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A dissipatively stabilized Mott insulator 
of photons
ruichao Ma1*, Brendan Saxberg1, clai Owens1, Nelson leung1, Yao lu1, Jonathan Simon1 & David i. Schuster1

Superconducting circuits are a competitive platform for quantum computation because they offer controllability, long 
coherence times and strong interactions—properties that are essential for the study of quantum materials comprising 
microwave photons. However, intrinsic photon losses in these circuits hinder the realization of quantum many-body 
phases. Here we use superconducting circuits to explore strongly correlated quantum matter by building a Bose–Hubbard 
lattice for photons in the strongly interacting regime. We develop a versatile method for dissipative preparation of 
incompressible many-body phases through reservoir engineering and apply it to our system to stabilize a Mott insulator 
of photons against losses. Site- and time-resolved readout of the lattice allows us to investigate the microscopic details of 
the thermalization process through the dynamics of defect propagation and removal in the Mott phase. Our experiments 
demonstrate the power of superconducting circuits for studying strongly correlated matter in both coherent and 
engineered dissipative settings. In conjunction with recently demonstrated superconducting microwave Chern insulators, 
we expect that our approach will enable the exploration of topologically ordered phases of matter.

The richness of quantum materials originates from the competition 
between quantum fluctuations arising from strong interactions, 
motional dynamics and the topology of the system. The results of 
this competition manifest as strong correlations and entanglement, 
which are observed both in the equilibrium ground state and in non- 
equilibrium dynamical evolution. In most condensed matter systems, 
efficient thermalization to a cold reservoir that has a well-defined 
chemical potential leads naturally to the preparation of the system 
near its many-body ground state, so understanding of the path to 
strong correlations—how particles order themselves under the system 
Hamiltonian—is limited.

Synthetic quantum materials provide an opportunity to investigate 
this paradigm. Built from highly coherent constituents with precisely 
controlled and tunable interactions and dynamics, such materials have 
emerged as ideal platforms to explore quantum correlations, owing to 
their slowed dynamics and in high-resolution-imaging capabilities1,2. 
Low-entropy strongly correlated states are typically reached adiabati-
cally in a many-body analogue of the Landau–Zener process by slowly 
tuning the system Hamiltonian through a quantum phase transition 
while the system is isolated from the environment, starting with a 
low-entropy state prepared in a weakly interacting or weakly correlated 
regime. As a prominent example from atomic physics, laser and evapo-
rative cooling remove entropy from weakly interacting atomic gases to 
create Bose–Einstein condensates3,4, which are then used to adiabati-
cally reach phases such as Mott insulators5, quantum magnets6,7 and 
potentially even topologically ordered states8. These coherent isolated 
systems have prompted studies of relaxation in closed quantum sys-
tems, including observation of pre-thermalization9, many-body locali-
zation10 and quantum self-thermalization11. Nonetheless, the challenge 
in such a ‘cool, then adiabatically evolve’ approach is the competition 
between the limited coherence time and the adiabatic criterion at the 
smallest many-body gaps, which shrink in the quantum critical region 
and often vanish at topological phase transitions. This suggests that 
dissipative stabilization of many-body states, which works directly in 
the strongly correlated phase with a potentially larger many-body gap, 

is a promising alternative approach. So far, though, thermalization of 
synthetic matter into strongly correlated phases has remained largely 
unexplored.

Recently, photonic systems have emerged as a platform of interest 
for the exploration of synthetic quantum matter12–15. In particular, 
superconducting circuits have been used to study many-body physics 
of microwave photons, taking advantage of the individual control of 
strongly interacting qubits in these circuits. This approach builds on the 
circuit quantum electrodynamics toolbox developed for quantum com-
puting16 and has been applied to digital simulation of spin models17,  
fermionic dynamics18 and quantum chemistry19,20. Equally of interest  
are analogue simulation experiments in these circuits, studying 
low-disorder lattices21, low-loss synthetic gauge fields22,23, dissipative 
lattices24,25 and many-body localization in disorder potentials26. In 
the circuit platform, the particles that populate the system are micro-
wave photons, which are inevitably subject to intrinsic particle losses. 
Without an imposed chemical potential, the photonic system eventually 
decays to the vacuum state, naturally posing the challenge of how to 
achieve strongly correlated matter in the absence of particle-number 
conservation. To this end, dissipative preparation and manipulation 
of quantum states via tailored reservoirs have become an active area 
of research both theoretically and experimentally, in which dissipative 
coupling to the environment serves as a resource27–29. Such engineered  
dissipation has been used to stabilize entangled states of ions30,  
single-qubit states31 and entangled two-qubit states32, and holds promise  
for autonomous quantum error correction33–35.

Here, we present a circuit platform for the exploration of quantum 
matter composed of strongly interacting microwave photons and use 
it to demonstrate direct dissipative stabilization of a strongly correlated 
phase of photons. Our scheme36 builds on and simplifies previous pro-
posals37–40, and is agnostic to the target phase as long as it is incom-
pressible and exhibits mobile quasi-holes.

To understand the protocol, illustrated in Fig. 1, we consider a target 
ground state comprising N0 photons that is spectrally gapped from 
excited states with the same particle number by the many-body gap Δmb.  
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Additionally, this state must be incompressible with respect to change  
in particle number, in the sense that inserting each of the first N0  
particles requires about the same energy, whereas adding the (N0 + 1)th 
particle requires an energy that differs by the compressibility gap Δcomp. 
Using a combination of coherent drive and engineered dissipation, we 
irreversibly inject particles into the system near the energy (per parti-
cle) of the target state. As long as the target state has good wavefunction 
overlap with both the initial state (for example, the vacuum N = 0) and 
the locally injected particles, the system will be continuously filled until 
it reaches the target state, at which point further addition of particles is 
energetically suppressed by Δcomp. Generically, the injected particles 
will order in the strongly correlated phase under the influence of the 
underlying coherent interactions, geometries or topological properties 
of the many-body system. Population of other excited states is highly 
suppressed by spectral gaps and further made short-lived by engineer-
ing an energy-dependent loss that couples only excited manifolds to 
the environment. The balance of particle injection and loss that is built 
into the system provides the autonomous feedback that populates the 
target many-body state, stabilizing it against intrinsic photon loss or 
accidental excitation.

We realize irreversible particle insertion by coherent injection of 
pairs of particles into a ‘collider’, in which they undergo elastic colli-
sions wherein one particle dissipates into an engineered cold reservoir 
while the other enters the many-body system; loss of the former particle 
makes this otherwise coherent process irreversible, permanently insert-
ing the latter particle into the system. Previous experiments demon-
strating ‘optical pumping’ into spectrally resolved few-body states41 
relied upon excited-state symmetry to achieve state-dependent dissi-
pation; here we use energy-dependent photon loss to shed entropy—a 
new approach with broad applicability.

First, we introduce and characterize the photonic Bose–Hubbard 
circuit; second, we describe and explore an isolated dissipative stabilizer 
for a single lattice site; and finally we couple the stabilizer to the Bose–
Hubbard circuit, realize the stabilization of a Mott insulating phase, and 
investigate the fate of defects in the stabilized Mott phase.

Building a Bose–Hubbard circuit
Figure 2a shows our circuit, which realizes a one-dimensional Bose–
Hubbard lattice for microwave photons, with a Hamiltonian given by:
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Here ai
† is the bosonic creation operator for a photon on site i, Jij is the 

nearest-neighbour tunnelling rate, U is the on-site interaction, εi is the 
local site energy and ħ is the reduced Planck constant. Eight transmon 
qubits42 constitute the lattice sites of the one-dimensional lattice. Each 
transmon acts as a nonlinear resonator, where a Josephson junction 
acts as a nonlinear inductor with Josephson energy EJ, in parallel with 
a cross-shaped metal capacitor with charging energy Ec = e2/(2CΣ), 
where e is the electron charge and CΣ the total capacitance of the trans-
mon. The lattice site has a frequency for the addition of only one pho-
ton of ω= ≈ε E E801 J c . The addition of a second photon requires a 
different amount of energy, with the difference given by the anhar-
monicity of the transmon, U = ω12 − ω01 ≈ −Ec. Thus U is the effective 
two-body on-site interaction for photons on a lattice site. By using 
tunable transmons where two junctions form a superconducting quan-
tum interference device (SQUID), we control the effective EJ and thus 
the site energy by varying the magnetic flux through the SQUID loop, 
which is achieved by applying currents to individual galvanically cou-
pled flux-bias lines. Neighbouring lattice sites are capacitively coupled 
to one another, producing fixed nearest-neighbour tunnelling J.

Each lattice site (transmon) is capacitively coupled to an off-resonant 
coplanar waveguide readout resonator, enabling site-by-site readout of 
photon number occupation via the dispersive shift of the resonator. The 
readout resonators are capacitively coupled to a common transmission 
line to allow simultaneous readout of multiple lattice sites and thereby 

site-resolved microscopy of the lattice. The main contributions to the 
readout uncertainty are Landau–Zener transfers between neighbouring 
sites during the ramp to the readout energy and errors from the disper-
sive readout; see Supplementary Information section E. The readout 
transmission line also enables charge excitation of all lattice sites.

Site Q1, at one end of the lattice, is coupled to another resonator that 
serves as a narrow-band reservoir used for the dissipative stabilization. 
The reservoir is tunnel-coupled to Q1 with JR1 = 2π × 16.3 MHz and 
has a linewidth of κR = 2π × 9.5 MHz, obtained by coupling to the 
50-Ω environment of the readout transmission line. An additional 
drive line is capacitively coupled to Q1 at the end of the lattice to 
allow direct charge excitation of only Q1, which is used for dissipative 
stabilization.

We use transmon qubits with a negative anharmonicity of 
U ≈ 2π × −255 MHz, which corresponds to strong attractive inter-
actions, and an on-site frequency tuning range of ω01 ≈ 2π × (3.5–
6.0) GHz with a tuning bandwidth of 250 MHz. We measure nearly 
uniform tunnelling rates of about 2π × 6.25 MHz for J23–J78 and 
J12 = 2π × 12.5 MHz (J12 is designed to optimize the dissipative stabi-
lization). Beyond-nearest-neighbour tunnelling due to residual capac-
itance between qubits is suppressed by an order of magnitude. The 
excited-state structure of the transmon gives rise to effective on-site 
multi-body interaction terms that are irrelevant for the experiments 
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Fig. 1 | Dissipative stabilization of incompressible many-body states. 
a, Entropy and particle flow between the engineered environment and 
the quantum many-body system. Circles indicate single-particle states 
of the system; occupied and empty states are shown in black and white, 
respectively, with grey indicating dissipative depopulation. b, Energy 
required to inject additional photons (∂E/∂N) as a function of number 
of photons (N) in the system. Photons are continuously and irreversibly 
added to the system in a narrow energy-band (blue) that connects the 
initial vacuum to the desired target state (star) via intermediate states 
(black region). This process stops when the system is fully filled at photon 
number N0 owing to the presence of the compressibility gap Δcomp, 
thereby preparing and stabilizing the gapped (by energy Δmb) many-body 
state in which the photons self-organize into a strongly correlated phase 
determined by the underlying Hamiltonian. The energy-dependent-loss 
channels (red) ensure that all excitations into higher-energy states (grey 
region) are short-lived.
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presented here, in which the on-site occupancies are predominantly 
confined to n = 0, 1, 2.

We measure single-photon relaxation times of T1 ≈ 30 μs and 
dephasing times of µ≈∗T 3 s2  for the lattice sites (see Supplementary 
Information section F), corresponding to a single-photon loss  
rate of Γ1  =  1/T1  ≈  2π  ×  5  kHz and on-site dephasing rate 
Γ = / ≈ π ×∗T1 2 50kHzd 2 . We have thus realized a highly coherent pho-
tonic Bose–Hubbard lattice in the strongly interacting regime 
∣ ∣ Γ Γ� �U J ,1 d, as shown in Fig. 2b. The on-site frequency disorder 

is another crucial characteristic that should be compared with the other 
energy scales of the lattice: tunnelling, interaction and, more generally, 
the many-body gap of the state being studied. We achieve on-site dis-
order δε = δω01 ≲ 2π × 100 kHz, well below both J and U, where U is 
also the approximate excitation gap of the Mott state in the strongly 
interacting regime5. Currently, dephasing Γd is limited by electronic 
noise on the flux bias whereas disorder δε is limited by precision of the 
flux-bias calibration (see Supplementary Information section C);  
neither affects the present experiments.

Dissipative stabilization of a single lattice site
Before examining the more complicated challenge of stabilizing a Bose–
Hubbard chain, we consider the following simpler question: how do 
we stabilize a single lattice site with exactly one photon in the presence 
of intrinsic single-photon loss? A continuous coherent drive at ω01 can 
at best stabilize the site with an average single-excitation probability of 
P1 = 0.5 in the steady state, where the n = 2 state remains unpopulated 
because strong interactions make the drive off-resonant for the 1 → 2 
transition. To stabilize the site in the n = 1 state, one could implement 
a discrete feedback scheme in which the state of the site is continuously 
monitored, and whenever the occupation decays from n = 1 to n = 0, a 
resonant π pulse injects a single photon into the site. Such active feed-
back requires constant high-efficiency detection and fast classical con-
trol and works only for simple separable states. Here we explore ways 
to implement such stabilization autonomously by using an engineered 
reservoir. This autonomous approach has the required feedback built 
into the driven–dissipative Hamiltonian, enabling the preparation of 
many-body states with strong and even unknown correlations.

This idea of autonomous stabilization is akin to inverting atoms in 
laser- or optical-pumping schemes that are prevalent in atomic physics: 
a coherent optical field continuously drives an atom from the ground 
state to a short-lived excited state that rapidly decays to a long-lived tar-
get state. In the transmon, this means making one photon substantially 
shorter-lived than the other; to this end, it is helpful to be able to distin-
guish the two photons, for example, by different spatial wavefunctions 
or different energies. We take the latter route, harnessing on-site inter-
actions and elastic site-changing collisions to allow the coherent field 
to add pairs of photons with different energies and the narrow-band 
reservoir to provide an energy-dependent loss into which the entropy 
of the lattice site is shed, stabilizing the site into the n = 1 state.

We implement two different schemes for stabilizing a single lattice 
site: the ‘one-transmon’ and ‘two-transmon’ schemes. In the one- 
transmon scheme (Fig. 3a), which is akin to that described in ref. 43, we 
use the on-site n = 2 state and drive a two-photon transition from n = 0 
to n = 2 at frequency ωd = (ω01 + ω12)/2 and single-photon Rabi rate 
Ωd, which is off-resonant with respect to the n = 1 state by U/2. The 
2 → 1 photon loss is realized by coupling the stabilized site to the lossy 
site (R) at frequency ωR = ω21. The optimal stabilization fidelity P1 (the 
probability of having on-site photon occupancy n = 1) arises from a 
competition between the coherent pumping rate and various loss pro-
cesses: at low pumping rates, the photons are not injected fast enough 
to compete with the one-photon loss Γ1; at high pumping rates, the 
lossy site cannot shed the excess photons fast enough and the fidelity 
is limited by off-resonant coherent admixtures of zero- and two-photon 
states. The theoretically predicted single-site infidelity (1 − P1) for opti-
mal lossy channel and driving parameters scales as36 ∣ ∣Γ / /U( )1

1 2. The 
sign of the interaction U does not affect the physics of the experiments 
described in this paper, because the engineered reservoir is narrow- 
band and the lattice remains in the strongly interacting regime.

The measured steady-state stabilization fidelity using the one- 
transmon scheme is shown in Fig. 3b as a function of the driving  
frequency and strength. Driving the stabilized site resonantly at 
ωd ≈ ω01 = 2π × 4.738 GHz gives an on-site population that saturates 
at P1 ≤ 0.5, as expected. Near ωd = (ω01 + ω12)/2 = 2π × 4.610 GHz 
we observe single-site stabilization and the fidelity increases with driv-
ing strength until it reaches an optimal value of P1 = 0.81 ± 0.01 at 
Ωd = 2π × 28 MHz, after which the fidelity drops. Error bars in the 
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Fig. 2 | Building a Bose–Hubbard lattice in a superconducting circuit. 
a, Optical image of the device. Superconducting transmon qubits (Q1–Q8; 
yellow) constitute lattice sites with energies tunable by individual flux-
bias lines. Capacitive coupling between transmons leads to tunnelling J, 
and transmon anharmonicity gives the on-site interaction U. Readout 
resonators (green) enable site-resolved occupancy measurement via a 
common transmission line. A lossy resonator (red) acts as a cold reservoir 
for the stabilization process. Charge excitation of lattice sites is realized 
by driving the readout transmission line; a stabilization line (blue) drives 
only site Q1. Inset, close-up scanning electron microscope image of the 
transmon qubit, showing the bottom of the cross-shaped capacitor pad 
and the SQUID loop. See Supplementary Information for details of the 
sample parameters and fabrication (section A) and the measurement setup 
(section B). b, Measured on-site interactions U, tunnelling rates J, single-
photon losses Γ1, dephasing rate Γd and on-site disorder δε, demonstrating 
a high-coherence, low-disorder Bose–Hubbard lattice in the strongly 
interacting regime. Uncertainties in lattice parameters are small compared 
to site-to-site variations; details in Supplementary Information section F. 
c, The corresponding Bose–Hubbard chain (light grey), coupled at one 
end to the dissipative stabilizer (dark grey) with coupling Jc. Here we show 
an implementation of the stabilizer using the reservoir (red) and only one 
transmon (blue).
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reported fidelities indicate systematic uncertainties at 90% confidence 
intervals; statistical uncertainties are small, with the standard deviation 
of the mean being less than 1% (see Supplementary Information sec-
tion E.3). The split peaks result from resonant coupling between the 
lossy resonator and the stabilized site, ωR = ω12, giving a frequency 
splitting of ≈ π ×J2 2 23MHzR1  when driving the two-photon tran-
sition. The measured data at the optimal Ωd are plotted in the vertical 
panel, showing quantitative agreement with a parameter-free numerical 
model (see Supplementary Information section G). The observed  
stabilization fidelity is primarily limited by thermal population in  
the cold reservoir = .n 0 075th

R , which re-enters the stabilized site (see 
Supplementary Information section F.4). In Fig. 3c we show the filling 
dynamics of the stabilization process by plotting the on-site occupancy 
of the stabilized site versus the duration of the stabilization drive with 
the optimal driving parameters (star and arrow in Fig. 3b). The single 
site is filled in about 0.8 μs (with a fitted exponential time constant of 
0.19 μs), in agreement with numerical simulations. The finite P1 at time 
t = 0 arises from the finite qubit temperature in the absence of 
driving.

In the two-transmon scheme, we use two transmon lattice sites  
(the ‘stabilized site’, S and the ‘collision site’, C) and the lossy resonator 
(the reservoir, R) in a Wannier–Stark ladder configuration (Fig. 3d). 
The middle collision site is placed energetically between the stabilized 

and the reservoir sites, detuned from each by Δ, allowing us to drive 
the system at the collision site frequency ω01

C and induce elastic colli-
sions that put one photon into the stabilized site and one into the lossy 
resonator ω ω ω× → +(2 )01

C
01
S

R . The photon in the reservoir site is 
quickly lost, leaving the stabilized site in the n = 1 state. This scheme 
resembles evaporative cooling used in ultracold-atom experiments, in 
which a radiofrequency knife in a magnetic trap provides an energy- 
dependent loss at the edge of a quantum gas, with elastic collisions 
causing one particle to gain energy and spill out of the trap while the 
other particle is cooled3. Compared to the one-transmon scheme, the 
two-transmon scheme provides an additional degree of freedom,  
making it possible to separate the effective pumping rate from the 
detuning, thus enabling better stabilization performance where  
the optimal infidelity scales as36 ∣ ∣Γ / /U( )1

2 3. In addition, the stabilized 
site is not driven directly in the two-transmon scheme, thus avoiding 
infidelities from off-resonant population of higher transmon levels.

The measured steady-state fidelity of the stabilized site in the 
two-transmon scheme is shown in Fig. 3e with Δ = 2π × 100 MHz, 
chosen for optimal fidelity. The expected stabilization peak at the  
collision-site frequency ω ω ω Δ= = −d 01

C
01
S  is observed, accompanied 

by other features with high P1 from higher-order collision processes44 
(see Supplementary Information section G.1). The measured optimal 
single-site stabilizer fidelity is = . − .

+ .P 0 891 0 01
0 04 at Ωd = 2π × 60 MHz and 
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Fig. 3 | Dissipative stabilization of a single lattice site. a, One-transmon 
scheme. We drive the two-photon transition 0 → 2 at ωd = ω02/2, off-
resonant with respect to the n = 1 state by U/2. The 1 → 2 transition is 
resonant with the reservoir (linewidth κR) at ωR = ω21 to enhance Γ2→1. 
This stabilizes the site in the n = 1 state (linewidth Γ1, grey shading). The 
dashed black line indicates the energy of n = 2 without the interaction U. 
b, Measured single-site stabilizer fidelity. Left, stabilizer fidelity, P1, versus 
driving frequency, ωd, and strength, Ωd, after a drive duration of 3 μs. The 
optimal observed fidelity is 0.8 ± 0.01 for the one-transmon scheme. 
Right, measured fidelities (‘Exp.’) at the optimal Ωd compared to numerical 
simulations (‘Sim.’), showing quantitative agreement. c, Stabilizer filling 
dynamics. Shown is the occupancy of the stabilized site versus the 
stabilization time at optimal parameters (star and arrow in b). d, Two-
transmon scheme. Two-transmon sites and the reservoir configured in a 

ladder (with detuning Δ). Charge-driving at the collision-site frequency 
injects pairs of photons, which collide elastically and split, with one 
dissipating in the reservoir and the other being irreversibly injected into 
the stabilized site. e, As in b, but for the two-transmon scheme. The 
optimal observed fidelity for the two-transmon scheme is = . − .

+ .P 0 891 0 01
0 04. 

Optimal fidelities in b and e are both limited predominantly by reservoir 
thermal population. f, As in c, but for the two-transmon scheme. The 
occupancy of the stabilized site is shown versus the stabilization time at 
optimal parameters (star and arrow in e). All data presented in the paper 
are averages of about 5,000–8,000 independent experimental runs 
performed at a repetition rate of 4 kHz. For details of the experimental 
sequence, see Supplementary Information section D. Typical error bars 
near optimal parameters are −

+
1%
2%, dominated by readout systematics.
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ωd = 2π × 4.555 GHz. Both the measured steady-state fidelity and the 
stabilizer dynamics (Fig. 3f) are in quantitative agreement with numer-
ical simulation, with the highest observed fidelity primarily limited  
by reservoir thermal population. We note that compared to the 
one-transmon scheme, the two-transmon scheme yields higher  
fidelities and does so over a broader parameter range (for example, the 
ω ω Δ≈ −d 01

S  peak at higher Ωd); it is thus better suited to stabilize  
many-body states, in which rapid refilling over a finite density of states 
is required, as described in the next section.

Stabilization of a Mott insulator
Having demonstrated our ability to stabilize a lattice site with a 
single photon, we now use it to stabilize many-body states in the 
Bose–Hubbard chain. The single stabilized site acts as a spectrally 
narrow-band photon source that is continuously replenished. Photons 
from this site sequentially tunnel into, and gradually fill, the many-
body system, until the addition of further photons requires an energy 
different from that of the source, resulting in ordering of the photons by 
their strong coherent interaction into a Mott insulator with near-perfect 
site-to-site particle-number correlation in the Hubbard chain5.

For this stabilization method to work, the target phase must satisfy 
certain conditions, illustrated for the current system in Fig. 4a. The 
phase should be incompressible with respect to particle addition36: 
Once the target state is reached, the stabilizer should be unable to inject 
additional photons into the system; at the same time, when a photon 
is lost from the target state (owing to decay into the environment), 
the stabilizer must refill the hole defect efficiently. This requires the 
hole- and particle-excitation spectra of the target state to be spectrally 
separated (with a gap of about Δcomp). In addition, when refilling a 
hole, we must avoid driving the system into excited states with the same 
number of photons as the target state—this requires the target phase to 
exhibit a many-body gap Δmb. The stabilizer, as a continuous photon 
source, thus needs to be narrow-band compared to both the many-
body gap and the gap between the hole states and the particle states, 
but sufficiently broad-band to address all of the hole states spectro-
scopically. The performance of the many-body stabilizer is then deter-
mined by how efficiently the hole defects in the many-body state can 
be refilled—a combined effect of the repumping rate of the single-site 
stabilizer at energy εk (where k is the quasi-momentum of the hole) and 
the wavefunction overlap between the defect state and the stabilizer site.

We tunnel-couple the demonstrated single-site stabilizer to one end 
of the Bose–Hubbard chain and attempt to stabilize the n = 1 Mott 
insulator of photons. The Mott state is a gapped ground state5 that 
satisfies the incompressibility requirements45. The many-body gap is 
set by the cost of creating doublon–hole excitations on top of the  
Mott state, about U. Particle-like excitations are gapped by the strong 
interaction (about U for the n = 1 Mott state), whereas hole excitations 
follow the single-particle dispersion, with energies lying in a band  
of ∣ ∣ ≤ε J2k  in the one-dimensional lattice, providing clear spectral 
separation in the Mott limit ∣ ∣ �U J( ) . For a homogeneous lattice, all 
hole eigenstates are delocalized across the lattice, making it possible to 
use a single stabilizer at one end of the chain. The amplitude of  
the defect-state wavefunctions at the stabilizer can be adjusted via the 
coupling between the chain and the stabilizer, Jc. Here we attach  
an additional five-site chain (Q3 − Q7) to a two-transmon stabilizer 
that stabilizes Q2. All lattice sites are tuned to the same energy as Q2. 
The coupling between the stabilizer and the rest of the chain is 
Jc ≈ Jchain ≈ 2π × 6.25 MHz.

In Fig. 4b, we plot the measured steady-state Mott fidelity ( ⟨ ⟩P1 , 
chain-averaged over sites Q2−Q7) as a function of the stabiliza-
tion-drive frequency and strength, after a driving duration of 5 μs. The 
optimal Mott fidelity of . − .

+ .0 88 0 01
0 03 is achieved by driving at ωd = ω01 − Δ 

with Ωd = 2π × 96 MHz, demonstrating a dissipatively stabilized pho-
tonic Mott insulator in which the on-site number fluctuations are 
strongly suppressed. The observed defects within the chain are pre-
dominantly holes (P0 ≈ 0.10) with very low doublon probabilities 
(P2 ≈ 0.02; see Supplementary Information section E.3). Ignoring 
small site-to-site variations in the Mott fidelity, we obtain the on-site 
number fluctuation of the Mott state ⟨ ⟩ ⟨ ⟩δ ≡ − = . − .

+ .n n n 0 342 2
0 05
0 01, 

or a configuration entropy of ≡ − ∑ = . − .
+ .s k P P kln( ) 0 42n n nB 0 12

0 04
B  per 

site, where kB is the Boltzmann constant. Figure 4b shows qualitatively 
the same features as the single-site stabilization in Fig. 3d. Near 
ω ω≈d 01

C, the performance of the single-particle stabilizer is robust over 
variations in both drive detuning, which gives good energetic overlap 
with the hole-defect states of the Mott phase that span a frequency 
range of 4J ≈ 2π × 25 MHz, and drive strength, which provides the 
high repumping rates necessary to fill the whole lattice without sacri-
ficing stabilizer fidelity. For larger lattices with a single stabilizer site, 
the stabilization performance will eventually be limited by the reduced 
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band (blue shading) via a two-photon collision that irreversibly sends one 
photon into the reservoir and the other into the system. The lattice is filled 
up to and stabilized in the n = 1 Mott state (grey arrow), which is both 
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approach also applies for U < 0. b, Mott fidelity. The stabilizer in the two-
transmon scheme is coupled to the end of a five-site Bose–Hubbard chain. 

The measured steady-state P1, averaged over sites Q2 − Q7, is shown versus 
the stabilization-drive frequency and strength, exhibiting the same 
qualitative features as in Fig. 3e. We achieve an optimal Mott fidelity of 
. − .

+ .0 88 0 01
0 03 for resonant driving of the collision site with Ωd = 2π × 95 MHz 

(indicated by the star). c, Mott filling dynamics. Starting with an empty 
lattice, we plot P1 on each site versus the duration of the stabilization drive 
at optimal driving parameters. Panels b and c share the same colour scale. 
Injected particles exhibit light-cone-like ballistic transport across the 
lattice and subsequent reflection off of the far end of the lattice. Steady-
state Mott filling is reached in about 0.8 μs.
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refilling rate for the increasing number of sites or modes and by disorder- 
induced localization that inhibits the effective refilling of defects away 
from the stabilizer site. Multiple stabilizers may be used to circumvent 
such limitations, as suggested in previous studies37,46 that proposed 
each lattice site to be coupled to a driven–dissipative bath.

In Fig. 4c we plot the time dynamics of all lattice sites in the Hubbard 
chain as the Mott state is filled from vacuum, at the optimal driving 
parameter (indicated with the yellow star in Fig. 4b). The initial filling 
dynamics reveal near-ballistic propagation of injected photons after 
they enter the lattice from the stabilizer, consistent with the dispersion 
of a localized wavepacket continuously injected at the stabilized site 
that undergoes quantum tunnelling in the lattice. We observe light- 
cone-like transport47 at a speed of approximately 2J ≈ 78 sites per 
microsecond (13 ns per site). In comparison, the single-site refill-
ing time at these Mott driving parameters (Fig. 3e) is about 45 ns 
and remains relatively uniform over the lattice bandwidth of 4J. It 
is natural to ask how our dissipatively prepared Mott state relates to 
the corresponding Mott state in an isolated system at equilibrium. 
Fundamentally, this is a question of the timescales between thermali-
zation within the system and interaction with the reservoir. In future 
work, we can measure density–density correlations or entanglement48 
to compare the dissipatively prepared Mott insulator to an equilibrium 
Mott insulator at finite temperature and investigate how the stabilized 
wavefunctions vary with distance from the stabilizer.

Finally, we examine the near-steady-state dynamics of the stabilized 
chain by preparing a single defect and watching it refill (Fig. 5). We 
begin by preparing the dissipatively stabilized Mott insulator in Q2−Q7 
with Q8 sufficiently energetically detuned so that it remains empty. Q8 
is then rapidly tuned to resonance with the rest of the lattice, and the 
population of holes (excess n = 0 population, compared to the steady-
state Mott population, = −P P Ph 0 0

Mott) is measured across the chain after 
a variable evolution time. In the absence of a stabilization drive during 
the evolution of the hole (Fig. 5b), we observe the coherent propagation 
of the hole defect (consistent with theory; see Supplementary 
Information section G.3). The wavefront traverses the lattice at a speed 

of 2J at short times, whereas at longer times we observe complex struc-
tures emerge owing to coherent interference of multiple reflections off 
the edges of the lattice. On the other hand, when the stabilization drive 
remains on during the evolution of the hole defect (Fig. 5c), we observe 
similar initial ballistic propagation until the defect reaches the stabilizer, 
where the hole defect is immediately filled. We note that the many-body 
filling front in Fig. 4c is essentially as fast as the single-hole propagation 
shown in Fig. 5c.

Conclusions
We have constructed a Bose–Hubbard lattice for microwave photons in 
superconducting circuits. Transmon qubits serve as individual lattice 
sites where the anharmonicity of the qubits provides strong on-site 
interaction, and capacitive coupling between qubits leads to fixed 
nearest-neighbour tunnelling. The long coherence times of the qubits, 
together with the precise dynamical control of their transition frequen-
cies, make this device an ideal platform for exploring quantum mate-
rials. Using readout resonators dispersively coupled to each lattice site, 
we achieve time- and site-resolved detection of the lattice occupancy. 
Frequency-multiplexed, simultaneous readout of multiple lattice sites49 
could be implemented in future experiments to enable direct meas-
urement of entanglement and emergence of many-body correlations.

We further demonstrate a dissipative scheme to populate and  
stabilize gapped, incompressible phases of strongly interacting  
photons—used here to realize the first Mott insulator of photons. The 
combination of coherent driving and engineered dissipation creates a 
tailored reservoir that continuously replenishes the many-body system 
with low-entropy photons, which then self-organize into a strongly 
correlated phase. Furthermore, the reservoir acts as an entropy dump 
for any excitation on top of the target phase. The dissipatively prepared 
incompressible phases can serve as a starting point for exploring other 
strongly correlated phases via coherent adiabatic passages, including 
compressible ones. The latter have also been proposed to be accessible 
directly with dissipative preparation38,40.

This platform opens up numerous avenues for future exploration; 
for example regarding the optimal spectral or spatial distribution of 
engineered reservoirs; how this depends on the excitation spectrum of 
the isolated model under consideration; how the equilibrium properties 
of the dissipatively stabilized system relate to those of the isolated sys-
tem; how higher-order correlations emerge and thermalize; and what 
thermodynamic figures of merit can be achieved for the reservoir and 
its coupling to the system.

Finally, our results provide a path towards topologically ordered  
matter using related tools, for example, the creation of fractional  
quantum Hall states of photons50,51 in recently realized low-loss micro-
wave Chern insulator lattices23. The unique ability of circuit models  
to realize exotic real-space connectivity52 further suggests the possi-
bility of exploring topological fluids on reconfigurable higher-genus 
surfaces—a direct route to anyonic braiding53.
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