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ABSTRACT 

In this work we present a system for detection of ob- 
jects from video streams based on properties of human 
vision such as saccadic eye movements and selective 
attention. An object, in this application a car, is rep- 
resented as a collection of features (horizontal and ver- 
tical edges) arranged a t  specific spatial locations with 
respect to the position of the fixation point. During 
the recognition process, the system efficiently searches 
the space of possible segmentations by investigating the 
local regions of the image in a way similar to human 
eye movements. In contrast to motion-based models 
for vehicle detection 13, 41, our approach does not rely 
on motion information, and the system can detect both 
still and moving cars in real-time. 

1. INTRODUCTION 

Identification of vehicles from video streams is a chal- 
lenging problem that incorporates several important 
aspects of vision including: translation and scale invari- 
ant recognition, robustness to noise and occlusions and 
ability to cope with significant variations in lighting 
conditions. In addition, the requirement that the sys- 
tem work in real-time often precludes the use of more 
sophisticated but computationally involved techniques. 

The problem of vehicle identification from video 
streams has been widely addressed in computer vision 
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literature [3, 6, 5, 41. Very often, an underlying as- 
sumption is that the vehicles are moving and motion 
information is used to segment the image into moving 
regions and a static background. Based on its overall 
size and shape, a region can then sometimes be recog- 
nized as a vehicle even without a detailed description. 
Furthermore, motion information can reduce the com- 
putational complexity since only the regions that con- 
tain motion have to be analyzed. However, in many 
situations, motion information is not available or is 
insufficient, and other ways of dealing with computa- 
tional complexity and segmentation problems have to 
be used. Biologically inspired vision systems may pro- 
vide one such solution. 

Due to the structure of the eyes, the human visual 
system does not process the whole visual input with the 
same resolution. The region of the scene that is per- 
ceived with the highest quality is the one that projects 
to the fovea, an area of the retina corresponding to only 
about the central 2 degrees of the viewed scene. The re- 
gions that are further away from the fixation point are 
perceived with progressively lower resolutions. The vi- 
sual system overcomes this limitation by making rapid 
eye movements, called saccades. Human recognition is 
therefore an active process of probing and analyzing 
different locations of the scene at different times and 
integrating information from different regions. 

posed for various applications such as face recognition, 
handwriting recognition and vehicle detection [2]. An 
approach to object recognition that is based on human 

Biologically-based recognition systems have been pro- 
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saccadic behavior is proposed in [5]. While this model 
does capture properties of saccadic behavior, it repre- 
sents an object as a fixed sequence of fixations. 

In this paper we propose a new model for object 
recognition that employs properties of human vision 
such as selective attention and saccadic eye movements. 
This work is an extension of our previous work [8, 71 
that was applied to segmentation and recognition of 
one-dimensional objects, handwritten words. In this 
work we show that our model can be successfully ap- 
plied to recognition of two-dimensional objects, such 
as cars. In contrast to motion-based models for vehicle 
detection [3, 41, our approach does not rely on motion 
information, and the system can detect both still and 
moving cars in real-time. 

2. O B J E C T  REPRESENTATION 

Inspired by the properties of human vision, such as 
saccadic eye movements and foveal vision, we model 
an object as a collection of features of specific classes 
arranged at specific spatial locations with respect to the 
fixation point. For example, if an object is a word, then 
the features can be the letters, and if an object is a car 
the features can be the edges of different orientations 
and sizes. 

Most features, within objects of the same class, vary 
in shape and size. A striking example is the variation 
of shapes and widths of letters that represent the same 
dictionary word. Even within the class of a rigid object, 
such as a car, the variations can likewise be consider- 
able. As a consequence of the uncertainty associated 
with the size of each feature, the region of space con- 
taining the feature that is close to the fixation point is 
much smaller than the region of space containing the 
feature that is further away from the fixation point. 
This uncertainty of feature locations will in turn deter- 
mine the strength of the interaction among the features 
(nearby features will have a larger influence on the fea- 
ture located on the fixation point than the features 
that are further away) and will determine the sizes and 
distribution of the receptive fields of the units of the 
network. 

Interaction among the features - the role of 
context. Due to the local information contained in a 

given region (a section of the pattern), its interpreta- 
tion is inherently very ambiguous. However, including 
the information from the neighboring regions often re- 
moves that ambiguity. 

Let us denote the probability of finding the feature 
fi within the region R, as p ( f i  E &) = di and the 
probability of detecting the feature f j  within the re- 
gion Rj as p ( f j  E Rj) = d j .  In the rest of the pa- 
per, we will always reserve the subscript i to denote 
the region centered at the fixation point - the central 
region. Furthermore, let us denote the sizes of the re- 
gions Ri and Rj as s(&) and S(Rj) respectively. If 
the average size of the feature that corresponds to  the 
region Rj is S( f j ) ,  then the number of possible loca- 
tions for the feature f j  within the region Rj is propor- 
tional to S(Rj ) /S( f j )  and the amount of the overlap 
among feature locations. Assuming that all locations 
are equally liiely, the probability of finding the feature 
fj at  any of those locations is const * S(f j ) /S(Rj) .  
Since all the measurements are done with respect to  
the location of the central feature, this is also the prob- 
ablity of finding the feature fj anywhere within the 
region Rj given the location of the central feature, 
p(fj E Rjlfi E R,) = p ( j l i )  = const * S(f j ) /S(Rj) .  
The probability of detecting the feature fi in the region 
Ri (without any context) is di. The term p(i(j)dj rep- 
resents the context (for the i th feature) provided by the 
j t h  feature. The probability that the feature. fi, rep- 
resents part of some object is then given as dip(i1j)dj. 
Similarly, the central feature provides context for the 
feature f j ,  and the probability that the feature f j  repre- 
sents part of the object is given by the same expression, 
since p ( j )  = p ( i ) ,  and therefore p(i1j) = p(j1i). 

3. THE ARCHITECTURE OF THE 
N E T W O R K  

In this section we will describe the architecture-of the 
network that represents one object (in our case a car). 
The first layer of the network consists of feature detec- 
tors whose receptive fields completely cover the input 
image. Their output, the probability that the feature to 
which they are selective is within their field, is supplied 
to the next layer of units called simple units. A sim- 
ple unit is selective to only one feature and is invariant 
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input pattern 

Figure 1: The network architecture. 

to the location of the feature within its receptive field. 
The simple units are divided into groups, each group 
representing an object from one point of view. Since 
we assume that the fixation point has to be on one of 
the features that means that there are as many groups 
of simple units as there are features. Let us now con- 
sider one group of the simple units. It consists of the 
central unit, the one that is located above the fixation 
point and the surrounding units. The size of the recep- 
tive field of the central unit is the smallest compared to 
other simple units, and the sizes of the receptive fields 
of the simple units increase with their distance from 
the central unit. The sizes of the receptive fields of the 
simple units are designed is such a way as to accommo- 
date the uncertainties associated with locations of the 
features with respect to the fixation point. 

The output of a simple unit is given as 

where r' is the location of the feature detector that is 
selective to the kth feature and Rk is the receptive field 
of the kth simple unit. Therefore, a simple unit outputs 
the probability that a feature that it is selective to  is 
somewhere within its receptive field. The next layer of 
the units, called complex units, incorporates contextual 
information. The complex unit that receives input from 
the central simple unit outputs the probability that the 
region R, (or the feature it contains) now represents 

part of the object 

N 

where N represents the number of features in the ob- 
ject. This means that the detection of the central fea- 
ture is now viewed within the context of all the other 
features of the object. Similarly, the j t h  complex unit 
that receives input from the j t h  simple unit views the 
j t h  feature within the context of the central feature 

(3)  

According to  our model, each local region can represent 
an object with different confidence. The probability 
that the collection of all the regions that contain object 
features represents the object from the point of view of 
the ith feature is captured by the object unit 

l N  
oi(objed1fixationpoint i) = - C k ,  (4) 

where the index k goes through all the complex units, 
the central (i) and surrounding (j) units, of a given 
view. It is clear that there are as many object units as 
there are possible views of the object, which in our case, 
is equivalent to  the number of features in the object. 

k= l  
N 

4. IMPLEMENTATION 

Ideally, the system would utilize an array of feature 
detectors that  completely cover the input image and 
process information in parallel. Similarly, the system 
would benefit from a large number of feature classes, 
since they would provide richer and more detailed de- 
scription of objects. However, in order to make a sys- 
tem run in real time on a regular computer and with- 
out dedicated preprocessing hardware, we had to make 
several approximations. 

Feature Selection. In our current implementa- 
tion, we represent a car as a collection of only hori- 
zontal and vertical edges. Since an edge is an extended 
spatial object, we choose to specify its location in terms 
of the location of its central point. In this way, a car is 
modeled as a collection of points, arranged in 3D space, 
where each point represents an edge of specific size and 
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at time t + 1 is calculated using the updating rule 

Figure 2: Original image (left) and processed image 
(right) that illustrates some of the prominent horizontal 
edges. 

orientation. Using the statistics for the car sizes and 
their edges, one can easily calculate the mean size p j  

and the variance uj for each edge. Given the location 
of the fixation point and knowing the variations in size 
for every edge, it is then straightforward to propagate 
these uncertainties and calculate the regions where the 
centers of the edges should be. In order to map this 
3D configuration of regions into a 2D image plane we 
use perspective transformation equations as described 
in [l]. In this way, for a given location of the fixation 
point within an image, we associate a group of 2D re- 
gions for allowable locations of the edge centers. Each 
such region represents a receptive field of one simple 
unit of the network. 

Feature Detectors. Another approximation is re- 
lated to the construction and use of edge detectors. 
Instead of having an array of edge detectors for detect- 
ing the horizontal and vertical edges of all the sizes, 
the system extracts only the prominent edges (with 
activations above the predefined threshold) and esti- 
mates their sizes. This task is accomplished by the 
preprocessing module. A detailed description of the 
preprocessing algorithm is outside of the scope of this 
paper and will be described in more detail elsewhere. 
Figure 2 illustrates some of the edges extracted by the 
preprocessing module and their estimated sizes. In our 
current implementation, the preprocessing module op- 
erates on the difference image that is obtained as a 
difference between the original (gray-scale) image and 
the background image that contains no vehicles. 

The value of the pixel (i, j )  of the background image 

where CY is an updating constant (how often to update 
the background image), Dt(i , j )  is the difference be- 
tween the pixel values at times t + l and t and O(i , j )  
is 1 if the pixel ( i , j )  belongs to an object that has 
been identified and 0 if it is part of the background. 
Therefore, the current image is used for updating the 
background image after the object identification is per- 
formed on the current image. 

Each edge detector is selective to only an edge of 
a specific orientation, but can detect edges of various 
sizes around the preferred size. Since the distribution 
of sizes for any given car edge is fairly uniform, we 
use a Gaussian distribution to model the probability 
of an edge having a specific sue. Therefore, an edge 
detector for an edge of horizontal/vertical orientation 
is specified with two parameters: the mean length of an 
edge and its variance. The input to the edge detector 
(of a given orientation) is an edge of specific size 1 and 
the output is the probability that measures how well 
this edge matches the expected edge size, d = const * 
e q ( - ( p  - 1)2/vz). 

5. RECOGNITION PROCESS 

The recognition process starts with selection of the 
most prominent edge in an image, the one with the 
highest activation. The center of this edge becomes 
the fixation point from which the locations of other 
edges are measured. The system now has to determine 
whether the central edge represents an edge of a vehi- 
cle, and if it does which edge it represents. This is done 
by positioning all of the object units over the fixation 
point and measuring how much they are activated by 
the arrangement of the edges surrounding the central 
edge. The object unit with the highest activation se- 
lects some of the neighboring edges as representing a 
car and the central edge is given an identity as being 
a specific edge of a car (e.g. the bottom horizontal 
edge). In order to associate the group of edges (the 
central edge and the surrounding edges) as a car as o p  
posed to noise, the activation of the object unit has to 
be above some predefined threshold. Once the group of 
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edges is selected as a representative of a car, their acti- 
vations are suppressed and the system makes a saccade 
on another prominent edge and the previous procedure 
is repeated. The system makes as many saccades as 
there are prominent edges. 

6. SUMMARY AND RESULTS 

In this work we presented a biologically inspired system 
for car identification from video streams. The archi- 
tecture of the network reflects the properties of foveal 
vision through the arrangement and sues of the sim- 
ple units. During the recognition process, the system 
explores the input image in a way similar to human 
saccadic movements, probing and analyzing different 
locations of the input a t  different times. The computa- 
tional complexity associated with searching the space 
of edge activations is greatly reduced using selective at- 
tention thus allowing the system to  process information 
in real time. The architecture described in this paper 
is implemented on a Pentium 111, 700MHz processor 
using an input from a simple web camera. 

We tested the performance of the system on several 
thousand video sequences. Once a system detects a still 
car it locks onto it (although it might fixate on different 
edges at different times) and the recognition is almost 
100%. If the cars are moving and are separate from 
one another, the recognition accuracy is around 90%. 
However, when the cars become close to one another 
the recognition drops to about 70%, depending on how 
close the cars are and how much they are occluding 
each other. The system mistakenly recognized a van as 
a car with about 30% confidence. It never substituted 
a pedestrian for a vehicle and locked onto side road 
clutter in less that 1% of the time. 

The system’s performance regarding the correct iden- 
tification of cars does not deteriorate if the preprocess- 
ing module extracts edges from a gray-scale image as 
opposed to a difference image. However, in that case, 
the number of false alarms is higher. Most of the false 
alarms are located on the sides of the road (the regions 
that contain significant edge-like structures) and can 
easily be filtered out using the road model. 

The fact that we use feature-based and feature- 
centered object representation allows translation in- 

variant recognition and makes the system very robust 
to  occlusions. Similarly, the system can easily deal with 
variable lighting conditions since the features are edges 
and their extraction is not affected with overall change 
in illumination. One of the consequences of edge-based 
object representation is that the system can detect both 
still and moving cars equally well. We believe that the 
system’s performance will be further improved with the 
inclusion of a richer set of features (in addition to only 
horizontal and vertical edges) and with a larger number 
of object classes. 
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