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Reservoir engineering is a powerful technique to autonomously stabilize a quantum state. Tradi-
tional schemes involving multi-body states typically function for discrete entangled states. In this
work, we enhance the stabilization capability to a continuous manifold of states with programmable
stabilized state selection using multiple continuous tuning parameters. We experimentally achieve
84.6% and 82.5% stabilization fidelity for the odd and even-parity Bell states as two special points in
the manifold. We also perform fast dissipative switching between these opposite parity states within
1.8 µs and 0.9 µs by sequentially applying different stabilization drives. Our result is a precursor for
new reservoir engineering-based error correction schemes.

I. INTRODUCTION

Entanglement is one major resource any quantum pro-
tocol utilizes to achieve quantum advantage [1, 2]. Gener-
ally, the entanglement is created by unitary operations,
where dissipation is considered detrimental and should
be maximally avoided. Inspired by laser cooling, an al-
ternative approach is to use tailored dissipation for sta-
bilizing entanglement. By coupling the qubit system to
some cold reservoirs, one can engineer the Hamiltonian
such that the population will flow directionally to the
stabilized point in the Hilbert space, and extra entropy
is autonomously dumped into the cold reservoir during
the process. This provides an extra route to state prepa-
ration. In a multiqubit-reservoir coupled system, dissipa-
tion engineering can enhance the capabilities of quantum
simulation, as predicting the final state of a driven dissi-
pative quantum system is more complex than its unitary
counterpart [3] when all local qubit and reservoir interac-
tions are simultaneously turned on. Dissipation stabiliza-
tion also inspires autonomous quantum error correction
codes (AQEC) [4–9] that achieve hardware efficiency in
the experiment.

Stabilization has been theoretically proposed and ex-
perimentally realized in different platforms, such as su-
perconducting qubits [10–17] and trapped ions [18, 19],
focusing on stabilizing a single special state per device,
such as even or odd parity Bell states. Unlike univer-
sal quantum state preparation through unitary gate de-
composition, dissipative stabilization requires individual
Hamiltonian engineering for each stabilized state through
different drive combinations or hardware. This makes
the tunable dissipative stabilization a challenging task.
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A generalized scheme that allows one to programmati-
cally choose stabilized states from a large class of states
per device will expand the toolbox for state preparation.
For instance, the ability to choose an arbitrary stabilized
state can be used for the implementation of density ma-
trix exponentiation [20, 21] by enabling an efficient reset
of the input density matrix.
In this work, we realize an autonomous stabilization

protocol with superconducting circuits that allows selec-
tion from a broad class of states, including the maximally
entangled states. We use microwave-only drives with tun-
able parameters such as drive detunings and strengths
that allow fast programmable switching between Bell
states of different parities. The system is based on a two-
transmon inductive coupler design [8, 17, 22, 23] that al-
lows fast parametric interactions between qubits without
significantly compromising their coherence. The readout
resonators are also used as cold reservoirs, eliminating the
requirement for extra components. We perform stabiliza-
tion spectroscopy and demonstrate a fidelity over 78% for
all stabilized states. For odd and even parity Bell pairs,
we measured 84.6% and 82.5% stabilization fidelity and
a stabilization time of 1.8µs and 0.9µs respectively. The
structure of the paper is as follows. First, we explain
the Hamiltonian construction of the stabilization proto-
col. Then we discuss the experimental measurement of
individual stabilized state and demonstrate a dissipative
switch of Bell state parity.

II. STABILIZATION THEORY

We consider a system of two coupled qubit-resonator
pairs {Q1, Q2} and {R1, R2}. The lossy resonators serve
as both cold baths and dispersive readouts for the qubits.
We label the ground and the first excited states of
the qubits Q1/2 as |g⟩ and |e⟩, and of the resonators
R1/2 as |0⟩ and |1⟩, with the full system state being
represented as |Q1Q2R1R2⟩. The system Hamiltonian
Hsys = HQQ + HQR1 + HQR2 includes the dominant
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FIG. 1. (a) General stabilization scheme. Two qubits’ eigen-
states {|A⟩ , |B⟩ , |C⟩ , |D⟩} are plotted in the energy level dia-
gram. When the energy relation ED +EA = EB +EC is sat-
isfied, |A⟩ is stabilized. Qubit-resonator interactions and res-
onator photon decay rate κ are shown in blue and orange ar-
rows. Qubit decay rate γ is assumed slowest and not plotted.
(b) Stabilization of entangled states |Ψθ⟩ = sin (θ/2) |gg⟩ −
cos (θ/2) |ee⟩ or |Φθ⟩ = sin (θ/2) |ge⟩ − cos (θ/2) |eg⟩. (c) A
special case of (b) that stabilizes the odd and even parity bell
states |Φ−⟩ and |Ψ−⟩. Circulating arrows are color-coded to
represent red (exchange-like) and blue (two-photon-pumping)
sidebands respectively. The QQ and QR sideband rates are
separate Ω and Wj , and the QR sideband is detuned in fre-
quency by Ω/2.

two-qubit interaction HQQ and qubit-resonator interac-
tions HQRj , j = {1, 2} acting as perturbations. We label
the four eigenstates of HQQ as {|A⟩ , |B⟩ , |C⟩ , |D⟩} with
eigenenergies {EA < EB ≤ EC ≤ ED} so that |A⟩ is
the target state to stabilize. Our stabilization scheme
involves engineering a one-way flow of population to |A⟩

connecting all intermediate eigenstates of the system.

We now derive the energy matching requirements for
an efficient stabilization protocol in our two-qubit-two-
resonator system depicted in Figure 1(a). We control
the form of the target stabilized state |A⟩ by choosing
different two-qubit interaction strengths and detunings
that control HQQ. We change the resonator photon en-
ergy in the rotating frame by detuning the QR interac-
tions. The dynamics of Hsys are captured by considering
the following set of eigenstates: {|A⟩ , |B⟩ , |C⟩ , |D⟩} ⊗
{|00⟩ , |10⟩ , |01⟩}. We neglect the resonator state |11⟩ as
the probability of simultaneous population in both res-
onators {R1, R2} is extremely low when resonator de-
cay rate κ is much larger than the qubit decay rate γ
(assumed identical). The central column in Fig. 1(a)
shows the eigenstates of HQQ with no photons in the
resonators. The left column represents the same states
with one photon in the left (R1) resonator and similarly
for the right column is associated with the second res-
onator (R2). We engineer the photon energies in R1 and
R2 to be EB − EA and EC − EA respectively through
tuning the QR interactions HQRj . This condition puts
two transitions |A01⟩ ↔ |C00⟩ and |A10⟩ ↔ |B00⟩ on
resonance, shown in Fig. 1(a). If ⟨A01|HQR1 |C00⟩ and
⟨A10|HQR2 |B00⟩ are non-zero, two on-resonance oscil-
lations between |C00⟩, |A01⟩ and between |A10⟩, |B00⟩
will be created. Since both resonators are lossy, the oscil-
lation will quickly damp to |A00⟩. To complete the down-
ward stabilization path, we need to also connect |D00⟩
into the flow. We further require that the following terms
are non-zero so that the transfer path is not blocked:
⟨B01|HQR1 |D00⟩, ⟨C10|HQR2 |D00⟩. If all four inter-
action strengths (shown in green double-headed arrows
in Fig. 1(a)) are dominant over the qubit decay rate,
populations in |B⟩, |C⟩, and |D⟩ will flow to |A⟩. From
Fermi’s golden rule, the interaction strength between two
states is quadratically suppressed by their energy gap and
maximized when on-resonance [24]. This imposes a sim-
ple energy-matching requirement for efficient stabiliza-
tion: ED + EA = EB + EC . Energy degeneracy within
{|B⟩ , |C⟩ , |D⟩} will not affect the stabilization scheme,
because it will not block the dissipative flow to |A00⟩ in
Fig. 1(a).

As an explicit demonstration, we first stabilize a con-
tinuous set of entangled states |Ψθ⟩ = sin (θ/2) |gg⟩ −
cos (θ/2) |ee⟩, illustrated in Fig. 1(b). Here, θ can be re-
garded as a “blending angle” between the two even par-
ity states |gg⟩ and |ee⟩. We introduce three sideband
transitions into the system: qubit-qubit (QQ) blue side-
band |gg⟩ ↔ |ee⟩ with rate Ω and two qubit-resonator
(QR) blue sidebands |g0⟩ ↔ |e1⟩ between Qj and Rj

with rate Wj . To ensure that HQRj act as perturba-
tions over HQQ, we adjust the drive strengths to satisfy
Ω ≫ Wj . We further detune the QQ, QR1, and QR2
blue sideband by δ, (∆− δ)/2, and (∆+ δ)/2 in frequen-

cies, with ∆ =
√
Ω2 + δ2. The detuning δ determines the

blending angle θ = tan−1
(
δ+∆
Ω

)
with a range of [0, π2 ).

In the presence of these three drives, the rotating frame
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FIG. 2. Experimental demonstration of |Ψ−⟩ ((a), (b)) and |Φ−⟩ ((c), (d)) stabilization with the initial state |gg⟩. Two-qubit
state tomography is performed at each time point, and the reconstructed density matrix is used to calculate the target state
fidelity. The density matrices reconstructed with 5000 single shot measurements at 49 µs are plotted. Lab frame simula-
tion results are shown in dash lines, which matched well in both short and long time scales. Parameters used in simulation:
{Ω,W1,W2,Γ1,Γ2}/2π = {2.0, 0.47, 0.47, 0.33, 0.43} MHz for |Ψ−⟩ and {3.0, 0.36, 0.36, 0.33, 0.43} MHz for |Φ−⟩. Qubit coher-
ence time is chosen as {T q1

1 , T q2
1 , T q1

ϕ , T q2
ϕ } = {25, 12, 25, 25} µs.

Hamiltonian Hsys is

Hsys =
Ω

2
(aq1aq2 + h.c.) + δa†q1aq1

+
W1

2
(aq1ar1 + h.c.) +

W2

2
(aq2ar2 + h.c.)

+
∆+ δ

2
a†r1ar1 +

∆− δ

2
a†r2ar2. (1)

Here aqj and arj are separately the j-th qubit’s and
resonator’s annihilation operator. Under the com-
bined conditions Ω ≫ Wj ∼ κ ≫ γ and Wj =
W , the eigenstates with zero resonator photons are
{|Ψθ00⟩ , |ge00⟩ , |eg00⟩ , |Ψπ−θ00⟩}, with corresponding
eigenenergies {(δ −∆) /2, 0, δ, (δ +∆) /2}. Assuming
the lossy resonator has a Lorentzian energy spectrum, the
two-step refilling rate Γt from |eg00⟩ to |Ψθ00⟩ (|eg00⟩ ↔
|Ψθ01⟩, |Ψθ01⟩ → |Ψθ00⟩) is [24]

Γt =
W 2 cos2 (θ/2)κ

κ2 +W 2 cos2 (θ/2)
. (2)

The other two-step transitions |ge00⟩ → |Ψθ00⟩,
|Ψθ−π00⟩ → |ge00⟩, and |Ψθ−π00⟩ → |eg00⟩ also have
the same rate. Therefore, the steady-state fidelity F∞
for |Ψθ00⟩ is (ignoring all off-resonant transitions, see
Appendix. B for detail)

F∞ =

(
Γt + γ sin2 (θ/2)

Γt + γ

)2

. (3)

Similarly, we can stabilize another set of entan-
gled states with odd parity |Φθ⟩ = sin (θ/2) |ge⟩ −

cos (θ/2) |eg⟩. We introduce three sideband interactions:
QQ red |eg⟩ ↔ |ge⟩, QR1 red |e0⟩ ↔ |g1⟩, and QR2
blue |g0⟩ ↔ |e1⟩ with rates {Ω,W3,W4} and frequency
detunings {δ, (∆ + δ)/2, (∆ − δ)/2} respectively. Un-
der this condition, four resonant interactions will appear:
|gg00⟩ ↔ |Φθ01⟩, |ee00⟩ ↔ |Φθ10⟩, |ee01⟩ ↔ |Φθ−π00⟩,
and |gg10⟩ ↔ |Φθ−π00⟩. The detuning similarly sets the
blending angle θ = arctan

(
δ+∆
Ω

)
.

With the above construction, we create a stabilization
protocol that can freely tune the blending angles. As
a special case, when QQ sideband detuning (δ = 0), the
blending angle for both cases is θ = π

2 , which corresponds
to the odd and even parity Bell states |Φ−⟩ = (|ge⟩ −
|eg⟩)/

√
2 and |Ψ−⟩ = (|gg⟩−|ee⟩)/

√
2, shown in Fig. 1(c).

In fact, this stabilization protocol can be generalized to
stabilize an even larger group of states, including both en-
tangled and product states, as long as the energy match-
ing requirement ED+EA = EB+EC is satisfied when en-
gineering HQQ. The following is a list of tunable parame-
ters to engineer HQQ: QQ sideband strength Ω, QQ side-
band detunings δ, single qubit Rabi drive strength, and
single qubit Rabi drive detunings. Corresponding stabi-
lized state |A⟩ is determined from HQQ. Details about
the stabilizable manifold are discussed in Appendix. D.

III. EXPERIMENTAL RESULTS

We perform the stabilization experiment in a system
with two transmons capacitively coupled to two lossy
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FIG. 3. Spectroscopy of universal Bell-state stabilization.
|Ψθ⟩ (top) and |Φθ⟩ (bottom) are separately stabilized with
a measured fidelity above 78% among different blending an-
gle θ. The fidelities are measured after 40µs of stabilization.
For stabilizing |gg⟩, no external drives are applied. For |Φθ⟩
case, the fidelity dropped to 0 near θ = π. The dotted lines
indicate simulated fidelities for the odd and even parity Bell
state stabilization. All parameters used in the simulation are
the same as in Fig. 2.

resonators (See Appendix. A). Two transmons are in-
ductively coupled through a SQUID loop. All QQ side-
bands and QR red sidebands are realized through mod-
ulating the SQUID flux at corresponding transition fre-
quencies. QR blue sidebands are achieved by sending
a charge drive to the transmon at half the transition
frequencies. The experimentally measured qubit coher-
ence are T1 = 24.3 µs (9.1µs), TRam = 15.2µs (9.8 µs),
Techo = 24.6 µs (14.3 µs) for Q1(Q2), and the measured
resonator decay rate κ/2π are {0.33, 0.43} MHz for R1

and R2 respectively.

Figure 2 shows the time evolution of state fidelity for
the odd and even parity Bell state stabilization. To sta-
bilize |Ψ−⟩, a Ω = 2π × 2.0 MHz QQ blue sideband,
W1 = W2 = 2π × 0.47 MHz QR blue sidebands are
simultaneously applied to the system. Both QR side-
bands are detuned by Ω/2 = 2π × 1.0 MHz in fre-
quency to implement the stabilization scheme depicted
in Fig. 1(c). For each stabilization experiment, we recon-
struct the system density matrix through two-qubit state
tomography using 5000 repetitions of 9 different pre-
rotations. The stabilization fidelity measured at 49 µs
(much longer than single qubit T1 and TRam) is 82.5%.
To stabilize |Φ−⟩, a Ω = 2π×3.0 MHz QQ red sideband,
W1 = W2 = 2π × 0.36 MHz QR1 red and QR2 blue
sidebands are simultaneously applied to the system, with

both QR sidebands detuned by Ω/2 = 2π×1.5 MHz. The
stabilization fidelity measured at 49µs is 84.6%. The two-
qubit state tomography data at 49 µs after ZZ coupling
correction [25] are shown for both stabilization cases.

Next, we introduce QQ sideband detunings δ and sta-
bilize more general entangled states |Ψθ⟩ and |Φθ⟩. We
choose the same sideband strengths ({Ω,W1,W2}/2π =
{2.0, 0.47, 0.47}({3.0, 0.36, 0.36}) MHz for |Ψθ⟩(|Φθ⟩)
case) and detune QR sideband frequencies accordingly
to maximize the stabilization fidelity measured at 40µs.
The experimentally measured state fidelity and state pu-
rity as a function of θ are shown in Fig. 3. Under
the current QR sideband color combination, |Φθ⟩ fails
to stabilize near θ = 180◦. This is because the inter-
action strength ⟨gg00|Hsys |Φθ01⟩ and ⟨ee00|Hsys |Φθ10⟩
are close to 0. Swapping QR1 and QR2 sidebands’ color
and detuning performs a transformation θ → θ−π in the
stabilized state. This ensures a high stabilization fidelity
for arbitrary stabilization angles. Details about changing
sideband colors and detunings to ensure high fidelity are
presented in Appendix. E

The flexibility in our schemes and easy access to differ-
ent sidebands in our device allow a further demonstration
— fast dissipative switching between stabilized states.
Here, we implement such an operation that can flip the
parity of the stabilized Bell pair by changing sideband
combinations, shown in Fig. 1. To quantify the stabilized
parity, we measure the system’s density matrix ρ and de-
fine the parity signature as 2(| ⟨ee |ρ| gg⟩ | − | ⟨ge |ρ| eg⟩ |)
describing the difference in relevant coherence parame-
ters. The results are shown in Fig. 4. The scaling factor
is chosen such that the ideal even and odd Bell pairs have
parity signatures of ±1. Starting from the ground state
|Q1Q2⟩ = |gg⟩, the stabilized state is set to even parity

Bell pair (|gg⟩ − |ee⟩)/
√
2, and we switch the parity ev-

ery 20µs. At 20 µs, the stabilized state is switched to
odd parity Bell pair (|ge⟩ − |eg⟩)/

√
2, and stabilization

happens quickly with a time constant τr = 1.80 µs. At
40 µs, the switching from odd to even parity results in a
faster stabilization with τb = 0.91 µs. The switching at
60 µs to odd Bell state shows a similar τr of 2.20 µs. We
leave the stabilization drives turned on for another 25µs
to prove that the performance is not degraded after a few
switching operations.

Further improvement of the stabilized state’s fidelity is
possible by reducing the transition ratio γ

Γt
(from Eq. 3)

and increasing QQ sideband rate Ω for a larger energy
gap. Increasing qubit dephasing time also improves stabi-
lization fidelity (discussed in the Appendix. C). To speed
up the stabilization, i.e., reduce time constants, we need
to increase the refilling rate Γt. Since QR sideband rate
W is bounded by the QQ sideband rate Ω to ensure
the validity of the perturbative approximation, given a
fixed W , Γt is maximized when the resonator decay rate
κ =W cos(θ/2). For the even and odd parity Bell states,
further increase in both resonators’ κ compared to our
current parameters would thus be beneficial. More de-
tails about stabilization robustness are discussed in Ap-
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FIG. 4. Dissipative switching of Bell state parity. The ini-
tial state is |gg⟩, and the switch status is set to even parity
between [0µs, 20 µs] and [40 µs, 60 µs], and to odd parity be-
tween [20µs, 40µs] and [60µs, 85µs]. Each experimental point
is measured with the two-qubit state tomography. Stabiliza-
tion time is calculated by fitting the parity signature to ex-
ponential decay after each switching event.

pendix. C. To stabilize a more general set of states shown
in Appendix. D, longer qubit coherence is needed to im-
prove the experimental resolution between different sta-
bilized states in this manifold and is a subject of future
work.

IV. CONCLUSION

In conclusion, we demonstrate a two-qubit pro-
grammable stabilization scheme that can autonomously
stabilize a continuous set of entangled states. We de-
velop an inductively coupled two-qubit device that pro-
vides access to both QQ and QR sideband interactions
required. The stabilization fidelity among all stabiliza-
tion angles is above 78%, specifically, we achieved high
Bell pair stabilization fidelity (84.6% for the odd par-
ity and 82.5% for the even parity) as two special points.
We further demonstrate a parity switching capability be-
tween the Bell pairs with fast stabilization time constants
(< 2 µs). We believe such freedom in choosing stabilized
states will inspire generalization to autonomous stabiliza-
tion of larger systems, large-scale many-body entangle-
ment [3], remote entanglement [26], density matrix expo-
nentiation [20, 21], and new AQEC logical codewords in
the future.
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Appendix A: Device Hamiltonian and realized
sidebands

Figure 5 shows the inductively coupled two-qubit de-
vice used in the stabilization demonstration. Two trans-
mon qubits (red) share a common ground, which is inter-
rupted by a SQUID (purple). Each transmon is capac-
itively coupled to a lossy resonator (green) also serving
as the dispersive readout.

The flux line near the SQUID provides a continuous
DC bias φdc = 0.3795π in our experiment. The mea-
sured qubit coherence and frequencies at this flux point
are shown in Table. I. By sending RF flux drives at ap-
propriate frequencies through the flux line, the induc-
tive coupler can provide either QQ red sideband or QQ
blue sideband. The Hamiltonian for qubits and coupler is
shown in Eq. A1a. For a detailed description on the adi-
abatic approximation of the inductive coupler, we draw
the attention of the readers to the references 12 and 8.
Following is a summary. The Hamiltonian of the circuit
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FIG. 5. The device. (a) False-colored optical image of the
device. The inset shows a zoomed-in image of the inductive
coupler. (b) Circuit diagram of the device. Coupler junctions’
intrinsic capacitance Cqc is included in the quantization anal-
ysis.

φdc = 0.0 T1(µs) TRam(µs) Techo(µs)

Q1 31.6 28.4 26.6
Q2 2.8 4.9

φdc = 0.3795π T1(µs) TRam(µs) Techo(µs)

Q1 24.3 15.2 24.6
Q2 9.1 9.8 14.3
R1 0.48
R2 0.37

Parameter Symbol Value/2π

Q1 ge frequency ωq1/2π 3.2046 (GHz)
Q2 ge frequency ωq2/2π 3.6624 (GHz)
Q1 anharmonicity α1/2π −116.3 (MHz)
Q2 anharmonicity α2/2π −159.5 (MHz)
Readout1 frequency ωr1/2π 4.9946 (GHz)
Readout2 frequency ωr2/2π 5.4505 (GHz)(

E|ee⟩ − E|ge⟩
)
−

(
E|eg⟩ − E|gg⟩

)
ZZ/2π -261 (kHz)

Readout1 fidelity 88.87%
Readout2 fidelity 81.76%

TABLE I. Device coherence and frequencies at the coupler
biasing point φdc = 0.3795π (top and middle), and the co-
herence at the coupler sweet spot Φdc = 0π (bottom). Q2

experiences higher loss at the sweet spot from a near two-
level system. At the sweet spot, Q1’s decoherence and echo
time are similar to those at our experiment’s biasing point.

containing two qubits and the coupler is described by

H =−→n ⊺C−1
L

−→n − Ej1 cos (ϕc − ϕ1)− Ej2 cos (ϕ2 − ϕc),

− Ejc cos

(
Φext

Φ0

)
cos (ϕc), (A1a)

CL =

Cq1 + Cq12 −Cq12 0
−Cq12 Cq2 + Cq12 0

0 0 Cq1 + Cq2 + Cqc


(A1b)

−→n ⊺ =(n1, n2, nc) .

Here, phase variables ϕ1,2,c, charge variables n1,2,c, and
Josephson energy Ej1,j2,jc are for qubit 1, qubit 2, and
the coupler, and Cqc is the intrinsic capacitance from the
coupler junction. After quantization, one can arrive at
the following:

Hab =ωq1a
†
q1aq1 + ωq2a

†
q2aq2

+
α1

2
a†q1a

†
q1aq1aq1 +

α2

2
a†q2a

†
q2aq2aq2

+ g1 (t)
(
a†q1 + aq1

)(
a†q2 + aq2

)
+ g2

(
−a†q1 + aq1

)(
−a†q2 + aq2

)
, (A2a)

g1 (t) =

√
Ej1Ej2

2Ejc cos
(

Φext(t)
Φ0

)√ωq1ωq2, (A2b)

g2 =

√
Cq1Cq2

2Cq12

√
ωq1ωq2. (A2c)
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FIG. 6. Coupler DC flux sweep of (a) qubits frequencies and
(b) ZZ coupling strength between qubits. Circuit quantiza-
tion results and experimentally measured data are separately
shown in dash lines and dots.

In the experiment, we have Ejc = 1700GHz ≫
Ej1(Ej2) = 12.2GHz(12.3GHz), making the coupler
mode much heavier than the qubit modes. This strong
asymmetry enables the adiabatic removal of the coupler
dynamics: We treat the coupler as a linear inductance
and assume the coupler mode is static. By removing
the linear mode through minimizing the system energy,
we arrive at the approximated Hamiltonian in Eq. A2a.
When modulating the external RF flux threaded the cou-
pler, the transverse coupling strength g1(t) will also be
modulated accordingly. By plugging the RF flux modu-
lation Φext/Φ0 = φdc + ϵ cos (ωdt) into Eq. A2b and as-
suming the flux modulation ϵ is much smaller than Φdc,
we have:

g1 (t) =

√
Ej1Ej2

2Ejc

√
ωq1ωq2

1

cos (φdc + ϵ cos (ωdt))

≈
√
Ej1Ej2

2Ejc

√
ωq1ωq2

(1 + ϵ sin (ωdt) tan (φdc))

cos (φdc)
(A3a)

Therefore the QQ sideband rate is roughly

ϵ

√
Ej1Ej2

2Ejc

√
ωq1ωq2

tan(φdc)
cos(φdc)

, which is proportional to

the flux modulation rate and increases with φdc.
We choose φdc = 0.3795π based on qubit coherence,
sideband rate, and small ZZ coupling between qubits.
When the resonator is capacitively coupled to the qubit
at strength gqr and frequency difference ∆, the QR
sideband can also be modulated through the flux line,
and the sideband rate is multiplied by an extra mode
dressing coefficient

gqr
∆ . By changing the RF modulation
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FIG. 7. Experimentally realized QQ and QR sidebands. From
top to bottom are separately (a) QQ red sideband |ge⟩ ↔ |eg⟩,
(b) QQ blue sideband |gg⟩ ↔ |ee⟩, (c) QR blue sideband
between QR1 and QR2 |g0⟩ ↔ |e1⟩, and (d) QR1 red sideband
|e0⟩ ↔ |g1⟩. Readout on Q1 (red) and Q2 (blue) are scaled
between 0 (|g⟩) and 1 (|e⟩). Data points are connected for
visual guidance.

frequency ωd, we can activate different colors of QQ and
QR sidebands.

Both QQ red, QQ blue, and QR red sidebands are gen-
erated through flux modulation at a decent rate. The QR
blue sidebands have a different choice to activate [27]:
The direct charge drives at half of the transition fre-
quency with amplitude ϵq can provide an effective rate of
W = 16g3qrϵ

2
q/∆

4. This turned out to be easier to realize
with our device, and we achieve at least 0.5MHz QR blue
sideband rate.

Figure 7 demonstrates all realized QQ and QR side-
bands needed for the stabilization experiments. Fast QQ
red sidebands at 8.5MHz and modest QQ blue sidebands
at 3.9MHz are performed in the experiment through RF
flux modulation of the inductive coupler. Both readouts
for QQ red sideband (with initial state |eg⟩) and QQ blue
sideband (with initial state |gg⟩) are shown in Fig. 7(a)
and (b). The QR blue sidebands are generated through
the charge lines that are coupled to the qubit pads, shown



8

in Fig. 7(c) with initial state |g0⟩. The QR1 red side-
bands are activated through the coupler flux modulation.
The on-resonance readout trace for Q1 starting at |e0⟩ is
plotted in Fig. 7(d).

Appendix B: Derivation of steady-state fidelity

We take the stabilization of |Ψθ⟩ = sin (θ/2) |gg⟩ −
cos (θ/2) |ee⟩ as an example to compute the steady-state
fidelity in detail. Suppose the steady state population
at the four basis states {|Ψθ⟩ , |ge⟩ , |eg⟩ , |Ψθ−π⟩} are
separately {w, x, y, z}. We assume the photon popula-
tion in both resonators are transitional and ignore their
contribution to the steady-state fidelity. This means
w+x+ y+ z = 1. The steady-state configuration should
balance the following two processes:

(a) two-step refilling process: |ge⟩ → |Ψθ⟩, |eg⟩ →
|Ψθ⟩, |ge⟩ → |Ψθ⟩, and |ge⟩ → |Ψθ⟩. All the transition
rates are the same

Γt =
W 2 cos2 (θ/2)κ

κ2 +W 2 cos2 (θ/2)
(B1)

(b) Single photon loss in each qubit. The following four
transitions have the same rate sin2 (θ/2) γ: |ge⟩ → |Ψθ⟩,
|eg⟩ → |Ψθ⟩, |ge⟩ → |Ψθ−π⟩, and |eg⟩ → |Ψθ−π⟩. The
reversed four transitions have the same rate cos2 (θ/2) γ.
Therefore, the steady-state population should satisfy

the following equations

(
Γt + sin2 (θ/2) γ

)
(x+ y)− 2 cos2 (θ/2) γw = 0,(

Γt + sin2 (θ/2) γ
)
z + cos2 (θ/2) γw − (Γt + γ)x = 0,(

Γt + sin2 (θ/2) γ
)
z + cos2 (θ/2) γw − (Γt + γ)y = 0,

2 cos2 (θ/2) γ(x+ y)−
(
2Γt + 2 sin2 (θ/2) γ

)
z = 0,

w + x+ y + z = 1.

(B2)
This gives the following populations

w =
(

Γt+γ sin2(θ/2)
Γt+γ

)2
,

x = cos2(θ/2)γ
Γt+γ−cos2(θ/2)γw,

y = x,

z = cos2(θ/2)γ
Γt+sin2(θ/2)γ

x.

(B3)

And w = F∞ is the steady state fidelity.

Appendix C: Stabilization robustness

We study the stabilization robustness for |Ψ−⟩ and
|Φ−⟩ in this section. For other stabilization angles, the
discussion is similar. Figure 8 shows the rotating frame
simulation of steady-state fidelity by sweeping different
stabilization parameters. For the |Ψ−⟩ case, the Hamil-
tonian used in the simulation is Eq. 1, and for the |Φ−⟩
case the Hamiltonian is modified accordingly with a dif-
ferent sideband combinations (See Fig. 1(c)). We study
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FIG. 8. Rotating frame simulation of even and odd parity
bell states’ stabilization fidelity: (a) Sweeping qubit dephas-
ing time. The other simulation parameters are the same as the
experiments. (b) Sweeping the ratio between resonator decay
rate κ and QR sideband strength W without qubit dephas-
ing. (c) 2D sweep of κ and QQ sideband strength Ω without
qubit dephasing, setting W = κ. Infidelities are shown on the
contours.

the state fidelity by varying parameters step-by-step to-
wards the ideal case. First, we show that longer qubit
dephasing time helps improve steady-state fidelity. In
Fig. 8 (a), we sweep qubit’s dephasing time (assuming
the same for both qubits) while choosing the following
parameters {Ω, W1

2 ,
W2

2 ,Γ1,Γ2}/2π in the simulation

|Ψ−⟩ case :{1.4, 0.35, 0.35, 0.30, 0.33}MHz,

|Φ−⟩ case :{3.0, 0.32, 0.32, 0.30, 0.33}MHz.

We set the following qubit decoherence time {T q1
1 , T q2

1 } =
{21, 9}µs. The steady state fidelities rise above 80%
quickly after Tϕ exceeds 10 µs. The fidelity for odd and
even parity bell pairs saturate at 87.3% and 85.0% with
the parameters used in the simulation. This demon-
strates that steady-state fidelity increases as qubit de-
phasing time increases.

In Fig. 8(b), we ignore the qubit dephasing and only
sweep resonator decay rate κ. For simplicity, we assume
QR sideband rates and resonator decay rate are the same:
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W1 = W2 = W and κ1 = κ2 = κ. The fidelity peak
for both parity pairs appears at W = κ. This can be
understood as the refilling rate Γt (Eq. 2) achieves the
maximum at this point, therefore the steady-state fidelity
(Eq. 3) is also maximized at this point.

Finally, we choose the maximum refilling rate setW =
κ in Fig. 8(c) and sweep both the QQ sidebands rate Ω
and resonator decay rate κ. The infidelity of the steady
states is shown in contours. Larger Ω and κ suppresses
the infidelity efficiently. This indicates that our steady-
state fidelity in the experiment is mainly limited by the
sideband strengths. By increasing the QQ sidebands rate
to above 2π × 10MHz, in simulation, it is possible to
achieve stabilization fidelity above 98%.

Appendix D: Other stabilization combinations

Here we provide a list of states that can be stabilized
with our protocol.

Case 1: Any two-qubit product states.

|ψϕ1,ϕ2
⟩ =(cos(ϕ1/2) |g⟩+ sin(ϕ1/2) |e⟩)⊗

(cos(ϕ2/2) |g⟩+ sin(ϕ2/2) |e⟩). (D1)

This can be achieved by applying two detuned single
qubit rabi drives on both Q1 and Q2 with rate {A1, A2}
and detunings {δ1, δ2}. The two-qubit rotating frame
Hamiltonian becomes

Hp =

 0 A2/2 A1/2 0
A2/2 δ2 0 A1/2
A1/2 0 δ1 A2/2
0 A1/2 A2/2 δ1 + δ2

 . (D2)

(D3)

It can be easily verified that the four eigenenergies {EA <
EB < EC < ED} satisfy the requirements EA + ED =
EB + EC . Therefore, the lowest energy eigenstate can
be efficiently stabilized by detuning two QR sideband
frequencies. This is also a direct extension of the single-
qubit stabilization scheme [12] to the two-qubit case.

Case 2: Dressed parity Bell states. The stabilized state
set can be described by one continuous variable θ1

|ζθ1⟩ =cos(θ1/2) |Ψ−⟩+ sin(θ1/2) |Φ−⟩ . (D4)

In this case, we apply on-resonant QQ blue and single
qubit rabi drive on Q1 with rate Ω and A1 to dress the
stabilized state’s parity. The two-qubit Hamiltonian Hb

can be written as

Hb =

 0 0 A1/2 Ω/2
0 0 0 A1/2

A1/2 0 0 0
Ω/2 A1/2 0 0

 . (D5)

One can verify that the four eigenenergies EA < EB , <
EC < ED of Hb satisfy the requirement EA+ED = EB+

Dressing Angle θ1/2 
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FIG. 9. Stabilizing a one-dimensional set of entangled states.
Blue and red lines represent separately using the QQ blue
and QQ red sideband in the rotating frame simulation. Pa-
rameter used in the simulation: {Ω,W1,W2, κ1, κ2}/2π =
{5.0, 0.5, 0.5, 0.3, 0.33} MHz. Qubit coherence time are
{T1, Tϕ} = {30, 30}µs.

EC . By choosing QR sidebands detunings as EB − EA

and EC − EA, the eigenstate |A⟩ = |ζθ1⟩ is stabilized,
with the dressing angle being

θ1 = 2arctan

(
2A1

Ω+
√
4A2

1 +Ω2

)
. (D6)

Similarly, we apply on-resonant QQ red sideband and
single qubit rabi drive on Q1 with rate Ω and A1. The
two-qubit Hamiltonian Hr is

Hr =

 0 0 A1/2 0
0 0 Ω/2 A1/2

A1/2 Ω/2 0 0
0 A1/2 0 0

 . (D7)

The dressing angle θ1 under this case is

θ1 = π − 2 arctan

(
2A1

Ω+
√
4A2

1 +Ω2

)
. (D8)

Steady-state fidelity is calculated through Qutip sim-
ulation for both cases, shown in Fig. 9. By combining
different QQ sideband colors, all dressing angles are sta-
bilized with the scheme, except the small band region
around θ1 = π where the effective transition rates pro-
vided by QR sidebands are close to 0.
Case 3: Rabi-dressed entangled states. This is a more

general case where a two-dimensional set of entangled
states is stabilized. We simultaneously apply a single
qubit rabi drive on Q1 with the rate A1 and detuned QQ
blue sideband with rate Ω and detuning δ. The rotating
frame Hamiltonian is

Hg =

−δ/2 0 A1/2 Ω/2
0 δ/2 0 A1/2

A1/2 0 −δ/2 0
Ω/2 A1/2 0 δ/2

 . (D9)
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FIG. 10. Stabilizing a 2D set of entangled states.
Steady states’ fidelity (a) and purity (b) are simulated
in the rotating frame and plotted. A1

Ω
and δ

Ω
are

separately two free variables that are swept to stabi-
lize different states. Parameter used in the simulation:
{Ω,W1,W2, κ1, κ2}/2π = {5.0, 0.5, 0.5, 0.3, 0.33} MHz. Qubit
coherence time are{T1, Tϕ} = {30, 30}µs.

The four eigenenergies of the Hamiltonian can also be
grouped into two pairs sharing the same sum. By appro-
priately choosing two QR sideband detunings, the lowest

energy eigenstate is stabilized

|ξδ,A1
⟩ =E00 |gg⟩+ E01 |ge⟩+ E10 |eg⟩ − |ee⟩ ,

x =
√

4δ2A2
1 + 4A2

1Ω
2 +Ω4,

y =
√
δ2 + 2(2A2

1 +Ω2 + x),

E00 =
(δ − y)(δ2 +Ω2 + x+ δy)

2Ω(2A2
1 +Ω2 + x)

,

E01 =
A1(δ − y)

2A2
1 +Ω2 + x

,

E10 =− A1(δ
2 +Ω2 + x+ δy)

Ω(2A2
1 +Ω2 + x)

. (D10)

For brevity, the stabilized state |ξδ,A1
⟩ is not normal-

ized. The form of the state is determined by two in-
dependent variables δ

Ω and A1

Ω . We sweep these two
variables and plot the simulated fidelity and purity in
Fig. 10. This a general map covering all stabilized entan-
gled states in the programmable operation: the vertical
cut δ

Ω = 0 represents the blue line in case 2 Dressed par-

ity Bell states, the horizontal cut A1

Ω = 0 represents the
stabilized states shown in Fig. 1(b), and the bottom left
point ( δ

Ω ,
A1

Ω ) = (0, 0) is the even parity bell state |Ψ−⟩.
Using a modest sideband rate combination, most of the
states on the plot can be stabilized with fidelity over 90%.
Correspondingly, changing the QQ sideband color to red
can stabilize another 2D set of entangled states which
are dual to this case. All possible programmable sta-
bilization operations can be chosen accordingly through
the map provided here. States with both E01 > 1 and
E10 > 1 cannot be stabilized under this case for instance.

Appendix E: QR sideband colors and detunings

Changing sideband colors and detuning frequency
signs stabilize different states. This is important for sta-
bilizing |Ψθ⟩ and |Φθ⟩: at certain blending angles the
steady state fidelity is low because of the small effective
refilling rate Γt (See Eq. 2).
As an explicit example, we consider the |Ψθ⟩ stabiliza-

tion case. Instead of using two QR blue sidebands, we
use two QR red sidebands with the same detuning and
sideband rate. The rotating frame Hamiltonian now be-
comes

Hcolor =
Ω

2
(aq1aq2 + h.c.) + δa†q1aq1

+
W1

2

(
a†q1ar1 + h.c.

)
+
W2

2

(
a†q2ar2 + h.c.

)
+

∆+ δ

2
a†r1ar1 +

∆− δ

2
a†r2ar2. (E1)

Fig. 11 (a) shows the level diagram, where the QR
red sidebands now connect |ge00⟩ to |Ψθ01⟩, which is
different from the QR blue sidebands case where |ge00⟩
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2
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2

, −∆−δ
2

in (b). Here ∆ =
√
Ω2 + δ2.

and |Ψθ10⟩ are connected. The two-step refilling rate Γtc

for |ge00⟩ → |Ψθ00⟩ is

Γtc =
W 2 sin2 (θ/2)κ

κ2 +W 2 sin2 (θ/2)
. (E2)

The other three two-step transitions |eg00⟩ → |Ψθ00⟩,
|Ψθ−π00⟩ → |ge00⟩, and |Ψθ−π00⟩ → |eg00⟩ have the

same refilling rate. Therefore, the steady-state fidelity
for |Ψθ⟩ is

F∞ =

(
Γt + γ cos2 (θ/2)

Γt + γ

)2

. (E3)

One can thus choosing the QR sideband color for higher
F∞. When the F∞ drops significantly near θ = π for Φθ

stabilization case, one can flip the QR sideband color for
better performance.
We can also keep the same QR sideband color while

choosing opposite QR sideband detunings. The Hamil-
tonian becomes

Hopp =
Ω

2
(aq1aq2 + h.c.) + δa†q1aq1

+
W1

2

(
a†q1ar1 + h.c.

)
+
W2

2

(
a†q2ar2 + h.c.

)
− ∆+ δ

2
a†r1ar1 −

∆− δ

2
a†r2ar2. (E4)

The level diagram is shown in Fig. 11 (b). All population
flows to |Ψθ−π⟩, with the same refilling rate (Eq. 2) and
steady-state fidelity (Eq. 3) as the |Ψθ⟩ case.

Appendix F: Measurement setup

Figure 12 illustrates the measurement setup used in the
experiment. Both single qubit, QR sidebands, and QQ
sidebands signals are generated with a 4-channel AWG
(Keysight M8195 65 Gsa/s, 16 Gsa/s per channel) to
maintain phase-locking. DC flux bias for the coupler and
two Josephson Parametric Amplifiers (JPAa) are gener-
ated with three current sources (Yokogawa GS200). The
bandpass filters on both charge lines are chosen such that
the stop band covers both readout and qubits’ frequen-
cies. The flux drive is delivered using three separate coax-
ial cables for DC bias, red sideband and blue sideband
frequencies. The RF lines are merged using a combiner
which is then added to the DC bias using a bias tee. The
Stepped impedance Purcell filter (SIPF) inserted in the
flux line is a home-made filter with a stop band between
2GHz and 5.5GHz blocking any qubit and resonator sig-
nals. Each transmitted signal is first amplified by a JPA
with a +15 dB gain, followed by a HEMT amplifier and
three room-temperature amplifiers. The final signal is
pre-amplified after demodulation and digitized with an
Alazar ATS 9870 (1GSa/s) card.
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FIG. 12. Detailed measurement setup.
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