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Autonomous stabilizer for incompressible photon fluids and solids
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We suggest a simple approach to populate photonic quantum materials at nonzero chemical potential and near-
zero temperature. Taking inspiration from forced evaporation in cold-atom experiments, the essential ingredients
for our low-entropy thermal reservoir are (a) interparticle interactions and (b) energy-dependent loss. The
resulting thermal reservoir may then be coupled to a broad class of Hamiltonian systems to produce low-entropy
quantum phases. We present an idealized picture of such a reservoir, deriving the scaling of reservoir entropy
with system parameters, and then propose several practical implementations using only standard circuit quantum
electrodynamics tools, and extract the fundamental performance limits. Finally, we explore, both analytically and
numerically, the coupling of such a thermalizer to the paradigmatic Bose-Hubbard chain, where we employ it to
stabilize an n = 1 Mott phase. In this case, the performance is limited by the interplay of dynamically arrested
thermalization of the Mott insulator and finite heat capacity of the thermalizer, characterized by its repumping
rate. This work explores an approach to preparation of quantum phases of strongly interacting photons, and
provides a potential route to topologically protected phases that are difficult to reach through adiabatic evolution.

DOI: 10.1103/PhysRevA.95.043811

I. INTRODUCTION

Building synthetic materials relies upon the ability to
engineer a desired many-body Hamiltonian, and a way to
populate that Hamiltonian with particles at low temperature.
With the advent of Rydberg EIT [1,2] and circuit QED
(cQED) [3,4], it is now possible to engineer strong interactions
between individual long-lived photons [5], making photonics
an exciting place to begin to engineer quantum materials.
It has become clear that photonic platforms are uniquely
suited to the task, offering exquisite control of single-particle
dynamics: These efforts have led to realizations of photonic
kagome [6] and honeycomb [7] lattices, synthetic magnetic
fields for photons [8–12], and numerous proposals to explore
strongly correlated quantum phases in photonic systems, using
the unique input-output capabilities provided by an optical
platform [13,14].

An upcoming challenge in photonic systems is populating
the Hamiltonian with particles that reside in a low-entropy
many-body state. Akin to concurrent developments in quantum
error correction [15,16], recent works have demonstrated bath
engineering generally [17,18], and few-body cavity-cooling
specifically [19], as viable approaches for stabilizing small
entangled photon states. To thermalize generic photonic many-
body phases, several proposals suggest creating a true chemical
potential or thermal bath through (a) parametric driving [20,21]
or coherent driving of ensembles of lossy resonators [22]. Here
we present and thoroughly explore an alternative which is
applicable only to stabilization of low-entropy incompressible
phases, and without the constraint that the equilibrium density
matrix be Gibbsian. It is thus substantially simpler, spanning
a substantially smaller spectral bandwidth, requiring fewer
cQED components, and circumventing the heating mecha-
nisms expected to be present in Floquet models [23].

Our approach is based upon the development of a narrow
band, continuously replenished photon source akin to those
demonstrated for individual quantum dots in [24,25], and
proposed for generic inverted emitters in [26]: we prepare

this source by creating a population inversion (near-complete
occupation of n = 1 state) of a single nonlinear resonator via
either (1) a 0 → 2 drive, and Purcell-enhanced 2 → 1 decay,
thereby stabilizing the one-photon state; or (2) photon-photon
collisions in a Wannier-Stark ladder which drives one photon
into a stabilized resonator and the other into a resonator
providing Purcell-enhanced decay. In both approaches, the key
is to combine Purcell-enhanced loss with strong interactions
to provide a channel for shedding entropy.

Global control of electron density is easily achieved in
the solid state, where charge conservation imposes a strong
constraint on the total number of electrons. Because photons
are uncharged, the density of photons in a synthetic material is
harder to control. We rely upon a discontinuity in the chemical
potential at a particular photon number to stabilize our photon
density; this may be understood as requiring that the target
phase be incompressible.

It is worth briefly contrasting this approach with that in
ultracold atomic quantum gases: laser cool an atomic gas,
transfer atomic entropy to a scattered optical field, and then
remove the remaining entropy through evaporative cooling:
atomic collisions leading to loss of high-energy atoms, and
subsequent rethermalization. This procedure prepares a Bose-
Einstein condensate, a low-entropy phase of matter which
may be smoothly converted into many other phases [27–29]
by adiabatically varying the system Hamiltonian, thereby
crossing quantum phase transitions. This approach is ideal for
cold atoms, where the dynamics are slow, the tools to create
and manipulate the Hamiltonian are global, and low entropy
BECs are readily available as a starting point. By contrast, the
strength of photonic systems lies in local manipulation and
readout [30,31] of the many-body state, while real-time tuning
of the Hamiltonian is more challenging to achieve because
dynamics are ∼6 orders of magnitude faster than for a typical
atomic quantum gas in an optical lattice.

Adiabatic preparation requires tuning through a quantum
phase transition [27–29], where the many-body gap closes,
while thermalization [32] or algorithmic cooling [33] into
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an interacting phase only necessitate competition with the
many-body gap away from critical points. Consequently, for a
constant product of sample lifetime (τ ) and interaction (U ) or
tunneling (J ) energy, the system entropy in a cooled system
can be much lower than that of corresponding (a) spectroscopi-
cally [34,35] or (b) adiabatically [36] prepared systems, where
defects are induced by vanishing wave-function overlaps or
small energy gaps, respectively.

In Sec. II we motivate the need for tools to autonomously
stabilize photonic states by describing the challenge of
optically pumping a qubit. In Sec. III we explore approaches
to creating a photonic thermalizer using coupled nonlinear
resonators and engineered dissipation. In Sec. IV we analyze
the performance of the thermalizer when it is actually coupled
to an interacting lattice model, demonstrating that the approach
is effective for stabilizing a Bose-Hubbard model near an
n = 1 Mott phase.

II. STABILIZATION CONCEPTS

It is straightforward to populate a strongly interacting
photonic lattice with photons; driving a single lattice site with
a laser pulse, rf tone, or even random noise, will suffice. The
challenge is that none of these approaches stabilizes the system
near the many-body ground state at a finite photon number.
This may be understood by attempting to stabilize a single
lattice site with a single photon, which we will now explore
in the circuit quantum electrodynamics paradigm, where the
photonic lattice is an array of capacitively coupled qubits.
In this language, our objective is to stabilize a single qubit
in its first excited state. Coherent driving will induce the
qubit to go through a repeated process of Rabi oscillation
and decay, and at long times will be in a statistical mixture
of ground and excited states, with a maximal excited state
probability Pe � 1

2 . To stabilize the qubit in the excited state
(Pe ≈ 1) in steady state, then, requires a more sophisticated
scheme. One might imagine the following classical feedback
procedure: π pulse the qubit and continuously monitor its state,
applying another π pulse whenever it decays. We analyze
an autonomous version of this process which is not limited
by detection path quantum efficiencies, which is a simplified
version of prior bath engineering proposals [18,37–40].

The essential element for stabilization of any system in a
particular state is a channel into which entropy may be shed.
A classical harmonic oscillator, for example, stabilizes at zero
amplitude only if it has damping—otherwise it continues to
coherently oscillate forever. More broadly, the entropy of a
system may be shed into a classical measurement channel,
as in the scheme described above, or, taking examples from
existing synthetic materials, it can be shed into an emitted
light field, particle loss channel, or phonon bath, in the
cases of laser cooling, evaporative cooling, and exciton-
polariton condensation [41], respectively. In what follows,
we take specific inspiration from evaporative cooling: entropy
is pumped out of a system when particles collide and one
achieves sufficient energy to leave the trap, while the other’s
energy is reduced. We describe a way for a qubit to “decay”
into its excited state, shedding its entropy into an evaporated
photon by using an engineered bath. We then demonstrate that
by coupling this qubit to an interacting many-site lattice the
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FIG. 1. Idealized model of continuously inverted qubit. (a) To
prepare a three-level qubit in its first excited state, it can be
continuously resonantly excited 0 → 2, and allowed to rapidly
decay (via an engineered loss channel) into a long-lived one-photon
state. (b) More realistic model including the requisite anharmonicity
U to prevent accidental resonant excitation 0 → 1; the optimal
performance is 1 − P1 = 2

√
6�1/U − 6�1/U , for single photon loss

rate �1. In essence, too little drive � allows the system to spend
excessive time in the zero-photon state after a decay event and too
much drive produces coherent admixture of zero- and two-photon
states in the single photon state. (c) and (d) Compare the analytic
model (solid lines) to master-equation numerics (black points) as
drive Rabi frequency � and two-photon loss rate �2 are varied,
respectively. For these simulations we study state-of-the-art qubits
with �1 ≈ 2π × 1 kHz, and U ≈ 2π × 200 MHz [4,42]. All other
parameters chosen to be their analytical optima described in the text.
The dashed curves indicate the contributions to thermalizer error
coming from off-resonant admixture of zero- and two- photon states
(red dashed lines), or single-particle loss (blue dash-dotted lines).

whole system will be stabilized near its many-body ground
state.

III. SIMPLE MODEL OF A NARROW-BAND STABILIZER

We need to create a single lattice site with near-continuous
single photon occupation (so-called “population inversion”)
that rapidly repumps itself to single-photon occupancy when-
ever the photon in it leaves, either due to particle loss from
finite resonator lifetime or tunneling into a tunnel-coupled
many-body system [20].

We propose to create the inversion through a variant of
optical pumping, depicted qualitatively in Fig. 1(a), where the
two-photon state is made short lived, and the one-photon state
long lived. The idea is then to drive a qubit directly from
the zero-photon state to the two-photon state, from which it
will rapidly decay into the one-photon state; we thus need the
two-photon lifetime to be very short compared with the one-
photon lifetime. Before we suggest specific implementation of
the second-photon loss channel, we compute the performance
of a simplified model with freely adjustable second-photon
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loss (not two-photon loss; only the second of the two photons
is rapidly removed).

Because the 0 → 2 photon transition is not directly allowed,
we drive it through a two-photon transition with the one photon
intermediate state off-resonant due to the qubit anharmonicity
U [see Fig. 1(b)]. With a one-photon Rabi coupling �, and an
n-photon loss rate �n, one can write the probability of single
photon occupation P1 as (in the low-infidelity limit)

1 − P1 = 12
�2

U 2
+

[
1 + �2

�1

(
2 + �2

2

32
(

�2

U

)2

)−1]−1

. (1)

The first term comes from off-resonant admixture of zero-
and two-photon states into the stabilized state, and the second
term from the competition between the single-particle loss
in the one-photon state, �1, and the (saturated) pumping rate
into the one-photon state through the two-photon incoherent
coupling 0 → 2 → 1. Put simply, too little driving and the
system spends a lot of time in 0 due to the one-body 1 → 0
decay; too much driving, and the coherent admixture of the
zero- and two-photon states becomes large.

The one-photon probability is maximized for �
opt
2 =

8 (�opt)2

U
, �opt = (U 3�1

24 )
1/4

√
1 −

√
6�1
U

≈ (U 3�1
24 )

1/4
, yielding

〈1 − P1〉optimal = 2
√

6�1
U

− 6�1
U

; we do not optimize over
U or �1, as these parameters are set by the experimental
state of the art. In the low-temperature limit, this P1 yields
(for chemical potential μ = U/2) a qubit temperature of

kBT ≈ U

log U
24�1

, and an entropy of S
kB

≈ 2e
− U

2kB T (1 + U
2kBT

) (see

Appendix E).
For state-of-the-art parameters [4,42], U ≈

2π × 200 MHz, �1 ≈ 2π × 1 kHz, performance is optimized
for �2 ≈ 2π × 730 kHz, � ≈ 2π × 4.3 MHz. One achieves
〈1 − P1〉optimal ≈ 1.1 × 10−2, and corresponding temperature
kBT ≈ 0.1 × U and entropy S ≈ 0.1 × kB . Figures 1(c)
and 1(d) compare this simple analytic theory with the
results of a numerically solved master-equation model (see
Appendixes C and D), describing the steady state probability
of unit photon occupancy, and demonstrating quantitative
agreement.

The second-photon loss �2 is the key to this technique,
and may be introduced through tunnel coupling to a lossy
qubit or resonator (the “evaporator”), tuned to resonance only
with the second photon in the primary qubit [see Fig. 2(a)].
For an evaporator with linewidth κ , and a tunnel-coupling
strength J , it is straightforward to show that �2 ≈ 2J 2

κ
, while

�1 is slightly increased due to off-resonant coupling to the
thermalizer J 2

U 2 κ . This increase in �1 may be kept below �1

itself by choosing κ �
√

2�1
�2

U , J �
√
U

√
�1�2

2 , or by using a

Purcell filter [43,44]. Figure 2(c) compares the performance
of such a two-site thermalizer to the idealized thermalizer
analyzed above, demonstrating good agreement between the
two.

An alternate approach, shown in Fig. 2(b) and similar
to [45,46], employs three degrees of freedom to achieve better
performance. A central (“collision”) qubit is driven with a
coherent tone, and anharmonicity-induced photon-photon col-
lisions split photon pairs, driving one to the upper (evaporator)
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FIG. 2. Thermalizer designs. (a) To implement particle number
dependent loss in the thermalizer qubit, it is tunnel coupled to a
lossy site (the evaporator) which is detuned by the on-site interaction
energy U . Thus while it is energetically forbidden for a first photon
to leave the thermalizer qubit, the second can leave at no energy cost
through the evaporator. The system is excited from the vacuum state
to the two-photon state via an off-resonant two-photon transition
through the one-photon state, from which it rapidly decays to the
long-lived one-photon state. (b) A higher-performance three-qubit
approach employs a central qubit (the interaction qubit) where photon
pairs may resonantly collide, with one driven into the thermalizer
qubit and the other driven into the evaporator qubit, from which it
is immediately lost, thereby preventing the collision process from
reversing itself. This design relies upon strong interactions in the
thermalizer qubit to suppress double excitations. (c) Comparison of
master-equation simulations of (red circles) idealized model with
two-photon loss-rate �2, and (blue solid points) realistic model of
two-photon loss implemented as in (a), with J ≈ 2π × 730 kHz,
κ ≈ 2π × 5 MHz. Both curves are plotted versus the pump detuning
δ, which is optimized at δ = U/2 where the two curves agree, as
anticipated. (d) Comparison of two (red circles) and three (blue solid
points) qubit thermalizers, versus the qubit lifetime �1, for fixed
qubit anharmonicity U ; optimized over all other parameters. The
master-equation numerics for the two-qubit thermalizer reveal that
the occupation error 1 − P1, scales as ( �1

U
)1/2, while the error of the

three-qubit thermalizer scales as ( �1
U

)
2/3

.

qubit or resonator, and one to the lower (“thermalizer”) qubit.
The photon in the evaporator is quickly lost, leaving only the
photon in the thermalizer qubit, which cannot Rabi-flop back
into the collision qubit due to conservation of energy. A second
photon is precluded from scattering into the thermalizer qubit
due to an anharmonicity-induced photon blockade. While
analytics for this more sophisticated model are prohibitively
complex, a numerical optimization of its performance [see

Fig. 2(d)] indicates 1 − P1 ≈ 4.4 × (�1
U

)
0.64 ∼ (�1

U
)
2/3

, which

is more favorable than the (�1
U

)
1/2

scaling of the two-qubit
thermalizer.

In preparation for exploring the coupling of this reservoir
to a many-body system, we numerically investigate the
repumping dynamics of the thermalizer after its photon is
lost, either through spontaneous decay or tunneling into the
many-body system. While this may be understood formally in
terms of the smallest nonzero eigenvalue of the Louivillian,
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FIG. 3. Refilling dynamics of the two-site thermalizer. Subse-
quent to a photon loss event (either through tunneling of the photon
into an attached many-body system, or finite qubit T1), the resonator
refills through states |0〉 → |2〉 → |1〉. We consider a qubit with an
anharmonicity U = 2π × 200 MHz, and a T1-limited linewidth
�1 = 2π × 1 kHz. (a) Refilling dynamics under the conditions which
provide the optimal P1, as described in the text. The evolution
towards P1 ≈ 1 is nonexponential, as the 0 → 2 excitation process is
saturated. The theory curve (dashed) is a Gaussian empirical model

of width (time to 1/e) 0.9 × τ , with τ−1 ≈
√

�1U

6 . (b) For ∼4.3 times
larger �2, the system operates in an overdamped regime, and refills
exponentially towards P1 ≈ 1.

we take a simple, physical approach here: Fig. 3 shows
the temporal dynamics of P1 after such a photon-loss event
in a two-site thermalizer. In (a), the dynamics occur under
conditions that minimize thermalizer temperature, leading to
critical damping, and repumping with a e−1 time-constant τ ≈
R−1, for a repumping rate R ≈ 0.9

√
�1U

6 [implied by Eq. (3)];
(b) depicts the overdamped, purely exponential dynamics
which occur for increased second-photon loss. In the presence
of coupling to a many-particle system the optimal parameters
change because the thermalizer is more often depleted and
thus must repump faster to efficiently stabilize the system. To
this end, in Appendix A we show that the optimal infidelity
of a thermalizer with repumping rate Rt is given by (opti-
mizing over the drive strength � and the second-photon loss
rate �2)

1 − P1 = 6
Rt

U
+ �1

�1 + Rt

. (2)

In what follows, we adopt a simplified model of the
thermalizer, treating it as a device which exponentially decays
towards single occupancy with a chosen repumping rate Rt ,
and infidelity 1 − P1 given by Eq. (2).

Coherent

Thermalizer
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Bose-Hubbard Chain

Jc

n
photons

target state

n-1
photons

n+1
photons

Δmb

(a)

(b)

drive

Drive

FIG. 4. Coupling the thermalizer to a many-body system. (a) The
thermalizer proposed in the text may be employed to stabilize an
incompressible phase of a many-body system. This is achieved by
tunnel coupling the thermalizer to the system (with a strength Jc), and
allowing the two to come into equilibrium. (b) Operational principle.
The thermalizer relies upon the difference between the energy cost
to add and remove a particle (what we call incompressibility). This
is because the thermalizer stabilizes the particle number by only
providing particles of certain energies. As such, the energy to remove
a particle from (add a hole to) the many-body ground state (shown
as green arrows) must be spectroscopically resolved from both the
energy to remove a particle from a many-body excited state (with a
gap �mb) and the energy to add a particle to the many-body ground
state.

IV. COUPLING TO A MANY-BODY SYSTEM

Employing the thermalizer to stabilize a many-body system
in a particular phase requires that this phase be incompressible
from the perspective of adding particles rather than varying
the volume.

In coupling a thermalizer to a many-particle system, it is
essential to match the spectral width of the thermalizer to the
hole spectrum of the system [see Fig. 4(a)]. To understand this,
consider the state of the system to be near an incompressible
phase into which we would like to stabilize it [see Fig. 4(b)].
If the system is already in the phase, we need to ensure that
we do not inject additional particles. On the other hand, if the
system is a single particle short of being in the appropriate
state (because a photon recently decayed), the thermalizer
must be able to inject a photon of the appropriate energy
to re-excite the system into the incompressible ground state,
but not into an excited state with the same number of
particles. It is thus crucial that the hole and particle spectra
be nonoverlapping energetically: this imposes an additional
constraint on the system to be populated and is what is meant
by “incompressible,” rather than the more standard definition
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∂V
∂P

= 0 at fixed particle number. The two definitions are
equivalent if the energy per particle depends only upon the
particle density (see Appendix F).

Once this incompressibility criterion is met, the next
question is how efficiently a thermalizer can refill defects in the
many-body state—essentially a question of Franck-Condon
overlaps. The idea is to compute the spectrum of holelike
defects, and compute how efficiently each is repumped by
the thermalizer; if such defects are excessively localized,
a single thermalizer will not suffice to repump them, and
thermalizers will be necessary at each site [20]. For mobile
defects, a single thermalizer suffices.

To demonstrate this, we now explore the stabilization of
an n = 1 Mott phase as a paradigmatic example of thermalizer
performance. This is a particularly simple case to consi
der because holelike excitations live near the bare-resonator
energy (henceforth E ≈ 0), while all particlelike excitations
live near E = U ; each band has a width ∼J the tunneling
energy, and in the Mott phase U � J , providing clear spectral
separation between particle and hole bands. If a hole tunnels
into the thermalizer site (with a tunneling rate Jc), it is refilled
(“damped out”) at a rate R, as derived in the preceding section.
One can thus build a simple model to investigate the refilling
rate of an isolated hole by examining the spectrum of a single
“particle” (hole) hopping in a 1D tight-binding lattice at rate
J , with a single lossy site at the end with imaginary energy R

(loss of the hole corresponds to refilling into the target Mott
phase), into which the hole may tunnel with a rate Jc.

It is apparent that Jc controls the Franck-Condon overlap of
the various quasihole states with the thermalizer; Jc = √

2 × J

is found to provide a quasihole overlap (and thus refilling rate)
that is independent of hole quasimomentum or energy in the
limit R

J
→ 0 (see Appendix B). In Fig. 5 we plot (for a chain of

length N = 120 sites) the refilling rate of a hole as a function
of its energy. It is apparent that, save for a few states near
E = ±2J , all hole states are refilled equally efficiently, at a
rate ≈ R

N
. The final few hole states within about 0.048 × R2

J
of

E = ±2J (those with quasimomentum |q|,|q − π |, or |q +
π | � qc ≈ 0.22 × R

J
) are refilled substantially more slowly,

at a rate ≈ R
N

( q

qc
)2 (for |q| � qc). This is because hole modes

near the center and edges of the Brillouin zone have low group
velocity and are thus Zeno suppressed from moving relative to
the thermalizer; this leaves modes with extremely low refilling
rate, along with neighboring modes with enhanced refilling.

One can then build a simple model of the steady state defect
probabilities in different quasihole modes as a competition
between their mode-dependent refilling rate rq , and their
mode-independent creation rate �1. The defect probability in
quasihole mode with momentum q is then given by εq = �1

�1+rq
,

where the repumping rate of mode q is

rq = R

N
×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if |q|,|π − q|,|π + q| � qc,(
q

qc

)2
, if |q| < qc,(

π−q

qc

)2
, if |π − q| < qc,(

π+q

qc

)2
, if |π + q| < qc,

where qc is the empirically determined quasihole momentum
cutoff defined above.
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FIG. 5. Quasihole refilling dynamics. The refilling rate of a
quasihole in a 1D Mott insulator is shown as a function of its
energy, for repumping rates R from 0.2J to 2J . (a) The Mott phase
lives in a 1D Hubbard-regime lattice coupled to a thermalizer at
one end. The energy of the quasihole reflects its quasimomentum
q according to the relation E = −2J cos q (see inset); as such, it
is unsurprising that the lowest and highest energy quasiholes are
refilled inefficiently, as they exhibit low group velocity; equivalently
their high density of states results in repumping-induced localization
(from the Zeno effect) of some modes near the thermalizer (with faster
refilling) in addition to those localized away from the thermalizer
(with slower refilling). All refilling rates are normalized to R/N , the
value expected in the low-repumping-rate limit, where quasiholes at
all quasimomenta are refilled at the same rate. The theory shown is
for a 120-site chain. (b) A thermalizer is coupled directly to each
site of the Bose-Hubbard chain, allowing for good Franck-Condon
overlap with all quasiholes states. The Lorentzian energy dependence
of the refilling rate comes entirely from the detuning of the quasiholes
from the thermalizer, compared with the repumping rate. As such, we
choose R = J × {1,2,4,8,16}, for Jc = 0.1 × J . Both (a) and (b) are
computed using effective single-particle theories: we plot imaginary
vs real parts of the eigenvalues of a 1D tight-binding model coupled
to thermalizer sites whose repumping is modeled as an imaginary
energy.

It is apparent that the performance of an ideal (errorless)
thermalizer with repumping rate R employed to stabilize a
Bose-Hubbard chain near the n = 1 Mott phase is a tradeoff
between:

(1) low repumping rate, where photon decay at a rate �1

competes with the repumping at a rate R to limit the fidelity
of the Mott phase; and
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(2) high repumping rate, where low-group velocity defects
are poorly repumped.

We can now compute the mean defect probability 〈ε〉 =
1

2π

∫ π

−π
εqdq by averaging over defects at different quasimo-

menta. Performing this integral piecewise yields

〈ε〉 =
(

1 − 2qc

π

)
1

1 + R
N�1

+ 2qc

π

∫ 1

0

�1

�1 + x2R/N
dx

=
(

1 − 2qc

π

)
1

1 + R
N�1

+ 2qc

π

√
N�1

R
arctan

√
R

N�1

� 1

1 + R
N�1

+ qc

√
N�1

R
, (3)

where the last line is worst-case performance. Noting that
qc ≡ 0.22 × R

J
, we can optimize over R, with the re-

sult that (for �1 
 J,R) Roptimal ≈ 5.9 × (N�1J
2)1/3 and

〈ε〉 ≈ 0.7 × (N�1
J

)
2/3

. It is thus apparent that for fixed on-site
loss �1, it is favorable to maximize the tunneling rate J to allow
defects to leave the system as quickly as possible, increasing
the thermalizer repumping rate accordingly.

In practice, other things limit the tunneling rate, including
doublon-hole excitations of the Mott insulator and sensitivity
of the realistic thermalizer to repumping rate [characterized by
Eq. (2)]: Fig. 6(a) shows the computed occupation infidelity
of a ten-site Bose-Hubbard chain stabilized in the n = 1
Mott phase, including defects from an imperfect thermalizer
as in Eq. (2), incomplete ability to refill defects in the
chain as in Eq. (3), and coherent doublon-hole pairs due
to nonzero J

U
. Thus, for state-of-the-art parameters [6,42],

�1 = 2π × 1 kHz and J = 2π × 12 MHz, a thermal-
izer with an anharmonicity of U = 2π × 200 MHz
can stabilize a N = 10 site Mott insulator with a
defect probability of 〈ε〉 ≈ 0.04/site, when the re-
pumping rate of the thermalizer is chosen to be
R ≈ 2π × 600 kHz.

It is computationally challenging to perform a full master-
equation simulation of a ten-site Bose-Hubbard chain coupled
to such a thermalizer, so we have instead applied this formalism
to a smaller three-site chain coupled to a thermalizer, as
shown in Fig. 6(b), for parameters similar to Fig. 6(a). In this
case, the optimal defect probability of 0.03/site is achieved
for a tunneling rate J ≈ 2π × 3.5 MHz, and repumping rate
R ≈ 2 MHz, qualitatively validating the analytic approach
explored in the preceding discussion. The necessity of higher
repumping rate (and thus �2) in Fig. 6(b) relative to the analytic
model in (a) likely arises at least in part from the tunnel
coupling of the second excited state of the thermalizer to the
doublon band of the chain. Note that some degree of doublon
repumping must be occurring to properly stabilize the Mott
phase, and turns out to be induced by the second-photon loss
intrinsic to the thermalizer (see Appendix G).

Employing multiple thermalizers is potentially extremely
beneficial for reducing defect density, both because it tips the
balance between loss and repumping, and because in a 1D Mott
insulator, arbitrarily small disorder will Anderson localize
quasihole defects [47,48], exponentially reducing their overlap
with (and thus repumping rate by) a single thermalizer; the
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FIG. 6. Stabilizing a 1D Mott phase. (a) We explore the behavior
of an analytic model of defects in a ten-site Bose-Hubbard chain,
stabilized with the two-site thermalizer described in the text.
For photon-decay-rate �1 = 2π × 1 kHz and qubit anharmonicity
U = 2π × 200 MHz, we plot the chain-averaged defect rate for
various tunneling strengths and thermalizer repumping rates. While
the performance is relatively insensitive to the choice of chain-
tunneling-rate J , the optimum is at J ≈ 2π × 6.5 MHz, with an
defect rate 〈ε〉 ≈ 0.04/site. The observed performance is primarily
limited by the trade-off between insufficient cooling capacity of
the thermalizer at low repumping rate (black dotted curve) and
thermalizer errors at high repumping rate (gray dashed curve). The
inability of the thermalizer to repump defects at the highest and
lowest quasimomenta is not a limiting factor for the parameters
explored here. The high infidelity of the chain at large J comes
from quantum-fluctuation-induced doublon-hole pairs. In (b) we
employ a master equation to explore a three-site Bose-Hubbard chain
coupled to an optimized two-site thermalizer (modeled with effective
second-photon decay �2). We find behavior which qualitatively
agrees with the analytic model, providing a slightly better optimal
defect rate 〈ε〉 ≈ 0.03/site as a result of the shorter chain.

price to be paid is greater experimental complexity. In the
case that a separate thermalizer is coupled to each site in
the Bose-Hubbard chain, the Franck-Condon overlap to the
thermalizer is the same for all quasihole states, so the refilling
rate of quasiholes is determined entirely by their detuning

from the thermalizer according to rq ≈ R
J 2

c

2J 2
c +8J 2 cos 2q+R2 .

Here R is the repumping rate of each thermalizer, q is the
quasimomentum of the quasihole, J is the tunneling rate in
the Bose-Hubbard chain, and Jc is the strength of the coupling
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of each site in the chain to its thermalizer. Note that as Jc

approaches and surpasses R, the thermalizers become part
of the the many-body system rather than merely devices for
stabilizing it. To achieve a nearly uniform refilling rate for all
quasiholes, it is important to choose R > 2J . This physics is
explored in Fig. 5(b), where quasihole refilling rate is plotted
as a function of quasihole energy. As anticipated, refilling
rate becomes largely independent of quasihole energy once
R > 2J,2Jc.

V. OUTLOOK

In this paper we propose an approach to populating photonic
Hamiltonians that is particularly well suited to those with
gapped ground states. Harnessing the interplay of engineered
dissipation and driven anharmonic oscillators, we develop
a thermalizer which is autonomously stabilized in a state
containing a single quantized excitation. This thermalizer
may be attached to a Hubbard-type Hamiltonian system
which will then populate up to a gap in the particle-insertion
spectrum, or equivalently a jump in the chemical potential.
We demonstrate the efficacy of this approach by analytically
and numerically coupling the thermalizer to a 1D Hubbard
chain tuned to support a Mott phase. We explore how the
thermalizer repopulates holes in the Mott phase of varying
quasimomenta, resulting in a comprehensive theory of the
dynamics of quasihole refilling in a Mott insulator.

The thermalizer concept may be extended to more sophis-
ticated models by tailoring its density of states, achieved by
modulating either the frequency of thermalizer qubit, or its
coupling strength to the many-body system. Such an approach
would be beneficial for stabilization of n = 2 and higher Mott
phases, as well as topological many-body states [49–51] of
flux-threaded 2D Hubbard lattices [52]. It is likely that finer
control of thermalizer density of states plus technical advances
in qubit coherence will be crucial in these regimes, as a generic
incompressible phase will likely have both a broader contin-
uum of hole excitations, and a smaller many-body gap (in the
case of a topological phase, scaling with the tunneling energy
∼J , rather than the interaction energy ∼U ). An additional
requirement for efficient stabilization of the incompressible
phase is the absence of metastable local minima in the
energy landscape, a near certainty in many-body-localized
phases, and less of a concern for topological phases [20].
It will be fascinating to explore the impact of localization on
the ability of the thermalizer to stabilize many-body states;
hopping between distinct metastable states could serve as an
experimental signature of localization [53]; another observable
candidate is the dependence of the thermalization rate or defect
density upon the locations of the enabled thermalizers in a
many-site system.

It is also possible to apply these ideas to cold atoms. Bilayer
atomic quantum gas experiments [54] could be engineered
such that one layer acts as a superfluid reservoir, coherently
populating a site in the other layer which is itself engineered
to act as a “blockaded” atomic reservoir [33,55] akin to
what we have explored in this work. It would also be highly
fruitful to apply these techniques to stabilize topological or
crystalline phases of Rydberg polaritons [56,57], where strong

interactions [2] may be combined with synthetic gauge fields
in curved space [12,58].

Broadly, photonic systems now routinely achieve
interaction-to-coherence ratios which compete with their
atomic gas counterparts [5], and our approach connects these
tools to synthetic materials, pointing the way to direct cooling
into quantum many-body phases of photonic systems.
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APPENDIX A: OPTIMAL PERFORMANCE OF A
THERMALIZER AT FIXED REPUMPING RATE

Suppose we want to optimize the performance of the
thermalizer subject to fixed refilling rate. That is, R should
be held at some value Rt . As before, the single-excitation
probability of the isolated thermalizer is given by

1 − P1 = 12
�2

U 2
+

[
1 + �2

�1

(
2 + �2

2

32
(

�2

U

)2

)−1]−1

, (A1)

but now we want to fix the refilling rate

Rt = �2

(
2 + �2

2

32
(

�2

U

)2

)−1

.

Optimizing subject to this constraint yields � =
√

RtU

2 , �2 =
4Rt , and 1 − P1 = 6Rt

U
+ �1

�1+Rt
.

APPENDIX B: ACHIEVING UNIFORM REFILLING RATE
OF ALL QUASIHOLES IN 1D BOSE-HUBBARD CHAIN

In the text we state that all quasiholes refill at the same rate
if the tunnel coupling of the thermalizer to the Bose-Hubbard
chain is given by Jc = √

2J , where J is the tunnel coupling in
the chain itself. This is true in the limit that the repumping rate
R of the thermalizer site is much smaller than the tunneling rate
of the chain, so we will here consider the limit of vanishing R

J
,

and prove constructively that all modes of the 1D tight-binding
chain have equal probability in the thermalizer, assuming the
coupling to the thermalizer is

√
2 times that of the chain

itself:
Consider a uniform 1D tight-binding chain with tunneling

rate J , and length 2M + 1, where M is a positive integer
(this chain does not have a thermalizer site which is more
strongly coupled). The eigenmodes of this chain have en-
ergies Em = −2J cos π

2
m

M+1 , and mode functions ψm(n) =
1√

M+1
{sin , cos }(nπ

2
m

M+1 ) for m {even,odd} respectively, and
sites indexed n ∈ [−M, . . . ,M]. We note that modes with odd
m are even about n = 0, and vice versa.
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Now fold this chain in half, and merge site n with site
−n. This may be achieved formally by strongly tunnel
coupling (with strength Jbig) sites n and −n, creating even
and odd submanifolds separated in energy by ∼Jbig. We
now consider the spatially even manifold (that is, those
with m odd), whose eigenmodes θm(n) we already know:
θm(n) = 1√

2
[ψm(n) + ψm(−n)], unless n = 0, in which case

θm(0) = ψm(0); the corresponding eigenvalues are also the
same (up to the Jbig offset): Em = −2J cos π

2
m

M+1 .
The last step is to recover the tight-binding model that

this new chain obeys: a simple analysis reveals that all sites
but site n = 0 (of which there are M) are tunnel coupled to
their (properly normalized) neighbors with a tunneling rate J ,
while site n = 0 is coupled to its neighbor with a tunneling
rate

√
2J : this is the chain that we wanted to study! The

wave-function overlap of each m-odd mode with site n = 0
is θm(0) = 1√

M+1
≈ 1√

M
for M � 1, which completes the

proof.

APPENDIX C: NUMERICAL MODELING
OF A SIMPLIFIED THERMALIZER

We model the thermalizer using a master equation, starting
with a unitary Hamiltonian

H = δa†a + U
2 a†a†aa + �(a† + a), (C1)

where δ is the pump-to-qubit detuning, U is the qubit
anharmonicity, and � is the pump Rabi frequency. We can
parametrize the qubit anharmonicity with a single variable
because we intend to operate almost exclusively in the singly
excited qubit state, so higher order contributions to the
anharmonicity, which impact only to the third excited state
and higher, are negligible.

To add dissipation to this model, we employ a master
equation:

dρ

dt
= −i[H,ρ] + �1

2
L[ρ,a] + �2

4
L[ρ,a†aa],

L[ρ,C] = ρC†C + C†Cρ − 2CρC†. (C2)

The first Lindblad term induces linear loss at a rate
Rn→n−1 = n�1, while the second Lindblad term induces
nonlinear loss, at a rate Rn→n−1 = n(n−1)

2 �2; that is, it does not
induce any loss for the n = 1 state. We refer to this nonlinear
Lindblad term as “second photon loss,” because it removes the
second photon but leaves the first; it should be compared to
L[ρ,aa], which is a nonlinear Lindblad term that removes two
photons at a time, and is typically referred to as “two-photon
loss.”

For our numerics we solve for the steady state dρ

dt
= 0,

allowing up to four excitations in the system to ensure
numerical convergence. For the three-site Bose-Hubbard chain
we allow up to six excitations in the system.

APPENDIX D: NUMERICAL MODELING
OF A REALISTIC THERMALIZER

The most realistic models employed in this work model
the nonlinear loss as it is experimentally implemented: via
additional tunnel-coupled qubits and detuned resonators with
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FIG. 7. Understanding the chemical potential of a generic,
isolated thermalizer. The mean occupancy 〈n〉 of an isolated,
phenomenological thermalizer is computed as a function of chemical
potential μ in units of the thermalizer interaction energy U . The
thermalizer is assumed to be in contact with a bath of temperature
kBT = 0.1 × U , and chemical potential μ. As the chemical potential
passes through multiples of the thermalizer interaction energy U , the
occupancy 〈n〉 jumps in integer steps. The probability of occupancy
n [P (n)] is plotted as a gray horizontal line at height n, whose intensity
reflects the probability.

their own linear loss terms. The resulting Hamiltonian takes
the form

H =
∑

j

[
(�j+δ)a†

j aj+Uj

2
a
†
j a

†
j aj aj+tj (aj

†aj+1 + H.c.)

]

+�(aD
† + aD). (D1)

Here �j is the energy offset of the j th qubit, Uj is the
anharmonicity of the j th qubit (Uj = 0 when the j th qubit
is in fact merely a lossy resonator), tj is the tunneling matrix
element between the j th and j + 1st qubits, and D is the index
of the qubit which is driven. The dynamics then arise from the
master equation:

dρ

dt
= −i[H,ρ] +

∑
j

�j

2
L[ρ,aj ], (D2)

where �j is the linewidth of the j th qubit.

APPENDIX E: STATISTICAL MECHANICS
OF THE SINGLE QUBIT THERMALIZER

The partition function of a single qubit with anharmonicity
U in contact with a thermal bath at temperature T is

Z =
∞∑

n=0

e−[n(n−1)U/2−nμ]/kBT , (E1)

where μ is the chemical potential of the bath. In the
main text we engineer the thermalizer to maintain near-
unity occupancy [Pr(n = 1) ≈ 1] with equal contributions
of doubles and holes [Pr(n = 0) ≈ Pr(n = 2) 
 1], so, as
shown in Figs. 7 and 8, we operate near μ ∼ U/2, at which
point the only other terms that contribute substantially to Z
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FIG. 8. Quantifying a realistic thermalizer in terms of its chemical
potential and temperature. (a) Full performance characterization of
a two-site thermalizer, as a function of repumping rate, for the
optimal qubit parameters in the text. The lines (blue dotted, black
solid, red dashed, green dot-dashed) are, respectively, the probability
that the occupancy of the thermalizer is (0,1,2,3), with the gray
solid line representing the probability that the thermalizer is not
singly occupied. The vertical dashed line is at the optimal repumping
rate (where P1 is maximal), demonstrating that P0 ≈ P2, indicating
that μ ≈ U/2. (b) μ and T (blue solid line and red dashed line,
respectively) are extracted from P0 · · · P3 and the partition function,
and plotted as a function of the repumping rate R. It is apparent
that the lowest temperature occurs at the optimal repumping rate,
and that the chemical potential is μ ≈ U/2 at this optimal operating
configuration.

are n = 0 and n = 2, and we can write

Z ≈ 1 + eU/2kBT + 1. (E2)

We then compute P1, the probability of a single photon
excitation of the qubit, according to

P1 ≡ Pr(n = 1) = eU/2kBT /Z ≈ 1 − 2e−U/2kBT . (E3)

Employing 〈1 − P1〉optimal ≈ 2
√

6�1
U

from the main text
(for the two-site thermalizer), we can then solve for the
temperature, and arrive at kBT

U
≈ 1

log U
24�1

.

To compute the entropy of the thermalizer qubit we employ
S ≡ −kB

∑
N P r(n = N ) log Pr(n = N ), and arrive at the

result (again for μ = U/2 and near-unit occupancy):

S ≈ F
eF

2 + eF
− log(2 + eF ),

F ≡ U

2kBT
. (E4)

For S 
 1 this expression may be approximated by S
kB

≈
2e

− U
2kB T (1 + U

2kBT
) ≈

√
24�1
U

.

APPENDIX F: INCOMPRESSIBILITY: CONNECTING ∂V
∂ P

WITH THE GAP BETWEEN PARTICLE AND HOLE BANDS

Following footnote 22 on page 708 of [59], pages 9 and
10 of [60], and related ideas in [61]: if we call the volume
of a system V , the pressure P , and the total energy U , the
compressibility is defined by κ−1 ≡ −V ∂P

∂V
= V ∂2U

∂V 2 .
The key point is that if the local density approximation

applies (as it almost always does, even for relatively in-
homogeneous systems [28]), then the energy per particle u

depends only on the particle density ρ ≡ N/V according to
U = Nu[N

V
], we can rewrite κ−1 = ρ2 ∂μ

∂ρ
, where the chemical

potential μ = ∂U
∂N

.

Finally, we can write κ−1 = Vρ2 ∂2U
∂N2 . This last expression

may be interpreted to mean that if there is a discrete step in the
energy cost to add a particle, then the inverse compressibility
is infinite, so the compressibility is zero. A discrete step in the
energy cost to add a particle is equivalent to a finite difference
between the cost to add a particle and remove a particle—a
spectral gap between particle and hole bands! This completes
the connection.

APPENDIX G: REPUMPING DOUBLONS

Because the thermalizer’s U is assumed to be the same as
the U of the Bose-Hubbard chain, the thermalizer is capable of
refilling (really, evaporating) particle defects (which in a Mott
insulator take the form of doublons [62]); any particle that hops
into the already populated thermalizer will be immediately
evaporated via its resonator-enhanced loss process �2.

Because �2 = 4R under optimal conditions, doublon tun-
neling into the thermalizer will be Zeno suppressed. To
evaporate doublons efficiently, it is thus favorable to include
an additional lossy resonator, energetically tuned to U and
coupled directly to the Bose-Hubbard chain. Noting that
doublons tunnel with a rate of

√
2J and following the logic

of Sec. IV, it is optimal to couple a lossy resonator to the
other end of the chain with a strength

√
2 × √

2J = 2J , and,
identifying the lossy resonator linewidth with the “doublon
repumping rate,” a loss-resonator linewidth properly matched
to the observed doublon production rate.
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488, 57 (2012).

043811-9

https://doi.org/10.1103/PhysRevLett.105.193603
https://doi.org/10.1103/PhysRevLett.105.193603
https://doi.org/10.1103/PhysRevLett.105.193603
https://doi.org/10.1103/PhysRevLett.105.193603
https://doi.org/10.1038/nature11361
https://doi.org/10.1038/nature11361
https://doi.org/10.1038/nature11361
https://doi.org/10.1038/nature11361


MA, OWENS, HOUCK, SCHUSTER, AND SIMON PHYSICAL REVIEW A 95, 043811 (2017)

[3] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang,
J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
(London) 431, 162 (2004).

[4] D. Schuster, A. Houck, J. Schreier, A. Wallraff, J. Gambetta,
A. Blais, L. Frunzio, J. Majer, B. Johnson, M. Devoret et al.,
Nature (London) 445, 515 (2007).

[5] M. H. Devoret and R. J. Schoelkopf, Science 339, 1169
(2013).

[6] D. L. Underwood, W. E. Shanks, J. Koch, and A. A. Houck,
Phys. Rev. A 86, 023837 (2012).

[7] M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V.
Pellegrini, Nat. Nanotechnol. 8, 625 (2013).

[8] Z. Wang, Y. Chong, J. Joannopoulos, and M. Soljačić, Nature
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