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In this paper we introduce an approach to Hamiltonian tomography of noninteracting tight-binding photonic
lattices. To begin with, we prove that the matrix element of the low-energy effective Hamiltonian between sites
α and β may be obtained directly from Sαβ (ω), the (suitably normalized) two-port measurement between sites
α and β at frequency ω. This general result enables complete characterization of both on-site energies and
tunneling matrix elements in arbitrary lattice networks by spectroscopy, and suggests that coupling between
lattice sites is a topological property of the two-port spectrum. We further provide extensions of this technique
for measurement of band projectors in finite, disordered systems with good band flatness ratios, and apply
the tool to direct real-space measurement of the Chern number. Our approach demonstrates the extraordinary
potential of microwave quantum circuits for exploration of exotic synthetic materials, providing a clear path to
characterization and control of single-particle properties of Jaynes-Cummings-Hubbard lattices. More broadly,
we provide a robust, unified method of spectroscopic characterization of linear networks from photonic crystals
to microwave lattices and everything in between.
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I. INTRODUCTION

The curse and blessing of synthetic quantum materials is
the control these systems afford. This control enables access
to near-arbitrary lattice geometries [1–4], tunable interaction
range [5], and all variety of state and phase preparation
and readout techniques [6–8]. The challenge is that every
added degree of control provides another opportunity for
disorder to creep in, substantially altering the anticipated
many-body physics. A variety of approaches have been
developed to control disorder, ranging from projection of
corrective potentials onto cold atoms [9] to improving lattice
fabrication in superconducting circuits [10] and 2DEGs [11].
Indeed, as fabrication techniques have improved in 2DEGs,
the accessible fractional Hall landscape has opened for study
of immense array of exciting topological phases, and it seems
other synthetic material systems could follow a similar trend.

If disorder is to be corrected site by site, it must be charac-
terized locally. This task is challenging, because information
about the on-site energy of a lattice site and its tunneling rates
to its neighbors are encoded nontrivially and nonlocally in
the eigenvalue and eigenvector spectrum of the system. In the
case of a 1D tight-binding chain, the reflection spectrum off of
the system end is sufficient to extract the full noninteracting
Hamiltonian (see [12] and Appendix B). For a 2D lattice of
known topology, it is possible to make measurements along
a 1D boundary to extract the Hamiltonian parameters [13],
with sufficiently high signal to noise. Here we point out a
unique opportunity to employ direct spectroscopic tools to
extract particular desired matrix elements of the single-particle
Hamiltonian. Building on prior theoretical work connecting
sum rules to linear response measurements [14], we describe
a general technique for resolving matrix elements of an
arbitrarily connected Hamiltonian between lattice sites via
simple two-port transmission and one-port reflection (local
density of states) measurements. We then extend the technique
to robust measurement of band projectors and Chern numbers,
supplementing prior works that rely on physically modifying
the lattice structure [15,16], or dissipation-calibrated measures
of transverse displacement [17].

II. THEORY OF LATTICE SPECTROSCOPY

A. Formulas for arbitrary linear networks

Suppose that we would like to characterize a noninteracting
network of lattice sites in the site basis, by answering specific
questions like “what is the energy cost to put a particle on site
α?” or “what is the tunnel-coupling between sites α and β?”
One might attempt to characterize the full lattice by performing
two-port measurements between all pairs of sites (m,n), and
then fitting the results with an analytic model to extract the
underlying lattice parameters. This works in principle, but
generally is highly susceptible to noise and requires O(N2)
measurements (except in the 1D case; see Appendix B);
here we prove that the information for matrix elements of
the Hamiltonian Hαβ is entirely encoded in the frequency-
dependent two-port measurement Sαβ(ω) between only the
two sites α and β of interest, by connecting experimentally
measurable quantities in linear photonic lattices to theoretical
results for sum rules of response functions [14].

Let the system Hamiltonian be given by (in what follows
we set h̄ = 1)

H =
∑

l

(ωl + iκl/2)a†
l al −

∑
α �=β

tαβa†
αaβ, (1)

where a†
α(aα) creates (destroys) a photon on site α, tαβ is the

direct tunnel coupling between sites α and β, ωl is the energy
cost to place a photon on site l, and κl is the linewidth of
a photon on site l including contributions from both internal
loss and loss from out coupling. We have employed a non-
Hermitian Hamiltonian formalism which applies in the weak-
driving limit [18–20]. In this limit, the resonator transmission
(S matrix) between sites α and β at frequency ω is given
by [21,22]

Sfull
αβ (ω) = δαβ − i

√
κα

c κ
β
c 〈α| 1

ω − H
|β〉. (2)

Here |l〉 [for l ∈ (α,β)] is the quantum state with a single
photon at site l: |l〉 ≡ a

†
l |0〉, where |0〉 is the vacuum state. We

have assumed that our physical system always has out coupling
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at every site; the part of the resonator loss at site l, κl , that arises
due to out coupling rather than internal loss, is labeled κl

c. This
quantity is entirely real—imaginary out coupling would be a
shift of the resonance, and this effect is incorporated into the
resonator frequency ωl . For the rest of this paper, we consider
the offset-corrected S matrix Sαβ ≡ Sfull

αβ − δαβ , where the
contribution from direct reflection has been subtracted.

Before proceeding, it is worthwhile to take a moment to
outline the realm of validity of our approach. For a truly linear
system such as the one described above, the drive strength may
in fact be arbitrarily large, so long as Sαβ is reinterpreted as a
two-point measurement of creation and annihilation operators,
rather than single-photon states [23]. More generally, however,
we aim to employ this method to quantify the linear properties
of strongly nonlinear systems [24], in which case it is sufficient
to require that the probe Rabi frequency be small compared
with the smallest κi in the system: otherwise, the system will
be populated with multiple excitations, and the linear Hamil-
tonian would no longer be sufficient. We furthermore assume
that the manifolds with well-defined excitation numbers are
isolated from one another: that is, there should be no accidental
degeneracies between manifolds with n and m excitations, for
n �= m, as these could be mixed by a nonlinearity thereby
breaking the approximations that give rise to a simple connec-
tion of Eq. (2) between the S matrix and the Hamiltonian.

With these considerations in mind, we examine
Pr(

∫
ωSαβ(ω)dω), which diverges without the Cauchy prin-

cipal value Pr(). To perform the integration, we employ the
following definitions: |μ〉 is the single-photon eigenstate of H

with eigenvalue εμ, and 〈ν| is the element of the dual space
to |μ〉 defined such that 〈ν|μ〉 = δμν ; note that 〈ν| �= [|ν〉]†,
because H is not Hermitian, so the matrix of eigenvectors is
not unitary. We can then write∫

ωSαβ (ω)dω

= −i

∫
ω

√
κα

c κ
β
c 〈α| 1

ω − H
|β〉dω

= −i

√
κα

c κ
β
c

∫
ω〈α|

∑
μ

|μ〉〈μ|
ω − εμ

|β〉dω

= −i

√
κα

c κ
β
c 〈α|

∑
μ

[∫
ω

|μ〉〈μ|
ω − εμ

dω

]
|β〉

= −i

√
κα

c κ
β
c 〈α|

∑
μ

[∫ (
1 + εμ

ω − εμ

)
|μ〉〈μ|dω

]
|β〉

= −i

√
κα

c κ
β
c 〈α|

[
W + iπ

∑
μ

|μ〉εμ〈μ|
]
|β〉

= −i

√
κα

c κ
β
c (W 〈α|β〉 + iπ〈α|H |β〉). (3)

Here W is the range of integration, and the sum only
includes poles within this range. We have further assumed
that the total bandwidth of the features under consideration is
a small fraction of the center frequency, allowing us to assume
the losses κ are frequency independent; more sophisticated
techniques are required for truly broadband experiments
[25,26], or for dissipation into structured continua. To extract

the coupling strengths κ
α,β
c , we must also measure the one-port

reflections Sαα(ω) and Sββ(ω). An analogous calculation
reveals that

∫
Sαα(ω)dω = πκα

c (see Appendix C), allowing
us to write

〈α|H |β〉 =
∫

ωSαβ(ω)dω√
(
∫

Sαα(ω)dω)(
∫

Sββ(ω)dω)
− W 〈α|β〉

iπ
. (4)

Thus we see that the matrix element of the Hamiltonian
that couples a single photon in site α to site β is given by the
expectation of frequency weighted by the two-port measure-
ment (as measured by a vector network analyzer, for example)
between those two sites, properly normalized by one-port
reflection measurements. If α �= β, then such a measurement
provides the tunneling matrix element tαβ , including its phase.
If α = β, this is an offset-subtracted reflection measurement,
and it results in ωα + iκα/2, the on-site energy at site α, with
the imaginary part providing the on-site resonator linewidth.
For sites which are not directly connected, the measurement
will result in a zero value. It is somewhat surprising that sites
which are coupled through the network, though not directly,
yield zero for the integral—this suggests that there is a hidden
topological property in the frequency-dependent two-point
measurement between non-directly-connected sites.

The power of this approach is clear: even with a tremen-
dous number of modes (approaching a continuum), the bare
frequency of a single resonator, or the tunnel coupling between
a pair of resonators, can be directly extracted from one- or
two-port frequency-dependent measurements. This provides
a robust linear method for estimating matrix elements of the
Hamiltonian that is much less sensitive to noise than other
methods involving, e.g., fitting of all coupled modes. Handling
the logarithmic divergence of the integral (formally taken care
of via a Cauchy principal value) requires some care, however,
and we suggest two approaches as follows.

(1) In small lattices, where the individual normal modes
are spectrally resolved, the integrals may be performed by
identifying and fitting the individual resonances in the one-
or two-port measurements, and then evaluating the integrals
as sums over said resonances [here A

αβ

l , φ
αβ

l , ω
αβ

l γ
αβ

l

are the parameters resulting from the fit to the observed
(offset-corrected) two-point spectrum between sites α and β,
Sobs

αβ (ω)]:

Sobs
αβ (ω) =

∑
l

A
αβ

l eiφ
αβ

l

1 + i

(
ω−ω

αβ

l

)
γ

αβ

l /2

,

Nα ≡
∫

Sobs
αα (ω)dω

= π

2

∑
l

Aαα
l eiφαα

l γ αα
l ,

Xαβ ≡
∫

ωSobs
αβ (ω)dω − W 〈α|β〉

iπ

√
NαNβ

= π

2

∑
l

A
αβ

l eiφ
αβ

l γ
αβ

l

(
ω

αβ

l + iγ
αβ

l

/
2
)
,

〈α|H |β〉 = Xαβ

√
NαNβ

. (5)
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FIG. 1. Truncation of integration region. To avoid the divergence
in the integration of the tails of the transmission and reflection spectra,
the symmetric tails of the spectra should be identified by the locations
in the spectra where the lattice response has reduced to a simple
Lorentzian, decaying as 1/� (for Sαα , the decay is 1/�2; for Sαβ ,
α �= β), and their values are identical. Here � is the detuning of the
probe frequency to the manifold of resonances being considered. The
integration then should only be performed between these two points
(area in gray), and the divergence of the tails (area in gray stripes)
will then cancel. In practice, choosing the cutoff location is a trade-off
between ensuring that one is far enough from the resonant features
to be in regions with 1/� (or 1/�2) decay, but not so far out that
other resonator modes (corresponding to parasitic resonances outside
of the effective model as shown at the left, or other bands within the
effective model) become important. The impact of these other modes
on the integration can be further reduced using the technique outlined
in Appendix A.

(2) In larger lattices, where the individual modes cannot be
spectrally resolved, the integrals may be explicitly computed
from the observed spectra, taking care to symmetrically cut off
the tails at low and high frequencies, to cancel the logarithmic
divergence of the integration (see Fig. 1). Note that this cutoff
need not be perfect, especially for the normalization terms
(coming from reflection measurements), where the divergence
is logarithmic. On the other hand, the integration in Eq. (4)
diverges linearly for on-site matrix elements (α = β) of the
Hamiltonian, so it is crucial to subtract off the integration-
range dependent correction given by the second term.

In both cases, it is assumed that Nα,β are real; errors from
finite integration region and imperfect centering could render
them complex, and so we assume that the imaginary part of
the integration is simply discarded (see Appendix C). On the
other hand, Xαβ are assumed complex: for Xαα , the real part
arises from the on-site energy, and the imaginary part from
on-site loss; for complex Xαβ with β �= α, this corresponds
to either a phase on the tunneling term if Xαβ = (Xβα)∗, or
lossy tunneling if Xαβ = −(Xβα)∗, and a general term may be
decomposed into a combination of the two.

Note also that low-area peaks contribute in proportion
to their area to the value of measured Hamiltonian matrix
element, so finite signal-to-noise ratio is likely not a fundamen-
tally limiting factor in the same way that it would be if one at-
tempted to use many transmission and reflection measurements
to fully invert and extract the lattice Hamiltonian; missing a
small peak makes inverting the Hamiltonian fundamentally
impossible, while it produces errors in spectroscopy of a

50
0 25

0 20
0

ωω ω

FIG. 2. Three site spectroscopy. (a)–(c) Reflection spectra of sites
1, 2, and 3, respectively, of a three-site tight-binding chain, whose
outer sites are at equal energies, while the central site is detuned
[(a), inset]. (d)–(f) Transmission spectra for 1-2, 2-3, and 1-3,
respectively. All spectra are plotted as the absolute value of the
amplitude, and share a common (arbitrary) normalization. The spectra
exhibit a low-energy doublet resulting from second-order coupling
between sites 1 and 3, and an isolated high-energy peak arising from
the central site. (g)–(i) Application of the Hamiltonian estimation
technique of Eq. (4) to the three-site chain, as a function of the
numerical integration range. We fix the lower limit of integration
at −150 MHz and vary the upper limit between −150 MHz and
150 MHz. (g) On-site energy of site 1, converging to within J 2/δω

of − δω/2 once the integration range includes the doublet, and the
rest of the way once the high-energy feature is included. (h) The
tunneling matrix element between sites 1 and 2, converging only once
all spectral features are included. (i) The tunneling matrix element
between sites 1 and 3, which is zero in our model. For (g)–(i) we plot
only the real part of the estimated matrix elements, as the imaginary
part converges less rapidly.

particular matrix element on the order of that peak’s fractional
area.

Particular care must be taken in the calibration of phases
in spectroscopy: Any physical coupler will likely introduce
additional frequency dependent phase variations to the spectra,
arising from the structure of the coupler itself. This prohibits a
high-accuracy calibration of the κc’s, which would necessitate
detuning a single cavity from its neighbors, or removing
the tunnel couplers to its neighbors, so that the cavity’s
frequency and linewidth are directly observable as a single
resonance peak. The phase variation can then be obtained from
the measured reflection spectrum, and subsequently used to
calibrate all other spectra.

As a simple demonstration of this technique, we consider
a three-site tight-binding model, as shown in Fig. 2(a), inset,
where the outer two sites are tuned to frequency ω0 − δω/2,
and the central cite is tuned to frequency ω0 + δω/2; the outer
two sites are coupled to the central cite with a tunneling
energy J . Figures 2(a)–2(f) show computed reflection and
transmission spectra S11, S22, S33, S12, S23, and S13, respec-
tively. As expected the outer two sites hybridize through an
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effective second-neighbor coupling ∼J 2/δω, while the central
site’s resonance is detuned by ∼δω. For δω = 100 MHz,
J = 25 MHz, Fig. 2(g) shows the on-site energy 〈1|H |1〉
extracted via the tomography technique from the preceding
section, as the upper limit of integration is varied. It is apparent
that the site-energy converges to within ∼J 2/δω of the correct
value as soon as the integration region includes the low-energy
doublet, and is further corrected as the region passes across
the isolated (and small) high-energy resonance. To extract
〈1|H |2〉, Fig. 2(h) shows the tomography result as a function of
the upper limit of integration; once all resonances are included,
this value converges to J , as anticipated. Finally, Fig. 2(i)
shows the tunneling matrix element 〈1|H |3〉 as a function of
the upper limit of the integration; for a range that only includes
the doublet, the tomography procedure yields a result propor-
tional to the second-order tunneling rate of J 2/δω (though this
precise value is not obtained: the probed lattice sites are not the
“Wannier functions” of the effective theory once the central
site has been adiabatically eliminated, and thus there are cor-
rections; see Appendix A); once the high-energy resonance is
included, the true tunneling rate of zero is recovered.

B. Band projectors and real-space measurement
of the Chern number

An emerging goal in synthetic topological materials is
to characterize their topological invariants. While the Hall
conductivity is the method of choice in solid state, transport
measurements can be challenging in synthetic systems, par-
ticularly those where the “charge carriers” are bosons rather
than fermions. Furthermore, such systems are typically subject
to both disorder effects, and the impact of finite size and
boundaries, both of which break the translational invariance
necessary for application of the TKNN formula [27] for the
Chern invariant. In a seminal work [28], Kitaev proved that
the Chern number could be computed for a disordered system,
so long as the disorder is small enough that the bands remain
spectrally isolated from one another. In this case, one may
define a projector into band μ with matrix elements between
lattice sites α and β:

P
μ
αβ ≡ 〈α|

⎡
⎣ ∑

n∈ band μ

|n〉〈n|
⎤
⎦|β〉. (6)

If the sites in the bulk of the system are then partitioned
into three nonoverlapping but adjacent regions A,B,C, as in
Fig. 3, the Chern number may be written:

Cμ = 12πi
∑

α∈A,β∈B,γ∈C

(
P

μ
αβP

μ
βγ P μ

γα − P μ
αγ P

μ
γβP

μ
βα

)
. (7)

While the regions A, B, and C must be infinitely large to
ensure precise convergence of the Chern number to the TKNN
invariant defined from the band structure, in practice a region
which is several unit cells (or equivalently magnetic unit cells,
in the case of the Hofstadter model) is sufficient to achieve
reasonable convergence (at the ∼99% level; see Fig. 4(a).
Furthermore, it is essential that A, B, and C avoid the system
edges, as these provide a contribution to Cμ which precisely

FIG. 3. Measuring Chern numbers in real space. To measure the
Chern number of a disordered band in the bulk of a Chern insulator,
a bulk region large compared to the unit cell size (magnetic length
in the Hofstadter model, whose band projector onto an arbitrary bulk
site is shown as gray-scale squares for α = 1

4 ) is partitioned into three
similarly sized regions (red circles, green triangles, and blue squares).
The difference of triple band-projector products red → green → blue
and blue → green → red, summed over all sites in each region, is
equal to the Chern number C/(12πi). There are a number of ways to
spectroscopically measure this projector, discussed in the text.

cancels that of the bulk. This approach may be understood as
a direct measurement of the nonreciprocity of the system, as it
compares A → B → C coupling to C → B → A coupling,
similar to the case in a Faraday isolator [29]. As shown in
Fig. 4(b), as long as the disorder is an order of magnitude
smaller than the band spacing, Chern number quantization is
preserved.

The challenge then is to measure the band projector using
the spectroscopic tools at our disposal. We suggest three
approaches as follows.

(1) Consider the integral

M
μ
αβ ≡ Pr

⎡
⎣ i√

κα
c κ

β
c

∫
ω ∈ band μ

dω Sαβ(ω)

⎤
⎦

= Pr

[∫
dω〈α| 1

ω − H
|β〉

]

= Pr

[∫
dω

∑
n

〈α|n〉〈n|β〉
ω − εn

]
.

Assuming good band flatness bandwidth
band spacing � 1 [30,31],

we can integrate across band μ without accruing a
substantial contribution from the other bands, yielding
M

μ
αβ ≈ iπ〈α|[∑n ∈ band μ |n〉〈n|]|β〉. Therefore, P

μ
αβ ≈
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FIG. 4. Technical limitations of Chern number measurement. (a) Numerically computed dependence of the spectroscopically extracted
Chern number of the lowest band upon region radius for an array of lossless resonators coupled in an α = 1

4 Hofstadter configuration. Once
the radius exceeds a magnetic length ( 1

α
= 4 sites), the measured value approaches the translationally invariant TKNN value C = 1; it drops

at the system edge (gray bar). (b) Numerically computed Chern number vs the rms variation in on-site energy. The error band shows the
variation over disorder realizations; the Chern number is robust to disorder up to ∼0.1 × J , comparable to the band splitting of the model.
(c) Numerically computed Chern number vs resonator linewidth (in units of tunneling energy), using a frequency integration of the two port
measurement Sαβ (ω), as described in the text, for a region with five site radius. A loss rate �0.03 × tunneling provides a fidelity �0.95.
(d)–(f) Identical calculations for the two middle bands of the α = 1

4 Hofstadter lattice, which touch at Dirac points and thus must be analyzed
together. The extracted Chern number C = −2 is consistent with the TKNN formula.

1
iπ

M
μ
αβ . It is thus sufficient to integrate the properly

normalized Sαβ(ω) over a single energy band μ to extract the
matrix element of the projector onto band μ between sites
α and β. This integral is only logarithmically sensitive to
the limits of integration, so precise cancellation of the tail
contributions from finite linewidth and imperfect flatness are
possible at near unity fidelities.

(2) Consider a continuous-wave excitation at site β within
the bulk of the lattice, at an energy h̄ωo detuned from band μ

by an amount large compared to its width, but small compared
with its detuning to other bands. Generically, response at site α

is given by Sαβ(ωo) = −i

√
κα

c κ
β
c

∑
n

〈α|n〉〈n|β〉
ωo−εn

. Imposing that
the detuning to all other bands is large, their contribution may
be discarded. If we can simultaneously assume that ωo − εn =
�n is approximately constant for all n in band μ, �n = �,

then we have Sαβ(ωo) ≈ − i
√

κα
c κ

β
c

�

∑
n∈ band μ〈α|n〉〈n|β〉, and

thus P
μ
αβ ≈ i�√

κα
c κ

β
c

Sαβ(ωo).

(3) Consider an excitation pulse at site β within the bulk
of the lattice, with a well-defined carrier frequency centered
on band μ, and temporally short wave packet (Gaussian, for
maximum spectral efficiency). If this pulse is sufficiently short
in time to provide a spectral bandwidth larger than band μ,
while simultaneously long enough to not excite other bands,
the transmitted response of the system at site α immediately
after the pulse will reflect the matrix element of the projector
into band μ between sites α and β. If the pulse is too spectrally
narrow compared with the bandwidth of band μ, the excitation

will evolve spatially before the pulse has terminated, and the
projector cannot be extracted.

The second and third approaches impose much more
stringent requirements on the band flatness than the first, and
as such will not work well for Hofstadter models at high flux
per plaquette.

In any of these approaches, it should be possible, in
the low-disorder limit, to make use of the approximate
translational invariance from one magnetic unit cell to the
next to reduce the number of measurements from ∼N2, where
N is the number of sites in one of the regions A,B,C, to
∼q × N , where q is the number of sites within the magnetic
unit cell (equal to 4 for an α = 1

4 Hofstadter lattice). Because
N ∼ q2, the total number of two-point spectra required to
extract the Chern number is thus ∼q3.

A more fundamental limit comes from the finite lifetime of
a photon in the lattice (due to absorption, for example), which
may cause the photon to be lost before it can explore enough
of the lattice to provide a stable Chern number Cμ. As shown
in Fig. 4(c), the Chern number can be measured with fidelity
above 95% so long as the tunneling rate is 30× the photon
decay rate, for the lowest band of an α = 1

4 Hofstadter model,
in spite of the substantial band curvature. The requirement on
tunneling compared to decay is consistent with the particle
needing time to explore an area whose radius is the magnetic
length ∼q, to be sensitive to the Chern number. Further,
Figs. 4(d)–4(f) demonstrate that this technique is capable of
extracting negative Chern numbers, as well as Chern numbers
with magnitude larger than one.
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III. OUTLOOK

We have provided a tool set for characterizing photonic
lattices using one- and two- point measurements to resolve ma-
trix elements of the Hamiltonian. We have further introduced
a recipe to extract the band projector, allowing direct mea-
surement of Chern number in real space. While the proposed
approach is designed for photonic lattices where network an-
alyzer technology is commercially available, it can be applied
much more broadly (see Appendix D) to explore properties
of optical resonators [32] and resonator arrays [33], coupled
quantum dots, mechanical and acoustical systems [34–38],
and potentially even electronic systems by reinterpreting STM
measurements. It should further be possible to measure Chern
invariants of the energy “bands” of topological quasiperiodic
structures [39], where extremely low-loss materials and large
measurement areas will be necessary to overcome the small
band gaps and large quasicrystalline unit cells.
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APPENDIX A: COUPLING TO MULTIPLE SITES

In practice, one must be careful to avoid accidental
direct coupling to multiple lattice sites when performing the
spectroscopy of a tunnel-coupled lattice system. Such direct
couplings arise naturally because in any real lattice the Wannier
functions are not perfectly localized to individual lattice sites.
This nonlocal tail means while the in and out couplers are
physically connected only to individual sites, they will drive
and measure multiple lattice sites.

To understand the consequences of this, consider two
degenerate sites at energy ω0, |a〉 and |b〉, that are tunnel
coupled with an energy J , such that the Hamiltonian in the one-
excitation manifold is H0 = ω0(|a〉〈a| + |b〉〈b|) − J (|a〉〈b| +
|b〉〈a|). Now we drive with a coupler |μ〉 ≡ cos ε|a〉 + sin ε|b〉
(predominantly connected to site a), and measure with coupler
|ν〉 ≡ cos ε|b〉 + sin ε|a〉 (predominantly connected to site b),
corresponding to a Wannier overlap of ∼ε2 on adjacent sites.

We then measure Sμμ(ω), Sνν(ω), and Sμν(ω),
and attempt to extract the Hamiltonian matrix ele-
ments. Applying the spectroscopy techniques from the
text yields 〈μ|H0|μ〉Spec = 〈ν|H0|ν〉Spec = ω0 − J sin 2ε and
〈μ|H0|ν〉Spec = −J + (ω0 − iW/π ) sin 2ε. We anticipated
that Sμμ(ω) and Sνν(ω) would provide on-site energies, while
Sμν(ω) was to provide the tunneling energy. In reality, we find
that the on-site energy experiences a small correction from
the tunneling energy, which, in the tight-binding limit (where
ε � 1), is almost certainly negligible. By contrast, the error
in the tunneling energy may be much larger than J itself if
ε � J

ω0
.

To circumvent this systematic issue, the measurements of
〈α|H |β〉 may be reorthogonalized using a basis transformation
based upon the matrix

∫
dω Sαβ(ω). A simpler solution is to

shift all frequencies by some constant 
∼ ω0, and then employ
S̃μν(ω) = Sμν(ω − 
) for all resolvent calculations. We are
then measuring matrix elements of H0 − 1
, and thus the
error in the measurement of J will be of order (ω0 − 
) sin ε �
J sin ε, and thus small.

APPENDIX B: BRUTE-FORCE INVERSION OF A 1D
CHAIN THROUGH A REFLECTION MEASUREMENT

Here we summarize an existing brute-force approach [12] to
extracting the properties of a 1D tight-binding chain, using
only reflection measurements off of its end. This should be
compared with the approach put forth in this work, which
extracts a single Hamiltonian matrix element from each
measured spectrum, but with superior numerical stability.

Consider a 1D chain characterized entirely by nearest-
neighbor tunneling matrix elements tμ between sites μ and
μ + 1, and on-site energy of site μ, δμ:

H1D =
∑

μ

[δμa†
μaμ − (tμa

†
μ+1aμ + t∗μa†

μaμ+1)]. (B1)

For n lattice sites, this system has 2n − 1 unknowns,
coming from the n on-site energies, and n − 1 tunneling
matrix elements; it is thus conceivable that measuring the
n eigenmode energies, and n spectral weights (the latter
providing n − 1 linearly independent pieces of information,
due to normalization), via a reflection measurement off of
a single lattice site, would be enough to extract all system
parameters. Symmetry precludes this unless the probed site
is at the end of the 1D chain, as proven previously in
Burgarth et al. [12].

The prescription we summarize [12] allows extraction of
all on-site energies δμ and tunneling matrix elements tμ,
from measured resonance frequencies ωj and their spectral

weights ψ
j

μ=0, normalized such that
∑j |ψj

0 |2 = 1. With
measurements only at one end of the chain (μ = 0), we obtain
all relevant lattice parameters:

δμ =
∑

j

ωj
∣∣ψj

μ−1

∣∣2
,

|tμ| =
√∑

j

[
(ωj − δμ)ψj

μ−1 − |tμ−1|ψj

μ−2

]2
,

ψj
μ = 1

|tμ|
[
ψ

j

μ−1(ωj − δμ) − |tμ−1|ψj

μ−2

]
. (B2)

Here we have implicitly assumed ψ
j

μ=−1 = 0 for all j .
Raised, Roman indices refer to eigenmodes, while lowered,
Greek indices refer to sites, counted from the probed end of
the chain. Note that the expression for δμ=0 reduces to the
results from the main text.

APPENDIX C: EXTRACTING COUPLING STRENGTH

In this appendix we derive the following relation, employed
in the text:

∫
Sαα(ω)dω = πκα

c ; we follow the procedure used

062120-6



HAMILTONIAN TOMOGRAPHY OF PHOTONIC LATTICES PHYSICAL REVIEW A 95, 062120 (2017)

in the text to derive a related expression for
∫

ωSαβ(ω)dω,∫
Sαα(ω)dω = −iκα

c

∫
〈α| 1

ω − H
|α〉dω

= −iκα
c

∫
〈α|

∑
μ

|μ〉〈μ|
ω − εμ

|α〉dω

= −iκα
c 〈α|

∑
μ

[∫ |μ〉〈μ|
ω − εμ

dω

]
|α〉

= −iκα
c 〈α|α〉 arctan x|+∞

−∞
= πκα

c . (C1)

To quantify the impact of finite integration region and
imperfect centering of said region on the resonances, we
evaluate the arc tangent over an interval of integration
[ω0 − 
 − δ,ω0 + 
 − δ], where ω0 is the center frequency
of a particular resonance, 2
 is the width of the integration
region, and δ is the centering error. This leads to a result of
πκα

c (1 + �
π


− i 2δ
π


), where � is the width of the resonance
under consideration. In short, centering errors do not impact
the value of κα

c at lowest order, so long as the imaginary
part of the κα

c extracted from this calculation is simply
discarded.

APPENDIX D: POTENTIAL
EXPERIMENTAL APPLICATIONS

Our technique is applicable to a wide array of experimental
platforms; here we briefly explore the benefits and difficulties
inherent to each.

1. Microwave resonator arrays

An array of tunnel-coupled microwave resonators provide
a near-ideal realization of the models that we would like to
tomographically characterize using the techniques developed
in this work. These resonator arrays have now been demon-
strated in the strongly interacting [40] and ultralow disorder
[10] regimes, though not yet both simultaneously; furthermore,
there are proposals [41] and, recently, demonstrations [42] of
tight-binding microwave Chern insulators in resonator arrays.

The strength of microwave resonator arrays is the ability
to individually address the chosen lattice sites by simply
moving the probes [43]; this affords spatially and energetically
(or temporally) localized measurement of lattice properties.
Proper phase and amplitude calibration of the network analyzer
permits complete reconstruction of the complex two-site
transfer function.

The primary challenge faced in microwave setups is that
the Wannier orbitals (defining the tight-binding basis) may
not be entirely localized to individual lattice sites, and so
site-localized probes are likely to couple in a complicated way
to the tight-binding sites. This effect may be quantified by

noting that, in the tight-binding basis,
∫

all bands Sαβ (ω)dω =
δαβ ; off-diagonal contributions indicate nonlocal Wannier
wave functions.

2. Mechanical resonator arrays

Recent experiments with arrays of coupled mechanical os-
cillators [34–38] suggest another platform where our approach
could be employed. The ability to locally drive the systems and,
in most cases, measure the response at all sites using real-time
video, makes extraction of Sαβ(ω) straightforward.

A challenge is that these systems often do not have
much separation between positive- and negative- energy
eigenmodes, in units of their tunnel coupling (J ∼ ω0); this
means that a tight-binding model is often a far-from-ideal
description of the dynamics in the system, and the basic
approach of this work breaks down. Furthermore, the relatively
low quality factor of the mechanical oscillators employed
means that excitations do not typically propagate very far
within their lifetimes, limiting efficacy of the band-projector
and Chern-number measurement prescriptions. On a practical
note, the extraordinarily long time scales of such experiments
(�1 s to reach steady state [35]) means that the time required to
site- and energy- resolved spectroscopy could be prohibitive.

3. Near degenerate multimode optical resonators

The many transverse modes of an optical resonator (for
a fixed longitudinal mode number) provide a Floquet-like
implementation of a 2D quadratic Hamiltonian [44]. This
analogy is quite familiar from studies of exciton polariton
condensates [45] and photonic BECs [46], but has recently
been harnessed to generate Landau levels for optical photons
[32]. Typical resonator finesses of �104 allow for many
classical cyclotron orbits within the particle lifetime.

While this is a continuum system, the Chern number
formula still applies to its Landau levels, so long as the spacing
between “sample points” (akin to lattice sites in the periodic
system) is small compared with the magnetic length. The
ability to image the entire transmitted resonator field on a
CCD, combined with broadband tunability of the probing laser
and availability of spatial light modulators to inject light at an
arbitrary position, will make measurement of band projectors
(in this case, Landau-level projectors) straightforward. The
challenge will be extraction of the phase of the transmitted
optical field, which we propose to do by interfering the
transmitted resonator field with a reference light field, and
using the interference pattern to holographically reconstruct
the phase of the projector.

Another potential complication is that the mirror transmis-
sion itself may vary spatially, akin to a site-dependent κα

c in the
language of the paper. This will then need to be independently
calibrated either directly (with a uniform laser beam incident
on the out-coupling mirror) or using a technique akin to Eq. (5).
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