waveguide resonator design with large

center pin and gap width, leading to approximately the same resonant frequency ν1,c ≈ ν2,c = νc

and the same coupling strength gl to the coaxial cable mode b̂l,

Ĥint =
2∑
i=1

hνcb̂
†
i,cb̂i,c + hνlb̂

†
l b̂l +

2∑
i=1

hgl(b̂lb̂
†
i,c + b̂

†
l b̂i,c). (6.2)

Eq. 6.2 can be directly diagonalized, yielding three normal modes ˜̂
b1, ˜̂

b2 and ˜̂
bc,

˜̂
Hint = hνc

˜̂
b
†
c
˜̂
bc + hν1

˜̂
b
†
1
˜̂
b1 + hν2

˜̂
b
†
2
˜̂
b2, (6.3)

where

ν1 = νc +
δ

2
+
√

8g2
l + δ2,

ν2 = νc +
δ

2
−
√

8g2
l + δ2, (6.4)

and
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˜̂
bc =

1√
2

(b̂1,c − b̂2,c),

˜̂
b1 =

1√
2 + (r +

√
2 + r2)2

(b̂1,c + b̂2,c + (r +
√

2 + r2)b̂l),

˜̂
b2 =

1√
2 + (r −

√
2 + r2)2

(b̂1,c + b̂2,c + (r −
√

2 + r2)b̂l). (6.5)

Here δ stands for the deviation of the cable mode frequency from the communication resonator

frequency, i.e., δ = νl − νc, and r = δ/2gl. The normal mode frequencies relative to the qubit

frequency can be readily obtained from Fig. 6.2.b, so that δ and gl can be calculated from Eqs. 6.3

and 6.4. Eqs. 6.1 and 6.5 together give the renormalized coupling strengths between the qubit and

these normal modes,

˜̂gc =
gc√

2
,

˜̂g1 =
gc√

2 + (h+
√

2 + h2)2
,

˜̂g2 =
gc√

2 + (h−
√

2 + h2)2
. (6.6)

It is worth noting that the center normal mode, ˜̂
bc, is selected to be our communication channel

mode in the experiment, for two obvious reasons: it contains only the two resonator modes with

no convolution with the cable mode, as seen in Eq. 6.5, thus highly immune to the photon loss

of the cable. Eq. 6.6 shows that it also couples more strongly to the qubit comparing to the other

two normal modes, which also agrees well with Fig. 6.2.b where the center chevron has the fastest

oscillation.
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Figure 6.6: Stimulated vacuum Rabi oscillation between the qubit and the communication
mode. By fitting to the experimental data (a) using our analytical model, we extracted the deviation
of the cable mode frequency from the two communication resonators to be 4.25 MHz, while the
coupling between the cable mode and the communication resonator is 6.46 MHz. Plugging these
along with other circuit parameters obtained from the experiment into a master equation, we can
simulate the experimental result with decent agreement (b).

Fitting Eq. 6.4 to Fig. 6.2b, we obtain δ = 4.25MHz and gl = 6.46MHz, from which we can

numerically reproduce the chevron patterns observed in the experiment (Fig.6.6).

The above derivation is based on the ideal scenario where the two communication resonators

have the same resonant frequency, resulting in a communication mode with no bare cable mode

participation. However, in reality the imperfection of the circuit fabrication inevitably gives rise to

a small detuning between the two resonators, with a typical value around a few MHz as observed

from sample iterations. Also couplings between the two resonators and the rest of the cable modes

need to be accounted for a more accurate calculation, as they lead to the an additional Purcell loss

of the communication mode. Measure through our best fit of data with simulation, we find the

detuning between the two communication resonators to be ∆ = 5 MHz, quality factors of the bare

communication resonator and bare cable mode to be Qi,c = 2.65 × 105 and Ql = 2.1 × 103,

and a free spectrum range of the cable of ∆ν = 100 MHz, then the Hamiltonian describing the
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communication resonators and the cable modes can be written as

Ĥint =
1∑
i=0

h(νl − δ + i∆)b̂
†
i,cb̂i,c +

1∑
j=−1

h(νl + j∆ν)b̂
†
j,lb̂j,l +

∑
i,j

hgi,j,l(b̂j,lb̂
†
i,c + b̂

†
j,lb̂i,c).

(6.7)

Plugging the values for each parameter in the above Hamiltonian, and being cognizant of the al-

ternating phase of neighboring cable mode wave functions, we numerically diagonalize the Hamil-

tonian and obtain a participation of the lossy cable in the communication mode to be 6.5%, and

we find the quality factors of the “dark” communication mode and the “bright” normal modes to

be Qc = 2.67 × 104, Q1 = 5.5 × 103 and Q2 = 3.8 × 103, which quantitatively agrees with our

measurement results in the main text.

Here we list the relevant circuit parameters in the following tables:

qubit 1 qubit 2

frequency (GHz) 4.7685 4.7420

tunable range (GHz) ≈ 3.0 - 5.9 ≈ 3.5 - 5.5

nonlinearity (MHz) 109.8 109.9

readout cavity frequency (GHz) 5.7463 5.7405

T1 (µs) 10.1 7.9

T ∗2 (µs) 0.7 1.4

coupling to comm resonator (MHz) ≈ 40 ≈ 40
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comm resonator 1 cable mode comm resonator 2 normal mode 1 comm mode normal mode 2

frequency (GHz) 7.878 7.883 7.883 7.872 7.88 7.891

T1 (µs) 5.35 0.043 5.35 0.15 0.55 0.1

6.7 Sideband interaction and calibrations

0 200 400
Sideband length (ns)

1.0

1.5

2.0

2.5

3.0

S
id

e
b
a
n
d
 f
re

q
u
e
n
cy

 (
G

H
z)

qubit 1

0 200 400
Sideband length (ns)

1.0

1.5

2.0

2.5

3.0
S
id

e
b
a
n
d
 f
re

q
u
e
n
cy

 (
G

H
z)

qubit 2
0 1transmon |e> population

readout

multimode
memory

communication

Figure 6.7: Full sideband Rabi spectrum of each qubit. Stimulated vacuum Rabi oscillation
with sideband frequency scan covering the band of all resonance frequencies of the resonators.
The clean chevron patterns indicate that our transmons are free from spurious crosstalks. We can
clearly identify ten chevron patterns corresponding to one readout resonator (lowest frequency),
eight multimode memory resonators and one communication resonator (highest frequency).

In figure 6.7, we can clearly identify ten chevron patterns corresponding to one readout resonator,

eight multimode memory resonators, and one communication resonator. The crosstalk at sideband

frequency≈ 2.4 GHz corresponds to directly driving the g-e transition at the half of this frequency.

The clean chevron patterns indicate that our transmons are free from spurious crosstalks. Com-

pared to the segmented scans in the main text, these sideband scans are taken at higher amplitude
132



to broaden the chevron patterns for better visualization. The chevron patterns also show with faster

oscillations and slightly higher frequency due to DC-offset, described in the next section.

The essential ingredient of photonic communication for our devices is the flux sideband in-

teraction. It is therefore important to calibrate the sideband interactions well on both devices for

obtaining high fidelity photonic communication. For our devices, this involves using the correct

amplitude, frequency and timing of the sideband interactions. This section describes our calibra-

tion protocols for these parameters.

First, we run a 2D sweep (sideband amplitude and sideband frequency) of stimulated vacuum

rabi around the communication mode frequencies. The main feature in figure 6.8 shows a clear pat-

tern of three resonances, corresponds to the three hybridized normal modes of the communication

channel. From the data, it is obvious that the resonance frequencies are dependent on the sideband

amplitudes. The effect originated from the non-linear flux-frequency relation of the transmon,

causing a shift (DC-offset) of the qubit frequency during the flux modulation. By doing a finer

scan around the resonance frequency, we calibrated the on-resonance frequency of each sideband

amplitude with an accuracy of 100 kHz.
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Figure 6.8: DC offset scan. There is a shift (DC-offset) of the qubit frequency during the flux
modulation, arising from the non-linear flux-frequency relation of the transmon. To calibrate this
effect, we sweep sideband transition frequency at different flux amplitudes and obtain the calibra-
tion with linear interpolation. The black dots on the figures show the tracked resonance sideband
frequency for the considered range of amplitude. The pattern of three normal modes persisted for
the considered range of sideband amplitudes. In this experiment, we set the sideband length to
be inversely proportional to the sideband amplitude. This ensures high contrast features even for
small sideband amplitude which the coupling is weak.

With the calibrated frequencies, we sweep the sideband length with a range of sideband ampli-

tudes and obtain stimulated vacuum Rabi oscillation. The experimental data is displayed in figure

6.9. As expected, a higher sideband amplitude implies a higher effective coupling rate. Using this

data, we obtained the effective qubit dissipation parameters during the sideband coupling. These

dissipation parameters are subsequently being applied in master equation simulation of photon

transfer and Bell entanglement generation.
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Figure 6.9: Sideband Rabi sweep. Using the calibrated DC offset, we obtained sideband rabi data
between transmon and communication resonator for different sideband amplitude. Notice that the
contrast of qubit 1 is much smaller than qubit 2. This is because qubit 2 has a higher coherence
time. The trajectories of these scans are used for fitting the effective qubit decay parameters during
the sideband coupling. The rabi rate and decay time plotted below are obtained through fitting the
raw data shown in the color plot. These decay parameters are subsequently being applied in master
equation simulation of photon transfer and Bell entanglement generation.

Lastly, we calibrated the timing of the two flux sideband pulses. Due to slightly different travel

path length of flux line control from AWG to sample, we expect a slightly different timing between

the two flux sideband pulses. Since the simultaneity of two flux sideband pulses is essential for high

fidelity transfer, it is important to calibrate this systematic error. The experiment was conducted
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with two equal length sideband pulses but sweeping the software delay between two pulses. Here,

a negative receiver delay means the sender qubit (qubit 1) sideband pulse starts before the receiver

qubit (qubit 2) sideband pulse. Figure 6.10 shows the population of the sender qubit with sweeping

parameters of two sideband length and receiver delay. The center of the “K” pattern corresponds

to the scenario where the photon is maximally captured by the receiver qubit. We obtained the “K”

pattern as symmetric around receiver delay time of ≈ -10 ns, indicating the flux sideband pulse of

the receiver qubit (qubit 2) lags the flux sideband pulse of the sender qubit (qubit 1). As a sanity

check, we switched the role of sender and receiver qubit, such that sender is qubit 2 and receiver

is qubit 1. In such case, we found that the pattern is symmetric around receiver delay time of ≈

+10 ns. This confirms our conclusion that indeed the qubit 2 lags the flux sideband pulse of qubit

1 due to a delay in the lines.
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Figure 6.10: Delay calibration. This figure shows the population of the sender qubit with sweep-
ing parameters of two sideband length and receiver delay. Ideally, the two flux sidebands during
photon transfer should start simultaneously. However due to experimental conditions (e.g. differ-
ent travel path length of flux line control from AWG to sample) causes the sideband pulses start at a
different time on the devices, even the AWG is programmed to initiate two pulses simultaneously.
To calibrate this effect, we sweep the delay between two sideband pulses and found that the flux
control of qubit 2 is delayed by 10 ns. Throughout the experiment we time-advanced the control
of qubit 2 flux by 10 ns in our pulse generation software.

6.8 Master equation simulation

In order to calculate the communication processes between the remote qubits using master equa-

tion simulations, we first write out the circuit Hamiltonian under flux modulations, based on

Eq. 6.1∼6.6, as
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Ĥ =
2∑
i=1

3∑
j=1

h(νi,q + εi sin 2πfit)â
†
i âi + hαiâ

†2
i â

2
i + hνj b̂

†
j b̂j + hgj(b̂j + b̂

†
j)(âi + â

†
i ), (6.8)

where b̂j stand for the three normal mode and gj their coupling strengths to the two transmon

qubits. Assuming weak flux modulation with fi ≈ νc − νi,q, and under the rotating frame trans-

formation U =exp[−i∑2
i=1

∑3
j=1((2πνi,qt − εi

2fi
cos 2πfit)â

†
i âi + 2πνcb̂

†
j b̂jt)], Eq. 6.8 can be

rewritten as

Ĥ =
2∑
i=1

3∑
j=1

{
hαiâ

†2
i â

2
i + h(νj − νc)b̂†j b̂j (6.9)

−ihgjJ1

(
εi

2fi

)[
b̂j â
†
ie

2πi(fi−νj−νc)t − b̂†j âie
−2πi(fi−νj−νc)t

]}
.

Here J1(x) stands for the Bessel function of the first kind of the first order, and all the fast-

oscillating terms have been abandoned. With the flux-modulation frequencies being fi = νc−νi,q,

and applying the two-level-approximation for the qubits, we find the ”transfer Hamiltonian” as

Ĥ =
2∑
i=1

2∑
j=1

h(νl,j − νc)b̂†l,j b̂l,j − ihJ1

(
εi

2fi

)[
gl,j

(
b̂l,j σ̂

+
i − b̂

†
l,j σ̂
−
i

)
+ gc

(
b̂cσ̂

+
i − b̂

†
cσ̂
−
i

)]
,

(6.10)

where b̂l,1 and b̂l,2 are the two lossy “bright” normal mode, and bc is the “dark” communication

channel mode. Plugging this into the master equation,

ρ̇ = − i
~

[Ĥ, ρ] +
2∑
j=1

κl,jD[b̂l,j ]ρ+ κcD[b̂c]ρ+
2∑
i=1

γiD[σ̂−i ]ρ+
2∑
i=1

γi,φD[σ̂i,z]ρ, (6.11)
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with (in radians) κl,1 = 10µs−1, κl,2 = 25µs−1, κc = 2µs−1, γ1 = 0.1µs−1, γ2 = 0.125µs−1,

γ1,φ = 1.43µs−1 and γ2,φ = 0.71µs−1, we are able to simulate the bidirectional photon transfer

experiment (Fig. 6.3) and the remote entanglement experiment (Fig. 6.4). The dephasing of qubit

1 is a major limiting factor of our Bell state fidelity. We found a very similar Bell state fidelity

between using qubit 1 and qubit 2 as the sender. This is understood by realizing qubit 1 has high

average photon occupation but reduced participation in the dynamics when qubit 1 is the sender,

while qubit 1 has low average photon occupation but lengthened participation in the dynamics

when qubit 1 is the receiver. It is therefore reasonable to expect the resulting total infidelity to be

similar but better than the photon transfer case.

Simultaneous square sideband pulses are adopted in both the photon transfer and Bell state

creation experiment to achieve the shortest pulse time possible. However, there is a possibility

that better fidelities could be acquired through further minimizing the photon loss in the commu-

nication mode, by making use of adiabatic protocols in a manner akin to the stimulated Raman

adiabatic passage (STIRAP). A typical STIRAP protocol has a pulse sequence shown in fig. 6.11a,

where after the excitation of the sender qubit, the receiving pulse turns on first, and slowly ramps

down together with the ramping up of the sending pulse. When the ramping of the pulses are done

adiabatically with respect to the gap between the communication mode and the qubit modes, the

transfer could be completed without inducing the communication mode population, and is there-

fore immune to the photon loss in the communication mode. However, this comes at the cost of

much longer transfer time, which introduces more loss from the qubits.

For simplicity we model the sender and receiver pulses as two Gaussian pulses with the same

maximum amplitude as the square pulse scheme used in our experiment. In the time domain, the

two pulses are set to be

fs(t) =

Ae
− (t−t0)2

2σ2 , |t− t0| 6 5σ

0, |t− t0| > 5σ

, fr(t) =

Ae
− (t−t0−∆t)2

2σ2 , |t− t0 −∆t| 6 5σ

0, |t− t0 −∆t| > 5σ

.

(6.12)
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The fidelity yielded by this protocol is calculated as a function of both the pulse width σ and the

delay time ∆t, via master equation simulation with real circuit parameters. Fig. 6.11b shows that

a maximum fidelity of 56% is achieved when two Gaussian pulses with σ = 120 ns overlap each

other, which indicates that non-adiabatic transfer with shortest time is favorable in our current pa-

rameter regime. This also justifies our choice of the simultaneous square pulse scheme which is

the fastest in all non-adiabatic schemes. In contrast, if the coherence of the qubit is improved to

T1 = 20 us and T2 = 20 us, the same simulation results in a maximum fidelity of 85% at delay

time ∆t = (fig. 6.11c) that is higher than the simultaneous square pulse fidelity of 82%, proving

the usefulness of the adiabatic protocol for future improvements. Here we have only considered the

simple Gaussian pulse scheme as a proof of principle demonstration. There are more sophisticated

protocols that can further improve the transfer fidelity [192]. With better quality of qubits, the

fidelity can potentially be improved through protocols with a small detuning between the paramet-

ric drive frequency and the frequency difference between the qubit and the communication mode.

This virtual process mitigates the loss in the cables by avoiding excitation in the communication

mode.
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Figure 6.11: STIRAP-like protocol. (a) Pulse sequence of the STIRAP protocol for photon trans-
fer. After initializing of the sender qubit state in the excited state, two Gaussian pulses with same
duration and amplitude (set to be the maximum amplitude achievable in the experiment) are applied
to the flux channels of the two qubits, with the receiver pulse turned on ahead of the sending pulse
by a time of ∆t. (b) Calculation of the transfer fidelity as a function of the Gaussian RMS width,
σ, as well as the delay time ∆t. A maximum fidelity of 56% occurs at {σ = 120 ns,∆t = 0 ns}
(labeled by the yellow dot), which is worse than the 60% fidelity achieved by the simultaneous
square pulse scheme. This indicates that, in our current parameter regime, the fidelity is optimal
with simultaneous square pulse scheme which has the shortest pulse length. (c) With better qubit
coherence properties of T1, T2 = 20 us, the STIRAP protocol promises 85% maximum fidelity at
{σ = 145 ns,∆t = 95 ns} (labeled by the yellow dot), which is higher than the maximum fidelity
of 82% yielded by the simultaneous square pulse scheme under the same parameters.

6.9 Single pass loss limitation of transfer fidelity

The transfer speed of photonic information (both quantum and classical) is fundamentally limited

by the speed of light. Intuitively, this induces a limit towards the transfer fidelity, where the photon

is exposed to cable loss with a duration of at least the single passage time. This section presents

a formal argument of this claim from the perspective of quantum state transfer with a multimode

cable.
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Figure 6.12: Lambda system with extra lossy cable states. Without the two extra lossy cable
states, an adiabatic dark state protocol could conduct state transfer with almost perfect fidelity.
The introduction of two extra lossy states in the model induces extra error which penalizes long
transition times and makes adiabatic transfer non-optimal. The resulted optimal transfer under
these conditions result in a total loss equivalent to the single pass loss through the cable.

Here we consider a Λ−system with two extra lossy cable states. Figure 6.12 shows the system

with associated couplings and decays. The detuning ∆ of these extra states is determined by the

length of the cable L, with the relation ∆ ∼ v
L where v is the speed of light in cable. For simplicity

of this analysis, we assume the cable is the only lossy component with decay rate Γ, and we

induce a dark state protocol through STIRAP. We set the couplings of a STIRAP protocol to be

(a1(t), a2(t)) = ā(sin θ, cos θ), starting with θ(t = 0) = 0 and ending with θ(t = tf ) = π
2 . This

results in a dark state |dk〉 = cos θ|110c02〉 − sinθ|010c12〉 for each θ.

The error from non-adiabatic transition from |dk〉 to |011c02〉 is errNA ∼ ( θ̇ā)2Γtf ∼ Γ
ā2tf

.

The non-resonant driving of neighboring modes induce a error errNR ∼ ( ā∆)2Γtf . Note that the

non-adiabatic error is higher with faster transition, while the non-resonant error from neighboring

modes is higher with slower transition. We optimize tf for minimal total error errNA + errNR,

and obtain tf,opt = ∆
ā2 . Therefore, the minimal total error is ∼ Γ

∆ ∼ Γ
v/L
∼ Γτprop, where τprop

is the single passage time. This error is equivalent to the single pass loss through the cable, thus
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completing our argument.

6.10 Readout and state tomography

To measure the two-qubit state, we record the homodyne voltage for each qubit from every run.

For example, run i of the experiment would result in a 4D heterodyne voltage values (VI1,i, VQ1,i,

VI2,i, VQ2,i). These voltages are random numbers generated from a specific distribution corre-

sponding to state projection and experimental noise. To measure the population in the four two-

qubit basis states: |gg〉, |ge〉, |eg〉, |ee〉 we construct the histograms for these states by applying π

pulses to the qubits. These histograms approximate the probability distribution for measuring a

given voltage pair when the system is in a given basis state.

We employed logistic regression for classification of the two-qubit states. By setting deci-

sion thresholds for maximizing the classification accuracy for the two-qubit basis states according

to the voltage distribution, we obtain a confusion matrix representing the correct and incorrect

identification of basis state. For an unknown density matrix ρ we construct the classification dis-

tribution for ρ from N measurements, and project onto the basis states by applying the inverse of

the calculated confusion matrix M (row: prepared state, column: measured state) for the states

{|gg〉 , |ge〉 , |eg〉 , |ee〉}, where

M =



0.8293 0.1053 0.0572 0.0082

0.1841 0.7514 0.0122 0.0523

0.101 0.0117 0.7923 0.095

0.0236 0.0979 0.1686 0.7099


We perform state tomography using the standard method by calculating the linear estimator,

ρest =
∑
i,j

Tr[(σi ⊗ σj)ρ](σi ⊗ σj)
4 (6.13)
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To calculate the term Tr[(σi ⊗ σj)ρ we apply a unitary operator U to ρ prior to measurement.

For two-qubits, there are nine required measurements corresponding to the following unitary op-

erators, (I, RY (π/2), RX(π/2))⊗ (I, RY (π/2), RX(π/2)).

This simple linear estimator method can return unphysical results because it projects onto the

space of all Hermitian matrices with Trace 1. However a physical density matrix must also be pos-

itive semi-definite. Following the maximum likelihood protocol outlined in [122, 80], we estimate

the most likely physical density matrix by minimizing the function,

F [ρest] =

N,4∑
i=1,j=1

(〈j|U†i ρestUi|j〉 − Pi,j)
2 (6.14)

, where Ui are the set of N applied tomography pulses, |j〉 is the jth basis state, Pi,j is the

measured probability, and ρest is a physical density matrix satisfying the physical constraints.

The starting guess for the minimization is the density matrix estimated from the linear estimator

with all negative eigenvalues set to zero. To form a over-complete set for a total of 17 tomog-

raphy measurements, we also measure the negative pulse set [29] (I, RY (−π/2), RX(−π/2)) ⊗

(I, RY (−π/2), RX(−π/2)).
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6.11 Online Gaussian process for Bell state optimization
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Figure 6.13: Optimization of Bell state creation with an online Gaussian process. We employed
an online optimization directly applying on the experimental device. In each iteration, the Gaussian
process model proposes 8 candidate solution (1 obtained from L-BFGS-B optimization on the
Gaussian model, and 7 obtained from random sampling filtered with the best model prediction),
and we also test two candidate solutions from pure random sampling to improve parameter space
exploration. The random samplings lead to the apparent spikes of low fidelity Bell state during
the optimization iterations. The model quickly starts to converge, and after some time we obtained
Bell state with a fidelity close to 80%.

For two square pulses, there are in total 6 parameters (amplitude, frequency, and duration of each

square pulse). The linear interpolation calibration of the DC offsets relates the amplitude and fre-

quency parameters, thus resulting in 4 parameters to be optimized. All the parameters are fairly

dependent on each other in the process of simultaneous transfer, meaning all 4 parameters have to

be optimized together. Exhaustive search is quite forbidden even with just 4 parameters. There-
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fore, we employed optimization techniques, in particular, the Gaussian process [152] to assist in

optimizing Bell state creation. We employed an online optimization directly applied to the ex-

perimental device. In each iteration, the Gaussian process model proposes 8 candidate solution

(1 obtained from L-BFGS-B optimization on the Gaussian model, and 7 obtained from random

sampling filtered with the best model prediction), and we also test 2 candidate solution from pure

random sampling to improve parameter space exploration. Figure 6.13 shows the optimization

trajectory of Bell state creation. The model quickly starts to converge, and after some time we ob-

tained Bell state with a fidelity close to 80%. Since only half of the excitation is being transmitted

in the process, the transmission is less likely to be lost. We are able to obtain bell state creation

with a fidelity higher than single photon transfer. During the optimization, we clipped the value

of density matrix to a maximum of 0.5 for the calculation of fidelity. Without doing so, we found

our numerical optimization results bias towards a higher excited population (> 0.5) of the sender

qubit, where ideally one would expect the excited population to be 0.5. This artifact is likely due

to the inner product definition of the fidelity, where > 0.5 excited population actually increases

part of the inner products. We also took the absolute value of the resulting density matrix. This

process optimized the Bell state up to a local qubit phase. To recover the target Bell state, we used

the transfer parameters obtained from the optimizer and applied local phase advancement on one

of the qubits. We repeated the Bell state creation experiment for 10+ times to obtain a statistics on

the error of the Bell state fidelity. The resulted Bell state fidelity with this procedure was 79.3%

± 0.3%. The online optimization with Gaussian process works reasonably well even when we

started with random initial parameters for the two square pulses. For arbitrarily shaped pulses,

the high-dimensionality would necessarily require one to employ a model-based offline quantum

optimal control [105] to facilitate the optimization process.

6.12 Heralding protocol for state transfer

It is possible to use heralding protocols to establish high fidelity quantum communications even

the photons are transmitting through a lossy communication channel. The protocol we describe in
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the following makes use of one qutrit and one communication resonator on each chip. The notation

of the full state is

|qubit, com〉1 ⊗ |qubit, com〉2

We initialize the system by creating an arbitrary superposition qubit state on chip1, using its

|g〉 and |f〉 level:

θ1
ge + π1

ef ⇒ (α |g0〉1 + β |f0〉1)⊗ |g0〉2 (6.15)

Our goal is again to entangle the two remote qubits. However, starting from this step there are two

schemes heralding photon loss errors in different ways, by using the |g〉 or the |f〉 level of second

qubit respectively. The first scheme has the following steps:

π2
ge ⇒ α |g0〉1 ⊗ |e0〉2 + β |f0〉1 ⊗ |e0〉2

πsb1ef + 1st photon flying + πsb2ef ⇒ α |g0〉1 ⊗ |e0〉2 + β |e0〉1 ⊗ |f0〉2

π1
ge + π1

ef + π2
ge ⇒ α |f0〉1 ⊗ |g0〉2 + β |g0〉1 ⊗ |f0〉2

πsb1ef + 2nd photon flying + πsb2ge ⇒ α |e0〉1 ⊗ |e0〉2 + β |g0〉1 ⊗ |f0〉2

Now, it can be easily seen that if the 1st photon is lost, then the final state would be |g0〉1⊗|g0〉2,

and if the 2nd photon is lost it would become |e0〉1 ⊗ |g0〉2, hence the error is heralded by |g〉2.

We now take a look at the other scheme which uses |f〉2 for the heralding, which is arguably

better because |g〉 and |e〉 are relatively more stable for storaging quantum information (Though,

on the other hand, local decay can confuse |f〉 with |e〉 and hurt the fidelity, while the first scheme
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is immune to this error). Still following line. (6.15),

πsb1ef + 1st photon flying + πsb2ge ⇒ α |g0〉1 ⊗ |g0〉2 + β |e0〉1 ⊗ |e0〉2

π1
ge + π1

ef + π2
ef ⇒ α |f0〉1 ⊗ |g0〉2 + β |g0〉1 ⊗ |f0〉2

πsb1ef + 2nd photon flying + πsb2ge ⇒ α |e0〉1 ⊗ |e0〉2 + β |g0〉1 ⊗ |f0〉2

π2
ge + π2

ef ⇒ α |e0〉1 ⊗ |g0〉2 + β |g0〉1 ⊗ |e0〉2

Again the final state corresponding to the first and the second photon loss can be found to be

|g0〉1 ⊗ |f0〉2 and |e0〉1 ⊗ |f0〉2, respectively, so measuring |f〉 state for the second qubit would

herald the error and should be abandoned.

6.13 Conclusion

We have realized photonic communication between two remote modules, a first step in realizing

a modular network. The sideband modulation of the transmon qubit in each module can be ap-

plied to implement local operations on the multimode resonators and to perform photon transfer

between the two modules. The multimode characteristic of the communication channel (a coax-

ial cable) is enabled by the absence of a circulator. This mode structure results in normal modes

that are superpositions of a mode of the inter-module communication cable and the on-chip res-

onators. One of the these normal modes is “dark” to the coaxial cable mode, thus avoiding much

of the cable loss and allowing for high fidelity photon transfer. We characterized our system by

performing single photon transfer with 61% fidelity and Bell-state preparation with 79.3% fidelity.

These fidelities can be increased by improving the qubit coherence time and the strength of the

coupling to the communication channel. This work sets the stage for future exploration in high
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fidelity and scalable quantum communications. Fidelity can be further improved by implementing

more sophisticated photon transfer protocols (e.g. STIRAP). Another exciting direction is scal-

ing to multiple communication channels on the same cable, and exploring the crossover between

distributed modes and the continuum as the cable gets longer. Finally, one can employ heralding

[5, 131], and exploit the ability to perform high fidelity local gates in conjunction with photonic

communication to distill entanglement [100, 183, 48] or perform forward error correction [127].
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