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If what shone afar so grand

Turn to nothing in thy hand

On again! The virtue lies

In the struggle, not the prize.

R.M. Milnes
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4.6 Outline of seamless flute cavity design. (a) An FE model showing the E⃗-
field magnitude for the TE101 mode of a rectangular waveguide cavity. (inset)
A side-view cutaway of the flute design highlighting the overlapping holes, with
the effective mode volume highlighted in green. The evanescent decay through
the holes is also shown, where β is the waveguide propagation constant for the
TM0m modes of the hole. (b) A picture of the R(5N) cavity. (c) An FE model of

a cylindrical style flute cavity showing the E⃗-field magnitude for the fundamental
TM010 mode. (inset) A top-view cutaway showing the effective mode volume
created by the hole overlap. (d) A picture of the C(6N) cavity. (e) A table
outlining the performance of various cavity geometries, highlighting the internal
quality factors (Qint), and the magnetic (Sm) and electric (Se) participation ratios
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4.7 Linear resonator measurement setup and measured Q comparison: (a)
A depiction of the measurement setup for the measurement of cavity quality
factors without a qubit. S21 and S11 measurements were done concurrently by
using a directional coupler on the output line of the cavity. (b) A comparison
of quality factors for various flute geometries showing measured quality factors
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and Sm values. A plot showing the cylindrical flute cavity [Cyl(6N)] resonator
spectroscopy in transmission (S21) (inset). . . . . . . . . . . . . . . . . . . . . . 106

4.8 Frequency and quality factor temperature dependence of cylindrical
TM011 mode: (a) The change in the TM011 fundamental mode frequency shift
as a function of temperature for the 6N cylindrical flute cavity and the 6N rect-
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precision fine-tooth jewelers saw (∼ 0.5mm thick) is used. All components used
for cutting are thoroughly degreased and cleaned. . . . . . . . . . . . . . . . . 151

5.9 AFM image of Nb thin-film step edge: The above shows the edge profile of
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5.12 Nb 2-1 ToF-SIMS Surface Analysis of Nb2-1: Dynamic time-of-flight sec-
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6.4 Chip location vs χ: (a) shows an overlay of lines of constant χ between the qubit
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6.13 Storage cavity spectroscopy pulse sequence and spec : (a) shows the
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periment. A coherent tone applied to the storage cavity is swept in frequency,
followed by a π-pulse on the qubit |g⟩ − |e⟩ peak, followed by readout. The
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6.15 Number splitting vs DAC output. : (a) shows qubit spectroscopy under
varying drive power on the storage resonator, with the power scaled to the highest
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ABSTRACT

The high coherence afforded by 3D superconducting cavities, combined with strong engi-

neered interactions via circuit quantum electrodynamics (cQED), has made 3D cavities a

leading platform for studying quantum phenomena. In this thesis, we will develop a 3D

architecture that leverages these techniques to allow for the addressing of quantum states

encoded onto individual modes of a multimodal cavity. We will show that by engineering

the mode dispersion and electric field, we can achieve qubit-cavity cooperativities in excess

of 1 × 109, while maintaining coherence times approaching 2ms over 9 modes. In order to

scale the number of accessible modes, we will introduce niobium cavities as a platform for

reaching higher coherence times. First, we will discuss developing a repeatable technique

for producing single-mode 3D niobium cavities with loaded single-photon coherence times in

excess of 15ms and internal quality factors of greater than 1.5× 109. Next we will examine

the effects that surface processing and chemistry have on the cavity performance. Finally,

we will outline the intricacies of implementing cQED in such high-coherence devices, before

demonstrating a single-mode quantum memory with energy relaxation times approaching

10ms. By extending cQED to 3D multimodal platforms, and developing techniques that

produce coherence times in excess of 10s of milliseconds, we hope to enable new inquiry

into the application of 3D cQED for exploring quantum information and quantum optics

phenomena.
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CHAPTER 1

INTRODUCTION

1.1 Quantum memories with 3D cavities

The need for more hardware efficient and scalable quantum systems is necessary to reach

the long-term milestones and promises that quantum technologies hold. The placement of

superconducting quantum systems, with their large range of tunability, interaction strength,

and high intrinsic anharmonicities, make them a good candidate for creating large scale

quantum computers. In this section we will layout the historical and theoretical groundwork

for quantum memories, and explain the role that 3D cavities may play in building larger

quantum systems , setting the stage for the proceeding chapters of this thesis.

1.1.1 Background to quantum memories

Any system that a quantum state can be encoded onto can act as a quantum memory. By

analogy, any classical transistor, magnetic domain, or even a complex polymer, like DNA,

can store information, however the choice of storage media is determined by the needs of

the specific application. Beyond just memory, modern integrated processors employ a huge

variety of transistor design and architecture to better optimize the performance of the system

as a whole. By comparison, quantum computation, which is still very much in its infancy,

has no delineation; Current state-of-the art quantum processors, like Google’s Sycamore

QPU, make no distinction between a qubit used for logical operations, and ones sitting

idle, ”storing” the state between operational cycles [12]. Right now this is not much of a

concern, but as the system size grows, and the number of operations increases, local quantum

registers, cache, and eventually ”non-volatile” storage will be required, with a hierarchy in

operational speed and coherence times existing between these components.

The building blocks of these superconducting processes, the transmon qubit, which will
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be discussed in more detail in the next section, coupled to resonators via circuit quantum

electrodynamics (cQED), currently represents the basis of the logical hardware of these

systems [104, 183, 164]. Historically the transmon represented a huge leap forward in su-

perconducting quantum systems, with inherent insensitivity to charge noise that plagued

the performance of earlier charge qubit designs. By also coupling these qubits to a reso-

nant cavity there was also an enhancement in the coupling, leading to a higher fidelity and

operational speed. Combined with dispersive readout techniques [151, 184] and continuous

improvements in fabrication and design, modern state-of-the-art transmon qubits can now

reach coherence times in excess of 300µs [140, 188]. Other than the transmon there has

been the creation of qubits that are intrinsically protected from charge noise, known as the

fluxonium qubit, which has demonstrated coherence times in excess of 1ms [65, 169].

An alternative route to creating long-lived quantum memories, however, may be to skip

the superconducting circuit altogether, and instead off-load the memory to systems that

exhibit intrinsic long-term coherences. NV centers and neutral atom systems have both

demonstrated coherence times in excess of 5 seconds [20, 4], while trapped ions have shown

lifetimes on the order of minutes [191]. These electronic and nuclear transitions, however,

occur at much high frequencies than the aforementioned superconducting systems, making

interoperability of the two difficult without the advent of quantum limited transduction. In

addition to this, the coupling rates of these systems necessitate much longer gate operations

and in some cases readout times, making fast encoding and retrieval challenging. Nonethe-

less, these systems hold huge promise for both quantum memory and computation, and will

nevertheless be integral parts of a future quantum ecosystem.

Ideally we would like to find a system that has interoperability with existing supercon-

ducting and cQED systems, with longer coherence times and similar coupling rates. One

solution is to utilize the resonant cavity instead of the qubit for the storage of the quantum

state. We can encode our logical state onto the excitations of our resonant cavity, which is
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described exactly by an harmonic oscillator. Because of the intrinsic linearity of a harmonic

system, we need a way to effectively initialize and control the number-state of our oscillator.

cQED provides the answer for how, through the introduction of a conditional non-linearity,

we can enact exact control over the logical encoding and readout of our resonator state [149].

By using resonators that have very dilute electromagnetic fields, i.e. the field energy mostly

lives in the lossless vacuum of the resonant cavity, we can have cavity photon lifetimes that

far exceed most, if not all, superconducting qubits.

The first demonstration of coupling a transmon qubit to a 3D superconducting cavity

[135] laid the groundwork for future advancements in quantum memories, including the

creation of a quantum memory with > 1ms coherence times [148], universal control of

the oscillator state [88, 87], and later error correction [152, 35]. These techniques have

since been expanded to two-cavity systems, with the demonstration of 2-mode exchange

and entanglement [75], where they have even been used to demonstrate molecular dynamic

simulations [189].

These techniques showed that it was possible to efficiently store and control quantum

states encoded onto a cavity’s resonant mode, but to make a memory, made up of multiple

quantum state, would require the advent of a multimodal resonant system, where each

mode could be addressed by one or more non-linear elements. The first demonstration of a

multimodal memory, which utilized a single transmon qubit coupled to a chain of capacitively

coupled coplanar waveguide resonators, showed that it was possible to address an arbitrary

number of modes, and conduct universal gate operations on and between any number of

those modes [124]. This result also showed some of the advantages of such a multimodal

system for use as both a memory and as processor, namely that only a single qubit, and

its requisite control hardware, were required to interact with the entire register of harmonic

oscillators, thereby creating a scalable and hardware efficient system.

The 2D multimodal quantum memory was an important first step in the creation of
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scalable quantum memory, it also showed the importance that mode coherence times had on

the ability to create large arbitrary entangled states between modes. In the case of the 2D

design, the main contributor to errors was the limited mode coherences of 1 − 6µs, which

was lower than the qubit relaxation time of ∼ 10µs, leading to a system where accumulated

errors during the idling of the mode were the dominant source of infidelity. With this in

mind the next natural step was to adapt the ideas of the 2D multimode design to 3D cavities,

where one could utilize the aforementioned high mode coherence times and existing control

techniques.

In the following few sections we will discuss some of the technical background and op-

erating principles of quantum circuits and circuit quantum electrodynamics as the basic

building blocks of a quantum memory, before setting off to solve the problem at the heart

of this thesis: how to build the best quantum memory to date.

1.1.2 Cavity quantum electrodynamics

In the previous section we spent some time going over the short (but rich) history of super-

conducting quantum memories, but we have not explained the physics that underpins their

operation. Circuit quantum electrodynamics (cQED) is simply an extension of cavity quan-

tum electrodynamics, which used a cavity to enhance the light-matter interaction between

atoms and photons. This enhancement comes about since any spontaneous emission from

the atom that has a frequency outside of a cavities resonant frequency will be suppressed,

while resonant interactions, in a limit where the cavity and atom decay rate is small when

compared to the rate that the atom can emit and readsorb a photon with the cavity, will

lead to a coherent interaction between the two. This coherent exchange from a cavity to an

atom excitation, known as a Rabi oscillation, is just one result of this interaction and of the

rich physics possible in these systems. This section will discuss the basic principles of this

atom-cavity interaction, but only to the point that intuition necessary to understand later
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Figure 1.1: Cavity QED interaction: A two-level system is coupled to the electromagnetic
field of a cavity via dipole interaction. A coherent interaction rate g, describes the rate of
exchange of energy between a cavity photon and an atomic excitation. The total loss rate
of the cavity, κ, represents incoherent loss in the form of cavity dissipation and leakage. In
addition to this, atomic decay into parasitic modes of the cavity is described by γ. The
scale of γ and κ versus the coupling rate determine, in addition to the cavity-atom frequency
detuning, which coupling regime the system operates in.

sections can be gleaned. For more in-depth discussions on cavity QED and quantum optics

see Ref. [185, 72, 164, 27, 86].

The aforementioned phenomena can be described by a two-level system that interacts

with a cavity via a dipole coupling to the electromagnetic field. We can compactly write this

interaction in the form of the Jaynes-Cummings Hamiltonian, written below using RWA and

in the absence of external driving or non-unitary dissipation terms:

HJC = ℏωr(a†a+ 1/2) + ℏ
ωa
2
σz + ℏg(a†σ− + aσ+) (1.1)

The first term in Eq. 1.1 describes the cavity as a quantum harmonic oscillator (QHO)

with a resonant frequency ωr, the second term describes our atom as a spin-1/2 system

with an atomic transition energy of ℏωa, and the last term represents the dipole coupling

between the two, with g being the rate of exchange between the atom and cavity, where

a†σ− represents an emission of a photon from the atom to the cavity, and aσ+ describes the

absorption of the photon by the atom.
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The above describes the coherent interaction of the atom and cavity. In addition to this

there are competing incoherent processes, such as decay, due to cavity leakage or dissipation

by the cavity that lead to a decay rate κ. Besides cavity decay processes, the atom can

also decay at a rate γ, either radiatively into other parasitic modes of the cavity, or non-

radiatively. In actual cavity QED systems, where the atomic system is often moved through

the cavity, there is an additional transit timescale that must be considered, however our

systems fix the atom to a point within the cavity.

As we will see, in the case of cQED systems, the interaction rate is typically much greater

than the decay rate. The implication of this is important, in that the more time a cavity

photon can interact with the atomic state before decay, or vice-versa, the more sensitive the

atom (or cavity) is to the state of the other. Two parameters that encapsulate this are the

critical atom and photon numbers:

N0 =
2γκ

g2
(1.2a)

m0 =
γ2

2g2
(1.2b)

Where N0 is the critical atom number, or how many atoms are required to split the cavity

line width, or in other words, how sensitive the cavity is to an atom excitation. m0 is the

critical photon number, or how many photons are needed to measure the atomic state. It

should be noted that, in circuit QED, the critical atom number, N0, is sometimes expressed

as the cooperativity factor C = N−1
0 , and is often used as a metric to describe how many

times the cavity can probe the qubit state before decay. This reflects the need of quantum

computation to do many operations on a state during the course of a logical operation.

The scale of atom-cavity detuning, ∆ = ωa − ωr versus the coupling rate determines the
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way the physics of the system behaves. Previously we discussed the case where the qubit

is resonant with the cavity, or ∆ → 0. In this limit, the resonator photon number states,

|n⟩ and the atomic ground and excited states, |g⟩ and |e⟩, are no longer eigenstates of the

hamiltonian, but instead the cavity and atom eigenstates include a contribution from the

coupling term, leading to a hybridization of energy levels, with the new energies split by

2g
√
n. This manifests in a splitting of the cavity resonance, with the linewidth of the two

peaks set by the cavity and atom decay rates. As the linewidth approaches that of the

splitting, or when the decay rate approaches g, the states become indistinguishable.

The above strong-coupling limit can be used to create and study interesting quantum

optics phenomena, it means that the individual characteristics of the cavity and atom are

indistiguishable. By detuning the cavity and atom frequencies, to a point where ∆ ≫ g, the

cavity photon only indirectly interacts with the atom via a dispersive coupling. The result is

that the cavity frequency experiences a small state-dependent shift based on the atom state,

and vice-versa. We can apply apply the unitary transformation U = exp
[ g
∆
(a†σ− + aσ+)

]
to Eq. 1.1, and expanding in orders of g/∆ before truncating to second-order in g to get the

dispersive hamiltonian:

UHJCU
† ≈ ℏ

(
ωr +

g2

∆
σz

)
(a†a+ 1/2) + ℏωaσz/2 (1.3)

The above dispersive hamitonian has some nice features. For one, because no photon

is directly adsorbed, both the atom state and photon number are conserved. Instead, we

see that the cavity shifts by g2/∆ dependent on the state of the atom, as illustrated above

in Eq. 1.3. This shift, which we will write as χ, is the dispersive shift, and the primary

way that readout is conducted. Because of the conservation of the atomic state, quantum

non-demolition measurements (QND) can be performed.

Another nice feature of the dispersive limit is the symmetry of the interaction between

the atom and the cavity. We can regroup the terms in Eq. 1.3, collecting state dependent
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terms to arrive at the form:

HJC ≈ ℏωr(a†a+ 1/2) +
ℏ
2

(
ωa +

2g2

∆
a†a+

g2

∆

)
σz (1.4)

In the above form, the atomic transition frequency ωa experiences a shift that is made

up of two terms. The first is the standard dispersive shift χ ≈ g2/∆, the second however

is 2χa†a = 2nχ, where n is the the photon number state of the cavity. This second term

is the number-dependent ”stark” shift. These corresponding atom-cavity shifts, which are

a result of the Heisenberg-uncertainty principle, and subsequently a result of measurement

backaction, give us a powerful way of measuring both cavity and atom states while preserving

the quantum state of either. It should be noted that Eqs. 1.3 and 1.4 both only consider the

lowest laying energy states of the atom, g and e, which is a good approximation. In circuit

based systems discussed in the next section, where the anharmonicity of our qubit is on the

order of g, the above approximation for χ breaks down, and contributions from higher qubit

energy levels must be considered.

The limits on how long one can probe the system is largely set by the rate of loss in the

form of incoherent processes. Qubits that are tuned to be far off-resonance from the cavity

have inherent protection, since photons emitted outside of the bandwidth of the resonator

are largely suppressed. To readout a qubit state, however, it is natural to overcouple the

qubit to a resonator which has a decay rate larger than the qubit’s decay time (κ≫ γ). We

can express this rate using Fermi’s golden rule [164]:

γκ = κ| ⟨−, n− 1| a |+, n⟩ |2 (1.5)

Where the eigenstates |−, n⟩ and |+, n⟩ in terms of atom and cavity excitations are:

|−, n⟩ = |g, n⟩ − g
√
n

∆
|e, n− 1⟩ (1.6a)
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|+, n⟩ = g
√
n

∆
|g, n⟩+ |e, n− 1⟩ (1.6b)

Substituting Eqs. 1.6 (a) and (b) into Eq. 1.5 we get an effective decay rate of the qubit

through the lossy resonator to be:

γκ ≈
(
g

∆

)2

κ (1.7)

This rate, which represents the enhanced emission of the qubit through the resonator is

known as the Purcell loss. In the design of cavity-qubit systems, this value represents a limit

to the effective performance of our qubit. As we can see from the symmetry of the dispersive

eigenstates in Eqs. 1.6 (a) and (b), the cavity can similarly experience an enhanced emission

by being coupled to a lossy qubit. This rate, sometimes denoted as a reverse purcell effect,

is similarly given as:

κγ ≈
(
g

∆

)2

γ (1.8)

As written, Eqs. 1.7 and 6.2.2 are photon-number independent. In reality this is only a

first-order approximation. The above values however set upper bounds in the qubit or cavity

coherence times for a given set of design parameters. In the case of the effective lifetime of

a qubit coupled to a lossy readout, the effective lifetime can be given as:

T1,eff =

(
1

T1,q
+

1

T1,κ

)−1

(1.9)

Where T1,q = γ−1 is the intrinsic coherence time of the qubit, and T1,κ = γ−1
κ is the

purcell limited lifetime. For a real-world system, for γ/γκ = 10, the effective coherence time

of the qubit will be 10% lower than the intrinsic qubit lifetime, meaning that the ratio of

γ and γκ should be carefully considered when designing a cavity-qubit system where qubit
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coherence is important. Inversely, we will see how this manifests in ultra-high coherence

cavity systems, where the qubit lifetime, and dispersive coupling rate, set the main limit in

the cavity’s coherence time.

The above dynamics have all been defined in the rotating-frame, which have effectively

removed any time-dependence from our derivations up to this point. While this treatment

is pedagogical in nature, in practice time-dependent drives are necessary to control and

measure the state of the system. In later chapters we will show what the dynamics of the

above system looks like under the influence of simple time-dependent drives, however the

time-dependence of these systems, and the use of time-varying drives to generate non-trivial

quantum states, is largely outside of the scope of this thesis. For that discussion about the

platforms discussed in this dissertation, Kevin He’s thesis should be compulsory reading.

1.1.3 Superconducting quantum circuits

This section will provide some working knowledge in superconducting quantum circuits as

they will pertain to the 3D quantum memories discussed in later sections. This section

should not be seen as an exhaustive explanation of these topics, but instead provide some

intuition and vocabulary to understand the methodologies and logic of later sections. For

more thorough descriptions of the following please reference the foundational texts given in

Refs. [25, 104, 164, 29, 53, 78].

In the previous section we outlined the basic tenants of cavity quantum electrodynamics,

assuming a generic two-level system with an atomic transition frequency ωa. In our case the

”atom”, or as we will call it from now on, the qubit, is actually a discrete circuit. We can

begin with the simplest harmonic circuit we can think of: an LCR circuit. In Ch. 2 we will go

in far more depth about the properties of LCR circuits as the model for our high-coherence

cavity systems, however, in this discussion, we will simplify matters and only look at the

qubit as an ideal LC circuit. This basic abstraction is shown in Fig. 1.2. We can do this
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Figure 1.2: Ciruit elements of cQED system Above is the canonical LCR oscillator that
will be the basis of both the cavity (see Ch. 2), or, as we will see in this section, the qubit,
when we introduce a non-linear element to the above system.

because, in practice, our circuit is a superconductor, thereby making the resistive component

very small (but as we will see, not zero). In a later chapter we will discuss the properties of

superconductors at microwave frequencies, but for now we will assume that ωa ≪ ∆g and

that T ≪ Tc, where ∆g and Tc are the superconducting gap energy and superconducting

transition temperature respectively. In this regime the current flowing through the inductor

experiences no loss.

The total energy of the system is stored in both the capacitor, as built up charge, and

as current passing through an inductor. We can write the Lagrangian that describes this

circuit as:

L =
1

2
LI2 − 1

2

Q2

C
(1.10)

We can note that the current is I = dQ/dt = Q̇. From this we can solve for the Euler-
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Lagrange equations of motion, which give us the expected harmonic frequency of the circuit,

ωh = (LC)−1/2, and the momentum conjugate Φ = LI. We can now write the Hamiltonian

in terms of conjugate variables Φ and Q:

H =
Φ2

2L
+
Q2

2C
(1.11)

In the above the the value ϕ is described as the flux through the inductor, while Q is the

charge stored on the capacitor. Here Q is treated as a single degree of freedom, which has

some mass L and experiences a spring constant C. We can make our system quantum by

giving our conjugate variables nice hats and imposing the canonical commutation relation:

[Φ̂, Q̂] = −iℏ (1.12)

From this we can write the quantum operators ϕ̂ and Q̂ in term of annihilation and

creation operators a and a†:

Φ̂ =

√
ℏZ0
2

(a+ a†) (1.13a)

Q̂ = i
ℏ

2Z0
(a† − a) (1.13b)

Noting that [a, a†] = 1. He have defined a new variable, Z0 =
√
L/C, which is the

characteristic impedance of our LC oscillator. We can rewrite Eq. 1.11 in terms of a and a†

to get the canonical form of the quantum harmonic oscillator Hamiltonian:

H = ℏωh
(
a†a+

1

2

)
(1.14)

Where we note that a†a = n̂, which is the number operator of our oscillator. At this

point we have not done anything that interesting, but just showed that an LC oscillator can
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be quantized and subsequently functions as a quantum harmonic oscillator. At the end of

the day, this circuit would make a pretty lousy qubit, since there is no way to confine the

otherwise infinite Hilbert space of the above system to just two levels to act as our logical

basis. To do that, we need to make the frequency of our LC circuit dependent on the number

of excitation, i.e. nonlinear.

One way to do that is start with a circuit element that does not exhibit linear I − V

characteristics. One natural choice is the Josephson junction, which is simply a tunnel barrier

separating two superconducting islands. The cooper pairs1 on each island can be described

by a superconducting order parameter which leads to a relative time dependent phase, φ(t),

between the wave-functions of the cooper pairs on each island. The result of this boundary

condition problem is that the voltage and current of these electrons become dependent of

this phase difference, leading to the Josephson relations:

V (t) =
Φ0

2π

∂φ(t)

∂dt
(1.15a)

I(t) = Ic sinφ(t) (1.15b)

Where Φ0 = h/(2e) is equivalent to the flux-quantum, and Ic, or critical current, is the

current in which the tunneling cooper pairs break into conduction electrons. We can plug

Eq. 1.15 (b) into (a) and get:

V (t) =
Φ0

2πIc, cosφ(t)

∂I(t)

∂t
= Lj(φ(t))İ(t) (1.16)

We see that the above time dependent relationship between I and V is just Faraday’s

law. Here we have lumped the prefactor of our current time-derivative into a Josephson

1. To see discussions on this phenomena see Sec. 2.2.4 and Ref. [175]
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inductance, Lj . As we can see, the inductance is dependent on the Josephson phase. To see

how this may effect our LC oscillator, we can determine the stored energy of our Josephson

inductor by integrating the product of the voltage and current over time:

Uj(t) =

∫ t

0
I(t)V (t)dt = −Ej cosφ(t) (1.17)

Where Ej = Φ0Ic/2π is the Josephson energy.

With Eq. 1.17 we can substitute it back into Eq. 1.11. First we will group several

parameters, first by defining Q = ne where n is the charge number. We can then define a

charging energy Ec = e2/2C.

H = Ecn
2 − Ej cosφ(t) (1.18)

So, what is the takeaway from all of this, and what are the implications? For small phase

fluctuations across the junction, Eq. 1.18 reduces back into the LC oscillator Hamiltonian

in Eq. 1.11 since cosφ(t) ∼ 1. But at large φ(t), the non-linearity of the cosine term gives

the harmonic oscillator a 4th-order correction. This anharmonicity breaks the degeneracy

between transition energies of our harmonic oscillator, allowing us to selectively confine our

Hilbert space to the lowest two energy levels.

We can write Eq. 1.18 in the charge basis and phases basis as follows:

H = 4Ec(n̂− ng/2)
2 +

Ej

2

∑
n

(|n⟩ ⟨n+ 1|+ |n+ 1⟩ ⟨n|) (1.19a)

H = 4Ec

(
i
∂

∂φ
− ng/2

)2

− Ej cos φ̂(t) (1.19b)

In the charge basis we have written the number of charge in terms of a quantized integer

number that is offset by a gate charge, which is the number of excess cooper pairs on
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(a) (b) (c)

Figure 1.3: Energy level splitting of a CPB for various EJ/EC :From the numerical
solution to Eq 1.19 (b) we can see the change in dispersion, or dE/dng, for various ratios of
Ej/Ec

the superconducting island. The inductive potential introduced by the Josephson junction

introduces a tight-binding like operator that describes the coherent tunneling of discrete

cooper pairs across the junction, with a tunneling energy equivalent to Ej . The phase-basis

hamiltonian is derived by a transformation of |n⟩ → |φ⟩ and gives us the expected cosine

correction.

The charge basis gives us intuition on the tunneling of cooper pairs, but requires us to

diagonalize a sub-space of nearest neighbor charge-states to solve for the energy eigenvalues.

The phase-basis hamiltonian on the other hand, which is a type of Mathieu equation, allows

us to analytically solve the time-dependent Schrodinger equation, although higher order

finite-differentiation can give enough numerical precision for most calculations.

From Fig. 1.3 we show the energy eigenvalues of the CPB Hamiltonian as a function of

excess charge ng. While our harmonic oscillator has inherited the nonlinearity of the Joseph-

son junction, the anharmonic potential is now also dependent on these excess charge. The

derivative dEn,n+1/dng, or charge dispersion, gives us a sensitivity of our energies to excess

charge. Small fluctuations in ng effectively act as a time dependent perturbation leading to

pure-dephasing of the qubit’s state, and decoherence. For qubits that have charging energy

similar to the tunneling energy Ec ∼ Ej , we see that there exists values of ng where the
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qubit is first order insensitive to charge-noise. One can bias the CPB at this ”sweet-spot”

in excess charge, however doing so is challenging, and even at this point one is still sensitive

to second order deviations in excess charge.

The solution to this problem is to decrease the charging energy of the CPB relative to

the tunneling energy. From Fig. 1.3 we see that as the ratio of Ej/Ec increases, the effect of

this dispersion decreases, but so does the anhamonicity that we fought so hard to introduce.

The key however is to realize that the dispersion decreases exponentially with Ej/Ec, while

the anharmonicity only decreases algebraically, meaning that a modest increase of Ej/Ec

can greatly improve the operational lifetime of the qubit. This limit, where Ej ≫ Ec is

what is known as the Transmon Regime, and qubits in this regime are subsequently called

transmon qubits.

One nice property of the transmon qubit is that its anhamonicity is independent of the

tunneling energy. This may seem counterintuitive, since the pre-factor of the anharmonic

contribution in Eq. 1.18 is Ej . In the transmon limit, or where we can ignore the effect of

ng, we can show from Eq. 1.19 (b), once the cosφ term is expanded about small values φ,

that the energy of the jth level can be written as:

Etrans,j ≈ ℏωa
(
j +

1

2

)
− Ec

12
(6j2 + 6j + 3) (1.20)

Eq. 1.20 tells us that the transmon’s anharmonicity is, to first order, only dependent

on Ec, which we recall is determined by the capacitor of our now anharmonic LC circuit.

Because of this, we can set Ec first to get the desired anharmonicity, before choosing an

appropriate Ej that minimizes our dispersion, greatly simplifying the design. Here, ωa,

which is by analogy equivalent to the atomic transition energy in the previous section is

therefore given by ωa =
√
8EjEc − Ec.

In a 3D cavity mode, to first order, the coupling between the qubit and cavity can be
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thought of as a dipole 2, but in terms of a circuit analogy, the coupling rate g between the

above transmon and a resonant cavity, which itself can be treated as a linear LC oscillator.

The effective dipole coupling of a transmon to an LC oscillator to various qubit eigenstates

can be given by the following [104]:

gij = 2βeV 0
rms

(
Ej

8Ec

)1/4

⟨i| (b− b†) |j⟩ (1.21)

Where β = Cg/Cσ, or the ratio between the capacitance to ground and the total ca-

pacitance of the coupled circuit, while V 0
rms is the zero-point voltage fluctuation on the

resonator’s capacitor, V 0
rms =

√
ℏωr/2Cr, and the product of eV 0β is the bare dipole cou-

pling constant g. The term ⟨i| (b − b†) |j⟩ gives the transmon charge matrix elements for

various transitions, with the qubit eigenstates denoted by i and j. One point to note is

that the effective capacitance of the CPB is modified by the additional capacitance to the

resonator, and will be discussed in more detail in a later section.

As mentioned in the previous section, for typical cQED systems, the above value for

g ∼ Ec. In addition to this, the charging energy and subsequently the anharmonicity is much

less than the detuning ∆ in the dispersive regime, meaning that higher order states are all

similarly detuned. The net effect of these two properties of cQED systems is that the effective

dispersive shift has contributions from the g − e transition as well as small additional shifts

from higher energy states of the transmon. This leads to a dressed dispersive hamiltonian

for the system:

H ′ =
ℏω′a
2

+ ℏ(ω′r + ℏχ′σz)a†a (1.22)

Here the effective dressed frequencies of the cavity and transmon are ω′a = ω01+χ01 and

ω′a = ωr − χ01 − χ12 respectively. The effective dispersive shift including the contribution

2. In reality the coupling is not so simple, as shown by Ref. [121]
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of higher transitions then becomes χ′ = (χ12 − χ01)/2. We can compute χ for various

transitions with:

χij =
g2ij

ωij − ωr
(1.23)

Plugging in Eq. 1.21 into Eq. 1.23 and computing the contribution of the first and second

order transitions leads us to a χ′ [33]:

χ′ ≈ g2

2∆

α

(∆ + α)
(1.24)

This is the effective dispersive shift from our qubit given the effect of the qubit’s second-

order transition. Higher order transitions can be considered, however their effect is small in

comparison. For the purpose of this thesis, χ′ as written above will be used when discussing

the dispersive shift.

In a later section we will revisit the transmon when we discuss simulating the incorpora-

tion of a qubit into our cavity system, and discuss the way in which we model the coupling

of this artificial atom to our microwave cavity via more advanced techniques.

1.2 Overview of thesis

The previous sections have laid the background and theoretical groundwork for the kinds

of systems which will be discussed moving forward. In the remainder of this thesis we will

see how we can use these fundamental building blocks, in particular the linear element of

our cQED system, the cavity, to create an improved multimodal quantum architecture with

state-of-the art mode coherences and qubit-cavity cooperativity. Next we will use this result

as motivation for the creation of 3D cavities with improved coherences. We will do this by

moving from aluminum to niobium as our superconducting material, discussing its unique

properties and developments of a simplified etching technique capable of producing cavity
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coherences > 15 times that previously achieved in the same platform, with material loss

comparable to state-of-the art accelerator cavities. We will then study the performance of

these cavities as a function of manufacturing parameters. Finally we will correlate these

results with material characterization of the surface and bulk properties. Next we will

discuss the considerations for integrating a qubit into such high-coherence systems, before

presenting a design that maintains cavity performance. We will then show that, through

weak dispersive coupling, it is possible to integrate a lossy qubit into these niobium cavities

without a significant degredation of the cavity performance. Finally we will discuss the

challenges and techniques necessary for interacting with such a weakly coupled system.
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CHAPTER 2

3D CAVITIES

2.1 Overview and motivation

In the previous chapter we discussed the mechanisms by which non-linear circuits can be

coupled to microwave resonators and operated in a quantum limited manor. An important

thread in cQED research has been the improvement of cavity and qubit coherence times. For

quantum information processing longer coherences are crucial for increasing the circuit depth

while decreasing the infidelity of quantum operations to reach true fault-tolerant quantum

computing [102, 101, 55, 61, 171, 30]. In addition to computation, coherence times will

play an important role in the scaling of quantum memories [124]. With this in mind, 3D

superconducting cavities have emerged as a leading platform for everything from the creation

of memories with coherence times of T1 > 1ms [148, 39], to the creation of bosonic error-

correcting codes and fault-tolerant systems [130, 92, 34, 152, 107]. These systems have been

extended to multi-cavity systems demonstrating 2-mode gate operations [187, 158, 75].

Along with these results, cavities with coherence times in excess of T1 > 10ms have been

demonstrated in aluminum cylindrical cavities [147] and niobium coaxial cavities [89], with

coherences > 2s demonstrated in superconducting niobium SRF cavities at single-photon

powers [157, 156]. To translate these high coherences into useful quantum systems however

a number scientific and engineering problems must be solved.

While higher coherence modes can benefit any of the aforementioned systems, we will

focus on building such cavities in the context of quantum memories, with more in-depth

discussion about the way coherence allows for scaling quantum memory being done in Ch.4.

This chapter however will lay the theoretical and technical groundwork for what goes into

making a good cavity to begin with, motivating the novel Flute Cavity discussed in Ch.3.
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2.2 Loss mechanisms in 3D cavities

2.2.1 Overview of loss

A perfect superconducting cavity would act like an ideal LC circuit, exhibiting zero dissi-

pation and subsequently an infinite mode lifetime. In reality, like any real-world resonant

circuit, superconducting RF cavities exhibit some dissipation. In later sections we will move

to a quantum optics formalism, but for the time being lets build a more intuitive model for

our microwave cavities using classical circuits. To first order we can model our resonator as

a parallel RLC circuit with an additional series resistor as shown in fig. 2.1. The impedance,

Zin of this circuit is:

Zin(ω) =

(
1

Rtot
+

1

jωL
+ jωC

)−1

(2.1)

By stating that ω = ω0 + ∆ω and series expanding to lowest order in ∆ω we can write

the Zin(ω) near resonance:

Zin(ω) ≈
Rtot

1 + 2j∆ωRtotC
(2.2)

Here we see that, on resonance, or when ω = ω0, Zin(ω0) → Rtot, whereRtot = RP+R
−1
S .

Our toy circuit, much like our real-world resonators, is a system with dissipation, and to

quantify that dissipation we can look at the amount of energy lost per cycle, or in otherwords,

180 degree evolution of the phase. To do this we want a quantity that is simply the ratio of

stored energy in both the magnetic and electric field components (or energy stored in either

the inductive or capacitance element) vs the lost energy per unit time.

Q0 = ω
Wm +We

Ploss
(2.3)

Where Q0 is the intrinsic quality factor, sometimes denoted as Qint. Wm and We are
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(a) (b)

Figure 2.1: Black-box equivalency of an RLC circuit (a) shows the equivalent resonant
circuit for a resonator which has a known impedance response Zin(ω). By knowing the rela-
tive amplitudes and phase of V + and V − it is possible to build equivalent circuit parameters
to describe this resonator.

simply the energy stored in the magnetic and electric field of our system, with Ploss being

the power loss through our resistor network RP . For this circuit, the power loss is given by

Ploss = |V |2/2Rtot. On resonance the time-averaged stored magnetic and electric energies

are equal, giving us that Q0 ∝ RP and Q0 ∝ R−1
S . In essence Q0 is the efficiency of our

resonator, and depending on the material properties and use case of our resonant cavity,

either RP or RS may be more important.

The resistance, RP is sometimes called the shunt impedance, and for non-superconducting

cavities, which typically have R−1
P ≫ RS , has been the main point of optimization [93].

When RP is small, the power dissipated across this resistance is high, which in cavities,

manifests as surface heating and higher wall-power. In superconducting cavities RP > 1×109

[142], making its contribution to Q0 for most situations negligible, but what about RS?

Next lets finish writing Q0 as a function of RS . First we can compute the stored energy

in the inductor by noting:

∫ 1/ω

0
|Pm|dt = Wm =

1

4

|V |2
ω2L

(2.4)

Once again noting that at ω = ω0 the stored electric and magnetic energies are equal,
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we can then write eq. 2.3 as:

Q0 =
1

ω0LRS
=
ω0C

RS
(2.5)

Where we have also written Q0 in terms of the energy stored in the capacitor.

Up to this point our treatment of the problem has assumed ideal passive components,

meaning that L and C have no intrinsic loss. In reality these elements do have loss which

are typically abstracted into RS . Because of this, the value RS is sometimes known as the

residual resistance of the cavity and moving forward will be the primary material parameter

to optimize. In the following sections we will expand on the above model and discuss the

contributions of BCS conductivity, dielectric loss, and geometry on Q0, before discussing the

principals behind the flute cavity design.

2.2.2 Coupling and Qext

Before discussing sources of loss in our otherwise ideal system, we have to address the effect

of external coupling on the above circuit. In order to study the transients of our cavity

we need to couple power into it. Doing so introduces an external load with a characteristic

impedance Z0. From the perspective of this coupled load, our resonator will have a frequency

dependant impedance Zin(ω) as defined in eq. 2.2. If we design our cavity such that the

condition Z0 = Zin(ω0), we would expect 100% of the power to be coupled into our circuit at

resonance. Far away from resonance we expect the impedance mis-match to be large enough

that 100% of the input power is reflected back into the port of our coupled device.

We can more rigorously describe this by looking at fig. 2.1 (b), which treats our resonant

circuit as a black-box with an impedance of Zin. At the port we can measure the incident and

reflected voltage amplitudes V + and V − respectively. If we attach a load with impedance

Z0, the current and voltage at the impedance is simply:
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V0 = V + + V − (2.6a)

I0 = (V + − V −)/Z0 (2.6b)

Setting the boundary condition that the current and voltage at Zin:

Zin =
V0
I0

= Z0
V + + V −

V + − V − (2.7)

What we really want to know, based on the frequency, is how much of the signal is

reflected or absorbed into our circuit. This value is simply the ratio between reflected and

incident voltage amplitudes, S = V −/V +. Substituting this into eq. 2.7 and solving for S

in terms of the characteristic and input impedances we arrive at:

S11 =
Zin − Z0
Zin + Z0

(2.8)

Where we use the standard nomenclature of denoting the scattering amplitude as S11 to

represent a single-port reflective measurement. We can clearly see from eq. 2.8 that if the

condition Z0 = Zin(ω0) is met, then the scattering S11 will go to zero, whereas far from

resonance, Zin > Z0, and the signal is scattered back into port 1. Fig. 2.2 illustrates this for

a load Z0 placed in series with our model circuit. To illustrate the dynamics we deliberately

choose Z0 =
√
L/C, with ω0 = 1/

√
LC. This means that, for S11(ω0) = 0 to be true, on

resonance Zin = R = Z0. Plotting |S11|2 for various ratios of Z0/R in fig. 2.2 (a) illustrates

this condition, but what does this mean in terms of the external quality factor?

In eq. 2.5 we showed the internal Q for our parallel circuit with a series resistance RS .

We can transform the parallel LC circuit values into an equivalent series circuit giving us

Q0 = ω0LS/RS . The external quality factor for a series circuit can be expressed, in terms of

the characteristic impedance, as Qext = ω0LS/Z0. We can see that we can rewrite our ratio
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(a) (b) (c)

Figure 2.2: Frequency response of phase and amplitude of a single-sided resonator:
(a) shows the scattering amplitude |S11|2 for various coupling regimes of Qext > Qint,
Qext = Qint, or Qext < Qint. (b) shows the phase response for these same regimes. (c)
shows the resonance mapped onto the I − Q plane, thereby encapsulating both magnitude
and phase response.

of characteristic impedance to resistance in terms of Q0 and Qext as Q0/Qext = Z0/RS .

This tells us that, when Q0 = Qext, we have the maximum amount of power being coupled

into our resonator. When this condition is met the resonator is critically coupled, where as

if Q0 < Qext or Q0 > Qext the resonator is undercoupled or overcoupled respectively. This

means that, just by looking at the magnitude (fig. 2.2 (a)) and phase response of our system

(fig. 2.2 (b)), we can deduce not just the quality factor of the resonator, but also Q0 and

Qext, and subsequently the effective residual resistance RS . This ”black-box” treatment

of the resonator will become indispensable when measuring 3D cavities, as the equivalent

circuit parameters, L and C, are not well defined, as the electric and magnetic potential of

our field is distributed over the entire mode volume of our system.

The final point in our discussion of Qext is the effect on the system’s total quality factor,

Qtot. From the perspective of the resonator, the addition of Z0, is the equivalent of adding

an additional series resistance RL. If we then ask what the new Q of our system is, we know

it should be Q = ω0LS/(RL +RS). Solving for this Q in terms of Qext and Q0 finally gives

the relationship:
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Qtot =

(
1

Q0
+

1

Qext

)
(2.9)

This new Qtot represents the effective quality factor of the system. So far we have

discussed this coupling as if it were a black-box with some known characteristic impedance

that can be treated as a series resistance, but in later sections we will discuss how this

coupling is controlled in 3D cavity systems, both for directly interrogating the cavity and

coupling non-linear circuits to the cavity mode.

2.2.3 Input-output formalism for cavities

In the previous section we had derived the effective response of the cavity in the frequency

domain based on the input and characteristic impedance of our system. These values are

based on the particular circuit parameters of the LC oscillator, and the input load in ques-

tion. In 3D cavity systems, however, the equivalent circuit parameters are not well defined.

Instead, the inductive and capacitive elements (and their stored energy) are distributed. Be-

cause of this, it is beneficial to write the scattering, as described in Eq. 2.8, in terms of the

internal quality factor, Q0, and the coupling quality factor, Qext. By plugging in Eqs. 2.2

and 2.5 into Eq. 2.8:

S11(ω) =
ω0(Qext −Q0e

jϕ)− 2j(ω − ω0)Q0Qext

ω0(Qext +Q0ejϕ) + 2j(ω − ω0)Q0Qext
(2.10)

Here we have introduced a complex phase ejϕ that results in asymmetry in our lineshape

due to impedance mismatch between our coupler and the output line. A common way to

write Eq. 2.10 is in terms of the intrinsic cavity linewidth, κi, and the coupling rate, κc. The

relation between Q0 and κi is:

Q0 =
ω0
κi

(2.11)
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Plugging into Eq. 2.10 gives:

S11(ω) =
κi − κce

jϕ − 2j(ω − ω0)

κi + κcejϕ + 2j(ω − ω0)
(2.12)

The above expression is more commonly used in cavity quantum electrodynamics and

quantum optics [185, 86], but here we showed that it is equivalent to describing the scattering

of an AC signal off of our idealized LC-circuit.

The above represents the result for a single sided cavity, however you can also derive

an expression that describes the transmission of a signal through a cavity on resonance, as

opposed to the reflected signal. For a parallel RLC oscillator, we can use the transformation

provided by Table 4.2 in Ref. [144], and more carefully derived in Ref. [116] to calculate the

scattering matrix element S21 to get the expression:

S21(ω) =
1

1 + 2jQL(ω − ω0)/ω0
(2.13)

A couple of things to note with the above equation, is that |S21|2 takes the form of

a lorentzian, with QL = (1/Q0 + 1/Qext)
−1 being related to the lorentzian line width by

noting that ω0/QL = Γ. The second point to note is that the above has been normalized

to a peak height of 1. In reality the height of the peak is set by the input-output scattering

rates. A more natural treatment for cavity systems, as before, is to use a quantum optics

formalism. For a two-sided cavity, such as the one shown in Fig. 2.3 the measured value is

determined by the ratio of input and output scattering amplitudes bin/aout.

Following the method outlined in Ref. [185], we can solve the equation of motion for the

system to get:

S21(ω) =
bin
aout

=

√
γ1γ2

γ1 + γ2
2

+ j(ω − ω0)
(2.14)

Above we have written the rates as γ, which is the more common notation in quantum
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(a) (b)

Figure 2.3: The scattering off of a two-sided cavity (a) The effective measured S21
for our system is the ratio of scattering amplitudes bin/aout. By solving for the equation of
motion and solving for this ratio we can find the evolution of the cavity state a(t). By taking
the fFourier transform of this time-dependent state evolution we can recover the frequency
response of our resonator as a function of input and output coupling. Here, κi represents
internal loss of our cavity, which factors into the evolution of a(t). (b) shows an effective
circuit model for our two-sided cavity system. The RLC circuit is our resonant cavity, with
Rs giving rise to the intrinsic linewidth, as described in the previous section. Our cavity
is coupled via 50Ω ports which are capacitively coupled to the system. The effective input
impedance of this coupling sets the Qext of the port.

optics, but it should be noted that γ = 2κ as we had previously defined it. The above also

assumes that the cavity has no intrinsic linewidth, but rather the quality factor is set only

by output couplings. We see that for γ1 = γ2 = γ and setting γ = 2ω0/QL, we get back

Eq. 2.13. We can rewrite Eq. 2.14 in terms of κ, adding in the internal loss to arrive at the

form commonly used:

S21(ω) =
2
√
κ1κ2

(κ1 + κ2 + κi) + 2j(ω − ω0)
(2.15)

Where we use the subscript 1,2 and i to denote the decay rates of coupler 1,2 and the

internal decay rate respectively.

2.2.4 BCS Theory and non-ideal superconductors

Before we can begin a more detailed discussion of the cavity geometry and its effect on

performance, we have to first discuss the nature of superconductivity in RF systems. This
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section will not be an exhaustive discussion of the microscopic or phenomenological treatment

of superconductivity, but will build a basic intuition for the system at hand. For a more

detailed description, Refs. [175, 134, 133] are indispensible.

In a metal, the electrons can be treated as distributed ”sea” of charge which follow Fermi

statistics, with a distribution of energies up to the Fermi energy Ef . Cooper showed that,

given even a very weak attraction between electrons, the formation of pairs of electrons into

stable bound states was possible at low enough energy scales [51]. An explanation for this

attraction came from the interaction of the electrons with the ionic lattice of the metal,

whereby vibrations in the positively charged nuclei at the lattice site, lead to small scale po-

larization of the ionic site, with the excess positive charge attracting an additional electron. If

this attraction is greater than the coulomb screening than a net attractive force between the

two electrons is achieved. This interaction, which can be written in second-quantized form

as a phonon-electron scattering Hamiltonian (or pairing Hamiltonian), can be solved using

variational theory to give insight to the scale of energies, and subsequently temperatures,

necessary for superconductivity to be achieved [18]. This treatment also gives rise to a few

additional observations, namely that the wave functions of the combined pairs of electrons

all overlap, as opposed to the normal state electrons that follow Fermi statistics, resulting in

the paired electrons acting as a condensate. The gap in energy between this condensate of

electron pairs and normal state electrons is large compared to the energy scale of intrinsic

phenomena in the lattice, meaning that the condensate interacts little with its electronic

environment. This result gives us the zero DC resistivity which characterize superconduc-

tivity as a whole, but more importantly, it gives us a way of connecting superconductivity

to measurable quantities of our superconducting microwave cavities.

One outcome of this microscopic theory of superconductors, described by Bardeen, Cooper,

and Schrieffer (BCS theory) in 1957, is the estimation of the energy gap, ∆(T ), between

bound electron pairs and unpaired quasi-particles. This temperature value can be extracted
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numerically from the transcendental expression for the system at finite temperature:

1

N(0)V
=

∫ ℏω

0

tanh 1
2β(ξ

2 +∆2)1/2

(ξ2 +∆2)1/2
dξ (2.16)

Where ξ (not to be confused with electron coherence length discussed later) is a measure

of electron energy relative to the Fermi energy, N(0) is the number of cooper pairs at T = 0K,

or rather the density of states at the electron Fermi surface. In addition, V is the attractive

potential between electrons, and β = 1/kbT . It can be shown that for weakly interacting, or

”conventional” superconductors the above can be generalized, and the relationship between

∆ and T can be described as a function of T/Tc, with Tc being when ∆(T ) → 0, for T ≤ Tc:

∆(T )

∆(0)
≈ 1.74

(
1− T

Tc

)1/2

(2.17)

With the relationship of Tc and the associated frequency ℏωc = ∆(Tc) being:

kbTc = 1.13ℏωc exp(−1/N(0)V ) (2.18)

The above, plotted in Fig. 2.4(a), gives us a high level overview of several important

details that will become apparent later in the discussion of RF superconductivity. The first

is that, at temperatures above ∼ 0.4Tc, the gap ∆(T ) ≈ ∆(0), with a rapid decrease in the

gap energy approaching Tc for T > 0.8Tc. A result of this is that, as the energy of the system

increases, the gap energy goes to zero, the density of cooper pairs to normal state electrons

must decrease. This ratio can be expressed as:

Ns(E)

N(0)
=

dξ

dE
=

{ E

(E2 −∆2)1/2
(E > ∆)

0 (E < ∆)

(2.19)

Where ∆ = ∆(0), and is shown in Fig. 2.4 (b). The above states that as temperature

increases, or the electrons are excited with electromagnetic radiation with ω ≥ ωc the number
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(b)

(c)

(a)

Figure 2.4: Superconducting gap, and Mattis-Bardeen conductivities: (a) shows the
generalized superconducting energy gap for various values of T/Tc. (b) and (c) show the
real and imaginary conductivities, σ1 and σ2, for various frequencies ω, and temperatures,
as derived from Eqs. 2.23 (a) and (b). These integrals must be numerically computed for
different values of T/Tc. Details on the above and superconductors in the presence of high
frequency electromagnetic fields can be found in Ref. [64]

of normal state electrons also increases, and now interact with the lattice, leading to normal

state resistivity.

So far the microscopic theory we have outlined has been agnostic to whether the electrons

are under the influence of a DC or AC field. As previously mentioned, the condensate of

cooper pairs do not interact with the lattice. So what does the superconductor do in the

presence of an AC field? For that we can look at the predictions made by Mattis-Bardeen

(MB) theory [115, 125].

A more natural and intuitive way of thinking about the AC case is to take a more

phenomenological approach. Previously we have shown that, at finite temperature there

will always be some electrons that exist in a normal state. In addition to the equilibrium

normal state electrons, we can have non-equilibrium electrons that form when additional

sources of energy cause the breaking of cooper pairs. In our metal, normal-state, which obey

Ohm’s law, and superconducting electrons will co-exist. In DC, the normal-state electrons

are effectively shielded via coulomb screening from the superconducting electrons. In AC,

however, the inertia of the cooper pairs leads to a non-zero participation of normal state
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electrons. This can be treated as a two-fluid model, which can be abstracted as a parallel

lossless inductor, and a resistor. The inductance acts in place of the inertia provided by

the electrons themselves, giving a conservative force in the presence of an alternating field,

leading to some fraction of electrons passing through the resistive path. In our previous 2D

circuit model, as shown in Fig. 2.1 (a), this would act as the source of our additional shunt

resistance and inductance.

This analogous circuit model now has a complex impedance Zs. In the two-fluid case,

the impedance can be written in terms of a real conductance, σn, which is just the normal

state conductance, and a complex conductance, σs, which contributes to the reactance of

the Zs due to the inertial effects of the cooper pairs. It can be shown that in the two-fluid

model the impedance can be written in terms of conductance as [134]:

Zs =

√
iωµo

σn − iσs
(2.20)

From the first London equation we can show that σs = (ωµoλ
2
L)

−1, where we have

used the definition of the London penetration length, λL =
√
m/µ0nse2, where ns is the

number of paired electrons. σn is just the normal state conductivity. In the case of our

superconductor, σs ≫ σn. This allows us to take Eq. 2.20, and make the approximation:

Zs ≈
√
ωµ0

√
iσn
σ2s

− 1

σs
(2.21)

We can recast the terms inside of the right square root as x = σn/σ
2
s and y = 1/σs,

noting that x ≪ y. Taylor expanding about x = 0, and truncating at leading terms in x.

Substituting back σs and canceling terms gives us the expression:

Zs ≈
1

2
σnω

2µ20λ
3
L + iωµ0λL (2.22)

We can see from above Rs = σnω
2µ20λ

3
L/2 and Xs = ωµ0λL.
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There are a couple of important takeaways from Eq. 2.22. Zs is dominated by the

residual surface resistance Rs, which is quadratically dependent on the frequency ω, and

on the normal state conductivity σn, which is proportional to the number of normal-state

electrons. We also note that the resistance is now dependent on the material specific London-

penetration length, λL. We also know, from Eq. 2.5, that the internal quality factor, Q0

is inversely proportional to the parallel resistance Rs. This means that, as the number of

normal-state electrons increase (and cooper pairs are broken) the quality factor of our cavity

must decrease.

The two-fluid model, and the approximation for Zs, gives us important intuition about

the performance of a superconductor in an AC field, and is a good approximation for ω ≪ ωc.

In reality, to get an accurate approximation for Rs, especially in materials with smaller gaps,

such as aluminum, we must include the predictions made by BCS theory. A full treatment

of the two-fluid model using BCS theory was done by Nam in 1967 [125].

Nam rewrote the complex conductance as a ratio between σs/σn = σ1 − iσ2. Here we

take σn ∝ 1/λL with λL = ne2/m =
2

3
N(0)e2v20, with N(0) and v0 being the density of

states and the mean velocity of normal state electrons at the Fermi surface. Nam showed

that the conductivities can subsequently be written, following the form used in [149] as:

σ1 =
1

ω

∫ ∞

∆

(ϵ+ ω)ϵ+∆2√
(ϵ+ ω)2 −∆2

√
∆2 − ϵ2

[
tanh

ϵ+ ω

2τ
− tanh

ϵ

2τ

]
dϵ (2.23a)

σ2 =
1

ω

∫ ∆

∆−ω

(ϵ+ ω)ϵ+∆2√
(ϵ+ ω)2 −∆2

√
∆2 − ϵ2

[
tanh

ϵ+ ω

2τ

]
dϵ (2.23b)

Where τ = ℏ/kbT and we have used the identity tanh (x) − tanh (x− a) = 2(1/(ex +

1)− 1/(ex−a+1)) and tanh (x) = 1− 2/(ex+1) to rewrite the Fermi-Dirac distributions in

the integrand. These two integrals must be solved numerically, with the addition of ∆(T )

described in Eq. 2.17.
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Nam also gave an approximate form of Zs in terms of the normal impedance Zn using

σ1 and σ2 gives:

Zs ≈ Zn(σ1 − iσ2)
ν (2.24)

Where ν can either be −1/2 for the dirty (Pippard) limit, or when the mean-free length

l ≪ ξ0, where ξ0 is the coherence length,1 giving us an equation resembling Eq. 2.21, or

−1/3 for the clean limit, or when l ≫ ξ0.

With the full BCS description of Zs in hand we can now determine a range of important

parameters for our cavity systems. Following a similar approach to what was done for the

simple two-fluid approximation, below Tc we can take σ2 ≫ σ1. Following Ref. [149] we can

show that in this limit we can approximate Rs and Xs as follows:

Rs ∝ Rnσ1σ
ν−1
2 (2.25a)

Xs ∝ Rnσ
ν
2 (2.25b)

For our parallel inductor-resistor model, and remembering back to Sec. 2.2.2, the quality

factor can be written as Qmag = Xs/Rs, where Xs = ωL, or the reactance of our equivalent

lossless inductor in our two-fluid model. Substituting Eqs. 2.25a and 2.25b we can write Qs

as

Qmag(T, Tc, ω) ∝
σ1(T, Tc, ω)

σ2(T, Tc, ω)
(2.26)

It is important to note that the value Qmag gives us the surface quality of our supercon-

ductor. This value implies that, regardless of the geometry of our 3D (or 2D) resonator, the

1. or the length scale in which the two electrons making up the cooper pair are correlated
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material is the only contributing factor in determining the quality factor of our resonator. As

we will see in later sections, however, geometry does in fact play a large roll in the measured

quality of the cavity that we wish to make. This is because only part of the magnetic energy

participates in the lossy surface of our superconductor, with the other fraction living in the

lossless vacuum.

2.2.5 Dielectric and two-level system loss

In sec. 2.2.4 we discussed the intrinsic loss of the superconducting materials we will use to

make our cavities. This loss, however, only interacts with the surface currents, and therefore

interacts with the magnetic field of the electromagnetic mode. For a normal metal conductor,

a good approximation is to take σ → ∞ at the metal surface, meaning that the n̂× E⃗ = 0 at

the wall. This assumes that the vacuum/metal interface is ”clean”, however, most metals—

and in particular the one’s we will discuss in later chapters—have native oxides that live

at the surface. These oxides can have dielectric qualities, as is the case with aluminum

oxide, Al2O3, or can be made up of a number of stable oxides that have dielectric, lossy

dielectric/conductive, and even superconducting properties at our operating temperatures,

as is the case for Nb2O5, NbO2, and NbO respectively. In the dielectric case, energy can be

dissipated through dipole relaxation and unbound charge carriers on the surface. In addition

to this, the surface oxide is amorphous. This high disorder leads to localized electronic states

with non-zero tunneling potential which can couple to the electric field and act like two-level

system (TLS) [138, 139, 73].

In a perfect dielectric, the individual dipoles will be perfectly, and instantaneaously,

polarized in the direction of the field. In reality, there is a lag in the polarization, with a

characteristic relaxation time scale τ0 caused by inertial effects. By analogy, this is similar

to the hysteresis seen in magnetic domains, which lead to hysteretic losses in inductive

AC systems. Subsequently, the dielectric of a material can be written in terms of a real
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component ϵ′ and a reactive, or complex, component ϵ′′:

ϵ = ϵ′ + iϵ′′ (2.27)

This loss can be modelled as an effective series resistance in our microwave circuit, which

gives a quality factor:

Qϵ =
ϵ′

ϵ′′
=

1

tan (δ)
(2.28)

Where the expression for Qϵ is inversely proportional to the loss tangent tan (δ). The

above picture, however, presumes that the effective dielectric loss is frequency independent,

but for relaxation processes, this is not the case. In the presence of a varying field, E(ω) =

E0 sin (ωt), it can be shown that [94]:

ϵ′(ω) = ϵ(∞) +
ϵ(0)− ϵ(∞)

1 + ω2τ20
(2.29a)

ϵ′′(ω) =
(ϵ(0)− ϵ(∞))ωτ0

1 + ω2τ20
(2.29b)

Which gives a frequency dependent loss tangent:

tan (δ(ω)) =
(ϵ(0)− ϵ(∞))ωτ0

ϵ(0) + ϵ(∞)ω2τ20
(2.30)

Where ϵ(0) and ϵ(∞) are the effective dielectric constants at zero and infinite frequency

respectively. The result of this is that the dielectric loss tangent is not just material and

environmentally dependent for determining τ0, ϵ(0) and ε(∞), but also frequency depen-

dent. Eq. 2.30 shows a maxima when ω = (ε(0)/ε(∞))1/2τ−1
0 , while the imaginary part

of the dielectric constant in 2.29b exhibits a maximum when when ω = 1/τ0. In reality,

for inorganic dielectrics, τ0 ≥ 10−12s, meaning that for low-frequency dielectric constants

of ε ∼ 10 − 35, the loss-tangent maxima occurs at ω > 1012Hz [161, 23]. This also pre-
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sumes that the material is crystalline with no defects or impurities, which may lead to local

variation in relaxation time. This relaxation time is also temperature dependent, following

an Arrhenius relation of τ ∝ τ0 exp{(Er/kbT )}, where Er is the energy associated with the

relaxation phenomena.

For aluminum’s native oxide, Al2O3, which exhibit anisotropic dielectric constants in it’s

pure crystalline phase, the values have been thoroughly investigated [85]. In addition to this,

loss tangents for pure sapphire have also been investigated [105], however amorphous alu-

minum oxide has not been well characterized at low temperatures or microwave frequencies.

Inversely, Nb2O5, niobium’s primary native oxide, has not been well characterized in the

microwave regime, however some investigations of amorphous thin film oxides have yielded

ϵ′ > 30 for frequencies above 1MHz, with relaxation being attributed to uncorrelated charge

carrier hopping [71].

Besides relaxation phenomena, the surface dielectric can host local defects that can cou-

ple to the electromagnetic environment and act like two-level systems. These defects, while

not microscopically well defined, exhibit discrete energy spacing and dipole coupling to their

environment. Refs. [139, 138] created the first complete model, known as the standard

tunneling model (STM), to describe the dynamics of these defects. These TLS have been

experimentally observed in a wide range of superconducting devices, from Al/AlOx/Al junc-

tions [114] and 2D resonators [74, 73, 136], to SAW resonators [5].

In the STM, the eigenstates of the local charge states live in an assymetric double-well

potential. The Hamiltonian is given as:

Ĥ =
ℏ
2

 δ ∆

∆ −δ

 (2.31)

Where δ is the double well energy asymmetry, and ∆ is the tunneling element. Diago-

nalizing Eq. 2.31 and solving for the energy eigenvalues of ϵ± = ±
√
δ2 +∆2. Rewriting our
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Hamiltonian gives:

Ĥ0 =
ℏ
2
ϵσz (2.32)

In the presence of an electric field, the interaction Hamiltonian can be written as:

Ĥint =

(
δ

ϵ
σz +

∆

ϵ
σx

)
d⃗0 · E⃗ (2.33)

Phillips, in his derivation, makes the case that barrier height is largely unaffected by

the interaction of the field, with only perturbations in δ giving rise to the transition from

eigenstate ψ− to ψ+ [138]. From this we can deduce that the first and second terms are the

transition d⃗ ′ and static, d⃗, dipole moments respectively.

By making a correspondence between the above interaction picture to that of a spin-1/2

system in the presence of an oscillating perturbative magnetic field, Gao was able to show

that, at low temperature and short time scales, resonant interactions with the TLS were

dominant. In [136] it was shown that, for cases where the Rabi-drive strength, Ω is small,

and Ω2T1T2 ≪ 1, where T1 and T2 are the TLS energy and phase coherence relaxation time

scales, the effective loss tangent of the TLS becomes:

tan (δTLS(T )) = F tan δ0TLS tanh

(
ℏω

2kBT

)
(2.34)

Where F is the filling factor, or the ratio of the participation of the field at the surface

vs the volume of our resonator. As in Eq. 2.28, QTLS ∝ tan (δTLS(T ))
−1. In the case of 3D

microwave resonators, this limit is a good approximation, thanks to the fact that the energy

participation of the electric field at the surface compared to the volume is low, meaning that,

at typical cavity drive strengths of mean photon number n̄ ∼ 1−1010, |E⃗surf | ≪ |E⃗c|, where

|E⃗c| corresponds to the electric field strength where all of the TLS are being driven resonantly,

and |E⃗surf | is the strength of the field at the surface. Inversely, in planar resonators, where
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the electric field interacts more strongly at the surface, the weak-field limit does not hold.

In the strong-field limit, the Rabi frequency, and subsequently the procession of the TLS

are far faster than T1 and T2, meaning that mean occupation of the TLS in either ground or

excited state is 50%. Once |E⃗| = |E⃗c| however, all of the TLS are saturated, and minimum

loss tangent has been reached. Because Ω ∝ |E⃗|, the term Ω2T1T2 ∼ |E⃗/E⃗c|2, which can be

shown gives:

tan (δTLS(T, |E⃗|)) =
F tan (δ0TLS) tanh

(
ℏω

2kBT

)
√

1 + |E⃗/E⃗c|2
(2.35)

Above we introduced the idea of a filling fraction F , and previously we have also discussed

how intrinsic dielectric and conductive loss on the system, and subsequently the measured

quality factor, is dependent on the amount of the field’s stored energy lives in the surface. We

have also mentioned that the magnetic losses in Qmag discussed in sec. 2.2.4 are dependent on

the effective participation of the electric and magnetic fields with the aforementioned surface

loss mechanisms. Because of this, geometry plays an equally important roll in quality factor

as surface quality, as will be discussed in the next sections.

2.3 3D resonators

Up to this point we have discussed resonators that are made up of discrete reactive compo-

nents, and in the abstract in terms of their loss mechanisms. This analogy is informative in

describing the transient response of a 3D resonator, but fails to capture the way in which

the electromagnetic energy of the 3D system is distributed, or how geometry effect things

like the mode dispersion of our resonator. The distribution of energy in our system plays an

important roll both in coupling of our non-linear elements, which in our case are transmon

qubits, but also in investigating the way that this electromagnetic energy couples to poten-

tial sources of loss. Just as the energy is distributed, so is our dissipative element. Before
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Figure 2.5: Rectangular waveguide cavity cross-section and TE101 E-field distribu-
tion: A render, presented to scale with a penny, of a typical two-piece rectangular waveguide
cavity, with a cross-section of the |E| profile for the fundamental TE101 mode, showing the
characteristic ”drum-head” profile, with maximum electric field magnitude at center.

discussing the geometric dependence of this loss, we first need to discuss the basics of how

this energy is distributed in 3-dimensions.

A natural place to begin is the shunted rectangular waveguide cavity, both because it

has a straightforward analytic solution, but also because it will act as the basis for the flute

cavity discussed in ch.4.2. It will also play host to some more detailed analysis of loss in

later sections. This, and the following discussions, should be taken as an exercise for the

purpose of intuition; in reality, most electrodynamics problems are intractable analytically,

with no nice closed-form solutions. Even for the coaxial λ/4 and tapered TE101, there is no

nice solution for the electromagnetic fields. In the next chapter we will discuss the use of

FEM and automated numerical techniques for simulating and understanding these systems in

depth, but for now, lets continue with our simple rectangular waveguide example. Thorough

derivations of some simple and relevant geometries may be found in Refs. [144, 50, 149],

among others.

The rectangular cavity is equivalent to a rectangular waveguide with either end shorted.

With this in mind we can begin with the generic wave equation for an electric field moving
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along an axis of the cavity geometry.

E(x, y, z) = Ex,y(A
+e−jβnmz + A−ejβnmz) (2.36)

By convention we will call this axis z, and for the lowest frequency mode, corresponds

with the longest axis of the cavity. We have also separated the electric field profile in x and

y and left them as Ex,y for the time being.

We have introduced a few important variables above. The first is the propagation constant

or wavenumber, βnm. In reality, the propagation constant of a wave is a complex number

with a real amplitude α, known as the attenuation constant, and complex amplitude β or

the phase constant. For a wave moving through a lossless medium, α = 0, and only the

complex phase constant remains. In the case of a waveguide where the transverse fields,

Ex,y ̸= 0, and the propagating wave Ez = 0, then to satisfy the Helmhotz wave equation,

all propagating fields must have a frequency higher than a certain frequency, known as the

cutoff frequency, ωc, which has a corresponding wavenumber kc. The propagation constant

in the case of a TE waveguide mode for our rectangular waveguide cavity can be rewritten

as:

βnm =
√
k2 − k2c (2.37)

For our rectangular waveguide the propagation of TEnm and TMnm modes only occurs

when:

ω0µε >

(
mπ

lcav

)2

+

(
mπ

lcav

)2

= kc (2.38)

To determine the scattering coefficients in Eq. 2.36 we note that at one wall (z = 0),

E(x, y, z) is zero, which gives A+ = −A−. From a physical perspective this makes sense; a

perfectly conducting wall should reflect back 100% of it’s incident energy. Substituting this
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into Eq. 2.36 we get:

E(x, y, z) = ExyA
+(eβnmz − e−βnmz) = −2iA+Exysin(βnmz) (2.39)

At the second wall, where z = lcav, we also set E(x, y, z) = 0. We note for this condition

to be true, then βmnlcav = lπ. This basically says that only waves with a half wavelength

that is a integer multiple of lcav can exist in the cavity. This gives us the resonant conditions:

kmnl =

√(
mπ

hcav

)2

+

(
nπ

wcav

)2

+

(
lπ

lcav

)2

(2.40)

And subsequently a resonant frequency:

fmnl =
c

2π
√
µε

√(
mπ

hcav

)2

+

(
nπ

wcav

)2

+

(
lπ

lcav

)2

(2.41)

For typical rectangular cavity designs the TE mode is used. With the condition that

wcav < hcav < lcav, the TE101 mode is the dominant, and lowest frequency mode, with next

higher frequency modes following TE10l until the wavelength of the next highest mode is

less than the m = 2 mode.

Before we continue to describe both the electric and magnetic fields of the TE10l mode,

lets take a second to think about what this looks like physically. By virtue of the boundary

conditions we have created, the field profile goes to zero at either end. For l = 1 these are

the only two nodes, but for l = 2 we get an additional node at lcav/2, and for l = 3 we get

2 additional nodes at lcav/3 and 2lcav/3, or nnode = l − 1 excluding the two at either side.

At these points the electric field goes to zero. We will see that the spacial location of these

nodes have implications in the design of these cavities for real-world applications, as the rate

of coupling is determined by the field strength at a given point. In a single mode system

this is not an issue, but for multimodal systems, where coupling to all modes is important

careful design considerations must be made, as we will see.
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Knowing the mode frequency is important, and as we have seen, to first order, we can

even estimate the electric field strength along the length of the cavity, to understand where

the stored magnetic and electric energy lived we need a complete description of the fields.

First, we can solve for Exy. From the Helmholtz equations for a rectangular waveguide, we

see that the term Exy for the TE mode is:

E(x, y) = Axy sin
mπx

h
cos

nπy

w
(2.42)

Plugging this back into Eq. 2.36, and looking at the TE10l mode we get:

E⃗y = E0 sin
πx

hcav
sin

πz

lcav
ŷ (2.43)

Where we have replaced the generic scattering amplitude (and other coefficients) with

E0, and noted the vector in which this field is pointing, in this case, as we have defined our

coordinates, in the +ŷ direction. This is the magnetic field profile, but we also need to know

the electric field profile as well. Using Maxwell’s equations we can solve for the other field

components. We note that for TE waves Ez = 0 and Bz ̸= 0. Solving for the other field

components with this condition in mind we get:

Hx =
−jE0

ZTE
sin

πx

hcav
cos

lπz

lcav
x̂ (2.44a)

Hz =
jπE0

kηhcav
cos

πx

hcav
sin

lπz

lcav
ẑ (2.44b)

From Eqs. 2.43 and 2.44 (a) and (b) we now have a complete description of how the

electromagnetic energy is distributed in our cavity. As we can see, instead of discrete circuit

elements like our initial model, both magnetic and electric energy is distributed according

to the boundary conditions that we have imposed.
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We will use the TE101 cavity in our exploration of how geometry effects the losses of our

cavity system. The above is also just one example of a 3D resonator. In this thesis we will

discuss modified TE101, or tapered, rectangular waveguide resonators, along with cylindrical

(and the similar elliptical), and coaxial resonators, however, any geometry with the correct

boundary conditions can and will have resonant modes. It is because of this that special

care has to be taken in simulating the complete electromagnetic system. The techniques for

doing so will be discussed in the next chapter.

2.3.1 Cavity geometry optimization

In the previous sections we have outlined the primary sources of loss in our microwave

resonators. We have also discussed a simple 3D resonator geometry and how the electric

and magnetic field profiles are distributed in space. In this section we will quantify the

effects these loss mechanisms have on the measured quality factor in these 3D resonators but

discussing how the electromagnetic energy of such a cavity is distributed. This section will

discuss the analytic methods for determining this ratio, before discussing how this is done

in practice for the resonators discussed in later sections. The analytic derivations heavily

barrow from refs. [144, 149].

To begin we can discuss the electromagnetic energy stored in any volume material is just

given by:

Uvol =

∫
V
ε|E2|+ µ|H2|dV (2.45)

To determine the participation of energy that participates in a sub-volume of the res-

onator we can just take the ratio of the energy in one volume over the total volume:

p =

∫
V ε|E2|+ µ|H2|dV∫
Vtot

ε|E2|+ µ|H2|dV (2.46)
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Where we have called this energy participation ratio p. In practice the above integrals

are difficult to compute, since you would have to know the values of the electric field profile

both in the volume of the cavity, and in the participating material. We can, however, make

a few simplifications. Given that our field is sinusoidally varying, we can look at the time

averaged electric and magnetic stored energy independently:

We =
1

2

∫
V
ε|E⃗|2dV (2.47a)

Wm =
1

2

∫
V
µ|H⃗|2dV (2.47b)

Where over one period Wm = We. Rewriting Eq. 2.46 as:

pe =

∫
V ε|E⃗|2dV∫
Vtot

ε|E⃗|2dV
(2.48a)

pm =

∫
V µ|H⃗|2dV∫
Vtot

µ|H⃗|2dV
(2.48b)

In the case of a cavity, the volume associated with the numerator of Eqs. 2.48 a and b is

at the surface, with the thickness of the participating volume set by either the london pen-

etration length, λL (or skin depth for normal-state conductors), or the dielectric thickness,

tox, of the participating surface oxide.

We can now rewrite Eqs. 2.48 a and b in terms of these material specific parameters,

but first, we can note that, for a superconductor, the tangental E-field is zero, meaning

that only the perpendicular field is present. We can also note that the displacement field

D⃗ in our dielectric is continuous with the field in the volume of our cavity at the dielectric

boundary. Because of this we can state that the electric field in the dielectric surface should

scale with the volumetric field as Esurf = Evol(ε0/εox), where we have preemptively used
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the vacuum permittivity ε0 to denote the dielectric constant of our mode volume, and the

permittivity of our oxide εox for our participating surface. These two approximations give

us the approximate form for pe:

pe ≈
tox
εr,ox

( ∫
S |E⃗vol|2dA∫

Vtot
|E⃗vol|2dV

)
=

tox
εr,ox

se (2.49)

Where we have assume that the oxide permittivity is isotropic throughout the amorphous

oxide. The ratio of the integrated surface and volume electric field magnitude in parenthesis is

often called the surface participation ratio, which will be denoted as se for shorthand. These

integrals can be difficult to solve analytically except for cases in which cavity symmetry

can be used to easily compute the surface and volume integrals. In reality, and for the

rest of this thesis, se, and the corresponding magnetic surface participation sm, will be

computed numerically using FEM software. The equivalency between these two methods

will be demonstrated for a simple geometry in the next section.

Now that we have computed se, we can also compute sm. Instead of doing what we did

for se by starting with eq. 2.48, the more intuitive way to derive sm is to begin by looking at

the amount of energy that is dissipated in the conducting layer. For a cavity the pertinent

value is the power dissipated per unit area at the surface, or dPres/ds. This power is just:

dPres
ds

=
1

2
Rs|H⃗|2 (2.50)

We can easily solve for Pres, or the resistive power dissipation by integrating over ds to

get:

Pres =
1

2
Rs

∫
S
|H⃗|2dA (2.51)

Here Pres is the power loss in our system. We can then use the definition of Q0 from

eq. 2.3 and eq. 2.47 (b) while remembering that over one period Wm = We to get:
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Qres =
2ω0Wm

Pres
=
ω0µ

Rs

(∫
V |H⃗|2dV∫
S |H⃗|2dA

)
=
ω0µ

Rs

1

pm
(2.52)

We can see from eq. 2.52 that we have once again introduced a surface participation factor,

however unlike in eq. 2.49, the coefficient is 1/sm. To get a unitless participation pm we can

note that the volume associated with the interacting magnetic field is set by the penetration

length scale of our current. As previously mentioned, for normal state conductors this scale

is set by δ, or the skin depth, while for our superconductor this length scale is determined

by the London penetration length λL. We can substitute this length into eq. 2.52 to get:

Qres =

(
ω0µλL
Rs

)(
1

λLpm

)
(2.53)

And subsequently:

pm =
λL

∫
S |H⃗|2dA∫

V |H⃗|2dV
(2.54)

The deliberate choice of writing eq. 2.53 in this way is to highlight the relationship that

pm has with the concepts that have been previously discussed. The denominator of the left

parenthesis is simply the reactance Xs of our superconducting impedance Zs as defined in

eq. 2.22 for our two-fluid model. With that in mind we can also see that the left half of

eq. 2.53 is really equivalent to Qmag as defined in eq. 2.26 once the BCS conductivities are

included. What this shows is that Qres as defined above is really just Qmag as defined in our

two-fluid model with a proportionality constant of p−1
m , which itself is a geometric dependent

value.

Similarly the Q associated with our dielectric loss tangent for our cavity can be expressed

as:

Qdiel =
εr,ox
toxSe

1

tan δ
(2.55)
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We can now see the relationship between the two-level system filling factor F in eq. 2.35

with 2.55 above, with F = petox/εr,ox for our resonator.

The above shows that, in addition to the quality of the material we use, both in terms

of its conductive and dielectric properties, geometry also plays a big part in determining the

quality factor of our resonant cavities. From eqs. 2.53 and 2.55 we see that minimizing the

amount of field at our surface is critical to good performance. Inversely, in systems where

low Q is desirable, like cavity attenuators, then maximizing the surface participation se and

sm may be desirable. In the next section we will explore these ideas further in discussing

how in practice one can compute the geometric values from simulation, and how to use them

to assist in extracting material parameters.

2.3.2 Seam loss

The above sections outlined the most relevant material and geometric factors in the min-

imization of loss as they pertain to the devices discussed in later sections of this thesis,

however for completeness, they are not the only sources of loss, either.

In our discussion of cavity geometry we have assumed contiguous superconducting sur-

faces enclosing our resonant cavity. This, however, is only a theoretical treatment of an

ideal cavity. In reality, to make the enclosed volume, access has to be created to mill out

the material. The most common way this is done is by splitting the cavity volume in half,

creating a seam. In later sections we will discuss another technique which avoids this seam

(and its associated loss) in exchange for the use of holes which are only evanescently coupled

to the cavity mode. The derivation of this seam loss is taken from Refs. [31, 148].

The loss at the seam is due to a combination of resistive material (such as a thin oxide

layer) or caused by surface imperfections that reduce the overall contact area. Either way,

the loss can simply be taken as a boundary with total finite conductance G, over a total

contact surface. The path length of that surface allows us to get a conductance per unit
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length g⊘ = G/l which gives us:

dG = g⊘dl (2.56)

The power dissipated along a finite length d⃗l is given by an ohmic relation:

dPs =
1

2

(dI)2

dG
(2.57)

The finite current element dI can be written in terms of the surface current density

I = |J⃗⊥ × l⃗|. This current density, which is perpendicular to the contacting surfaces, is a

result of the normal component of the parallel magnetic field profile, giving:

J⃗⊥ = n̂× H⃗∥ (2.58)

Substituting in this definition and Eq. 2.56 into Eq. 2.57 gives us:

dPs =
1

2

|J⃗⊥ × l̂|2dl
g⊘

=
1

2

|H⃗∥|2dl
g⊘

(2.59)

Integrating both sides of Eq. 2.59 gives us:

Ps =
1

2g⊘

∫
l
|H⃗∥|2dl (2.60)

The above represents the dissipated loss. Using Eq. 2.3 and the time averaged magnetic

energy from Eq. 2.47 (b), we arrive at:

Qseam = ωµg⊘

∫
V |H⃗|2dV∫
l |H⃗∥|2dl

(2.61)

As before, Eq. 2.61 can be further separated into a loss factor g⊘ and a geometric par-

ticipation factor:
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Qseam =
g⊘

yseam
(2.62)

Where we have defined the geometric term in Eq. 2.61 as:

yseam =

∫
l |H⃗∥|2dl

ωµ
∫
V |H⃗|2dV

(2.63)

Which is often called the seam admittance.

As stated, the effect of seam loss is only a problem in cavities that require construction

from multiple parts. With the above in hand, however, it is possible to design the cavity in

a manner that minimizes yseam by choosing a line that runs parallel with H⃗∥ to minimize

the surface current density running across the seam.

2.3.3 Radiative and evanescent loss

In later sections we will introduce the flute cavity design, which is intrinsically seamless. It

does, however, require that overlapping holes be drilled into opposing sides of the cavity.

These holes act like waveguides, coupling electromagnetic energy into the external environ-

ment. Naively, one may expect that a ”holy” cavity would be an awful one, but in reality

this loss can be suppressed. To see how, lets take a single hole connected to a resonator with

a resonant frequency f0. This problem has even more general implications, especially with

concern to coupling to a cavity mode via an external coupler, which often requires the input

of a coaxial line (TEM waveguide mode) coupling to the resonator via propagating TM or

TE modes.

To begin the discussion of how a hole introduces loss into the system, we can begin by

looking at the basic principles of the propagation of electromagnetic energy through circular

waveguides 2. Circular waveguides support both TE and TM modes. To begin, a TEnm

2. For a more thorough description of waveguides see Refs. [144, 50]
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mode for a circular waveguide has a propagation constant βnm given as:

βnm =

√
k2 −

(
p′nm
r

)2

(2.64)

Where p′nm is the m − th root of J ′n(x), or the derivative of a Bessel function of the

first kind. Here k = ω
√
µϵ, where ω is a waveguide mode. We see that for values of

ω < ωc = p′nm/r
√
µϵ, then the propagation constant is imaginary. The value for ω which

corresponds to this is given above as ωc, or the waveguide cutoff frequency. To see the effect

that this has on our system we can look at the effect βnm has on the azimuthal and radial

electric fields of our TE11 waveguide mode:

E⃗ρ =
−iωµ
k2cρ

(A cosϕ+B sin(ϕ))J1(kcρ)e
iβ11z ρ̂ (2.65a)

E⃗ϕ =
iωµ

kc
(A sinϕ+B cosϕ)J ′1(kcρ)e

iβ11zϕ̂ (2.65b)

And magnetic components:

H⃗ρ =
iβ11
kc

(A sinϕ+B cosϕ)J ′1(kcρ)e
iβ11z ρ̂ (2.66a)

H⃗ϕ =
iβ11
k2cρ

(A cosϕ−B sinϕ)J1(kcρ)e
iβ11zϕ̂ (2.66b)

H⃗z = A sinϕJ1(kcρ)e
iβ11zϕ̂ (2.66c)

Both ρ̂ and ϕ̂ components of E⃗ and H⃗ have independent amplitudes A and B, with either

term being a valid solution due to the azimuthal symmetry of the cylindrical waveguide. In
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(a) (b) (c)

Figure 2.6: Field profiles for rectangular cavities and evanescent coupling holes:
(a) shows the magnetic and electric field vectors, and the surface current density, for the
TE10n modes of a rectangular waveguide cavity. (b) shows the magnetic dipole coupling
between the circular waveguide mode of an evanescant hole and the TE10n modes of the
cavity. (c) shows the electric dipole coupling between the input/output coupler pins. This
mode decays and couples into the TEM mode of a coaxial pin, with the Qext ∝ l

practice we set either A = 0 or B = 0 depending on the nature of the excitation of the

waveguide mode. We also see that, for frequencies below the cutoff frequency, when the

propagation constant is imaginary, the electric field profile decays exponentially. We can go

one step further and see what the effect of this is on the energy dissipation of a cavity mode

with ω0 < ωc for a given waveguide mode. For an aperture, the coupling of the waveguide

to the cavity mode was described by Bethe as a dipole coupling [24]. For the flute cavity

discussed later, we can determine that the waveguide mode excited is the aforementioned

TE11 through an effective dipole coupling between resonant mode’s E⃗ field, as shown in

Fig. 2.6.

To determine the Qext from this waveguide coupling, we want to determine what the

dissipated power is for a circular waveguide terminated by a shunt resistance Rs. We know

that the power through this resistance is given by Eq. 2.51. For a load at the end of the hole

we can write this as:

Pl =
Rs

2

∫
S
|H⃗ρ|2 + |H⃗ϕ|2ds (2.67)
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Since β11 = iRe(β11), we can rewrite Eqs. 2.66 accordingly and substitute it into the

equation above. This gives a value for Pl at the end of the waveguide of:

Pl =
Rsβ

2
11|A|2
4k4c

(p′11
2 − 1)J21 (kcr0)e

−β11lhole (2.68)

Where we have substituted z with the lhole, or our hole length. From Eq. 2.68 we see

that, as the length increases, the power loss exponentially decreases. To get the effect that

this has on our total quality factor, assuming that Q0 = Qext, we can can substitute Pl into

Eq. 2.52 in place of Pres to get:

Qext =
2ω0Wm

Pl
=

2ω0e
2β11lhole

Rs

(
ϵ0hwl

4β211r
4
0

)(
E2
0

|A|2
)(

p′11
4

(p′112 − 1)J21 (p
′
11)

)
(2.69)

The two main takeaways from Eq. 2.69 are that the participation at the end of the hole

falls exponentially with its length, meaning that Qext increases exponentially with length.

The second factor has to do with the resistance Rs. In the definition we have used, this

value for Rs is effectively acting like a series resistance in our circuit, however, in practice,

the path acts like a parallel current shunt, meaning that as the effective resistance of our

end hole increases, then the effective series resistance Rs decreases. This means that ideally

the effective impedance at the hole boundary would be infinite, meaning that, from the

perspective of the cavity mode, 100% of the power incident on the port would be reflected.

This also shows that, from the perspective of the evanescent mode, a termination with an

infinite impedance is equivalent to a hole with infinite length. Both of these properties are

demonstrated in Fig. 2.7.

The other factor in Eq. 2.68 is the fraction of the electromagnetic energy transmitted

from the mode into the port, as given by the fraction E2
0/|A|2. For our hole located at ±x

we can derive the strength of the coupling to the magnetic field, following Ch.6 from Ref. [50]
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(or Ch.4 from [41]), which has a horizontal electric dipole of:

m⃗ = −4

3
r30H⃗t = −αm|H⃗0|δ3(x− x0)x̂ (2.70)

Where αm = 4r30/3 and |H⃗0| is the amplitude of the cavity field at the wall on resonance.

For a TE101 mode in a rectangular cavity, the magnetic field components are:

H⃗z =
−iEo

ZTE
sin

πh

hcav
cos

πl

lcav
ẑ (2.71a)

H⃗x =
iπEo

kηhcav
cos

πh

hcav
sin

πz

lcav
x̂ (2.71b)

+x = a and −x = a then H⃗z = 0, so only the magnetic field in the x̂ component will

couple into our waveguide. This gives us the magnetization density from Eq. 2.70:

M⃗ = αm
iωµ0πE0

k0ηhcav
sin

πz

lcav
δ3(x− x0)x̂ (2.72)

To determine the effect of the apertures magnetic dipole moment on the cavity field, an

expansion must be made:

H⃗ =
∑
n

hnH⃗n (2.73)

Determining the expansion coefficient hn can be tricky, but Collins [50] showed that, for

the resonant case, for hn corresponding to ωn, detuned from the cavity resonant frequency

ω0, their components would be suppressed, leading to the simplification of Eq. 2.73, and

leading to an approximate form for hn:

hn ≈ −iϵ0ω
∫
V J⃗m · H⃗ndV

k2n − k20

(
1 +

1− j

Q0

) (2.74)
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In the case of a coupled drive port, the value for hn would give the strength of cavity

drive on H⃗n corresponding to our resonant mode. Subsequently, the Q0 value in Eq. 2.74

would be dependent on the external coupling Qext, since this value of Q0 is really the loaded

Q of the system. In our case, we have set the boundaries of our simulated cavity to be

perfect conductors, meaning that Q0 = Qext. In a real-world cavity, with holes that have a

strong evanescent decay, Qext ≫ Q0, meaning that this value will be independent. Next, we

must compute the numerator, remembering that:

J⃗m = iωµM⃗ (2.75)

We can substitute in Eq. 2.72 into Eq. 2.75 and solve for the numerator of Eq. 2.74. To

begin, we can not that the TE11 waveguide mode excited has a magnetic field component:

H⃗11 = Hϕϕ̂+Hρρ̂ (2.76)

We can then take the dot-product of Eq. 2.70 and Eq. 2.76, returning:

∫
V
J⃗m · H⃗11 =

∫
V
[HρJm cosϕ−HϕJm sinϕ]dV (2.77)

Plugging in Eq. 2.72 and Eqs. 2.66 (a) and (b) into Eq. 2.77 and computing the integral.

This integral involves the evaluation of first kind Bessel functions (and their derivative) from

Eq. 2.66, which give can be difficult to evaluate in closed form, however since we only have to

evaluate to p′11, or the first root of the J1 Bessel function, we can treat that as an integration

constant Cρ with units of 1/m2. The final result of this is the following:

|h0| = ε0ω

(
4

3
r50|E0|

)(
Cρβ

2
11

p′211ηkcavhcav

)(
Qext√
2k20

)
(2.78)

Where |h0| in units of A/m. If we divide both sides by E0 we arrive at a ratio of the driven

field to the cavity field |h0|/|E0|, which is analogous to the ratio of |E0|/|A| in Eq. 2.69,
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where |A| = |h0|. With this in mind, we can plug into Eq. 2.78, into Eq. 2.69:

Qext = C|h|
e2β11lhole

β611r
14
0 Q2

ext

(2.79)

Where we have collected additional constant terms into the coefficient C|h|. We have left

terms that are dependent on r0 above, with β11 =
√
k20 − k211 where k11 = p′11/r0 is the

wavenumber for the TE11 mode of the circular waveguide, and p′11 ∼ 1.841 is the first root

of the derivative of a first kind Bessel function. Solving Eq. 2.79 for Qext gives us the form:

Qext ∝
e2β11lhole

3
√
β611r

14
0

(2.80)

It shows that for the evanescent holes located as shown, in Fig. 2.7 that not just does

the field decay exponentially with length, but also in the radius of the hole as well, with

an additional factor of r
8/3
0 . This relationship is shown in Fig. 2.7 (a) in the form of an

analytical fit, using the simulated cavity parameters with only a fitting parameter for C|h|

provided, which acts as an offset in the figure shown. For the same offset parameter Eq. 2.80

shows very good agreement with the simulated data over a number of values of l and r0,

with deviation occurring for Qext ≳ 1× 1014 due to limits in the numerical precision of the

finite element simulation.

The above treatment of evanescent holes has also been done for coupling the cavity mode

to a TEM mode of a coaxial coupler evanescently through a sub-cutoff circular waveguides

TM01 mode by Brecht and Reagor [31, 149]. In that analysis it was electric dipole coupling

with the transverse electric field of the cavity that provided the coupling to the antenna.

Interestingly, for that particular coupling, the mode exhibited an Qext ∝ r−6
0 relation. This

shows that, even for evanescent holes, considerations should be made for the specific orien-

tation if minimizing loss through such holes is a priority. As we will see, for the monolithic

flute cavity, the suppression of radiative leakage is sufficiently minimized.
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(a) (b)

(c)

Figure 2.7: Scaling of external Q for evanescent hole: (a) shows the effect of changing
the radius of the hole, r0, for various hole lengths, showing the non-trivial scaling of Qext
with hole radius, as described in Eq. 2.80. The data is derived from parametric simulations
of an f0 ∼ 7.5GHz rectangular waveguide cavity. (b) shows the change in Qext vs boundary
impedance, with a linearly increasing Q with resistance, showing the fact that the hole acts as
a parallel current path. (c) shows Qext vs evanescent length lhole for a fixed radius, showing
the exponential increase in Qext vs length, as described in Eq. 2.67. In this simulation
Q0 = Qext since all other boundaries are set to be perfect conductance.
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CHAPTER 3

3D CAVITY SIMULATION AND DESIGN

3.1 Introduction

In the previous chapter we discussed the basic principles of electromagnetic resonators, with

the majority of the time dedicated to loss and geometric considerations for 3D resonant

cavities. While we described a simple example in the form of a TE101 cavity, we also saw

that for analytically describing even a simple coupling of a single hole to that cavity was a

tedious undertaking. For many, sticking to simple geometries with easy to evaulate closed

form solutions to their electromagnetic field is good enough, but for complex geometries such

as the multimode cavity, which has no compact analytic description for its resonant prop-

erties, we must utilize simulation tools. This is compounded when we introduce additional

complications, such as non-linear resonant circuits, or couplings between adjacent cavities.

In this chapter we will discuss some basic simulation principles, and show a myriad

of techniques for solving almost all of the aforementioned surface participation ratios and

more. More importantly, this chapter will be an instruction manual for how to use two very

powerful tools for cavity design (PyInventor) and simulation (PyHFSS, PyEPR)[122], and

discuss the tool chain for simulating a few simple geometries. In addition to this we will

introduce some methodologies for simulating the effects of adding a non-linear resonator (in

the form of a qubit), into our system. This won’t be an exhaustive overview of all these two

pieces of software have to offer, but along with the complete demonstration code 1, should

be enough to begin designing and simulating 3D cavities.

1. You can find the packages and code at github.com/AndrewOriani for complete examples of both
PyInventor and PyEPR demonstrations
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3.2 PyInventor

In 2D superconducting circuits, a design can be made with almost any vector graphics pro-

gram, as long as the final filetype can be interpreted by the fabrication tools used to pattern

the design. In reality, for complicated parametric designs, code is used to generate the in-

dividual vector elements and layers before exporting into a compatible format. In the past,

custom libraries were used for this purpose2. More recently, standalone SC-circuit design

tools (KQCircuit)[90] and full-stack design and simulation tools (Qisket Metal)[123] have

given scientist powerful open-source design tools for 2D quantum circuits. This makes sense

given the increasing complexity and level of integration that modern 2D designs require for

state of the art quantum experiments. Normally, 3D cavity geometries are quite simple, made

up of shapes that require little or no parameterization, and could be made simply by nor-

mal hand-operated machine tools. As 3D quantum experiments become more complicated,

however, similarly powerful design tools will be needed.

3D designs, however, are much more difficult to implement directly in code given the addi-

tional spatial relations that must be considered. While there are a few open sourced Python

packages that exist for generating .STEP, .STP, and .IGS files, their featureset, documenta-

tion, and flexibility are limited. Standalone software, like AutoDesk Inventor and Dessault

Systems’ Solidworks, have become industry standards for 3D parametric design, with 30+

years of continuous development. These standalone software however have little in the way

of automation built-in, and lack the integration with existing simulation tools like Ansys

HFSS (microwave simulation) and Maxwell (Electromechanical) or Comsol (Multiphysics)

out of the box. Another option is to use the design tools featured in these simulation software

packages. This, however, is of limited utility, since these packages lack the features of the

aforementioned 3D parametric design software, but also their designs cannot be exported

2. For the specific packaged used by the SchusterLab, see: https://github.com/SchusterLab/MaskMaker
and https://github.com/SchusterLab/maskLib
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into files that those software can interpret (although they do support importation of most

standard 3D design files). With this in mind, what is really needed is a code package that

can automatically generate designs in one piece of software, before exporting that design to

the desired simulation software. The second part of the equation already mostly3 exists in

the form of the excellent PyEPR Ansys API [122]. The first part, concerning the automated

design, is the discussion of the following section.

3.2.1 PyInventor: Fundamentals and setup

This section will discuss the fundamentals of the Autodesk Inventor API written to solve

the aforementioned problem. PyInventor4 is a open-source python package which is capable

of generating individual part files (which contain the full parametric design) and exporting

them into filetypes that can be used to generate toolpaths for automated computer numerical

control (CNC) machining, or into existing simulation software. PyInventor works by inter-

facing with the Autodesk Inventor SDK, which is natively written using Windows Visual

Basic for Applications (VBA). Because of this, Inventor (and PyInventor) will not work on

MacOS. To demonstrate the use of PyInventor we will look at a simple example first in the

form of the λ/4 coaxial cavity.

3. I say mostly because PyEPR was never intended to be used solely as an Ansys API. Because of this,
additional code was written to accomodate the 3D design, and will be discussed in a later section

4. https://github.com/AndrewOriani/PyInventor
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Axis(a)
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Figure 3.1: Outline of coaxial cavity design and pyInventor steps for part creation:
(a) shows a cross-section of the λ/4 coaxial design. This cavity is effectively a coaxial line
that has been shorted at one end. The fundamental mode is a TEM mode that has a
fundamental frequency set by the pin length. The top section is a circular waveguide that
has a cutoff frequency such that fc >> fλ/4. (b) shows a schematic of the process in which

we generate the part in PyInventor. First we select a plane that bisects the geometry (x̂− ẑ)
and create a sketch that represents half of the geometry. We choose a perpendicular plane
(x̂− ŷ) to create the body of the cavity. Finally, using the ipart.revolve in addition with
the operation=’subtract’ flag we are able to generate the interior geometry of our cavity

To begin, after importing the necessary PyInventor classes using from PyInventor import

..., we will need some basic initial setup for our part:

1 com_obj().close_all_parts()

2 units='imperial'

3 overwrite=True

4 fname='coax.ipt'

5 path='C:\\Users\\Public\\Documents\\Demos'

6 part=iPart(path=path, prefix=fname, units=units, overwrite=overwrite)

Most of the above snippet is self-explanatory (unit type, filename, path to save etc.), but

a few points to highlight. The first is com obj().close all parts() on line 1, which will

close any opened part files in your Inventor application (including unsaved parts), and the

iPart class on line 6, which contains all of the part specific functionality for Inventor.

Next we need to define a work plane to attach our sketch to. The work plane is the plane
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in which we will sketch our design onto before conducting 3D operations. For the coaxial

cavity, we will start with a sketch that defines the outline of our cavity cross-section, as

shown in Fig. 3.1 (b). In addition to the work plane for our cavity profile (revolve wp), we

also define a stock workplane (stock wp) in the x̂− ŷ plane that will be used for the stock

profile:

1 revolve_wp=part.add_workplane(plane='xz')

2 stock_wp=part.add_workplane(plane='xy', offset=2)

3 stock_sketch=part.new_sketch(stock_wp)

4 revolve_sketch=part.new_sketch(revolve_wp)

Following the definition of our workplanes on lines 1 and 2, we define our two primary

sketch objects associated with each workplane on lines 3 and 4. These sketch objects each

act like their own independent 2D vectors, but unlike a standard vector they maintain

associativity that is a hallmark of parametric CAD.

We can now create our profiles. The process of doing this borrows heavily from the

MaskMaker library used for DXF creation for photolithography masks to create 2D super-

conducting circuits. First a structure object is created. This is a local dictionary object

that contains both the type of vector object one is creating (line, arc, spline, etc.) and the

associated points. This differs slightly from DXF software, in that the vector object is asso-

ciated with a specific sketch object type inside of Inventor, each with their own associativity

and constraint rules:

The above code starts by defining some of the pertinent cavity design parameters, which

have been hardcoded here for clarity. Line 7 introduces the aforementioned structure class,

which takes the part object and associated sketch5. In addition to those associativities,

structure also takes the start point, which in our case is the top center corner of our stock

5. A newer version has been written that solves this clumsy inheritance, but since the majority of existing
design code is built around this version of PyInventor, we will continue using this structure.
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1 r_cav=0.3 #inches

2 h_cav=1.85 #inches

3 bot_rad=0.094 #inches

4 pin_height=0.231 #inches

5 pin_rad=0.0625 #inches

6 stock_height=2.0 #inches

7

8 s=structure(part, revolve_sketch, start=(0,stock_height))

9

10 s.add_line(r_cav, 180)

11 s.add_line(h_cav, 270)

12 s.add_line_arc(start_angle=180, stop_angle=0, radius=bot_rad, flip_dir=True,

rotation=0)↪→

13 s.add_line(pin_height, 90)

14 s.add_line_arc(start_angle=0, stop_angle=270, radius=pin_rad, flip_dir=False,

rotation=180)↪→

15 s.add_line(r_cav-2*bot_rad-pin_rad, 0)

16

17 rev_path=s.draw_path(close_path=True)

since we have set up this design to be radially symmetric about the ẑ-axis

Lines 9 − 15 are our sketch operations. Each operation adds a sketch object dictionary

entry to the structure object. At this point the structure dictionary (s.obj dict()) is

a locally saved variable. To tell Inventor to actually draw this set of line objects, we use

draw path, which compiles each entry of the dictionary object into a set of connected Inventor

line objects.

Two important things to note with draw path are the close path flag, and the output.

The close path flag tells inventor that the first and last points should be connected. If the

two points do not have the same coordinate, then the structure object will simply add a line

that closes the path. This is important, as if the path is open, it will not be possible to do

3D operations. At a later stage. The second aspect worth noting is the returned object,

which in this case is called rev path. This is an Inventor API object known as an object

collection, and allows us to treat this structure as a single entity that can be operated on.

63



We will see how this works at a later stage.

First, though, we need to define our stock. Here we have a cylindrical profile, which,

when projected onto the x̂− ŷ plane is a simple circle:

1 stock_bot_circle=part.sketch_circle(stock_sketch, center=(0,0), radius=.5)

Here we see a different way of creating a sketch object. In the case of the cavity profile,

where the shape was irregular, we had to use the structure object to define the contour,

however in the case of the stock profile, which is a circle, we can directly tell inventor to

sketch the desired shape, in this case using sketch circle6, with a center point (center)

and radius as inputs.

Up to this point we have only worked in two dimensions. To create our 3D cavity we

need to conduct 3D operations with these 2D geometries. Here the order of operations is

important, and reflect the order in which a part would actually be made. The first step is

to generate the stock of the cavity, i.e. the outer form of the part. The second step is to

then remove the desired material to form the interior cavity geometry, which is analogous

to physically machining out the material:

1 stock_solid=part.extrude(stock_sketch, thickness=stock_height,

obj_collection=stock_bot_circle, direction='negative', operation='join')↪→

2

3 cav_vol=part.revolve_full(revolve_sketch, axis='z', obj_collection=rev_path,

operation='cut')↪→

Line 1 shows the creation of the stock geometry, using a simple extrusion. Note that

the extrusion always moves perpendicular to the plane that the sketch is located in. In

addition to this, the extrusion also allows for Boolean operations in addition to ’join’. The

6. In addition to circles, PyInventor also has rectangles (center and two-point), and slots for closed
regular geometries
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direction flag is with reference to the coordinate system directions. We also see the use of

the obj collection defined previously that represents our stock profile.

For the cavity volume, the process is a bit different. Taking advantage of the radial

symmetry of the profile we had generated (rev path), we can simply rotate that profile

about the ẑ-axis. Since we are removing material, we use the ’cut’ operation. In this case,

the revolution axis was a cardinal axis for our design, however, can be designated by a line or

work axis. At this point the design specified in Fig. 3.1 has been realized. Additional steps,

such as using part.save() to save the .ipt file and also saving an .stp copy for export

using part.save copy as(copy name=’coaxial cavity.stp’).

We have shown the basics of how PyInventor can be used to generate a simple cavity

design. In reality, the above cavity is not the best demonstration of what PyInventor can

do from a parametric design standpoint. Tapered cavity geometries, like the multimodal

flute cavity discussed in a later section, or cavity lattices like that used in Refs. [131, 132]

are perhaps more compelling uses. The code for creating a similar lattice to that used in the

aforementioned references can be found at the PyInventor GitHub7 along with many other

examples.

3.3 HFSS and Electrodynamic Simulations

The previous section demonstrated how we can automate the cavity design process, but

once a design has been made, how do we determine the pertinent properties, i.e. resonant

frequency and participation ratios? As we saw in Ch.2, it is possible to calculate these values

analytically, but in practice most geometries deviate from the ideal. In this section we will

discuss how we extract these important values from simulation, and use it as an introduction

to the techniques that will be used in later sections for simulating the interaction of these

cavities with our qubits.

7. https://github.com/AndrewOriani/PyInventor/blob/main/ Tutorial Notebooks/PyInventor%20Demo.ipynb
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3.3.1 HFSS and PyHFSS

:

Ansys HFSS (High-Frequency Structure Simulator) is an electrodynamics FEM software

package used for simulating microwave resonators. Along with Q3D, an electrostatics mod-

eller, and Maxwell, for electromechanical systems, HFSS is one of the primary tools used in

simulating resonators along with coupled microwave systems. As with Inventor, HFSS also

has a robust API which is natively written in Python. PyHFSS is a sub-package of the larger

PyEPR package [122] developed by Zaki Leghtas and Zlatko Minev, with the HFSS interface

being a continuation of PyHFSS originally written by Phil Reinhold8. In later sections we

will discuss the use of PyEPR and its static circuit solver, but in this section we will just look

at solving for the electromagnetic properties of our cavity that we created in the previous

section. One note is that the version of code that will be presented in part in this section

uses a fork of PyEPR that can be found on my Github9.

Most of the simulation code concerns definition of variables, geometry and boundary

condition settings, and finally simulation settings. I won’t go in depth into all of those parts

here, but would like to first point out a few important things when setting up the simulation.

After instantiating HFSS Desktop, creating a project, and adding a design file to that

project, the first important step, and one unique to my branch of code (as of writing this

thesis) is the 3D importation function. In the previous section we exported the cavity design

as an .stp file, and the first step in our simulation is importing of that design as follows:

Normally we would set boundary conditions by selecting the surfaces and assigning a

material property to it, however since we wish to study mode frequency, field participation,

and the effects of evanescent loss, we can set these boundaries to perfect conductance. A fast

way of doing this is to do a Boolean subtract on the interior cavity volume by first creating

8. https://github.com/PhilReinhold/pyHFSS

9. https://github.com/AndrewOriani/Automated-RF-Design-Demo-MASTER/tree/main
/Updated%20pyEPR%20Files/pyEPR
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1 path=path+'\\'+'coaxial cavity.stp'

2 EM_design.make_active()

3 model=HFSS.HfssModeler(EM_design)

4 model.import_3D_obj(path)

a stock solid form. The following code describes this process:

1 Stock_L=EM_design.set_variable('Stock_L', '%.3fin'%(stock_L))

2 Stock_W=EM_design.set_variable('Stock_W', '%.3fin'%(stock_W))

3 Stock_H=EM_design.set_variable('Stock_H', '%.3fin'%(stock_H))

4 cav_dims=[Stock_L, Stock_W, Stock_H]

5

6 box=model.draw_box_corner([-Stock_L/2, -Stock_W/2, 0], cav_dims)

7 objs=model.get_object_names()

8 obj_name=model.subtract(blank_name=objs[1], tool_names=[objs[0]])

This process results in the automatic assignment of the interior volume as vacuum, which

HFSS treats as already having perfect conductor boundaries. In our coaxial cavity design,

the cavity top is open to the environment, with the TEM mode of the pin coupled to a

sub-cutoff TM01 mode of a circular waveguide, leading to evanescent decay. One aspect in

our design worth considering is how that evanescent field interacts with the top of our cavity.

A natural place to start is to set this to vacuum boundary impedance Z0 =
√
µ0/ϵ0 ∼ 377Ω

as follows:

1 top_hole_loc=[0,0,Stock_H]

2 top_hole_fid=model.get_face_id_by_pos(obj_name, pos=top_hole_loc)

3

4 top_imped=model.assign_impedance(377, 0, obj_name, top_hole_fid, name='Top_Imped')

For now we will skip the rest of the intervening steps, which include the creation of

a hole for our qubit to be coupled into the cavity, which also has an assigned boundary

impedance, and go to the simulation setup. In our case we want to know the eigenmodes of
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our cavity. If we remember from Ch. 2, the analytic process of doing this is by solving for the

resonant conditions that satisfy Maxwell’s equations given our boundary conditions. In effect,

HFSS is doing the same, except it attempts to numerically compute this condition through

the simultaneous solving of Maxwell’s equations over many finite elements. These surface

elements, known as a mesh, have a characteristic length scale, which is made continuously

smaller until a convergence criteria is met in solving for our desired resonant condition. To

first order, this criteria is simply the eigenfrequencies of our system. This convergence can

also include the loss as well, or the imaginary component of the returned eigenfrequencies.

To initially set these parameters we type the following:

1 EM_setup=EM_design.create_em_setup(name='Test_EM',

2 min_freq_ghz=2,

3 n_modes=5,

4 max_delta_f=0.1,

5 max_passes=20,

6 min_converged=1,

7 converge_on_real=True)

The min freq ghz key acts as a means to tell HFSS how to seed the initial mesh. n modes

sets how many higher-order modes we wish to compute, and the additional keys set the

convergence criteria, with converge on real telling HFSS to only converge on the frequency,

instead of the frequency and loss. After running EM setup.analyze(), HFSS will run the

simulation until convergence is met, or the maximum passes have been reached. Following

this we can return our solution data and eigenfrequencies:

1 solns=EM_setup.get_solutions()

2 eigen_real=solns.eigenmodes()[0]

3 eigen_imag=solns.eigenmodes()[1]
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3.3.2 Computing Surface Participation

As we saw in Ch. 2, to characterize the loss we must first know the amount of electric and

magnetic energy is stored at the source of our loss, i.e. the surface, versus the losses vacuum.

To do this we need to compute Pe and Pm as written in Eqs. 2.49 and 2.54 respectively. We

could export the vector fields and do these integrals numerically in Python, however we can

use HFSS, and PyHFSS, to do the work for us. There are two ways we can do this in an

automated fashion, but the first way is to use API function calls directly to the calculator.

To access the built in field calculators we can use the CalcObject class as follows:

1 calcobject=HFSS.CalcObject([], EM_setup)

Now, before we continue, we should talk about the way we construct an expression in

HFSS. The syntax, known as reverse polish notation (RPN), has the operand proceed their

operators. As a simple example, 2 + 2 → 22+. For most who have never used RPN, seeing

this for the first time is disorienting, but with this in mind, lets remind ourselves what we we

are trying to do. Using Pe as an example, from Eq. 2.48 (a), we are taking the volumetric

integral of the quantity |E|2. In RPN this would look like E⃗E⃗∗ · Re. For the denominator

of Pe we can express this as:

1 solns.set_mode(0)

2 vecE = calcobject.getQty("E")

3

4 A = vecE

5 B = vecE.conj()

6 A = A.dot(B)

7 A = A.real()

8 A = A.integrate_vol(name=volume)

9

10 lv = self._get_lv(variation)

11 vol_int=A.evaluate(lv=lv)
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Line 1 tells HFSS the mode of the associated field we want to work with. Line 10 returns

a quantity in this case in V m2 in this case. We can swap out line 8 for

A.integrate surf(name=surface) to get the numerator, where volume and surface vari-

ables are the identifiers of the desired surface or volume we wish to integrate10. For Pm we

can change line 1 and instead use calcobject.getQty("B").

The above is how we can use the API to directly calculate these quantities. We can also

pre-compile this code into code that HFSS can directly compile, and save it to the native

.clc file. To load and use a compiled .clc we instead use:

1 solns.set_mode(0)

2 calc=HFSS.HfssFieldsCalc(EM_setup)

3 calc.clear_named_expressions()

4 Se_calc_path=path+"\\E_energy_S_to_V.clc"

5 Sm_calc_path=path+"\\H_energy_S_to_V.clc"

6

7 Se_name=calc.load_named_expression(Se_calc_path)

8 Sm_name=calc.load_named_expression(Sm_calc_path)

9

10 calc.use_named_expression(Se_name).evaluate()

11 calc.use_named_expression(Sm_name).evaluate()

One reason we chose the coaxial geometry for this instance is to compare the simulation

to an analytic approximation. Since the coaxial cavity can be approximated as a TEM

mode, where we consider the evanescent section above to have minimal contribution to the

participation of the fields. From [144] we can show the electric and magnetic field is:

E⃗ρ =
V0e

−iβz

ρ ln b/a
ρ̂ (3.1a)

10. In this case the identifier is the name assigned by the user or HFSS for the solid and are represented
in our function as strings. One can also select specific surfaces or volumes which can be independently
assigned or are assigned by default with an ID number. You can find the ID number by position using
model.get face id by pos(obj, pos)
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H⃗ϕ =
V0e

−iβz

2πηρ
(3.1b)

From the above we can solve the magnetic and electric participation using Eqs. 2.49 and

2.54). We will only look at the geometric participation, se and sm respectively, and ignore

the dielectric thickness and constant and the London penetration length for the time being.

Normally, for a coaxial line, and because of the symmetry of the TEM mode, the surface to

volume participation of both fields would be the same. In our case the bottom surface also

participates, but because the electric field goes to zero at the boundary we can still calculate

pe as:

se =
1

ln b/a

(
1

a
+

1

b

)
(3.2)

For pm, we must also calculate the participation of the bottom surface. We do this by

taking the surface integral of the tangential field, similar to how we calculated the end of

the evanescent hole participation in Eq. 2.67. Taking both contributions gives us:

sm =
1

ln b/a

(
1

a
+

1

b

)
+

1

lpin
(3.3)

Here, a = 1.58mm is the pin radius, while b = 7.62mm is the total cavity radius, while

lpin = 9.84mm is the pin length. We can compute se = 477m−1 and sm = 627m−1 from

the above. Now lets compare to the simulated results. For the same values in dimensions,

the simulated results yield se = 392m−1 and sm = 548m−1, which is ∼ 17% lower in se

and a ∼ 13% lower in sm from the analytic expression. One reason is that the simulated

geometry is not a simple shorted coax, with additional curvilinear surfaces at the top and

bottom of the pin11. The main reason, however, is that the evanescent field increases the

11. The reason for this will be explained in a later section, but in short the removal of sharp edges was
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effective volume by a noticeable amount, increasing the denominator of both integrals. We

could have included this deviation in our analytic solution, but the coupling of the TEM

to the evanescent TE11 mode greatly complicates the above expressions. Either way we see

that the accuracy of the simulation in capturing the predicted behavior of the system is in

line with expectations. In addition to this we can also look at the exact participation of

specific parts of the geometry independently, which is useful when correlating the presence

of particular impurities with types of loss, as we will see in later chapters.

3.4 Q3D and static qubit simulations

In the previous sections we introduced and discussed the creation of a 3D coaxial cavity and

the process of extracting both its eigenfrequencies, quality factor, and electric and magnetic

geometric participations. For cavities this represents the extent of the analysis one can do.

Ultimately we would like to integrate a qubit into this geometry and study how coupling

our resonator to a non-linear LC circuit changes the energy spectrum of our system. In a

later section we will use Blackbox [127] and PyEPR[122] to extract the dispersive coupling

rates of our combined qubit-cavity system, but first we need to solve the energy spectrum

of our transmon qubit. In this section we will discuss how we can determine the circuit

parameters using our automated simulation code and solve for the energy eigenvalues of the

CPB Hamiltonian to determine the transmon’s energy eigenvalues.

3.4.1 3D transmon circuit analysis

In Ch we introduced the transmon qubit and some of the properties that make it particularly

attractive for quantum information, namely its suppression of dephasing thanks to an expo-

nential suppression of charge dispersion. With this in mind it is important that our qubit is

both in the transmon limit, or rather Ej ≫ Ec[104, 164], and has the correct frequency to

done for more predictable etching
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(a) (b) (c)

Figure 3.2: Circuit model and capacitance of CPB: (a) shows the layout of our cooper
pair box (CPB) as a canonical circuit diagram. The inductive energy introduced by the
Josephson junction sets the Ej of our circuit, while the charging energy, Ec is associated
with the amount of energy required to move e worth of charge across our junction and onto
our island. This charging energy is set by the total capacitance CSigma in the above circuit.
(b) shows the real-world layout of our 3D transmon circuit. Here the total capacitance is
the effective capacitance of each pad to ground and the cross capacitance of each pad to one
another.

be in the desired dispersive coupling regime. In addition to this, it can be shown that the

charging energy is equal to the anharmoncity, α = −Ec, for the transmon regime. We will

discuss how to determine the correct Ej for a given Ec and desired ω01 frequency later in

this section, but first lets discuss what Ec is.

Fig. 3.2 (a) shows the effective circuit diagram for our 3D transmon. We can note that,

for any cooper pair box, Ej = e2/2CΣ [53]. To get the total capacitance CΣ, we can note

that Cg1 and Cg2 are in series where as C12, or the cross-pad capacitance is in parallel with

our junction. This leads to an effective capacitance of:

CΣ = C12 +
Cg1Cg2

Cg1 + Cg2
(3.4)

Now that we know what Cσ is equivalent to, we need to determine their values. To do

so, we will be using Ansys q3d, a quasi-static field extractor. In the next section we will

be showing how we implement that, but first lets discuss what q3d actually solves for. Q3d

returns a reduced capacitance matrix. The capacitance matrix is obtained by solving:
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Q = Cv (3.5)

Where Q is a column vector of the charge on each island, or in our case, pad, and v is the

corresponding voltage on each island. The matrix C is our reduced capacitance matrix. For

our example, lets start with the total charge on each conductor as a function of the voltages

on each conductor:

Q1 = Cg1v1 + C12(v1 − v2) (3.6a)

Q2 = Cg2v2 + C12(v2 − v1) (3.6b)

From the above we see that we can regroup the voltages to get to recover the reduced

capacitance matrix.

Q1

Q2

 =

Cg1 + C12 −C12

−C12 Cg2 + C12


v1
v2

 (3.7)

Q3d will return the above capacitance values that solve the above system. From those

values we can determine the effective capacitances and plug them back into Eq. 3.4. In

the next section we will setup this simulation and show how by directly solving the CBP

hamiltonion we can recover an effective EJ that will give us the desired g− e frequency ω01.

3.4.2 q3d implementation

:

The q3d simulation process mirrors that of the HFSS simulation setup, with the primary

difference being the way in which we import the object and assign both boundaries and the

surfaces to be simulated. We will skip most of these steps, and jump to the importation and
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surface assignments.

PyHFSS as implemented in PyEPR version 0.8.5.5, does not have a built in .dxf importation

functionality. This is not strictly necessary as the one could use the built in 2D design

functionality of Ansys HFSS and q3d, however, as with the 3D design, having the ability to

export already compiled designs streamlines the workflow. In the branched version of PyEPR

used in this thesis this functionality was added. The following is a brief snippet to show its

use:

1 layer_group=model.import_DXF(chip_path, self_stitch=True)[0]

2 layer_group=model.unite(model.get_objects_in_group(layer_group))

3

4 layer_group=model.separate(names=layer_group, split_plane='XY')

In line 1, import DXF imports all layers, returning a list of layer handles in the design

tree. The key self stitch ensure all surface polygons are combined into closed forms. This

allows for line 2 to be used to unite independent objects into a single layer, before each

individual component, i.e. the pads and readout resonator, are separated into surfaces that

can be independently assigned boundary conditions. In addition to this we must conduct a

Boolean operation to turn the now separated 2D forms into sheets that can be assigned as

thin conductors:

1 cond_plane=model.draw_rect_corner([chip_x_origin,chip_y_origin,chip_z_origin],

x_size=chip_x_dim, y_size=chip_y_dim)↪→

2

3 layer_group=model.intersect(names=[cond_plane, layer_group])

After this we can create the pad objects, first by using their object identifiers to create a

model object from an unassigned sheet, before then assigning the thin conductor properties

and finally making the pads nets:
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1 #detach and make independent face objects

2 pad_1_obj=model.create_objects_from_faces(obj=layer_group, faces=pad_1_id)

3 pad_2_obj=model.create_objects_from_faces(obj=layer_group, faces=pad_2_id)

4

5 #assign finite conductivity and sheet thickness

6 film_thickness=q3d_design.set_variable('pad_t', '%.4fnm'%50.0)

7 pad_1_obj.make_thin_conductor(name=None, material='Copper',

thickness=film_thickness, direction='positive')↪→

8 pad_2_obj.make_thin_conductor(name=None, material='Copper',

thickness=film_thickness, direction='positive')↪→

9

10 #make nets

11 pad_1_obj.make_net()

12 pad_2_obj.make_net()

The process of making the thin-conductor pads nets tells q3d to add the conductive

surface to the capacitance matrix. Finally we can setup the simulation:

1 q3d_setup=q3d_design.create_q3d_setup(name="Ec_Test",

2 min_passes=1,

3 max_passes=10,

4 min_converged=1,

5 pct_refinement=30,

6 pct_error=1,

7 soln_order='High',

8 save_fields=False)

As before, most of the setup above concerns the convergence criteria. The GC solver

for q3d, which is what is being used, is capable of DC and AC measurements, however for

capacitance (and conductance) DC is used, so no additional frequency information has to be

given. Finally we can extract the reduced capacitance matrix and its units:

1 cap_matrix=q3d_setup.get_matrix_dict()['matrix']['capacitance']

2 cap_unit=q3d_setup.get_matrix_dict()['units']['capacitance']
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Figure 3.3: Deviations in ωge from analytic and numeric approximations: The
figure shows deviations in the numerical solution for the ωge frequency from the transmon
approximation in Eq. 3.8. A complete numerical treatment of the CPB Hamiltonian found
in Appendix. A.

With the returned matrix, we can solve for Cg1, Cg2, and C12 using the derived for of

the reduced capacitance matrix we derived in Eq. 3.7 before plugging these values into the

derived form of CΣ into Eq. 3.4.

3.4.3 Qubit energies from CPB hamiltonian

With an estimate for Ec in hand we can move on to discuss other properties of our transmon

qubit, particularly the estimation of Ej , for a given frequency, as well as some estimations

for the charge dispersion limited T2,. In Ch. 1 we discussed the unique properties of the

CPB and the exponential suppression of charge noise with anharmonicity changing weakly

as a power of Ej/Ec. In the transmon regime where Ej/Ec ≫ 1, the |g⟩ − |e⟩ transition

frequency, ωge can be taken as:

ωge ≈
√
8EjEc (3.8)

The above approximation is accurate within ∼ 10% for typical Ej/Ec ∼ 50− 100 values

used in the experiments discussed. For more accurate determinations of ωge, and subse-
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quently determinations of Ej , a full diagonalization and solving of the CPB Hamiltonian

energy eigenvalues is necessary. A plot showing the discrepancy from the numeric calcula-

tion and the transmon limit approximation is shown in Fig. 3.3

Another quantity worth getting at this point is the charge dispersion. Even though the

sensitivity to charge noise is exponential suppressed with larger Ej/Ec values, for typical

Ej/Ec values, it can still play a noticeable role. The effective dephasing time of a qubit can

be written as:

1

T2,eff
=

(
1

2T1
+

1

T2,ϵn

)
(3.9)

Where T2,n ∼ 1/ϵn is the dispersion limited dephasing time for the nth level of our CPB.

We can reiterate ϵn below [104]:

ϵn ≃ Ec
22n+5

n!

√
2

π

(
Ej

Ec

)n/2+3/4

e−
√

8Ej/Ec (3.10)

The above is computing the change in energy over one charge period (∆ng = 1). For

a modest value of Ej/Ec ∼ 60, from the above we compute a T2,ϵ1 ∼ 800µs for the first

transition (n = 1), which forms the basis for our spin-1/2 system. This may sound like a

lot, but for a qubit with T1 ∼ 100µs, this would lead to a ∼ 20% decrease in the maximum

effective dephasing time, assuming other sources of dephasing are small.

Before we continue to simulating and extracting parameters describing the full coupled

qubit-cavity system, we will note that, while it is an informative exercise to solve this system

by oneself, the Python package SCQubits as well as Qisket Metal [123] can do the same basic

analysis and much more.
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Cavity

(a) (b)

Figure 3.4: Black-box equivalent circuit and cavity admittance: (a) A schematic
representation of the blackbox quantization process. A qubit is modelled as a linear RLC
circuit in parallel with a non-linear Josephson element, coupled to a cavity with impedance
Z(ω). From the perspective of the non-linear element. (b) A plot of the cavity admittance
seen from the perspective of the junction. The phase ϕ̂ across the non-linear element can
be described in terms of the imaginary part of the derivative of the admittance, Im[Y ′(ωp)],
where ωp can be determined by the zero-crossing of ImY (ω). For small fluctuations in phase,

one can expand the cos ˆphi to fourth order and add it as a perturbative correction

3.5 Coupled qubit-cavity system simulation

The static circuit quantization gives us solutions to the energy spectrum of the cooper-pair

box in the absence of an external cavity field. In a cavity, however, through the coupling

described by the Jaynes-Cummings hamiltonian in Ch. 1, a cavity field will hybridize with

the qubit. In 2D this can be done by relating the junction phase to the zero-point voltage

fluctuations of the resonator [164]. With discrete elements the coupling can be computed

directly, however in 3D, where our electromagnetic energy is distributed, we have to turn to

an alternative approach to determining the field participation in the junction. In this section

we will discuss the two methods used in this thesis to conduct these calculations and discuss

the advantages and disadvantages of both.
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3.5.1 Black-box circuit quantization

The first method, known as Black-Box quantization [127], works by splitting the qubit into a

linear component with the non-linearity added back into the system perturbatively. Fig. 3.4

(a) shows the equivalent circuit, where we have split the system into an equivalent circuit

that describes the cavity modes that is in parallel with the linear component (Lj and Cj)

of our qubit and a nonlinear part due to the additional josephson inductance. From the

perspective of the qubit we can write the impedance of the Foster equivalent circuit as:

Z(ω) =
m∑
p=1

(
jωCp +

1

jωLp
+

1

Rp

)−1

(3.11)

At ω = ωp, where ωp is the resonant frequency of the mode, our impedance looks like a

pole, whereas the admittance, Y (ω) = Z(ω)−1 crosses zero, which we will use later to find

ωp values. It can be shown that, from Eq. 3.11 we can calculate the values for CP , Lp, and

Rp in terms of the admittance as [127]:

Cp =
1

2
Im[Y ′(ωp)] (3.12a)

Lp =
1

2ω2pIm[Y ′(ωp)]
(3.12b)

Rp =
1

Re[Y (ωp)]
(3.12c)

We can write a Hamiltonian in terms of the conjugate variables flux, ϕ̂p and charge, q̂p

for our circuit in terms of the equivalent circuit parameters:

H0 =
m∑
p

q̂2

2Cp
+

ϕ̂2

2Lp
(3.13)
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We can see that Eq. 3.13 reduces to the quantized form
∑

ℏωp(a†pap + 1/2). We can

rewrite the flux in terms of the creation-annihilation operators. We can also write the phase

across the junction as φ =
∑
ϕp/ϕ0, where ϕ0 = h/2e is the flux quantum. Combining these

two gives:

φ =
1

ϕ0

m∑
p

√
ℏ
2
Zp(ap + a

†
p) (3.14)

Where Zp =
√
Lp/Cp. Now we have a value for the phase φ across the junction from

the contributions of each mode. Assuming the phase is small we can expand the non-linear

part of our CPB Hamiltonian in orders of φ:

Hnl = Ej(1− cosφ)− 1

2
Ejφ

2 = Ej

(
− φ4

4!
+O(φ6)

)
(3.15)

We can plug in Eq. 3.14 into Eq. 3.15, careful to discard non-conserving combinations in

ap and a
†
p in the fourth order expansion, to get an effective non-linear Hamiltonian:

∑
p

ℏ∆pnp +
1

2

∑
p,p′

ℏχpp′npnp′ (3.16)

In the above np = apa
†
p is the number operator on mode p, while ∆p is a linear correction

to frequency due to the lamb-shift. The second sum on the right contains the term χpp′ ,

which represent the self-Kerr (p = p′) or cross-Kerr (p ̸= p′). These can be written as

follows12:

χpp = −Lp
Lj

Cj

Cp
Ec (3.17a)

12. It should be noted that, by convention, χpp′ is equivalent to the dispersive shift 2χ. This is the same
in the later PyEPR methodologies.
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χpp′ = −2
√
χppχp′p′ (3.17b)

Eqs. 3.17 (a) and (b) give us a wealth of information about our system, since they

describe the effective dispersive interaction between the modes and the qubit, as well as

with neighboring modes, in the case of a multimodal system. It is easy to look at Eq. 3.17

and wonder what the point of this exercise was, but we should remember that the circuit

parameters are derived from an exact electromagnetic description of our cavity from the

admittance of the modes at the qubit, including distortions in the electric and magnetic field

profile from the addition of participating metal and dielectric surfaces on the chip. With the

above we can also compute the inherited anharmonicity of each mode, αp, which is equivalent

to the self-Kerr χpp, and the vacuum Rabi-rate gp for each mode:

gp =

√
χqp∆qp

∆qp + αq
αq

(3.18)

Where we use the subscript q to denote the interaction of a mode with the equivalent

linear contribution of the qubit. Here ∆qp represents the detuning of the qubit and target

mode frequency, |ωq − ωp|, and αq is simply the qubit anharmonicity.

While this is all interesting in an abstract sort of way, it isn’t all that helpful without a

way of accurately simulating the cavity-qubit system and extracting the admittance. In the

next section we will briefly go over the important aspects in this process, and discuss how

we can use PyHFSS again to extract this data.

3.5.2 Black-box in PyHFSS

The last section showed how one could use an equivalent circuit model and a measurement of

the electromagnetic environment experienced by the qubit to approximate the qubit-cavity
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interaction. Because this technique is dependant on a simulated result, the quality of the

information extracted is only as good as the model being used to simulate the system. So

far in our discussion of using HFSS (and PyHFSS), we have only discussed simulating cavities

and extracting participation. Black-box differs in two ways from those simulations. The first

is that the admittance is a function of frequency as defined by Eq. 3.11, or more accurately,

the inverse. This means we need to drive the system at different frequencies and get back

the response function. The second important factor goes back to the way we defined the

problem in Fig. 3.4 (a), namely that we want to get the admittance of the cavity modes at

the qubit. To do this we need to create a driven modal simulation where the port that we

want to drive is the qubit itself.

Much of the setup is the same as with the eigenmode and q3d extractor setup in previous

sections. Here however we select the driven model solution type when initializing our design

by using the new dm design function in the project class of PyHFSS. We will skip the basic

setup, and jump to the setup of our driven model port, which in our case, from Fig. 3.4 (a)

is the qubit. We first create a box that is a non-model object that spans the two pads:

1 model.assign_perfect_E([pad_1, pad_2], name='TPads')

2 Junc_y=DM_design.set_variable('junc_y', Pad_y+Pad_L)

3 Junc_x=DM_design.set_variable('junc_x', Pad_x+(Pad_W-Junc_W)/2)

4

5 junc_loc=[Junc_x, Junc_y, Pad_z]

6 jj=model.draw_rect_corner(pos=junc_loc, x_size=Junc_W, y_size=Pad_gap, name='jj')

In the above we have assigned the pads to be perfect conductors, and set variables

that represent the pad locations for easy reference, and use draw rec corner to create the

rectangle. Next we need to tell HFSS that this box represents a lumped port in which we are

driving through.

Lines 1 − 3 on Pg. 84 are simply meshing operations to help in simulating the small

83



(b)(a)

Figure 3.5: Black-box and EPR simulation setup comparison: The above figure shows
the qubit where the junction area has been assigned as a high-impedance port. Also shown
is the mesh operation of the junction, pads, and chip to better capture the dynamics of
the system. The inset shows a zoomed in picture of the junction with the port assignment.
The voltage integration line is draw across the nodes seen in Fig. 3.4 (a). For comparison,
(b) shows the eigenmode setup for the electric-participation ratio (EPR) techniques, where
instead at looking at the time dependent voltage across the nodes, instead one integrates the
current density to extract the participation of a mode across the inductive element of our
qubit. For this, the junction is assigned as an RLC lumped-element, with inductance equal
to LJ corresponding with EJ and EC to achieve a desired ge. Similarly, an integration line
is made across the pads, which correspond with the nodes across the linear inductor shown
diagramatically in the inset.

1 model.mesh_length(name_mesh='jj', objects=[jj], max_length='%.3fum'%20)

2 model.mesh_length(name_mesh='pads', objects=[pad_1, pad_2], max_length='%.3fum'%100)

3 model.mesh_length(name_mesh='substrate', objects=[chip], max_length='%.3fmm'%1)

4

5 jj.make_lumped_port(axis='Y', z0="1000ohm", name="JJ_port_1")

features of the qubit more accurately, while line 6 is the creation of the lumped port. The

axis flag in line 6 represents the integration line of the port. This axis is in reference to
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the rectangle object made in the previous step. Using the lower level make lumped port

function can allow for the assignment of arbitrary axis if the object assigned does not sit

along a cardinal axis. The impedance, Z0 is set to be high since it acts like a parallel

resistance path for current to pass, meaning a low impedance can artificially load the cavity.

Once the setup is complete, the final steps are setting up the simulation. As before, the

driven modal setup is primarily required for designating convergence criteria. In addition to

this, there is also a sweep setup that sets the frequency sweep and the type of solver to be

used. Below is an example of this setup:

1 DM_setup=DM_design.create_dm_setup(freq_ghz=1,

2 name="QTune_DM",

3 max_delta_s=0.1,

4 max_passes=10,

5 min_passes=1,

6 min_converged=1,

7 pct_refinement=30,

8 basis_order=-1

9 )

10

11 DM_sweep=DM_setup.insert_sweep(start_ghz=5,

12 stop_ghz=7,

13 count=10000,

14 step_ghz=None,#<--If you rather use frequency step

15 type="Fast",

16 save_fields=False)

The maximum number of sweep points is 25000, meaning for multimodal systems which

cover large bandwidths (and may have narrow features) it may be required to split the range

into smaller sweeps and recompile the full spectrum after importing the sweep data.

Once analyzed, HFSS can return either scattering, impedance, or admittance matrices.

Given that our device is one port, we will only look at the Y11 values. We can return both

the real and imaginary components separately using the following:

Using the returned arrays of frequency and ImY11(ω) data, we can go on and compute
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1 Y11_report=DM_sweep.create_report(name=DM_sweep.name,

expr="im(Y(JJ_port_1,port_1))")↪→

2 Y11_array=DM_sweep.get_report_arrays(expr="im(Y(JJ_port_1,JJ_port_1))")

3

4 freq=Y11_array[0]

5 im_Y11=Y11_array[1]

the quantities listed in the previous sections. The required derivative d(ImY11(ω))/dω can

be computed numerically through finite difference, while the roots, which correspond with

ωp for each mode, can be determined through iterative means as well. Once these values are

obtained χ and the equivalent circuit parameters can be computed analytically.

3.5.3 Electric-participation ratio (EPR) quantization

In the previous section we discussed how we can determine the phase across the junction

based on the admittance of qubit at the resonant frequency of a target mode. This technique,

while relatively straightforward, requires that we extract data from driven modal simulations,

which have limited precision. This introduces more uncertainty into the final calculations.

In addition to this, simulating multiple qubits coupled to a single resonator is challenging

with the black-box technique.

EPR attempts to solve these problems by relating the phase of the junction instead to

the amount of the total stored electromagnetic energy in the junction versus in a given target

mode [122]. This participation ratio, which is similar to the ones we have seen previously

in our discussion of cavity simulations and loss mechanisms, is easily determined through

eigenmode simulations, which are more straightforward to compute, and have precision only

set by the mesh size (and computer memory). EPR also has the advantage of being able to

compute the expected dispersive coupling between multiple modes and multiple qubits.

To begin we can define the participation ratio as the time averaged inductive energy

stored in the junction (qubit) versus a target mode m:

86



pm =
⟨ψm| 1

2
Ejφ̂

2
j |ψm⟩

⟨ψm| 1
2
Ĥlin |ψm⟩

=
Ejφ̂

2
jm

1

2
ℏωm

(3.19)

Where state ψm can represent either a Fock or coherent state of the resonator. Here, Ej

is the Josephson energy of the junction, ϕ̂jm is the phase across the junction caused by target

mode m, and ωm is the angular frequency of the target mode in question. The inductive

energy of the junction is stored in a geometric inductance, and a kinetic inductance associated

with the junction, Wind = Wg +Wkin. The contribution of the geometric inductance of the

qubit is part of the measured inductive stored energy of the mode. The time averaged

inductive energy is equal to the capacitive energy. The value of pm is therefore just the ratio

of the junction’s kinetic inductive energy and the inductive energy of the system. With all

of this in mind we can write pm in terms of the stored energy in the magnetic and electric

fields:

pm =
We −Wm

We
=

∫
V ϵ|E⃗|2dV −

∫
V µ|H⃗|2dV∫

V ϵ|E⃗|2dV
(3.20)

The above energies can be extracted using the same techniques described in Sec. 3.3.2

directly from the eigenmode simulation. With pm in hand, we can solve for the junction

phase induced by target mode m using Eq. 3.19. With φ̂jm, we can make a similar per-

turbative approximation for the non-linear contribution of the junction phase as we did in

Eq. 3.15. This is for the general single junction case, however, for multiple junctions the

kinetic inductance is split amongst the junctions. For this we need to directly compute the

inductive energy at the junction by looking at the current across a junction with index j

with a linear inductcance Lj :

Wkin,j =
1

2
LjI

2
j (3.21)
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Where the current can be determined by integrating the current density across junction

j due to mode m over the cross section representing the junction Sj :

|Imj | =
1

lj

∫
Sj

|J⃗jm|ds (3.22)

We introduce the length of the sheet representing our junction lj . The new participation

for junction j is simply:

pjm =
Lj

∫
Sj

|J⃗jm|2ds
2l2j

∫
V ϵ|E⃗|2dV

(3.23)

Following the perturbative expansion of the non-linear Hamiltonian, we can write the

effective dispersive interaction as we did in Eq. 3.16, with χqq and χmm, which are the qubit

and cavity self-Kerr as:

χqq = −p2q
ℏω2q
8Ej

(3.24a)

χmm = −p2m
ℏω2m
8Ej

(3.24b)

Which gives us the qubit-cavity cross-Kerr as:

χqm = −pqpm
ℏωqωc
4Ej

= −2
√
χqqχmm (3.25)

We see that the right side of Eq. 3.25 is equivalent to Eq. 3.17 (b). It should be noted

that, through energy conservation, pq + pm = 1. It should also be noted that we have

imposed the sign of the dispersive shift accordingly.

Even though the way we extracted the effective junction phase differed from black-box,

the end result, namely calculating the dispersive interaction between the modes of our cavity

and the qubit, was the same. In the next section we will show the setup and implementation
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of the above in practice. We will see in the next section a short introduction into how we

use the above in python to simulate this interaction.

3.5.4 PyEPR simulations

Zlatko Minev and Zaki Leghtas, along with others, developed the EPR method with a

corresponding package which incorporates all of the tools necessary to compute the full

interaction matrix for a given qubit-cavity system. They have also provided an excellent set

of basic tutorials in how to use PyEPR that13, along with the paper (Ref. [122]), are excellent

companions for anyone attempting to use the PyEPR package. Because of this, I will not go

into much detail, but for completeness I will discuss briefly the key aspects in the simulation

setup.

As shown in the previous section, EPR computes the participation ratio pm by integrating

the electric field and current density across the junction. All of these values are obtained

from an eigenmodal simulation, as opposed to black-box’s driven modal simulation. While

the PyEPR package handles all of the non-linear Hamiltonian calculations for us, under the

hood it is doing the same set of operations that we used in Sec. 3.3.2 to compute the integrals

seen in Eqs. 3.20 and 3.23. With this in mind, the ultimate accuracy in the simulation hinges

on the convergence of the field-profiles in simulation. Because the junction represents such a

minuscule volume of the total mode volume, it is important to setup the simulation in a way

that accurately models the field at the junction without unnecessarily wasting computational

resources meshing the entire cavity surface. In the black-box setup we demonstrated this

by meshing the pads and junction box with much finer resolution, with the maximum mesh

length no greater than the characteristic length of the object, as seen on Pg. 84.

The one difference between black-box and EPR is the way we add the linear inductance

of the junction into the simulation. Because PyEPR is written in a general form to include

13. https://github.com/zlatko-minev/pyEPR/tree/master/ tutorial notebooks
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both single and multiple qubit designs, the form of pm used is that of Eq. 3.23. Because of

this the linear part of the Josephson inductance is required, along with the integration line

in which we want to compute the current:

1jj=model.draw_rect_corner(pos=junc_loc, x_size=Junc_gap, y_size=Junc_width, name='jj')

2L_jj=EM_design.set_variable('Lj_1', '%.3fnH'%Lj_val)

3jj.make_rlc_boundary(axis='X', r=0, l=L_jj, c=0, name='jj1_RLC')

4jj_line=model.draw_polyline(jj.make_center_line(axis='X'), closed=False, name='jj_line')

On line 1 we repeat the process of defining the junction box as we did on Pg. 83. However,

unlike black-box, we need to include the linear inductance in-situ. In line 2 we define our

variable containing a target inductance value associated with an Ej for our desired ωge

transition frequency, which we can get from the calculated using Eq. 3.8. Line 3 sets the

junction boundary as a lumped element RLC circuit with the target inductance. To draw

the integration line, which needs to be passed separately into the EPR calculator later, we

need to define a variable for the line lj , which is done in line 4.

The eigenmode setup is in effect identical to that shown on Pg. 68. Because we have

parameterized Lj we can do an optimetric sweep to optimize the target qubit frequency as

follows on Pg. 90, Where we define some variable to step the Lj value over.

1opti_setup.create_setup(variable=L_jj,

2 swp_params=('%.2fnH'%(Lj_val-num_step*step),

'%.2fnH'%(Lj_val+num_step*step), '%.2fnH'%step),↪→

3 name='Lj_Sweep',

4 solve_with_copied_mesh_only=False

5 )

To finish the extraction of the dispersive coupling rates one can follow the routine outlined

in the aforementioned PyEPR tutorial notebooks. The returned values include the Kerr
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and self-Kerrss for all of the simulated modes, which can be designated in the eigenmode

simulation setup as seen on Pg. 68, and every variation from the optimetrics sweep.

In summary, the preceding sections have shown the full-stack of simulation techniques

for extracting design specific cavity and qubit parameters. In the intervening chapters we

will see how to use this extracted data to inform our design to minimize loss mechanisms

and control the cavity and qubit spectrum and coupling rates. In the next chapter, as we

discuss the development of seamless flute cavities with non-trivial geometries, and discuss

the coupling dynamics between a single qubit to multiple modes, we will see more examples

of how the preceding is used.
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CHAPTER 4

THE SEAMLESS FLUTE CAVITY

4.1 Introduction

By this point we have gained a theoretical and practical framework for what goes into making

a good cavity for 3D cQED systems. To summarize, a good cavity should minimize residual

material losses and the geometric electric and magnetic participation, and should ideally

have no lossy seams for supercurrents to cross. That last part, the seams, may seam to

be the most obvious and straight-forward problem to remove, but have been a large part

of the discourse of superconducting cavity performance. The reason is that, for practical

reasons, splitting a cavity geometry in two halves makes manufacturing significantly easier.

Because of this, a lot of work has been done to create seams with as little loss as possible.

In elliptical niobium cavities used for particle acceleration, extensive resources are spent

on producing high-purity autogenous welds using vacuum electron-beam welding [166]. In

3D cQED applications, and in particular TE101 rectangular waveguide cavities, losses are

minimized through geometric optimization of the seam location [31], and the creation of

low-loss indium joints through the cold-welding of indium bump bonds [110].

The other route is to remove the seam altogether. Because the cavity volume still has to

be made through the removal of bulk material1, through machining operations requiring tool

access, a cavity can be designed where the tool access creates a hole that has a waveguide

cutoff frequency above the fundamental mode of the cavity. The coaxial λ/4 cavity which

we have previously discussed, is based off of this idea. As long as the frequency, which is

set by the pin height of the cavity, is lower than the TE waveguide mode, then the loss

from the mode can be exponentially suppressed with length. One annoying consequence

1. It should be noted that cavities made with additive manufacturing have been developed in both alu-
minum and niobium, however the 3D printing process produces material which has worst bulk performance
when compared to high-purity wrought base material [109, 117, 54, 70]
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of this, especially for very high quality factor cavities, is that the aspect ratio of the hole

length to the pin height can become quite large, making tool access and machining of the pin

feature difficult. One other drawback of coaxial cavities is that, while they have higher order

modes, they are typically far detuned from the fundamental mode. This is an advantage in

situations where parasitic coupling to lossier higher-order modes is a problem, but means it

is more challenging to create multimodal designs. Inversely, rectangular waveguide TE101

style cavities are intrinsically multimodal, and, as we will see, can be designed in a way to

control their mode dispersion. With this mind, can we adapt the ideas of the coaxial cavity

into a rectangular waveguide cavity, machining all of the volume through only evanescent

access holes?

4.2 The flute cavity

The basic idea of the flute cavity is quite simple; by drilling two sets of opposing holes, such

that the center-to-center distance of the opposing holes is less than the hole diameter, it

is possible to effectively ”core” out a cavity volume. To most observers, this design may

seem doomed from the start; how can a cavity with so many holes be any good? Intuitively

we can see that the holes, which are much smaller in diameter than the wavelength of the

mode, effectively screen the internal cavity field, much like a Faraday cage on the inside

of a microwave door. The more exact description, which was discussed in some detail in

Sec. 2.3.3, showing that the external coupling of a sub-cutoff mode through a waveguide is

exactly described as being exponentially suppressed with hole length. There, we only looked

at how one hole scales. In that case, we set the hole location to be centered on an antinode of

the target mode, where the coupled field, described by H⃗x, was at a maximum, at z = lcav/2,

and sin (πz/lcav) → 1. This means that, in addition to length, and hole radius, the coupling

strength is also dependent on the location along the z⃗−axis. Of course, the above spatial

variation of the field profile is only true for the fundamental mode, with higher order modes
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having similar modulation, with different periodicity, and also having frequencies closer to

the cutoff, leading to slightly higher propagation. We will quantify this in more detail in the

next couple of sections.

4.2.1 Quantifying loss and flute scaling

Since the quality factor of any given mode is based on the distribution of field energy, which

is itself not uniform, the exact scaling of the quality factor for a given number of holes is

non-trivial for a given hole diameter and length. We will, however, briefly discuss the scaling

of the quality factor and frequency of a sub-cutoff cavity mode as a function of increasing

the number of evanescent holes in a TE101 cavity. In chapter 3 we showed that the addition

of any evanescent hole increases, albeit slightly, the effective mode volume. In addition to

this, the coupling Q to the hole is dependent on the radius, length, and location.

In Fig. 4.1 we see that the decrease in mode frequency is monotonic and linear with

number of holes. We can see why if we look at the radiated power through the waveguide

for it’s propagating TE11 mode:

Prad =

∫
s
E⃗ × H⃗∗ḋs (4.1)

The term in the integrand is the Poynting vector of the waveguide mode, representing

the direction of energy flow down the hole. From Eqs. 2.65 and 2.66 we can compute the

radiated power, which give us the expression:

Prad = i
πωµ|A|2β11

4k4c

(
p′211 − 1

)
J21 (kcr0) (4.2)

We see that, because our complex Poynting vector is imaginary due to the imaginary

propagation constant of our sub-cutoff mode, the radiated energy is also imaginary. This

means that our radiated power out of the hole is zero (but not the electric and magnetic
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Figure 4.1: Scaling of Q due to evanescent loss of a single-mode flute cavity: The
above shows a simulated scaling in the quality factor for the first 5 modes of a ∼6.3GHz
TE10n ”pan-pipe” geometry. We see a monotonic decrease in the frequency as expected from
the theoretical treatment in Ch.2. The quality factor scaling also decreases for all modes as
the hole number increases, however if we inspect the relative quality factors between modes
we begin to see the spatial dependence of the field.

field participation at the end of the hole), but the hole does add additional reactance to the

mode, changing the frequency. The decrease in frequency can be seen as an effective increase

in the mode volume [149]. The above wave amplitude A is a product of the dipole coupling

of the TE101 mode to the hole using the Bethe coupling equations, which was previously

derived, and as with Qext is dependent on the hole diameter, the location of the hole along

the length of the cavity, and the mode’s electromagnetic field profile. This overall change
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is shown to be as much as 1.5%, with the complex convolution of spatial and frequency

dependence. For most single mode, and even multimode, cavity designs, this perturbation is

not of major concern, but for precise tuning of the cavity frequency, these additional effects

should be considered when designing the cavity, as even an 1.5% changes, as is the case in

the above example, is a change in frequency of nearly 84MHz, with larger cavities with more

holes experiencing even greater deviations. These deviations, however can be compensated

for by decreasing the characteristic dimension of the cavity, although the change may impact

different modes differently.

The Qext variation across modes for a few holes is largely dependent on the specific

location of the hole with respect to the field profile. For a flute cavity, where the holes are

used to make the cavity volume, the added dissipation scales as the length and radius of the

hole.

4.2.2 Multimode flute cavity design

As we have seen, any cavity design is inherently multimodal in nature, however, as discussed

in chapter 2, the electric field profile of the cavity varies depending on the mode. In chapter 3

we discussed the ways that we can compute the coupling of our transmon qubit to the cavity

modes. We saw in Sec. 3.5.3, Eq. 3.20, that the scaling of our effective dipole-like coupling

and subsequent dispersive shift is dependent on the magnitude of the time averaged electric

and magnetic field at the location of the junction. We also saw in chapter 2 that, for TE10n,

the mode number determines the location of nodes in the field distribution, meaning that,

while the location of a qubit for a given mode may lead to strong coupling, a higher mode

may have little to no coupling if a node in the field happens to occur at the qubit location.

In addition to this, if we look at the spacing of frequencies for a standard TE10n cavity,

we see from Eq. 2.41 that for modes of the type TE10n that the spacing of the lowest

order modes, such that l/lcav ≤ m/hcav, the frequency of neighboring modes has non-linear
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(a)

(b)

(c)

(d)

Figure 4.2: Electric field distribution and mode dispersion for tapered flute: (a)
shows the typical mode distribution and profile for the first and 9th mode of a multi-
modal flute cavity, along with the spectral distribution of mode frequencies, highlighting
the quadratic nature of modes of small n. (b) shows what happens when half the cavity
is made slightly evanescent to the lowest laying mode. The imaginary propagation leads to
decay of the field into the second half, with the mode largely contained within the left half,
although the effective increase in mode volume only leads to a slight increase in the mode
frequency. More importantly, the field, which is now confined to one half of the cavity, has
been ”lensed” for all modes, meaning that the qubit can now have relatively strong coupling
to all of the modes. (c) shows a full taper, such that the modulation of the height is quadratic
in nature. We see now that for mode numbers with small n, the spacing of frequencies is
close to linear.
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spacing, where at higher values of l the spacing should become linear. In practice, that will

occur after higher order modes that are transverse to the height of the cavity, of the form

TE20n are excited. One point that can be made is how the length and height of the cavities

factor into the mode spacing of the system. The first is that, for a given cavity height,

increasing the length decreases the mode spacing, meaning more accessible modes can be

placed within an operable bandwidth for a given qubit frequency and desired dispersive shift

(χ ∝ 1/∆). Changing the length also changes the frequency of the fundamental mode,

however if lcav ≫ hcav, then the cavity height can be adjusted to compensate for this shift

without greatly impacting the mode spacing at higher mode numbers.

With these two technical issues in mind, the nonlinear mode spacing and the period

distribution of electromagnetic energy in our cavity, is there a way to design a cavity that

forgoes these problems? To adjust the field profile, a first order correction is to take the

cavity and make half of the length a different height. If the corresponding cutoff frequency

of this new section is less than the first half, then the field will only evanescently decay into

the second section. As we have seen with the hole example, this new evanescent volume will

add reactance to the mode and increase the mode volume. The effect is to confine the mode

to one half of the cavity while also counteracting an increase in frequency since the effective

propagating length is now shorter.

To create more evenly spaced lower n modes is a bit more subtle. It may seem that

one could come up with a closed-form solution to describe the propagation of a mode, and

its eigenfrequencies, for a waveguide of varying height over its length. Naively, one would

think describing it would require the simultaneous solving of i equations with i+1 boundary

conditions, where i is a discrete number of elements in your approximate model, however

describing the field at those boundaries is tricky, since the scattering of the field off the step-

interface leads to interference between reflected and transmitted modes, with some being

evanescent. The technique to describe these types of discontinuities is known as the mode
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matching-eigenmode expansion method, and is a numerically intensive procedure that was

worked out in full by WC Chew [111, 42, 41].

Another way of approaching this problem is to use existing finite-element modelling

and parametric design to ”tune” the cavity geometry to get the desired profile. With the

parametric design and simulation tools described in Ch.3 we can generate cavity profiles

that give us the desired mode dispersion. One way of approximating the correct profile is

to think about the effective length of the cavity from perspective modes. What we want is

a profile in which the nth mode has a propagating length that varies like
√
n. This can be

seen in the small n limit since the expression fnml from Eq. 2.41 becomes:

flmn ≈ wcav

2hcav
+
wcavhcav
4l2cav

n2 (4.3)

In the above this condition is met when the profile follows a parabolic change in height

along the length, since it, in effect, changes the length of the waveguide where the nth mode’s

propagation constant is real. We can see that this is similar to the method discussed in the

previous paragraph, except now it can also be used to tune the frequency as well! It is a

bit serendipitous that we can solve both the mode spacing and field profile problems at the

same time, but it is a convenient result nonetheless.

4.3 Flute cavity construction

4.3.1 Cavity fabrication and machining

The flute cavity is machined from monolithic blocks of high purity (> 99.999%) aluminum2.

A schematic of this process is illustrated in Fig. 4.3. The process—from left to right—is as

follows: in Fig. 4.3 (a) we begin by drilling undersized holes that are smaller than the desired

diameter (d = 4.76 mm) by ∼ 50−100 µm, along the top of the stock at our desired spacing

2. Sourced from Laurand and Associates
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(ls = 6.03 mm). We use a standard uncoated jobbers style drill bit with parabolic flutes for

reduced galling and wear. After the top holes are drilled to their desired depth, the stock

is flipped and the process is repeated with the holes displaced by half the center-center hole

distance from the top holes, as shown in Fig. 4.3 (b). The overlap of these holes form the

cavity volume, depicted in white. An additional reaming step is performed to bring the holes

to their final dimension, and to ensure surface uniformity and hole straightness, as shown in

Fig. 4.3 (c). This is repeated for both top and bottom holes. Finally a ball hone, made of

silicon carbide abrasives, is used to create a uniformly smooth surface and remove internal

burrs that may form during drilling and honing, as shown in Fig. 4.3 (d). This process is

repeated three times using hones made of successively finer abrasive media. The ductility

and galling properties of the aluminum causes the pores of the abrasive to ”fill”, leading to

a drop in honing efficacy after many successive holes. It is thus recommended to inspect the

surface finish regularly at this point, and to use a lubricant to reduce heat caused by friction.

This is repeated for the top and bottom holes. Special care should be taken to remove any

hanging burrs that may be left after machining.

4.3.2 Cavity etching and surface preparation

The machining of the cavity volume introduces defects and impurities into the surface.

Additional defects can decrease the effective mean-free path of cooper pairs, leading to longer

London-penetration length and more participation of the supercurrent with lossy magnetic

defects [175]. To combat this, the top ≥ 100µm of the machined surface is removed via a

chemical etching process.

The makeup of the chemical etch3 is a combination of phosphoric (H3PO4), nitric

(HNO3), and acetic (CH3COOH) at between 25 − 50◦C. The etch works by attacking the

oxide instead of the base metal [194, 147]. Hot phosphoric acid etches aluminum oxide, ex-

3. Transene Aluminum Etch A
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(a) (b) (c) (d)

Figure 4.3: Flute cavity production steps: The steps involved in making a flute cavity.
An initial drilling step involves drilling holes on either side, where the center-center distance
of the opposing holes is less than the hole diameter. A subsequent reaming step brings
the hole to its final size while also removing deeper surface imperfections from the initial
drilling. Next, a series of homing steps smooth the surface further and soften sharp edges
while removing burrs.

posing the base material, before the now clean surface is reoxidized by nitric acid. The cycle

will continue until the amount of dissolved reaction products in solution slows the reaction

kinetics.

The reaction is exothermic, with the rate of reaction being dependent on the heat of

solution, with agitation also speeding up the reaction rate. In addition to this, the total

amount of generated heat also scales with the surface area. Because of this, in our experience,

larger cavities can be etched with lower applied temperature at the hot plate. A picture of

a typical etching setup is provided in Fig 4.4.

Over the course of this, and later investigations, the aluminum etching process has been

refined. In the following data, all cavities were etched on a hot plate set at 50◦C, however

later etching for the next generation multimode cavities showed that the applied heat and
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Visible Grains

(a)

(b)

Figure 4.4: Aluminum cavity etching setup: (a) shows the newer manipulate-multimode
cavity undergoing etching. The etching setup consists of a magnetic hot plate to provide
heat and constant agitation. The specified rate of etching is between 30− 80Å/s between 30
and 40◦C. The brown screws are made of a PEEK material to protect the delicate threads
of the mounting holes from being etched. In the older MM1 and MM2 cavities, these screws
weren’t present leading to degradation of these small threads. (b) shows a schematic of the
whole setup for clarity. The inset shows the sign of a successful etch, with large > 1mm
grains visible.

actual heat deviated substantially. In reality, for the vessel size used in many of the etching

processes, the bath temp was closer to 30◦C.

Following a thorough degreasing and TAMI4 clean under a range of sonication frequency

to remove any residual oils and foreign particulate, the cavities were placed in the etching

bath. The following cavities that will be discussed were all etched for 4 hours presuming an

etch rate of ∼ 80Å/s, to give a total etch of ∼ 110µm. The etchant was replaced either every

two hours, for the smaller cavities, or every 30min after the first two hours for the larger

multimodal cavities. It was seen that coherence was in many cases enhanced by conducting

two full scale etches, suggesting a deeper damaged layer. In follow up studies to the etch

rate, it was found that the actual etch rate was slower than predicted, further corroborating

both the temperature deviation and the performance improvements after follow-up etches.

4. Toluene, acetone, methanol, and IPA

102



10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
Z-height ( m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P
er
ce
nt
A
re
a

0 1.28x (mm)
0

1.29

y
(m
m
)

(a) (b)

Figure 4.5: Surface roughness of pan-pipe flute cavity after etch: (a) shows the char-
acteristic grains of a high-purity aluminum cavity after a successful > 100µm etch showing
very clear grains at the outer surface. (b) shows the inner surface of a pan-pipe style flute
cavity. An Olympus OLS LEXT confocal microscope was used to interrogate surface rough-
ness, showing an RMS surface roughness Sa ∼ 2 − 3.6µm over five locations. The etchant
does not dramatically smooth over larger defects caused by machining, however does produce
a smoother finish than an unetched surface. Since the size of these defects are fare smaller
than the characteristic wavelength of the mode, and make only a small fraction of the mode
volume, it is not expected that the surface roughness at this scale makes a large contribu-
tion to the mode coherence. With the rougher surface, however, we do expect slightly more
surface to volume participation, which could enhance existing surface losses.

Fig. 4.5 shows the surfaces of the flute cavity following etching. The inner surface still

shows bands characteristic of tooling marks, however finer surface features do seem to be

smoothed out by the etching process. The post-etch roughness is far smaller than the wave-

length of the mode, meaning that deviations do little to perturb the frequency or induce

scattering, however the increased surface area can also increase the surface to volume par-

ticipation of the modes

4.4 Flute cavity measurements

4.4.1 Overview of cavities tested

For determining the effects of manufacturing, cavity type, and material quality, a series of

single-mode cavities were made. All of the cavities made an tested are listed Fig. 4.6. Three
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rectangular cavities were made. Two were simple single-mode TE101 cavities (pan-pipes)

made of 5N (99.999%) pure aluminum (R5N), and on made of 6N (99.9999%) pure aluminum

(R6N). In addition to this, an additional 6N cavity was constructed and measured with a

qubit. This cavity had a storage resonator with a frequency of ∼6GHz and a readout cavity

of ∼ 8.1GHz.

To test the efficacy of the flute technique on other geometries, a cylindrical cavity was

constructed out of 6N aluminum (Cyl6N). The construction of this cavity had the holes

drilled radially along the circumference instead of vertically. This cavity was coupled to the

TM010 fundamental mode of the cavity.

In addition to the flute style cavities, a traditional 5N aluminum coaxial cavity was also

tested with a center frequency of ∼6.6GHz. This cavity was used as a baseline and as a

point of comparison between the flute geometries.

Two different multimodal flute geometries were constructed (MM1 and MM2). The

primary difference between the two was the inclusion of a 3D readout made also using the

flute method on MM2, whereas MM1 was originally intended to have a stripline readout

located on the qubit chip itself. MM2 was also constructed in-house alongside the other

flute style cavites using the steps illustrated in Fig. 4.3 whereas MM1 was machined by an

external shop.

4.4.2 Single-mode resonator measurements

To determine the effect that the design and manufacturing processes had on intrinsic qual-

ity factor, the single-mode cavities (with the exception of PP(6N)) were measured using

frequency-domain network analysis. A diagram of the measurement setup can be seen in

Fig. 4.7 (a). The setup allowed the cavities to be measured in both reflection (S11) and

transmission (S21), allowing for more flexible determination of the cavity frequency f0 and

to extract both coupling Qs and internal quality factor. The frequency response of the cavity
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Device Mode f0(GHz) Qint Se(1/m) Sm(1/m)
R(5N) TE101 6.84 1.15× 107 409 505
R(6N) TE101 6.75 9.73× 106 ” ”
P(6N) TE101 6.011 2.1× 107 420 550
MM1(5N5) TE10n 7− 8.8 2.8− 6.2× 107 420− 422 533− 543
MM2(5N5) TE10n 5.4− 6.9 6.5− 9.5× 107 398− 403 513− 537
Cyl(6N) TM010 6.389 2.54× 107 64 187
Coax(5N) λ/4 6.602 9.79× 107 577 490

(a) (b)

(d)(c)

(e)

Figure 4.6: Outline of seamless flute cavity design. (a) An FE model showing the E⃗-
field magnitude for the TE101 mode of a rectangular waveguide cavity. (inset) A side-view
cutaway of the flute design highlighting the overlapping holes, with the effective mode volume
highlighted in green. The evanescent decay through the holes is also shown, where β is the
waveguide propagation constant for the TM0m modes of the hole. (b) A picture of the R(5N)

cavity. (c) An FE model of a cylindrical style flute cavity showing the E⃗-field magnitude
for the fundamental TM010 mode. (inset) A top-view cutaway showing the effective mode
volume created by the hole overlap. (d) A picture of the C(6N) cavity. (e) A table outlining
the performance of various cavity geometries, highlighting the internal quality factors (Qint),
and the magnetic (Sm) and electric (Se) participation ratios from FE simulations.

in reflection (S11) and transmission (S21) are given by Eqs. 2.12 and 2.14 respectively. We

can extract the both coupling rates κ1 and κ2 and the internal loss rate κint by doing simul-

taneous reflection and transmission measurements and fits. We can subsequently compute

the coupling (Qext = ω0/κ1,2) and internal (Qint = ω0/κint) quality factors.

Fig. 4.7 (b) shows a survey of measured cavity quality factors. The measured values,

shown by a red circle, are compared with their theoretical performance assuming the intrinsic

residual resistance, Rs, and dielectric loss tangent δ, of the cavity under investigation is

equivalent to Coax5N’s. This is represented by a blue bar, where the range represents if the

105



-2
0d
B

-20dB

-2
0d
B

D
ir.
C
ou
p

-2
0d
B

-2
0d
B

-2
0d
B

RT

4K

750mK
Switch

Re
fle
ct
io
n
(S
11
)

Po
rt
2

Po
rt
1

Tr
an
sm

iss
io
n
(S
21
)

Base

Cavity

HEMT

Output

N
bT
i

Keysight
N5242A

PNA-X

R(5N) R(6N) Cyl(6N) PP(6N) MM1 MM2 Coax(5N)

107

108

109

In
te

rn
al

 Q
ua

lit
y 

Fa
ct

or

Scaled Coax Qint range
Measured Qint

5 0 5
f (KHz)

0.00

0.26

|S
21

|2  d
B

Cyl(6N)

-0.24 0.26Q
-0.49

0.00

I

(a) (b)

Figure 4.7: Linear resonator measurement setup and measured Q comparison: (a)
A depiction of the measurement setup for the measurement of cavity quality factors without
a qubit. S21 and S11 measurements were done concurrently by using a directional coupler on
the output line of the cavity. (b) A comparison of quality factors for various flute geometries
showing measured quality factors (red circles) and the theoretical quality factor range (blue
bars) as determined by the scaled coaxial cavity [Coax(5N)] quality factor by the respective
values for Se and Sm values. A plot showing the cylindrical flute cavity [Cyl(6N)] resonator
spectroscopy in transmission (S21) (inset).

loss was wholly attributed to dielectric, magnetic, or some combination of the two. Cyl6N’s

spectroscopic line is shown in the Fig. 4.7 (b) inset, showing both I−Q and magnitude data

and fits.

Also included in the above is MM1, MM2, and PP(6N), however, it should be noted that

those cavities were measured using the qubit, and will be discussed in more detail in a later

section.

The above shows relatively high discrepancies between the theoretical performance range

and the realized value. Of the cavities measured, the quality factor of the cylindrical flute

deviated the most, having the lowest numerically determined magnetic participation ratio for

its TM011, leading to a measured Qi nearly an order of magnitude lower than the predicted

Qi, assuming the same superconducting properties of the Coax5N cavity. Fig. 4.8 shows

the temperature dependence of both the internal quality factor and mode frequency as a
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Figure 4.8: Frequency and quality factor temperature dependence of cylindrical
TM011 mode: (a) The change in the TM011 fundamental mode frequency shift as a function
of temperature for the 6N cylindrical flute cavity and the 6N rectangular pan-pipe cavity
(depicted in Fig. 4.7(b) by a star and R6N respectively). (b) The subsequent internal
quality factors of the TM011 mode of the cylindrical cavity and TE101 mode of the pan-pipe
cavity. These fits (dashed lines) give a Tc ∼ 1.31K and a Tc ∼ 1.25K for the cylindrical
and rectangular cavity respectively. From the frequency fits, we can extract the London
penetration lengths for both cavities, with values of 235 ± 3 nm and 37.6 ± 0.9 nm for the
cylindrical and rectangular cavity, respectively.

function of temperature for the fundamental modes of both the rectangular pan-pipe [R(6N)]

and cylindrical cavity [Cyl(6N)]. Both cavities were measured in the same cooldown using

separate but identical measurement chains as outlined in Fig. 4.7 (a). The large shift in

frequency of the cylindrical cavity from T = 0K to Tc indicates a high kinetic inductance

fraction and penetration depth. To determine the London penetration depth and scale of

scattering to coherence length, the quality factor data shown in Fig. 4.8 was fit using:

Qi(T ) =

(
1

Qi,max
+

pmag

Qmag(T )

)−1

(4.4)

Where Qmag is given by Eq. 2.54, and pmag is the geometric magnetic participation,

which is described in Eq. 2.48 (b). Qi,max is the maximum internal quality factor at T ≪ Tc
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and ℏω ≪ ∆, where ∆ is the superconducting gap. The frequency shift shown in Fig. 4.8

(b) is given by:

δf(T )

fo
= pmag

(
δσ2(ω, T )

σ2(ω, 0)

)ν

(4.5)

Where the term in parenthesis is taken from the ratio of reactance at T = 0 and some

finite temp. The BCS reactance was defined in Eq. 2.25b (b). σ2(T ) is the imaginary

component of the BCS conductivity and ν is a scaling parameter based on the ratios of

the mean-free path (l) and the coherence length (ξo). For aluminum, the mean free path is

typically much shorter than the coherence length (ξo ≫ l), therefore ν = −1/3 (the ”dirty”

or Pippard limit) [125]. With pmag = λLSm, we can extract the london penetration length

λL form the fit and from the known geometric participation ratio. Using the techniques used

in Ch.3, we calculate a Sm for the Cyl6N and R6N cavities of Sm = 187m1 and Sm = 505m1

respectively.

For the cylindrical cavity, Sm = 187m−1, and pmag = 4.61× 10−5, giving a λL = 235±

3nm. In the Pippard limit, the London penetration length scales as λL ≈ λo(1 + ξo/l)
1/2,

where λo = 16nm and ξo ∼ 1600nm are the intrinsic London and coherence lengths for

aluminum, respectively [175]. This indicates that the mean-free path is much lower than the

coherence length, meaning that the superconductor is extremely “dirty”, leading to more

of the supercurrent interacting with magnetic defects of the material. In contrast, doing

the same analysis as above for the R6N flute cavity gives us a London penetration depth

of 37.6 ± 0.9nm. This value of λL is nearly an order of magnitude lower than that of the

cylindrical cavity, showing that the surface defects are much better mitigated in the 6N

rectangular flute design.

While the maximum quality factor (Qi,max in SEqn. 4) at base temperature—where

thermal quasiparticle formation should be zero—is still higher for the cylindrical cavity, the

additional field penetration means that the cylindrical cavity is still more susceptible to
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loss due to non-equilibrium quasiparticle formation. An additional contribution to Qi,max

is electric field participation with lossy surface oxides. The TM011 mode of the cylindrical

cavity has a participation ratio of Se = 64 m−1 compared to an Se of 409 m−1 for the

rectangular design. This disparity likely explains the differences in Qi,max at T ≪ Tc.

The implications of the above results highlight an important consideration when designing

flute cavities. In both cases the overlap of holes create the cavity volume, however in the

rectangular cavity the surface created by the drilling operation, and the subsequent honing

steps used to smooth that surface, directly participate in the field, whereas the cylindrical

cavity’s participating surfaces are left untouched by the subsequent smoothing and refining

steps, leaving the participating surface with defects. These defects lead to larger surface

areas which can affect the etching process. In niobium cavities surface roughness has been

shown to negatively impact etching efficacy and quality factor, however in aluminum coaxial

cavities the connection between surface roughness and performance after etching is not as

strongly correlated [133, 106].

4.5 Multimode Flute performance

Unlike the aforementioned cavities, which used traditional network analysis techniques to

interrogate the cavity performance, the multimode flute cavities, MM1 and MM2 had their

coherences measured directly using the dispersive interaction between the qubit and cav-

ity modes. In addition to this, PP6N was also measured with a qubit, which is discussed

in far more detail in [63, 62]. This section will briefly discuss the process by which the

mode coherences were measured in the multimode system, and show the result of the afore-

mentioned engineering in ensuring consistent coupling to the qubit, and the preservation of

mode-coherence with a qubit. This section is really an abridged explanation to the work in

Ref. [37], and is covered in far more detail in the as yet published thesis by Kevin He, who

largely undertook the process of optimizing and applying the photon-blockade technique for
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Figure 4.9: Multimode flute cavity with a transmon. (a) A schematic of the mul-
timode flute cavity [MM2(5N5)] showing the location of the storage cavity (red), readout
cavity (green), and transmon chip (blue). (b) the measured spectrum of MM1[5N5] at room
temperature (blue) vs the predicted spectrum for the single-mode case, showing good agree-
ment with simulations from Fig. 4.2. MM2 was designed with a lower mode spectrum as
shown in the table in Fig. 4.6 (e)

probing interesting multimodal quantum optics phenomena. With this in mind, the following

is provided more for completeness in our discussion of flute cavity performance, and setting

up the motivation behind the improved mode coherences discussed in later chapters.

4.5.1 Qubit-cavity device description

The multimode flute consists of a primary storage cavity which follows the mode engineering

described in detail in Sec. 4.2.2. A secondary low-Q single-mode flute cavity attached to one

side is used as a readout cavity. A 3D transmon qubit (see detail in Fig. 4.9) is made of two

capacitor pads spanning across either cavity. Black box techniques described in Sec. 3.4.2 and

Sec. 3.5 were used to determine the qubit anharmonicity and individual mode participations

and dispersive interaction strengths χm for given junction and pad parameters. The qubit

and storage cavity are controlled via drives applied through the readout cavity.

The qubit and pads are both made of aluminum that has been deposited via e-beam
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Parameter Quantity Value

Transmon frequency ωq/(2π) 4.99 GHz

Storage cavity frequencies ωm/(2π) see Fig. 4.6 (e)

Readout frequency ωr/(2π) 7.79 GHz

Readout dispersive shift χr/(2π) 1 MHz

Storage mode dispersive shifts χm/(2π) see Fig. 4.13

Storage mode self-Kerrs km/(2π) ”

Storage mode cross-Kerrs kmn/(2π) ”

Transmon |e⟩ → |g⟩ T
q
1 86± 6 µs

Transmon |g⟩ − |e⟩ dephasing T
q
2 58± 4 µs

Readout linewidth κr/(2π) 0.52 MHz

Storage mode relaxation Tm
1 ∼ 2 ms, Fig. 4.14

Transmon thermal population n̄ 1.2± 0.5 %

Storage mode dephasing Tm
2 ∼ 2− 3 ms, see Fig. 4.14

Table 4.1: Multimode cQED system parameters

evaporation in a Plassys evaporator. The evaporation was done on a 430µm thick sapphire

wafer cut with C-plane (0001) orientation. Prior to evaporation the wafer underwent an

oxygen annealing step at 1200◦C for 1.5 hours to recover the sapphire surface to improve

the metal-dielectric boundary layer and improve dielectric properties [182]. Following this

all wafers were cleaned using a TAMI (toluene, acetone, methanol, and IPA) process under a

range of sonicating frequencies (∼ 30−120kHz). Following this a 120nm aluminum baselayer

was deposited at a rate of 1A◦/s. AZ MiR 703 photoresist was applied and the capacitor

pads were written with a Heidelberg 408nm UV direct writer and developed for 1 min

in AZ MIF 300 1:1 developer. The metalized layer was then etched using chlorine based

reactive-ion etching using a plasma made of 30 sccm Cl2, 30 sccm BCl2, and 10 sccm Ar.

Alignment markers were made by patterning Au alignment crosses, with the resist stripped

in 80◦C N-Methyl-2-pyrrolidone (NMP) for 4 hours. An MMA-PMMA bilayer resist was

then applied before e-beam lithography was used to pattern the junction which was applied
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using a Manhattan-style process. This was done using a 100keV Raith EBPG5000 e-beam

writer. The resist was developed in an IPA:DI (3:1) mixture for 1.5 minutes. The junctions

were evaporated in the Plassys, with an argon milling step used in-situ to reduce the oxide

layer of the aluminum pads to ensure good galvanic contact. The following 3-step double-

angle process was done with a 35nm, 1.0nm/s, 29◦ deposition followed by an oxidation step

with 80:20 Ar:O2 at 20mBar exposure for 12 minutes, followed by a final Al deposition of

120nm, 1nm/s, with the stage rotated at 29◦ to be orthornormal to the first angle. The

samples were then diced, and the remaining Al and resist layer was lifted off in an 80◦C

NMP bath for 3 hours.

The qubit is held in place and thermalized using a two-piece copper clamp. A piece of

indium wire is used as a compliant washer to tightly hold the chip in place. The readout

coupling and drive ports are coupled to the readout via an evanescent hole. The coupling to

mediated by a dipole coupling between the TE101 mode of the readout and the TM01 mode

of the circular waveguide to the TEM mode of the coaxial coupling pin. This coupling is

different than the coupling of the holes which make up the flute cavity, however the basic

scaling of the mode participation with the coupler pin follows the same exponential scaling

discussed in Sec. 2.3.3. A detailed discussion of the coupling through this means is provided

in Refs. [149] and [31]. As such HFSS simulation is used to predict the coupling to the

mode versus pin length by setting the drive port impedance to 50Ω and determining the

quality factor. For a simulation with perfect cavity boundaries the Q0 = Qext, since the

port represents the only loss in the system. A full breakdown of the parameters for the

system are provided in Table 4.1.

Both readout and storage cavity spectroscopy is done through the readout coupling ports,

with the storage cavity measured in transmission. The storage cavity spectroscopy is done

by driving at the storage frequencies off-resonantly through the readout cavity and doing a

resolved π-pulse on the qubit peak at |0⟩. Populating the storage cavity with n̄≫ 1 photons
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Figure 4.10: MM2 measurement setup: A full schematic of the cryogenic and room
temperature measurement setup used in the measurement of MM2, diagram courtesy of S.
Chakram

would lead to a shift much greater than the qubit linewidth for 2χ > Γ. The coherent

drive strength calibration of the storage modes can then be done by doing number-resolved

spectroscopy on the various cavity modes [163]. This will also give the dispersive shift, χm,

for each storage mode with the qubit.
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4.5.2 Measurement setup

The full measurement setup for MM2 is presented in Fig. 4.10. All drives are done through

the readout, with each channel being combined from the output of a 64GSa/s Keysight

M8195A arbitrary waveform generator (AWG). The return signal is passed through low-loss

NbTi cables to 4K, where a HEMT amplifier provides ∼ 40dB of amplification. Three stages

of isolation at the MXC plate prevents thermal noise from the amplifier effecting the readout

thermal occupation. The return signal is further amplified at room temperature before being

passed through a narrow band YIG filter to prevent the pre-amp from saturating. The signal

I−Q quadratures are obtained via a homodyne measurement setup via signal demodulation

through an I−Q mixer and local oscillator (LO) at the readout frequency. This demodulated

signal is passed through a final pre-amplifier before being passed into the ADC (Keysight

PXI).

The measurement setup used for qubit measurements in the multimode and picollo flute

cavities (MM1, MM2, P6N), differed from the setup depicted in Fig. 4.7 (a). Special care

has to be taken to avoid excess photon occupation in the readout and storage cavities. Small

fluctuations in excess photons in the readout cavity leads to small stark-shifts in the qubit,

shifting the frequency by the state-dependent shift. This leads to shot-noise dephasing of

the qubit. Because the storage cavity is hybridized with the qubit, it also experiences an

effective dephasing rate. This rate can be expressed as follows [48, 153, 149]:

Γϕ =
γ

2
Re

[√(
1 +

iχ

γ

)2

+ 4iχ
nth
γ

− 1

]
(4.6)

Where γ = 1/T1,q, nth is the excess or ”thermal” photon occupation, and χ is simply

the state-dependent dispersive shift between the qubit and the resonator. In the strong-

dispersive limit, where χ ≫ γ it can be shown that the above expression reduces to Γϕ ∼

nthγ −O(γ/χ)2.

One may think that simply operating at mK temperatures is enough to shield the cavity
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from thermal photons, however it is not that simple. It is commonly the naive assumption

of quantum physicist that all components are perfectly isothermal with their environment,

however constant heat-load from parasitic thermal conduction, and imperfect thermal con-

duction via highly insulating materials leads to situations where the equilibrium temperature

of a component within the measurement chain to be higher than expected. A simple ex-

ample is an attenuator. A typical attenuator is dissipative, meaning energy is dissipated

through a resistive network. At low powers and higher temperatures, this heat is minuscule,

and readily thermalized to the environment via phonon conduction. For most metals, with

Debye temperatures ranging from order TD ∼ 101 − 103K, at temperatures T < TD/10,

the phonon conductivity σp ∝ T 3, meaning that at mK temperatures, there is little to

no phonon occupation [141, 13]. At these temperatures, heat is primarily carried through

electron conduction. The relationship between electrical conductivity and thermal conduc-

tivity, known as the Weidmann-Franz law, has important implications. For insulators, like

sapphire, with TD ∼ 1050K, they become thermally insulative at such low temperatures,

making the thermalization of non-equilibrium particle in the superconductor of a qubit rel-

atively slow. For a dissipative attenuator, the only connection to ground, and subsequently

to the cryogenic environment, is through a resistive element. Under constant or RF power,

these attenuators can reach equilbrium temperatures not equal to the base temperature,

where ∆T = Q̇RF /σatt, where σatt is the conductivity of the attenuator. As such, it is not

unreasonable to see how an attenuator, or any RF component, can be at elevated tempera-

ture under constant (or near constant) RF load. There will also be higher frequency photons

that can cause quasiparticle formation in the superconductor itself. These photons, which

have ℏω ≥ ∆s, where ∆s is the superconducting gap, may come from higher temperature

stages. For these, low-pass filters with high-frequency cutoffs in excess of 10s of GHz, are

used. These high-frequency adsorbtive materials, namely Eccorsorb, utilize the skin effect

or hysteretic loss mechanisms for attenuation.
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Plot courtesy of S. Chakram. More information on the effects of these improvements in
performance can be found in Ref. [62]

For microwave frequencies, an element at 10s of mK can still emit blackbody radiation

that is in-band with the device. The exponential aspect of Planck’s law means that a small

increase in the temperature of any part of the chain can lead to significant changes in the

effective power-density spectrum at a given frequency. For example, a black-body source

at 100mK will irradiate ∼ 1500 times more power at 6.5GHz, than at 30mK. Because of

this, special care was ultimately taken to shield the cavity from errant IR radiation by using

both reflective and dissipative attenuation. A more detailed discussion on the preventative

measures used in the P6N cavity can be found in the thesis of Akash Dixit, Ref. [63]. A

summary of those additions and their effect is presented in Fig. 4.11, where (a) gives the

coherence time T 1 and T 2∗, while (b) gives the nth cavity occupation.

Many of these lessons were passed onto the MM2 sample, and were incorporated. Primary

care was taken to ensure that light leaks through the qubit clamp or the covers on either
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side of the cavity were minimized. The addition of a mixing chamber shield at base of the

dilution refrigerator, and the modification of the outer mu-metal shield which had light-tight

SMA feedthroughs at the top, along with an interior copper liner. This liner was also painted

with Berkeley black to act as an IR adsorber.

Thermal population in the qubit is determined by doing length-Rabi measurements on

the |e⟩ − |f⟩ transition with and without a π-pulse of the |g⟩ − |e⟩ transition. By taking

the ratio of the contrast of the two measurements it is possible to determine the thermal

occupation of the qubit. For the contribution readout occupation the qubit T 2 is used in

conjunction with Eq. 4.6, with χ and γ being determined independently from resonator

dispersive shift—resonator spectroscopy following |g⟩ − |e⟩ π-pulse—and qubit ringdown

respectively. The combination of these factors reduced the qubit thermal occupation of the

MM2 sample to ∼ 1.2%, as shown in Table. 4.1.

4.5.3 Fock state preparation using photon-blockade

For determining the mode lifetimes, donoted as T 1, or the energy relaxation time, a single

excitation is placed in the resonator. This Fock-state of the resonator, with an eigenstate

denoted as |1⟩, can be generated through the dispersive interaction between the qubit and

the cavity modes. In Ref. [39] we demonstrated three different protocols for Fock-state

preparation, including selective number-dependent arbitrary phase gates (SNAP)[87], the

|f0⟩ − |g1⟩ sideband [158, 137], and photon blockade [37]. For the following discussion, we

will discuss the use of photon-blockade for this state preparation.

We can determine the Hamiltonian for our system by expanding on the technique used

in Sec. 3.5.1 to determine the participation of an m target mode with the qubit. Expanding

the cosφ to fourth order and writing it in terms of the junction phase and writing the

Hamiltonian in the dispersive regime (|ωi − ωge| > gi) gives [124]:
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+
km
2
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†
mam(a

†
mam − 1)}+

∑
n ̸=m

kmna
†
mama

†
nan

(4.7)

Where ωq is the qubit transition frequency between |g⟩ − |e⟩ states, ωm is the frequency

of target mode m. The second term in the first sum is simply state-dependent shift, or cross-

Kerr, between the qubit and target mode, while the last term in the sum is the self-Kerr of

each mode, while the last term is the cross-Kerr between modes.

We can add a qubit and cavity drive, denoted as Ω(t) |g⟩ ⟨e| and ϵ(t)a respectively to

the above Hamiltonian. It was shown that to block the |nm⟩ Fock state of target mode m,

one can simply apply a qubit drive at ωq + nmχ, which correspond to |gnm⟩ − |enm⟩. The

result of this is that the target mode sees a splitting of their nth level that is equal to 2Ω.

Obviously, the condition only works for drive strengths where Ω ≪ χ. In addition to this

there are small dressings to the neighboring modes between the qubit ground and excited

states which scale as Ω/ (χ (nn − nm)) where n ̸= m.

The result of this is that our harmonic oscillator’s infinite Hilbert space has now been

truncated. This added anharmonicity to the target level means that a resonant drive applied

to the cavity will only lead to the excitation of n − 1 levels of our harmonic oscillator. In

the case of blockading the |g2m⟩ − |e2m⟩ level, and driving the cavity, the cavity state will

simply oscillate between |0⟩ − |1⟩ Fock states. By ensuring the Rabi rate of the cavity drive

is less than Ω (ϵ ≪ Ω ≪ χ), such that leakage into the blockade transition doesn’t occur,

and waiting for π-time, it is possible then to prepare a |1⟩ Fock state with high fidelity.

A |0⟩ − |1⟩ Rabi oscillation from a blockade on the |g2⟩ − |e2⟩ transition is shown in

Fig. 4.12 (a) for a given drive strength. To conduct a T 1 measurement, a second resolved

π-pulse is enacted, swapping the cavity population back to the qubit, before measurement of
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Figure 4.12: Rabi and coherence using a blockade on |g2⟩−|e2⟩ transition: (a) shows
a level diagram of the |g2⟩ − |e2⟩ blockade, where a weak drive excludes the occupation of
the |2⟩-state of the oscillator. A weak Rabi drive is then applied at the mode frequency,
with the drive strength leading to a Rabi oscillation of the number-state, as shown in (b) for
the measured |0⟩ and |1⟩ number peaks of the qubit in time. (c) and (d) show T 1 and T 2∗
respectively for mode 1 of the multimode cavity. The values of these coherences are listed
in Fig. 4.14 below.

the qubit occurs. For the cavity dephasing rate T 2∗, the process is similar, with a detuned,

|ω−ωq|, π/2-pulse after some time. The energy decay and dephasing time can be extracted

to give the characteristic exponential time constants associated with their decay rates.

For this discussion, we will only discuss the creation of single excitation (|1⟩) Fock state on

a single mode, however this technique can be more generally applied to multimodal systems

to generate entangled states. To see how this is done, see Ref. [37] or see Kevin He’s thesis.

4.5.4 Multimode cavity performance

The aforementioned measurement and control scheme were used to determine both χ and

the mode T 1 and T 2. As discussed, T 1 and T 2 were determined via photon blockade on

the target mode to generate either |1⟩ or |0⟩ + |1⟩ Fock states. χ was determined by doing

resonator spectroscopy on the target mode after applying a π-pulse on the qubit, leading to a

shift in the cavity resonance that was equal to 2χ. Based on the measured storage mode and
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Figure 4.13: χ and g vs mode number: The dispersive shift, χ, and extracted coupling g,
between the qubits and modes. These values are extracted from resolved number splitting
of the qubit.

qubit frequencies, and the anharmonicity α of the qubit, it was also possible to determine

the vaccum-rabi rate g from Eq. 1.24. The χ and g are plotted in Fig. 4.13. We see that,

over the 9 target modes measured, the scaling of the coupling and dispersive shift range

from −2MHz (60MHz) and −500kHz (120MHz) for χ and g respectively. The important

takeaway from this result goes back to Sec. 4.2.2. One of the reasons for tapering the TE10n

cavity was to distribute the E-field such that g, or the qubit and cavity coupling rate would

be non-zero (and ideally relatively high). While the data indicates that there is variability

across modes, there are no points where the coupling drops precipitously due to the presence

of a node in the field profile of any given mode. Here we see that g scales roughly linearly

with increasing mode number, while χ follows an almost quadratic scaling, with deviation

being due to the increased detuning of the qubit-mode frequencies. Either way, the data

indicates that all modes are still in the strong-dispersive regime (χ > κ, γ).

With this in hand, we can also determine the cooperativity of each mode with the qubit.

In Fig. 4.14 we plot the aforementioned decay and dephasing (T 1, T 2) of each mode. The blue

bands on the T 2 values represent the range predicted by nth and the qubit T 1 to calculate the

predicted dephasing rate due to thermal occupation. Over the 9 modes we see a near constant

2ms lifetimes, which correspond to quality factors of Qm ∼ 70− 90× 106. If taken with the
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(a) (b)

Figure 4.14: T 1 and T 2 vs mode number: (a) shows the distribution of T 1 and T 2∗ across
the first 9 modes using the blockade technique described in Sec. 4.5.3, while (b) shows the
equivalent quality factors for each mode.

measured T 2 values, we can use the mode coherences, with a measured qubit coherence of

T 1
q = 86± 6µs to get a cooperativity across all modes of g2/(2κmγ) ∼ 0.5− 1.5× 109.

These results and the discussion of the preceding chapter have showed the power of the

flute technique, in particular in the creation of a multimodal 3D cQED system. While

we have not gone into great depth discussing the potential for control and preparation of

interesting quantum states in this chapter (you will have to wait for Kevin He’s thesis to see

what can be done with this system, but as a prelude see Ref. [37]), we have taken the next

logical step in the refinement of a useful quantum memory or multimode quantum processor.

Given that this thesis is invested in the creation of the best quantum memory—single or

multimodal—it is only logical that we continue the discussion by addressing the avenues in

which we can make this system even better.

The two main limitations of this system is that the dispersive coupling between each

cavity mode and the qubit ultimately lead to unwanted off-resonant interactions between

neighboring modes, i.e. the back-action due to the dispersive shift in the qubit from target

mode m occupation, leads to a small shift in non-target mode n, which is captured by an

effective intermodal cross-Kerr term as seen in Eq. 4.7 in the form of kmn. This, of course,
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leads to a bookkeeping nightmare, with the calibration of these dispersive shifts for any given

mode with any given prepared state. At the end of this thesis we will discuss one avenue

to solve this by removing the non-linearity, and subsequently the dispersive interaction,

altogether. The second point of interest has to do with the scaling of the multimode system.

In the next chapter we will begin by outlining this problem more carefully, in discussing the

way mode lifetime ultimately effects the number of modes one can utilize for the creation of a

useful register, and how building high quality factor cavities can open the door for memories

with hundreds, if not thousands of modes.
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CHAPTER 5

3D NIOBIUM CAVITIES

5.1 Motivation and Background

5.1.1 Quantum memory scaling and Quality Factor

At the end of chapter 3 we discussed several technical challenges in making scalable quan-

tum random access memories. The first of these challenges, the reduction of off-resonant

interactions by minimizing cross-Kerr between non-target modes, may be addressed through

the use of a flux tunable coupler that is comprised of a linear Josephson device. This is done

by making Ej ≫ Ec, pushing down the anharmonicity. The other challenge to scaling is the

reduction of the idling error rate to allow for a higher number of modes to be multiplexed.

To make this point more explicit, lets develop a naive model to understand the nature of this

scaling based on the error rates of resonant gates versus the idling error of any individual

mode.

The individual fidelity of any gate operation, assuming T1,cav ≫ T1,q is:

Fgate ∝ exp
{
(−tg/T1,q)

}
(5.1)

Also, the error rate of the prepared state in a mode would subsequently be:

Fcav ∝ exp
{
(−tg/T1,cav)

}
(5.2)

Where tg is just the gate time. If we want to know how many modes can be multiplexed,

assuming no loss in fidelity in the stored information, we can compare these two values. We

can rewrite Fcav to reflect the loss in fidelity of the stored state over the time it takes to

multiplex over n modes as Fidle ∝ exp
{
(−ntg/T1,cav)

}
, which has had the idle subscript
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added to symbolize this is the fidelity after some idling time. To find max(n) we can set the

condition that the idling fidelity must be greater than or equal to the individual gate fidelity,

after which the idling error rate will become the dominant source of infidelity. Solving for n

gives us the expression:

nmax ∝ T1,cav
T1,q

(5.3)

This criteria for the maximum number of multiplexed mode is, admittedly, a bit contrived

and is only true for resonant gates as described in [124], however proposals for quantum-

acoustic qRAM1 that involve the use of virtual swaps that never populate the qubit, and are

therefore only limited by the idling error and the inverse Purcell effect [84]. The downside

with these virtual processes are speed, with virtual coupling rates of only 10−100kHz versus

the bare couplings of 60− 100MHz as seen in [39].

Besides the obvious benefits to the fidelity of multiplexed modes, higher quality factors

also benefit systems where single mode operations and high cooperativities allow for the

creation of non-trivial states which can be used for stabilization and autonomous error cor-

rection [130, 92, 34, 152]. With this in mind, and given the concepts previously discussed,

what tools exist for the creation of a higher coherence cavity? One solution, of course,

is to go to another bosonic system altogether. Phononic systems have been demonstrated

with quality factors of > 1010 with very small mode volumes [112], and with the advent

of techniques for coupling superconducting circuits means that the cQED toolbox for state

manipulation and encoding can be used [11, 160, 128, 44, 98, 113]. This does have several

advantages, but pose it’s own unique problems, with challenges in controlling dispersion and

coupling an open research question.

The second option is to look at existing superconducting cavity technology for inspira-

1. qRAM differs from our proposed multimode RAM in that it takes a quantum register, or a superposition
of addresses, instead of a classical indexing of a mode that contains a quantum state.
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tion. A natural choice are superconducting radiofrequency cavities developed for particle

accelerators. While these cavities are typically designed to maintain high quality factors

at incredibly high electric field gradients, recent investigations into their single-photon per-

formance have yielded promising results, with single-photon quality factors exceeding 1010

for 1.3GHz and 5GHz TM010 TESLA cavities [157, 156]. Unlike the cavities used in our

multimode system, or previous 3D cQED experiments which were made of aluminum (both

high-purity and alloy grades), these cavities are made of niobium and utilize a drastically

different design philosophy than the TE101 rectangular or λ/4 coaxial cavities previously

discussed.

In the following section we will discuss the material properties of these cavities and glean

how we can adapt niobium to cavity designs that can be easily integrated with 3D transmon

qubits. This will not be an exhaustive overview. For a far more comprehensive review of

the accelerator applications and design philosophy, references [133, 134] are indispensable,

and will be the primary source for much of the theoretical and historical background in this

chapter.

5.1.2 Superconducting Radiofrequency (SRF) accelerator cavities

background

To preface the following sections we may want some context for the logic behind the design

of accelerator cavities. A charged particle inside of an electric field experiences a force and

subsequently acceleration in the direction of the field (for positive particles). Naively this

can be achieved by a set of parallel plates, but to accelerate a particle to relativistic velocities

(β = v/c ≈ 1), one would need a large field gradient over a very long distance. To negate

this one could build a resonant cavity with a transverse electric field. A natural choice for

this is the TM010 mode of a cylindrical cavity with the center of any two cavities spaced λ/2

apart. As the particle traverses a λ/2 distance in 1/2fcav time, then the electric field will add
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Figure 5.1: SRF cavity operation and mode profile of TM010 π-mode: At t = 0, a
particle of charge q+ is located at the center of the first cell, with the E⃗-field gradient at its
maximum. At t = 1/4f , the energy is all stored in the magnetic field, but the particle is at
a node in the field distribution. At t = 1/2f , the particle is located again in the center of
a cell, this time the electric field vector has flipped, and is in the direction of motion. This
cycle subsequently repeats as the particle moves through each cell.

constructively, accelerating the particle through the beamline. This process is schematically

shown in fig. 5.1 for a simple pill-box geometry, depicting the relative phase of the E⃗

and B⃗ fields as the particle moves through a properly tuned pair of coupled cavities. The

time-of-flight of the particle, the resonant characteristics, and field-flatness are all important

tuning parameters to ensure maximum efficiency, or the ratio of input energy vs accelerating

energy experienced by the particle, but how does the quality factor of this system effect the

performance?

In Ch. 2 eq.2.3 we defined the internal, or intrinsic quality factor as the ratio of stored

energy in the cavity (Ptot) over the energy lost (Ploss) over one resonant period (ω0). For

accelerators operating in continuous wave mode (CW), the amount of power dissipated per
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unit length is:

Ploss
L

=
E2
acc

RP
(5.4)

Where Eacc is the accelerating field potential and RP is the geometric shunt impedance,

or the effective parallel resistance of fig. 2.1 per unit length, since this resistance is no longer

discrete. For parallel resistance, Q0 ∝ RP , and to reflect this the above equation is typically

written in terms of the ratio of Q0 and RP . Nonetheless eq. 5.4 illustrates the idea that

higher quality factor is equivalent to higher efficiency, which for accelerators that require

field gradients of Eacc > 1MV/m to accelerate charge particles to relativistic speeds, is quite

important from an operational cost point of view. This is compounded by the fact that

the superconductor, in this case niobium, must be cooled to liquid helium temperatures,

requiring closed cycle cryogenics with typical Carnot efficiencies of ηc < 2%. So far this

description has presumed the cavity performance is agnostic to the accelerating potential,

but in reality the quality factor’s dependence on the accelerating potential makes up a large

part of the active ongoing research in accelerator physics. In the case 3D cavities for cQED,

neither this optimization, or the wall-power efficiency, is of much concern, since the operating

power at the cavity is, in effect, on the order of a single-photon worth of energy. Instead, we

want to focus on how we can adapt the optimization of accelerator cavity quality factors to

3D geometries that we can use to do interesting quantum physics.

In our simplified accelerator presented in fig. 5.1 we have drawn our TM010 cavity

as a simple cylinder. In reality accelerator cavity designs are far more complicated and

nuanced, with every one optimized for particular field gradients. All of these designs however

belong to a class of TM010 known as elliptical cavities, named after the ellipses that define

their inner and outer surface. For linear electron-positron colliders, where compactness and

subsequently high accelerating potentials (Eacc > 20MV/m) the TESLA design [16], named

after the international collaboration that designed it, has become the industry standard. Its
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specific geometry, with its circular inner radius, has also been used to build some of the

highest internal quality factor cavities ever made [154], reaching quality factors in excess of

Q0 > 2× 1011 at 1.3GHz.

There are a few reasons why the internal quality factor of such cavities are so high. The

first is the material properties of the Nb cavity, which will be discussed in more detail in

the intervening sections of this chapter. The other is simply geometry; TESLA or elliptical

cavities have far lower participation. A common metric used in the literature on SRF cavities

is the geometric factor G, which is given as:

G =
ω0µ0
Sm

(5.5)

Note that the above is simply QmagRs from Eq. 2.52, and is a natural way separating

the cavity’s geometric contribution to Q and the intrinsic material loss Rs. For typical

TESLA cavities, G ∼ 250 − 300Ω [155, 157]. It should also be noted that the above only

considers magnetic loss mechanisms, whereas dielectric loss can, and does, have a strong

contribution. Confusingly, dielectric and magnetic losses are often both encapsulated into

the value Rs, however, certain measurements can give us constrains on the contribution of

both mechanisms.

This high geometric factor for SRF cavities however comes at a loss. To achieve this,

Sm is made very small, which comes at the cost of making the field more diffused in the

cavity volume, with less field near the surface. For an accelerator, this is fine; the charged

particles live in the center of the cavity where the field gradient is highest. For qubits, this

would mean a particularly long chip to achieve the coupling desired, and potential difficulty

in incorporating a readout resonator. By making this chip longer, you also become more

susceptible to vibration, since your chip is effectively a stiff cantilever, which can lead to

pure-dephasing of the cavity (which will be discussed in a later chapter). Long chips also

make qubit thermalization more difficult. The larger chip will also participate more strongly
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Geometry Mode Material f0 (GHZ) G (Ω) Rs (nΩ) Q0 (×109)

TESLA TM010 Nb 1.3 268 1− 10 10− 100 [157]
Coaxial λ/4 Al (≥5N) 6.5 80− 100 1000 0.07-0.1 [38]

Rectangular TE101 Al (≥5N) 5.4-7.0 80− 100 1000 0.07-0.09 [38]

Table 5.1: Comparison of cavity performance

in the cavity field, making cavity susceptible to the chip’s dielectric loss.

This provides an inherent trade-off in design; make the mode volume smaller, which

makes the incorporation of a qubit easier, with the expense of a worst geometric factor.

A natural candidate for a cavity design that fits the criteria is the already discussed λ/4

coaxial cavity, which has become a tried and tested workhorse of the cQED world [148, 75,

187, 158, 159, 106, 107]. The λ/4 coaxial cavity has typical geometric factors of between

80− 100Ω using the values determined from Sec. 3.3.2. This means, for the same Rs as the

aforementioned ellitical/TESLA cavities, coaxial cavities will have a 3× lower quality factor.

We can compare the performance of several other cavities that have been discussed,

namely the TE101 multimode flute, and the coaxial cavities discussed in earlier chapters.

We see that, for aluminum cavities, the residual resistivity is between 100 − 1000× higher

than for state-of-the-art niobium SRF cavities. This means, if we were to scale these material

values for cavities of similar frequency to that of a coaxial cavity, we can expect internal

quality factors between 1− 10× 109. As we will see in later sections, the performance of the

cavity is dependent on more than the raw residual resistance. Nonetheless we will see that

we can atleast approach the theoretical performance by switching to niobium.

Before we can discuss performance, we need to outline how this performance is actually

achieved, and go over some of the main factors in surface treatment and chemistry that can

limit or enhance cavity performance for niobium systems. This brings us to the second factor

in why SRF cavities have such long lifetimes; the intrinsic properties of niobium itself.
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5.1.3 Superconducting properties of Nb

Before we continue, it is informative to spend a moment on some of the unique properties

of niobium, in particular its superconducting properties. In Sec. 2.2.4 we discussed BCS

theory, which is a microscopic treatment of superconductivity in simple superconductors.

We showed in Sec. 4.4.2 that, for a Type-I superconductor like aluminum, BCS theory, and

Mattis-Bardeen theory, correctly predicted the response of our system in an AC-field. This

microscopic treatment, which is predicated on the spatial homogeneity of the superconduct-

ing gap in space, becomes untenable for superconductors with non-trivial spatial dependence.

For these systems, a more phenomenological approach is required, which reparameterizes the

local density of superconducting electrons as a complex order parameter |ψ(r⃗)|2 based on

a pseudowavefunction ψ(r⃗). This macroscopic theory, developed by V. L. Ginzburg and L.

D. Landau, gives us the tools to describe the properties of Type-II superconductors, such as

niobium, using empirically derived properties [77].

This section will not be a detailed discussion of how Ginzberg-Landau (GL) theory works,

but instead as a pretense for explaining the key differences between niobium and the other

superconductor previously discussed in this thesis, aluminum 2. The main differentiator be-

tween the two is how they interact with magnetic fields. In addition to zero DC resistivity,

another feature of superconductivity is the requirement of zero magnetic field in their bulk.

This property, known as the Meissner effect, results in surface currents that counteract the

external field inside the penetration length, λL.
3 To do this, work must be done, which in

turn increases the thermodynamic free-energy of the Cooper pairs. Inversely, the condensa-

tion of cooper pairs leads to a decrease in entropy and subsequently the free-energy of the

system. If the induced increase in free-energy from the external magnetic field is equal or

greater than the change in free-energy required for condensation, the Cooper-pairs break

2. For more on GL theory see Ch.4 of Ref. [175]

3. Inside the London penetration length, the magnetic field is not zero, but decays exponentially as
B(x) = B0 exp(−x/λL) for values of B0 < Hc
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Material Tc (K) Coherence
Length
ξ0 (nm)

London
Length
λL (nm)

Hc (mT) Hc1 (mT) Hc2 (mT)

Aluminum 1.2 [49] 1600 [49] 16 [49] 10 [49] — —
Niobium 9.26 [67] 38 [67] 39 [67] 200 174− 190 390− 450 [134]

Table 5.2: Comparison of Nb and Al superconducting properties

into normal-state electrons. This critical-field strength, Hc, is the thermodynamic critical

field. For a material such as aluminum, where the coherence length ξ0 is greater than the

london length λL, the above condition is met, but what about for ξ0 < λL, as is the case for

niobium (ξ = 38 nm, λL = 39 nm)?

One result of the ξ0 < λL limit is that, below Hc, the superconductor can vary between

a normal conductor and superconductor. If these normal regions are thinner than λL, then

less energy is required for the neighboring superconducting sheets to expel the field, meaning

that the field can not just penetrate into the bulk, but do so without breaking cooper pairs

in the superconducting layer.

GL theory predicted that, for κ = λL/ξ < 1/
√
2, where κ is the ratio of London penetra-

tion length and coherence length, the superconductor exhibits Type I superconductivity, and

the field is expelled. For κ > 1/
√
2, there exists an additional critical field Hc1 < Hc, where

the field is suppressed, and above which we see penetration due to the ordering described

above. The nucleation of cooper pairs will continue in the bulk even above Hc, and until a

third critical field is reached, Hc2, in which all superconductivity ceases in the bulk and at

the surface, with Hc2 =
√
2κHc, from GL theory.

The properties that distinguish aluminum and niobium are listed above in Table. 5.2.

Other than the addition of its more complicated interaction with DC magnetic fields, the

other notable feature of niobium is its high critical temperature Tc. For SRF cavities the high

operating temperature means that the accelerator cavities can be operated at or near liquid

helium temperatures without serious degradation in performance. As we saw in Sec. 4.4.2,
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above ∼ 0.2Tc, the number of equilibrium quasiparticle in the bulk contribute noticeably to

the Qmag, leading to an overall decrease in the internal quality factor.

While we have discussed the unique properties of niobium, as far as its superconductiv-

ity is concerned, the primary differentiatior, as we will see, is the temperature and power

dependence of the quality factor due to two-level system defects in the oxide layer. These

aspects will be explored in far more detail in the following sections.

5.2 Nb coaxial cavities manufacturing

We have outlined the background and some of the unique and desirable properties of niobium

in the context of superconducting cavities. In this section we will shift from our discussion of

Nb at high powers and in elliptical cavity geometries and shift to adapting the aforementioned

processes to a coaxial cavity design. We have discussed this design in Sec. 2.3.1 and its impact

on the cQED field as a whole. Moving forward we will focus on the design and manufacturing

considerations made to properly characterize the loss mechanisms of the Nb surface.

5.2.1 Cavity manufacturing and etching

The cavity was machined out of a piece of pure niobium metal with an RRR ≥ 300 which

conformed to ASTM B393 R04220 standards and was purchased from Ningxia Nonferrous

Metals. For more even material removal during etching, sharp edges and corners of the

co-axial design were radiused for smooth transitions (see. Sfig 5.3). The cavity was ini-

tially degreased using an Alconox© and DI-water mixture at temperatures > 50◦C under

sonication. Following this, the cavity was thoroughly rinsed in DI-water and dried using an

isopropyl alcohol (IPA) solvent exchange and dry nitrogen. A toluene-acetone-methanol-IPA

cleaning was done using semiconductor (semi) grade solvents under sonication for ≥ 5min

at each step, before being dried under high-purity nitrogen that had been passed through a

0.2µm filter and bagged in a ISO100 clean-bag. All cavities were stored in a dry box.
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Etch DI Rinse
~5 min

IPA Soak
~5 min (2X)

DI Quench
X2

Parameter Value
Etch 1:1:2 (HF:HNO3:H2O)†

Etch depth (µm) 100− 150
Etched area (cm2) 70.2

Time (min) 60− 120‡

Temp (◦C) < 10
Etch vol. (mL) ∼ 500∗

Stir-rate (min−1) 1250
Pipette Interval (min) 5− 15

† Sold as RSE1:1:0:2H2O from Transene Co. Inc.
‡ calibrated in-situ for specific etch-rate using Nb test-strip
∗ determined based on etch depth and surface-area (see text)

Parameter Value
Water resistivity (Ω cm) ≥ 18.6× 106†

Water vol (L) ∼ 2
Quench time, 1st step (min) ∼ 1‡

Quench time, 2nd step (min) ∼ 5‡

Temp (◦C) 22
† Water meets UHP Type-I standards using a Barnstead
E-Pure 3-stage sieve and 0.2µm inline filter. TOC levels
< 10ppb
‡ The cavity is constantly agitated and the water periodically
evacuated from the cavity vol. while quenching

Parameter Value
Water resistivity (Ω cm) ≥ 18.6× 106†

DI rinse time (min) ∼ 5‡

Drying solvent IPA (semi-grade)∗

Solvent exchange time (min) ∼ 5
Temp (◦C) 22
Drying gas N2

§

† Same UHP water specified in quenching step
‡ Rinsed under constant gravity fed flow
∗ Semi-grade acetone also used in Nb2-31 with no loss in perfor-
mance
§ Oil-free, two-stage filter/drying, 0.2µm filter

Chiller
PTFE
Holder

(a) (b) (c)

(d)

Figure 5.2: Etching process steps: A depiction of the primary etching steps and layout of
components. (a) shows a cartoon of the etch setup in cutaway, depicting the copper cooling
coil surrounding the primary Teflon etch containment. Below is a table of pertinent etching
parameters used in this paper. (b) depicts the quenching process and information about the
quench step in the table below. (c) depicts final DI rinsing and the solvent exchange process
used for drying. Notes about the processing steps are provided below the tables for each
step. (d) shows a picture of the complete etching setup during an etch of the cavity inside
of the custom polypropylene hood and clean environment.

The top 100− 200µm of the surface is etched away to remove the damaged layer that is

created from machining processes, and to remove any contaminants that may be on top or in
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the surface. For niobium cavities, buffered chemical polishing (BCP), and electropolishing

(EP) are typically employed [97]. For cavities used in particle acceleration, which require

high electric field gradients, smoother surfaces are desired to reduce the risk of thermionic

emission and multipacting at the surface by removing defects where the local field can exceed

the work-function of Nb [134, 133]. While EP and BCP can both decrease surface loss and

residual resistivity, EP has become more common for high-field applications [97]. In the

low-field limit, however, BCP and EP have demonstrated similar performance and residual

surface resistivity for high and medium-purity Nb stock [58, 45]. Electropolishing uses an

applied voltage to electrochemically oxidize the niobium surface, before being dissolved into

an electrolyte made of and HF/H2SO4, typically mixed in a 1:9 ratio. The EP process

requires more infrastructure and has higher variability due to the larger number of parameters

and sensitivity to acid aging, agitation, and temperature [8]. In contrast, BCP etching,

which uses a chemical oxidizer in the form of nitric acid (HNO3), is primarily dependent

on temperature and relative concentrations to control the reaction kinetics. Because of our

desire to develop an optimized process of easy implementation at the scale of a university

research laboratory or clean-room, we will focus on BCP techniques that are specifically

optimized for low-field (single-photon) conditions.

The addition of an H3PO4 or H2SO3 buffer has shown reduced etch rate and improved

polishing action [100, 176, 6]. The limiting action of the buffer is believed to be due both

to kinetics, but also the presence of a viscous product-rich layer at the Nb surface [14].

For lower relative concentrations of buffer, the polishing action is reduced, with selective

etching occurring at the grain boundaries [176]. For the commonly used 1:1:2 mixture of

HF:HNO3:H3PO4 buffered chemical polished solution at an etching temperature of ≳ 10◦C,

∼ 480−900W of power is dissipated per 1m2 of Nb etched at a rate of ∼1µm/min depending

on the etch temperature [174, 97]. Another important factor in final etch quality is the

amount of dissolved NbF5 precipitate in the etch solution, with conventional wisdom being
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< 20g/l of dissolved Nb5+ ions in solution, with our recipe designed to have < 10g/l for an

∼ 100µm etch [174, 97].

The etch recipe used in this thesis diverges from the traditional BCP procedure, using a

1:1:2 HF:HNO3:H2O etch chemistry. The smaller surface area of our cavity, as listed in the

Fig. 5.2 (a) table, means that our dissipated power is < 10W for even our highest etching

rates. This, combined with the smaller volume of etchant required, means that an unbuffered

etch can be used with minimal degradation in etch quality while keeping the reaction kinetics

in a safe and manageable regime. In addition, the closed nature of the cavity geometry, with

poor acid circulation, means that higher viscosity BCP mixtures can greatly effect the etch

performance at the surface, leading to degradation in RF performance. This will be discussed

in more detail in a following section.

The main etching steps of the cavity are depicted in Fig. 5.2. A custom Teflon PTFE

holder was built to facilitate rapid and safe transfer of the cavity between etching steps

(depicted in Fig. 5.2). PCTFE/PVDF screws were used to attach the cavity to the holder.

The main etching was done in a 600mL PTFE beaker. The beaker was placed inside of

a water bath, and surrounded by a copper coil attached to a 400W thermoelectric cooler

which circulates a water/glycol mixture through the coil. The whole water bath was set on

a magnetic stirring plate to circulate the primary acid volume. A pure niobium test strip is

placed into the etch container alongside the cavity. The strip is periodically removed, rinsed,

and its thickness measured using a micrometer to check etch-rate. Fig. 5.2 (a) provides a

diagram of the aforementioned etch setup. To circulate the acid inside the cavity volume, the

etchant is manually exchanged using a clean polypropylene pipette at 5 − 15min intervals.

Other pertinent etching parameters are listed in the Fig. 5.2 (a) table.

To prevent unwanted reaction products from adhering to the surface and leaving residue,

the etchant is manually exchanged via a pipette for the final minute of etching, before being

quickly evacuated of BCP solution and dunked into a (UHP/Type I) DI water bath and
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vigorously agitated for ∼ 1min, quenching the etching reaction and reducing the chance

of dissolved Nb salts and fluorinated compounds from depositing onto the surface. This

step is done twice to further dilute any residual etching solution. Pertinent parameters of

this step are presented diagramatically and in a table in Fig. 5.2 (b). Water purity is an

important parameter in ensuring clean surfaces. It is standard practice in SRF accelerator

cavity fabrication to use Type-I UHP high pressure rinsing to remove stubborn surface

contamination.

Following this initial quenching step, the cavity is rinsed under a gravity fed stream

of UHP Type-I water for ∼ 5min. Following this the cavity undergoes a two-step solvent

exchange process. Here we use semi-grade isopropyl alcohol (IPA) to displace water, with

each soak being ∼ 5min. Following this, the cavities are dried under high pressure dry

nitrogen which has undergone two-stage filtration, with the final stage being a 0.2µm filter.

Following drying the cavity is sealed. An indium ring is sandwiched between the top of

the cavity and the cap. A 3mm stainless steel tube is brazed into the copper cap. A Swagelok

VCR© fitting is brazed at the other end. A second VCR fitting is attached to a copper pinch-

off tube, allowing for easy replacement and reuse of the cap. A Corning-Gilbert GPO (SMP)

hermetic connector (Part# 0119-783-1) is sealed into the top of the cap via a second indium

o-ring, allowing for microwave feedthrough. An antenna is made on the vacuum-side of the

feedthrough to couple RF power into the cavity. Because of the evanescent decay of the field

energy, the coupling quality factor Qext is exponentially sensitive to this antenna distance

from the pin. The cavity is left to pumpout for ∼ 24 hours before the copper pumping tube

is sealed via a hydraulic pinch-off tool and placed into the fridge.
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5.3 Nb cavity Measurements

5.3.1 Measurement setup

The cavity measurements were done in an Oxford Triton Dilution refrigerator with a base

temperature at or below 50mK. The full measurement setup, including room-temperature

hardware, is shown in Fig. 5.3

The cavity was measured in reflection (S11). The input line uses discrete attenuation

at 4K and the mixing chamber plate (MXC) of the dilution refrigerator, with an additional

20dB of attenuation being added by the insertion port of a Quantum Microwave cryogenic

directional coupler, giving ∼ 60dB of total cryogenic attenuation. Reflected signal is passed

through the directional coupler. A second directional coupler, which is used to couple the

RF-pump power into a Josephson-parametric amplifier (JPA) is separated from the first

coupler by a single-stage directional isolator. Finally a circulator couples the JPA into the

output line, before entering a two-stage isolator. NbTi lines then pass the signal to 4K where

they are amplified via a 4− 8GHz HEMT amplifier4.

At room temperature, the cavity is measured via a Keysight PNA-X N5242A network

analyzer. The time-domain setup is shown in Fig. 5.3. A sequence of upto four pulses

are generated by the PNAX, with three combined into a single line via an quad XOR IC

(DM74LS86) with ≤ 20ns switching delay. Two high-speed (20ns switching time) reflective

SPDT RF switches 5 are used on the two available output sources, and combined using a

splitter. One is used for the main drive tone of the cavity, while the second one is required for

ringdown measurements, which will be discussed in a following section. Because the switches

are operated slightly outside of their operational range, they add an additional ∼ 10dB of

round-trip attenuation due to their increased insertion loss. An internal pulse is also used

4. Low Noise Factor model LNC4-8C

5. Mini-circuits model ZASW-2-50DRA+
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Figure 5.3: Cryogenics and measurement Setup: A diagram of the cryogenic and room
temperature setup. An inset (framed in red) shows a detail of a cutaway of the cavity,
highlighting the geometry and hermetic sealing components.

to turn on the PNA-X’s ADC, shown on the rightmost port in Fig. 5.3.

The JPA RF pump-power is provided via a Signalcore SC5510A RF sythesizer, while DC

biasing current, done via an external DC coil, is provided by a Yokogawa GS200 precision
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current source.

5.3.2 SNR optimization and measurement considerations

In the next section we will look at the single-photon and low-power performance of our etched

Nb cavities, but before we do that we must determine what constitutes a single-photon from

the perspective of input power. In Ch.4 and later in Ch.6 we discuss ways of preparing

single-photon Fock states using the qubit. These schemes have very little uncertainty in the

prepared photon-number state that they create, however in our case, we only have access

to a coherent drive of the system. This coherent state can be written in the Fock-basis as

a superposition of Fock-states with associated amplitudes that follow a Poisson distribution

[72, 163]:

|α⟩ = e−α2/2
∞∑
n=0

αn√
n!

|n⟩ (5.6)

To recover the Poisson-like probability distribution of finding n photons, we first note

that the expectation value of particle number operator gives the mean photon-number, ⟨n⟩ =

⟨α| a†a |α⟩ = |α|2. Plugging this into Eq. 5.6:

P (n) = | ⟨n|α⟩ |2 = en
n̄−n̄

n!
(5.7)

Where we will write ⟨n⟩ as n̄ to express the mean photon-number. From this we see

that, while we can’t create a single-photon Fock-state with a coherent drive, we can create

a coherent state that has a mean photon-number of n̄ = 1. If we want the steady state n̄

based on a constant applied power, we can first write the input power Pin as [15]:

Pin = ℏω⟨a†inain⟩ (5.8)

Where ⟨a†inain⟩ = ⟨α| a†inain |α⟩, and where ain and a
†
in are the associated creation and
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annihilation operators of cavity photons under a constant input drive. We want to write the

cavity number state in terms of these input operators. From Ref. [185] Ch.7 we can use the

equation of motion from input-output formalism in steady-state conditions (da/dt = 0) to

get an expression for a in terms of ain:

a =
2
√
κext
κtot

ain (5.9)

Where for generality we have written κext to be the sum of external coupling rates (κ1

and κ2 in Eq. 2.15), and κtot to be the sum of all decay rates (κi + κext). We can plug

Eq. 5.9 into Eq. 5.8 to get:

Pin = ℏω
κ2tot
4κext

⟨a†a⟩ (5.10)

Noting from above that ⟨a†a⟩ = n̄ we now have an expression of nbar in terms of the

input steady-state power:

n̄ =
4κextPin
ℏωκ2tot

(5.11)

With this in hand we now have a nice way of expressing the mean photon-number in

terms of the coupling and internal loss rates (or internal and external quality factors), and

the input power. Next it is insightful to look at what that means in terms of power at

the cavity and what that means in terms of SNR and the time it will take to take a single

measurement.

To do this we will use the Friis noise figure formula, which determines the signal-to-noise

ratio for multistage amplification (or attenuation) based on the injected noise at each stage

[172]. The noise factor of a component is given by the ratio of the input and output SNR:

F =
SNRi

SNRo
(5.12)
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For a single component, this values corresponds to the device’s temperature. This is

because electrons in a component at a finite temperature produce an output power density

spectrum that follows Boltzmann-Maxwell statistics. This noise, known as Johnson-Nyquist

noise, subsequently has a corresponding noise temperature Tn. It can be shown that the

effective noise factor from Eq. 5.12 for a device is then:

F = 1 +
Tn
T0

(5.13)

Where T0 is a reference temperature, which is typically set to room temperature, or

more precisely T0 = 290K. For an amplifier, or active components in general, Tn is based

on numerous factors, and is usually an empirically derived value. For attenuators, from

Johnson-Nyquist theory, the noise temperature is simply Tn = (L − 1)T , where L is the

attenuation ratio at the reference temperature, and T is simply the operating temperature.

For a single device, the total noise-figure is trivial, but what about a cascade of devices

in series? If we take the SNR as Si/Ni, where Si and Ni are the signal and noise respectively

at each stage of the chain, to derive the total noise-figure, we can then calculate the SNR at

the output.

For the signal, the total output amplitude is simply the sum of amplification and atten-

uation. For noise, we must consider the fact that noise from the previous stage is either

amplified (or attenuated) by a factor Gi, in addition to the noise that is injected at that

stage. If we call the total output noise at each stage Ni, and the noise of the source Ns, we

can show that the total noise figure is:

Ftot = 1 +
N1

NsG1
+

N2

NsG2
+ ...

Nn

NsG1G2...Gn
(5.14)

To write the above in terms of each component’s noise factor, we can note that from the

definition of F in Eq. 5.12 we can rewrite F as:
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F = 1 +
Ni

NsG
(5.15)

Using the above relation we can then rewrite Eq. 5.14 as:

Ftot = F1 +
F2 − 1

G1
+
F3 − 1

G1G2
+ ...

Fn − 1

G1G2...Gn−1
(5.16)

To calculate the total signal-to-noise we need to take the ratio of total signal power and

total noise power. The total signal power at the output of the chain is simply the power at

the device and the total gain PinGtot. The Noise power is a bit trickier, but it can be shown

from Johnson-Nyquist theory that it is simply:

Pn = FtotkBTdevBGtot (5.17)

Where B is the bandwidth of the signal. In our case, the bandwidth is determined by

the network analyzer’s IF bandwidth. Here Tdev is the injected noise from the source, i.e.

our cavity, and kB is just Boltzmann’s constant. In the real-world we also must consider

the noise injected by the network analyzer itself, which can be added back into the above

expression. Finally, because we typically express both noise factor in terms of a noise figure,

in dB, and the total power in terms of dB, to calculate the SNR of the measurement we

simply take the difference of Psig − Pn.

Before we continue there are a few important things to note about the above expression.

In particular, from Eq. 5.16 and 5.14, we see that the noise power is dominated by the

first noise source in our system. This means that removing as much attenuation before the

first amplifier, and reducing the first amplifier’s noise temperature while increasing gain, is

paramount for decent SNR. In our case, the HEMT amplifier has a noise figure corresponding

to Tn ∼ 2K at > 40dB of gain. By adding the potential 20dB and Tn > 1K of the JPA, we

would see a further factor of 2− 3 improvement in the total SNR.
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Figure 5.4: SNR vs IFBW: The SNR of various measurement chains, with added attenua-
tion at high or low temperature leading to different types of degredation in signal integrity.

The above is presented in the form of a calculator in Appendix C. With it one can

compute the estimated SNR versus IFBW for a given device. With the functions provided

in the appendix, one can provide a list of components with their given gain or attenuation

(given as negative gain) and their noise factor (or figure) or noise temperature. This can be

expressed as follows:

1 generic_amplifier={'type':'amp',

2 'NF':1, #dB

3 'gain':1, #dB

4 'name':'generic'

5 }

6

7 generic_attenuator={'type':'atten',

8 'loss':1, #dB

9 'T_atten':1 #kelvin

10 }

With all of the individual components in the chain defined, one can then provide a

dictionary with all the pertinent device components and details about the NWA’s noise

figure. Provided is an example of how this is entered for a hypothetical device:
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1test_dev={'meas_chain':[low_T_loss, HEMT, high_T_loss, ZX60_LN,ZX60_LN, ZX60_LN,

high_T_loss],↪→

2 'IFBW':np.logspace(.1,4,10000),

3 'T_dev':.1, #temperature of device

4 'PN_NWA':-117, #noise power of NWA

5 'k_int':2.16, #internal kappa

6 'kc_1':4.082, #kappa of first coupler

7 'kc_2':0, #kappa of second coupler

8 'f0':6.6271E9, #Hz

9 'n_photon':10000,

10 'meas_port':1, #which port you wish to measure from (1 or 2)

11 'plot':True

12 }

13

14IFBW, sig, noise=SNR(test_dev)

The output of the SNR function is a plot of SNR (in dB) and the IFBW.

The above also estimates the amount of applied power at the PNAX from Eq. 5.11

needed for a given mean-photon number. For devices with Qint ≥ 1 × 109, and similar

Qext values, we anticipate PNAX output powers ≤ 90dBm, with an SNR of < 10dB at an

IFBW∼ 1Hz from the above estimation using the measurement chain shown in Fig. 5.3.

This is subsequently requires averaging > 20× for decent data, as is shown in the following

section.

5.3.3 Single-photon quality factors

As we will see, and we have discussed in Ch.2 the internal quality factor can vary over power

or temperature depending on the presence of two-level systems at the participating surfaces.

Since the end-use of this cavity is for quantum information, where we encode the logical state

on a single (or a couple) degree of freedom of the resonator, we need to directly interrogate

the internal quality at the single-photon level.

To do this, cavity spectroscopy was done at a range of power from n̄ ≈ 1 − 2 × 104
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(a) (b)

(c)

Figure 5.5: Cavity spectroscopy and ringdown measurements: (a) A detail of Nb2-
13 S11 resonance and fit for various mean photon number, n̄. (b) A comparison of cav-
ity ringdown times for Nb2-1 sealed vs unsealed during cooldown, denoted by Nb2-13 and
Nb2-14 respectively in Fig. 5.7 (b). The cavity was re-etched ∼120µm between subsequent
cooldowns. (c) A comparison of Qint vs n̄ for both sealed and unsealed.

photons. Fig. 5.5 shows spectrocopic data and cavity ringdown for cavity Nb2-1 following

the H2O etch recipe outlined in Appendix 5.2.1. From n̄ ≈ 1−105 there was no statistically

significant increase in Qint, suggesting two-level systems (TLS) were only weakly coupled to

the field [74].

To determine if the cavity sealing and evacuation prior to cooldown played a significant

role in preventing deleterious compounds from condensing on the surface and degrading

the cavity quality factor, the cavity was etched an additional 150 µm using the same etch

recipe and evacuated inside the dilution refrigerator within 90 minutes of etch quenching.

Across the same range of mean photon-number there was no statistically significant change,

with nearly identical performance as the evacuated cavity, indicating that, over the time

scale of 1 − 2 hours, and within the environment of the fridge, there was no degradation

in single-photon quality factors. A second sample, Nb2-4, was also measured after initially

being sealed, then re-etched and exposed to atmosphere for ∼8 days, showing degradation

in single-photon quality factor, with maximum quality factor and residual resistant values
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consistent with the cavities that had undergone the same etching process.

5.3.4 Temperature dependence

In the previous section we saw that at low to medium powers the quality factor was un-

affected, suggesting that, at these powers, weakly coupled two-level systems (TLS) at the

cavity surface play little or no role in cavity performance. Niobium is known to host TLS

in its oxide layer, which is believed to be cause by the presence of NbOx states within a

disordered ∼5nm thick Nb2O5 surface oxide [157, 145]. The powers required to saturate

the TLS to determine the conduction limited quality factor Q0 saturated the amplification

chain. So to study TLS the cavity was instead heated. The mixing chamber temperature

was stabilized to ±5mK before spectroscopy was done.

The subsequent temperature dependent Qint was fit to Eq. 2.35. The complete tempera-

ture dependent model that describes temperature saturation of weakly coupled TLS is given

as[74, 110, 155].

1

Qint(T )
=

1

Q0
+ Fe tan (δtls) tanh

(
α
ℏω0
2kbT

)
(5.18)

Where Fe = toxSe/ϵr, with Se and tox being the surface to volume participation ratio of

the electric field and surface dielectric thickness respectively. Q0 = µ0ω0/RsSm, where Sm

is the magnetic surface participation ratio, and Rs is the residual surface resistivity. From

XPS measurements tox (see section 5.4), was determined to be ∼ 3.5− 5.0nm, depending on

air exposure, while ϵr ∼ 33.

To study the difference of different etch buffer chemistry, cavity Nb2-1 was etched using

a 1:1:2 H3PO4 BCP instead of H2O. Fig. 5.6 (a) shows that after two ∼ 100µm etches only

a mild improvement in Qint was seen. Following the second etch, an aborted cooldown led

to the cavity being held at ∼100K for ∼8 hours. Upon recooling, the cavity exhibited a

distinct falloff in Qint from ∼ 250mK, suggesting a decrease in Tc, leading to a lower Q0 in
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(a) (b) (c)

Figure 5.6: Qint vs Temperature: (a) A plot comparing the effect of H3PO4 and H2O
etching recipes, and number of etches, on Nb2-1 cavity performance. (b) Nb2-3 Qint versus
temperature following repeated cycling of the cavity to 100K for ∼6 hours. (c) A comparison
of Nb2-4 Qint following rapid sealing and evacuation of the cavity volume, and exposure to
atmosphere for ∼8 days.

Eq. 5.18. Re-etching Nb2-1 using the H2O buffered etchant saw a significant improvement

in the single-photon Qint, with a nearly 5× increase, indicating an overall lower Rs. The

Tc of the material, however, seemed unaffected, even after removing an additional ∼ 120µm

using the same etching recipe (Nb2-14).

The correlation between a decrease in Tc and being held at 100K seemed consistent with

the formation of NbHx from hydrogen interstitials at the surface between 50 − 150K[103].

To study the evolution of NbHx formation, Nb2-3 was subjected to repeated temperature

cycling, being held at 100K for ∼ 6 hours, shown in Fig. 5.6 (b). After one 100 K cycle

the cavity exhibited the same falloff in Qint at ∼ 250mK as Nb2-1, with no statistically

significant decrease in low-power (n̄ < 1 × 105) Q. After 5 cycles the high-T Qint had

decreased by nearly 2 orders of magnitude, with the low-power Qint only decreasing by

∼ 35%. All cavities, except Nb2-12, were initially cooled at a rate of ∼ 0.3 − 0.5K/min

between 150− 75K. This rate is slower than the recommended >1 K/min reported by Refs.

[103, 9], however temperature dependent performance is consistent with performance of SRF

Nb cavities cooled in dilution refrigerators.

The effects of oxide formation were also studied and is shown in Fig. 5.6 (c). With the
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Device f0
(GHz)

Qint

(1×109)
Fe tan δtls

(1× 10−10)
Rs

(1×10−9Ω)

Nb2-13,† 6.627 1.549 3.4 53
Nb2-14,†,* 6.682 1.474 1.8 63
Nb2-21 6.593 1.201 4.4 46
Nb2-31 6.618 1.469 5.1 25
Nb2-32 6.664 1.399 5.3 27
Nb2-41 6.578 1.532 3.6 34
Nb2-42,* 6.628 1.191 6.3 29
Nb1-51 6.692 0.481 12 105
Nb2-11 6.511 0.232 10 325
Nb2-12,† 6.575 0.343 9.4 258
†NbHx Q-degredation, ∗Unsealed during cooldown

(a) (b)

Figure 5.7: Cavity performance overview: (a) Shows the temperature dependence of
Nb1-5, Nb2-2, Nb2-3, and Nb2-4, showing typical performance following the described etch-
ing procedure. The superscript represents the etch number, while H2O and H3PO4 represent
the absence or presence of phosphoric acid buffer in the 1:1:2 BCP etching solution. (b) A
table of all of the cavities measured, showing the loss tangent product Fe tan δtls and resid-
ual resistance Rs. The yellow rows represent water (denoted as H2O in (a)) buffer etchings,
while aqua shows the performance of traditional H3PO4 BCP etching.

exception of Nb2-14, all cavities were hermetically sealed during cooldown, with 30− 90min

between etching and evacuation. To study longer-term exposure, Nb2-4 was left open to

atmosphere for 22 days following ∼ 150µm etching. Nb2-41 was sealed and cooled following

normal sealing procedures, and was exposed to air for ≤ 30min. Following extended exposure

to air, Nb2-4 exhibited a ∼ 75% higher loss tangent product (Fe tan δtls). The single-photon

Qint also decreased by ∼ 22%. Interestingly, the TLS saturated Qint was also higher,

suggesting a decrease in Rs.

With these results, and further etching, a more complete survey of the consistency of the

processing was done. A survey of TLS characteristics is outlined in Fig. 5.7 (a) and (b). (b)

presents a table with the finalized measured properties of all the cavities measured, showing

consistent results over many individual cavities.

With these results in hand, and the results shown in Fig. 5.6 showing deviations between

traditional BCP etch recipes and the one developed in this thesis, it is useful to ask where

these deviations came from? In the following section we will take a deeper dive to connect
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the surface chemistry to the dynamics that are shown above.

5.4 Material Analysis

In this section we will use a variety of techniques to explore how our etching procedure effects

the surface chemistry of our cavities, and how these changes ultimately lead to better, or

worst performance. We will first discuss the techniques used to carry out this investigation,

before looking at a variety of data to then connect to the measured quality factors.

5.4.1 Material analysis techniques and processing

In later sections we will discuss data using two spectroscopic techniques, X-ray photoemis-

sion spectroscopy (XPS) and Time-of-flight secondary-ion mass spectroscopy (ToF-SIMS).

Both of these techniques are capable of giving compositional information at various depths,

however the two differ in both their analytic precision and the kind of information that can

be extracted.

XPS determines the binding energy (Eb) of electrons via the photoelectric effect. The

dynamics of this can be described by [178]:

Eb = Ep − (Ek + ϕ) (5.19)

A monochromatic X-ray source, with typical energies between 1000− 1600eV depending

on the source target, is focused on the surface. Electrons with binding energies less than

the X-ray energy are ejected. From the conservation of energy, the ejected electron’s kinetic

energy (Ek) is simply the difference between the binding energy and source energy. There

are other systematics, such as the surface work-function of the sample and detector, ϕ, which

can be calibrated for, and are typically small compared to the binding energy.

With Ek determined and the source energy known, Eb can be determined, which is
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dependent both on the atomic species but also the exact hybridization and local bonding

environment of compounds at the surface. While the X-ray penetration can be high, electrons

that aren’t in the top 10nm of the sample tend to scatter inside the material instead of being

emitted [178]. This makes XPS great at studying the surface chemistry of a material. To

study bulk composition, a milling process is introduced between measurements. This is done

via argon cluster sputtering, which will be discussed in a later section.

While XPS is a versatile tool in looking at both composition and specific bonding between

species, it is limited in its analytic capabilities, with a maximum sensitivity of ∼ 0.1%wt.

In addition to this, XPS is unable to detect very light elements, in particular hydrogen.

Because of these two factors, ToF-SIMS is used in conjunction with XPS to detect very low

concentration, or light, contaminants. SIMS is a general class of surface analysis techniques

that are all based on conducting mass spectroscopy on ionized particles emitted from surface.

These secondary ions are produced by sputtering the surface with high-energy electrons, ions,

neutral atoms or photons. The exact type of mass spectrometer used depends on the desired

sensitivity. The simplest and most accurate is time-of-flight detection. Secondary ions are

accelerated in an electric field, giving all particle the same kinetic energy. The velocity of

the particle will depend on mass. The velocity is measured by determining the time it takes

for the given ions to pass down a flight tube to the detector.

ToF-SIMS subsequently has comparable depth resolution as XPS, but has much higher

sensitivity, with trace element detection on the order of a part-per million (0.0001%) or less

[178]. Also, because ToF-SIMS is a mass spectroscopic technique, it is capable of measuring

light atoms much more easily than XPS. The drawback of SIMS is that it is a destructive

technique that is largely unable to determine bonding or stoichiometric details about the

surface chemistry.

In Ch.2 we discussed a number of various loss-mechanisms that can degrade the quality

factor, and in the previous section we showed the manifestation of that loss in our cavity
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Analysis Region

(a) (b)

(c)

(d)

Figure 5.8: Cavity participation and preparation: (a) and (b) show the participation

in the E⃗ and B⃗ fields of the cavity respectively, showing that the top of the pin has the
highest participation in the E⃗ field, making it a good candidate for studying the presence of
lossy TLS and dielectric compounds. (c) and (d) show a cavity that has been cut open to
expose the participating surface, and the process of cutting it. Not shown is the use of IPA
for cooling while cutting the cavity. A precision fine-tooth jewelers saw (∼ 0.5mm thick) is
used. All components used for cutting are thoroughly degreased and cleaned.

system. Dielectric and TLS loss mechanisms couple strongly to the electric field, which

constitutes the first 5− 10nm of the surface (see Eq. 2.49), whereas magnetic defects, which

primarily take the form of magnetic impurities and lattice defects that interact with surface

currents, live in the London penetration length λL, or ≤ 50nm depending on the exact bulk

quality of the Nb (see Eq. 2.54).

Fig. 5.8 shows the participation of the E (a) and B (b) field at various points on the

surface. The top of the pin has the highest participation, and given its elevated location

makes it an easy target for ToF-SIMS and XPS ion/X-ray sources/detectors to study. Fig. 5.8

(c) and (d) show the process in which the cavity is cut to get access to the interior surfaces.

Given the sensitivity of both these analysis techniques, it is imperative that the process of
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cutting the bottom of the cavity is done in a clean manner. The precision slitting saw and

arbor is Alconox+TAMI cleaned in a sonicator to thoroughly degrease the surface. All other

components, such as the chuck are also thoroughly cleaned with acetone and IPA. During

cutting, semi-grade IPA is dripped onto the blade at low RPM to keep chips from filling

the blade and cool off the part during cutting. As shown in (c), the whole process is done

with the cavity mounted upside down, to ensure no chips contact the surface. Samples are

carefully handled to reduce dust or cross contamination, with cut samples placed in ISO100

cleanroom bags filled with dry-nitrogen.

5.4.2 XPS experimental procedure

With the samples prepped, it was now possible to conduct XPS on the top of the pin. This

analysis was performed on a Kratos Axis Nova spectrometer using monochromatic Al K

source (1486.6 eV). Nb 3d, C1s, and O1s high-resolution spectra were collected using an

analysis area of 0.3 × 0.7 mm2 and a 20 eV pass energy with the step size of 100 meV. The

survey spectra were collected using 100 eV pass energy. Charge neutralization was performed

using a co-axial, low energy (≈ 0.1 eV) electron flood source to avoid shifts in the recovered

binding energy. The C 1s peak of adventitious carbon was set at 284.8 eV to compensate for

any remaining charge-induced shifts. Deconvolution of the high-resolution XPS spectra was

performed in CasaXPS software using Lorentzian asymmetric curves for Nb metal phase,

symmetric Gaussian-Lorentzian curves for all other elements’ fitting, and a Shirley fitting

for the background. The Nb 3d region consists of the two 3d5/2 and 3d3/2 spin-orbit split

components. The peak area ratio of 3d5/2 to 3d3/2 was fixed to 3:2. The Nb 3d region was

fit using six doublet components (Nb metal, Nb2O5, NbO2, NbO, NbOx, NbHx) of 3d5/2

and 3d3/2 components for each sample. The energy split of one doublet component is 2.7

eV. The depth profiling XPS analysis was applied by 5 keV monatomic argon ion sputtering

to investigate the oxide thickness and chemical states with depth.
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Figure 5.9: AFM image of Nb thin-film step edge: The above shows the edge profile of
the test Nb thin-film. This film was patterned via flourine reactive ion etching, and differs
from the un-patterned and etched sample analyzed in Fig. 5.11.

Depth profiling analysis via argon ion sputtering was performed to resolve the oxide

thickness. To estimate the etch rate of the argon ion sputter, a thin film of known thickness

was sputtered. The thickness of the Nb thin film was confirmed by Atomic Force Microscopy

(AFM) on Bruker Dimension Icon AFM. The thickness of the Nb thin film is 73 nm, shown

in Fig 5.9. A 5 KeV monoatomic argon ion sputter was utilized for all the depth profiling

analysis. For the Nb thin film sample, the sputter was 3 min per cycle, and after 11 cycles

the Al peaks from the sapphire substrate began to appear in the spectra. The etch rate for

the 5 KeV monoatomic argon ion sputterer was determined to be ∼ 1.909 nm/min.

5.4.3 XPS oxide thickness analysis

In Sec. 5.3.4 we showed that the filling fraction from the loss-tangent product, Fe, is partially

dependent on the oxide thickness. It has also been postulated that the TLS loss-tangent is

dependent on the presence of sub-oxide states in the native Nb2O5 surface oxide.

A fine sputter etch (15 s per cycle) was was used on the Nb 2-4 cavity. Following an
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Depth Sample Parameters Nb Nb2O5
3d5/2

NbO2
3d5/2

NbO
3d5/2

NbOx
3d5/2

NbHx
3d5/2

Surface

Nb2-4
+22 days

Binding Energy (eV) 202.3 207.95 206.2 204.2 202.95 203.89
FWHM (eV) 0.68 1.35 1.15 1.2 1.2 1.3

Atomic Comp. (%) 37.41 51.52 3.65 0.57 1.1 5.75

Nb2-4
+30 min

Binding Energy (eV) 202.31 207.96 206.1 204.25 202.9 203.45
FWHM (eV) 0.56 1.39 1.50 1.20 1.20 1.51

Atomic Comp. (%) 47.2 23.63 6.90 8.25 3.46 10.55
Nb

73nm
film

Binding Energy (eV) 202.26 207.86 206.3 204.2 202.9 —
FWHM (eV) 0.60 1.31 1.80 1.70 0.40 —

Atomic Comp. (%) 32.32 38.45 23.17 5.96 0.02 —

+35nm
Depth
Ar+
etch

Nb2-4
+22 days

Binding Energy (eV) 202.38 — — — — 203.90
FWHM 0.84 — — — — 2.0

Atomic Comp. (%) 76.82 — — — — 23.18

Nb2-4
+30 min

Binding Energy (eV) 202.38 — — — — 203.83
FWHM (eV) 0.82 — — — — 2.0

Atomic Comp. (%) 74.77 — — — — 25.23
Nb

73nm
film

Binding Energy (eV) 202.3 — — — — —
FWHM (eV) 0.48 — — — — —

Atomic Comp. (%) 100 — — — — —

Figure 5.10: XPS extracted parameter table for Nb2-4 oxide

initial scan, Nb 2-4 was re-etched following the H2O buffered recipe outlined in Sec. 5.2.1,

and placed in the XPS load-lock within 30 mins of etching. For the Nb 2-4 cavity that had

been exposed to air for 22 days, the relative concentrations of Nb and O were consistent

after 11 cycles. However, Nb 2-4 after etching/30 mins exposed to air only required 8 cycles

to reach the Nb bulk.

Two analysis methods were used on the XPS spectra to investigate the Nb oxide thickness.

First the XPS spectra are fit with six doublet components, revealing that there are four

coexisting oxidation states and one hydride state besides the pure Nb metal phase (202.4

eV). These include NbOx (x<1), NbHx (x<1), NbO, NbO2, and Nb2O5, with respective

shifts in binding energy compared to the Nb metallic phase peak[145, 168].

The first method is to use the ratio of the measured Nb 3d oxide to metal peak intensities

(I0/Im) to calculate the oxide thickness at the surface of Nb cavities. The surface oxide

thickness,dxps(nm), was estimated using the equation[1, 83, 6]

dxps(nm) = λ sin θ ln

(
NmλmIo
NoλoIm

+ 1

)
(5.20)
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Species Nb 75nm Thin
Film

Nb 2-4
(+2 wks)

Nb 2-4
(+30 min)

Nb2O5 4.113nm 4.462nm 2.368nm
NbO2 2.302nm 0.458nm 0.658nm
NbO 0.593nm 0.054nm 0.563nm
Total 7.007nm 4.974nm 3.589nm

(a) (b)

(c)

Figure 5.11: XPS and ToF-SIMS Surface Analysis (a) shows a comparison between
XPS spectroscopy of the Nb 3d peak for the top surface and the 35 nm depth of Nb2-42

after being exposed to atmosphere and after an additional H2O etch followed by an ∼ 30min
exposure. This is compared to a thin-film Nb that has been e-beam evaporated onto sapphire.
(b) Shows a comparison in the relative Nb/O concentrations after various sputtering cycles
for fresh etched (+30 min) and extended atmospheric exposure (+2 weeks). The sputter
etch rate is 0.47 nm per cycle. One cycle is 15 s of 5 keV monoatomic Ar iron sputtering.
(d) provides a table of calculated oxide thicknesses based on relative peak heights of various
constituent oxides.

Where the ratio of the volume densities of Nb atoms in metal to different oxide phases

(Nm/No) are listed in Fig. 5.10. The inelastic mean free path (IMFP) values, λ, for Nb2O5,

NbO2, and NbO can be found at Ref. [143]. These values are specified as being emitted

normal to the surface (θ= 90◦) of the Kratos Axis Nova XPS instrument, which has an

angle of 45◦ between the X-ray source and the axis of the electron lens. The estimated oxide

thickness of Nb thin film, and Nb cavities with different air exposure duration are shown in

Fig. 5.11 (d).

The data indicates that the exposed cavity does see an increase in oxide thickness. The

relative composition of the NbO2, NbO, and NbOx oxidation states, however, seemingly de-

crease in that time period, with lower relative concentrations, with the native oxide becoming

dominant. From the increase in the loss tangent seen in Fig. 5.6, which seems to follow pro-
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portionally with the increased oxide thickness. This seems to suggest that increase TLS loss

due to cavity aging in air is almost solely due to continued Nb oxide growth, whereas the

minimum loss-tangent is likely limited by the exact chemistry of the surface oxide. Recently,

additional processing steps have been developed that can decrease the presence of deleterious

oxidations states, such as NbO2, NbO in electropolished cavities [156]

5.4.4 Loss due to bulk impurities

In the previous section we connected the makeup and thickness of the oxide layer with the

increase in TLS loss after extended exposure to air. If we want to determine the limiting

factor in either the single-photon quality factor, residual resistance Rs, or the degradation

in Tc, we must look at the presence of impurities in the bulk.

In Fig. 5.6 (b) we see a decrease in Tc after a number of temperature cycles to 100K.

This implies the evolution of NbHx species in the London-penetration length. In Fig. 5.11,

we also see the presence of NbHx, with relative concentrations of ∼ 23 − 25at% present at

40nm. The precipitation of interstitial hydrogen into niobium hydrides has been studied

both theoretically and observed experimentally [68, 19]. Empirical evidence shows that

these hydrides lead to degradation in high-power quality factor in SRF cavities, and can

be suppressed if cooled faster than ∼ 1K/min through the 50 − 150K transition [103, 9].

Furthermore ToF-SIMS analysis has shown that for BCP processing, hydrogen interstitials

may be present at depths ≥ 50µm into the surface, due in part to the extremely high

diffusivity of hydrogen into niobium [7]. The reason that we saw NbHx species in the freshly

re-etched Nb 2-4 cavity, shown in Fig. 5.11, even though it hadn’t been cooled, was likely

due to the presence of existing NbHx species that had already precipitated in the bulk.

To confirm the presence of hydrogen in the bulk, at depths far greater than λL, we

conducted ToF-SIMS on Nb 2-16, which had shown extensive Q-degredation and the char-

6. ToF-SIMS analysis done by Eurofins EAG Laboratories
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Figure 5.12: Nb 2-1 ToF-SIMS Surface Analysis of Nb2-1: Dynamic time-of-flight
secondary ion mass spectroscopy for depths to 200nm for hydrogen and oxygen analysis,
with the inset showing hydrogen down to 50. The relative atomic percent of hydrogen
versus other species is much higher, indicating high diffusion from the etching process and
the production of hydrogen interstitials. The presence of these interstitial, particularly in
the London penetration length and deeper bulk, corroborate XPS data and the detection
of NbHx species, which likely formed during the cooldown process. Oxygen concentrations
drop precipitously after only a few nm, which is also consistent with oxide thickness analysis
of Nb2-4.

acteristic decrease in Tc associated with hydride formation in Fig. 5.6 (a). Fig. 5.12 shows

both depth analysis down to 1µm, showing oxygen and hydrogen relative concentrations,

along with hydrogen concentrations at depth of ≤ 50µm in the inset. The falloff in oxygen

concentration at ∼ 5nm is consistent with XPS analysis described in Sec. 5.4.3, while H

concentrations remain very high (and constant) throughout, with atomic percentages that

are inline with the compositional data shown in Fig. 5.10 from XPS analysis. While there

is a small falloff, we see that hydrogen concentration remains high down to depths of 50µm.

While not groundbreaking, these results closely match the concentrations associated with

H3PO4 based BCP etching, showing that the difference in chemistry neither improves (or

makes worst) the relative concentration of interstitial hydrogen [7].
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While NbHx formation is associated with a characteristic drop in Tc, an overall drop

in both single-photon quality factors and the maximum quality factor could suggest the

presence of mechanisms that increase the overall residual resistance. This is most present

in cavities etched using H3PO4 buffer, namely Nb1-5, and the first two etches of Nb2-1.

As mentioned in Sec. 5.2.1, a pure Nb test-strip is placed in the etching bath to determine

the etch rate. These test-strips are saved in case further analysis needs to be done. For

studying the differences between the two buffered etch recipes, both strips from Nb2-1’s first

and fourth etch were analyzed using the same XPS protocol used in the cavity samples.
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(a)

(b)

Figure 5.13: XPS survey scan comparison of H3PO4 and H2O etches (a) shows survey
scans for the test strip associated with Nb2-14. The data shows that, for the H2O based
buffered etch, there is no fluorine present at the surface or in the bulk, with the carbon peak
disappearing after a single sputtering cycle, indicating surface-level carbon contamination.
(b) shows the Nb test strip associated with Nb2-12, which was the second H3PO4 etch. The
test strip exposed to phosphoric acid buffer shows a pronounced F 1s peak that initially
increases with depth. In addition to this, the C 1s peak shows a characteristic broadening.
Fitting this peak with C−F compounds give close agreement with the data.
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Fig. 5.13 (a) shows survey scans for the test strip associated with Nb2-14. Highlighted

are the locations of the F 1s, O 1s and C 1s peaks for three sputtering cycles or ∼ 40nm. Also

shown are the peaks associated with the metallic Nb phases. The inset shows a detail of the

C 1s peak between 280− 295eV , fit to the C−O phases associated with surface level organic

carbon contamination. The data shows that there is no fluorine present at the surface or in

the bulk, with the carbon peak all but disappearing after a single sputtering cycle, suggesting

carbon contamination is confined to the first few nanometers of the surface. (b) shows the

Nb test strip associated with Nb2-12, which was the second H3PO4 etch shown in Fig 5.3.4

(a). In contrast to the water based etch, the test strip exposed to phosphoric acid buffer

shows a pronounced F 1s peak (and F KLL line at ∼850eV) that initially increases with

depth. In addition to this, the C 1s peak shows a characteristic broadening. Fitting this

peak with C−F compounds give close agreement with the data, suggesting the presence of

lossy fluorinated hydrocarbons on and in the surface.

These two survey scans showed that the water based etchant had no flourine at the

surface or in the London-penetration length, with carbon confined only to the surface, as

shown in the inset detail of the carbon (C 1s) peak for the top most surface. H3PO4 based

etchant however showed flourine present in the top surface and the metal bulk. Fitting the

broadened C 1s line with C−F species showed the presence of flourinated species in the bulk.

The presence of these two features may explain the overall increase in Rs for Nb1-5, Nb2-1
1,

and Nb2-12 without a notable change in the apparent Tc of the cavity. It should also be

noted that Ref. [89], which used a nearly identical coaxial design and actively cooled H3PO4

BCP etching recorded near identical results in TLS and single-photon performance to Nb1-5.

A detailed analysis of electropolished Nb elliptical cavities, using an H2SO4 electrolyte,

found the presence of similar CFx compounds at the surface, in addition to hydrolyzed

niobium flouride species [43]. A correlation was found between the agitation and removal of

a viscous product layer at the Nb surface, and thorough post-etch rinsing, with the presence
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(a) (b) (c)

Figure 5.14: Surface roughness and crystallinity of etched cavity: (a) A high con-
trast image using a white-light confocal microscope of a post-etched surface, showing clearly
delineated crystal domain edges. (b) surface roughness mapping of the patch shown in (a)
showing height an inset height map and corresponding distribution of the surface roughness.
(c) shows an SEM backscattered electron image showing a faceted surface structure.

of these features. The closed nature of the coaxial design makes constant agitation and

steady-state removal of products from the participating surfaces difficult. By comparison,

BCP etching is typically done under constant flow for elliptical cavities [174, 28]. During

regular pipetting, the viscous layer can be seen as a dark blue for H2O BCP) or green (for

H3PO4 BCP) film that forms at the surface. The difference in color, and the presence of

these deleterious species in XPS suggests that the presence of H3PO4 changes the reaction

kinetics in a meaningful way, however further investigation into the exact mechanism would

need to be undertaken.

5.4.5 Surface roughness and crystal domain size

In addition to chemical characterization, the roughness of the participating surfaces were

also measure. The surface roughness was measured using an OLS5000 laser confocal mi-

croscope.Since the confocal design allows light that is reflecting off of a single 2D plane, by

precisely sweeping the z−height of the sample one can create a 3D reconstruction of the

surface. With post-processing one can accurately determine the height of features at the

surface and do statistical analysis of the variation of these features. This is identical to the
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technique used in Sec. 4.3.2 and shown in Fig. 4.5. In addition to this, SEM backscattering

microscopy was also done to get information of surface morphology at the single grain level.

The results of this analysis is shown in Fig. 5.14, with the backscattered image of a single

grain domain shown on the left and confocal microscopy of the surface with statistics of

roughness on the right. From confocal micrsocopy the surface roughness was found to be

∼ 1 − 2µm over the sites measured at the top of the cavity post. Confocal images show

clear crystal domains with sizes ranging from ∼ 10 − 50µm. While these grains may seem

large, they would be considered polycrystalline or ”fine-grain” when compared to ”large-

grain” SRF cavities [167]. While fine-grain cavities can have comparable performance to

large-grain cavities, it has been shown that the fine-grain cavities are more susceptible to

loss due in part to the precipitation of impurities to the grain boundaries, with performance

being recovered through additional high temperature annealing and purification techniques

[81, 57]. This could be one of the reasons why our H3PO4 buffered BCP etched cavities

are more sensitive to the creation of C − F compounds, which may coalesce in the grain

boundaries, and may explain the elevated signal in the bulk, however further analysis of the

exact source of C − F in the cavity surface.

5.5 Discussion

Surface analysis using XPS and ToF-SIMS shows both the significant introduction of hy-

drogen to depths of ≥ 50µm and the strong dependence of exposure time to atmosphere,

increased oxide thickness, and a subsequent increase in the TLS loss of the resonator. Rapid

sealing and evacuation (< 90min) seems to keep the TLS loss product at values compara-

ble to electropolished Nb elliptical cavities before any additional mid-T annealing to dif-

fuse the oxide [156, 157]. This is notable since the geometric participation is nearly ∼ 3×

(G = µ0ω0/Sm ∼ 96Ω) greater in the coaxial design than the TM010 mode of an ellipti-

cal cavity, and a filling fraction Fe that is also ∼ 3× greater than that reported for 5GHz
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TESLA designs [156]. This means that, when scaled, the Rs are within a factor of 3 of the

state-of-art Nb elliptical cavities of similar frequencies, and effective TLS loss-tangents that

are between 2−5× lower than normal EP treated cavities with no additional oxide annealing.

XPS analysis in Fig. 5.11 (a) seems to hint at this discrepancy, with the H2O BCP etched

cavities showing a thin oxide that is largely composed of Nb2O5. The use of HNO3, which

is a strong oxidant, may preferentially produce pentoxide over other suboxides, producing a

lower-loss dielectric surface.

Another conclusion is that, while reducing hydrogen concentration in the surface via

high-temperature (> 650◦C) vacuum annealing would likely decrease Rs, normal cooling

of the cavities, and the presence of NbHx species at the surface do not lead to significant

decrease in single-photon Qint for normal cooldown rates between 0.3 − 0.5K/min without

annealing.

When compared to equivalent aluminum coaxial cavities, the Nb cavities processed using

the water based BCP etch recipe described in Sec 5.2.1 show a >15 times improvement in

single-photon quality factor [149, 106]. This single-photon quality factor is largely limited by

the presence of TLS loss mechanisms at the surface, with the intrinsic, conduction limited

quality factors of all the cavities shown in Fig. 5.6 being in excess of 2 × 109, with the

highest values being > 3.5 × 109. If TLS was removed, this would correspond to single-

photon lifetimes approaching 100ms for our f0 ∼ 6.5GHz cavities. Techniques for removing

this TLS, in the form of mid-temperature (∼ 450◦C) oxide bake, have shown a marked

reduction in the TLS loss product [156].

In addition to TLS reduction, there have also been the development of techniques which

infuse nitrogen into the surface, which has shown the ability to reduce the residual resistivity

by a factor of three, leading to potential single-photon lifetimes in excess of 250ms [82, 56].

This, along with the oxide diffusion to reduce TLS, and hydrogen removal from the surface,

all require high-temperature vacuum annealing at pressures below 1× 10−6mbar. Work has
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been done to develop a small scale furnace capable of these processing steps, and will be

discussed later in the thesis, however this work will likely be the task of future graduate

students within the lab.

In summary, the work outlined in this chapter represents an important advancement

in making state-of-the-art quantum memories that can be manufactured at the scale of a

university research lab, with the processes all taking place inside of the lab itself 7. While

this process is capable of producing high-performance cavities with high levels of consistency,

it is only really worth the effort if a qubit can be incorporated into the system. By choosing

the coaxial cavity—which has been a staple in the cQED community for nearly a decade—

we have avoided the potential headaches associated with incorporating qubits into more

traditional SRF cavity geometries. With that said, because of the extremely high coherence,

and thus high sensitivity to loss, there are a few additional considerations that must be

made before incorporating a qubit into the mix. In the next chapter we will discuss those

challenges and incorporate those ideas into a design that can preserve the performance we

have worked so hard to achieve.

7. All of the data shown did not take place in the Pritzker Nanofabrication Facility given the lack of
infrastructure for etching large scale devices
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CHAPTER 6

ULTRA-HIGH Q CAVITY-QUBIT SYSTEMS

6.1 Introduction

In the previous chapter we have shown how to build a high-Q bulk niobium cavity, but as

we saw in Ch. 4, to turn a cavity into a quantum memory requires the introduction of a

non-linear element. This non-linearity comes in the form of the transmon qubit, which was

discussed in detail in Ch. 1 and Ch. 3. Before we can incorporate a qubit into our pristine

high-Q cavity, however, we need to first consider the what the qubit does to the coherence

of our cavity mode.

In the previous chapter we went to great lengths to remove as many sources of loss as

possible, so it may seem a bit counter-productive to now place a two-level system that has a

coherence that is 3-orders of magnitude lower than the mode. This is, however, a necessary

evil, since the inherited anharmonicity of the qubit allows us to conduct quantum operations

on the system. To make our jobs easier, and build upon the knowledge gained in the previous

chapter, we will use the tested coaxial cavity for our system, and begin by studying single-

mode dynamics to constrain the complexity of our system, and the parameter space in which

we must optimize.

In this chapter we will discuss how we can mitigate some of the introduced loss to protect

our mode. Then we will look at the design parameters of this qubit-cavity system.

6.2 Modelling qubit induced losses

As previously discussed, the qubit is an anharmonic oscillator, in the form of an LC-circuit

in which the inductor, thanks to the Josephson-effect, gives the system non-linearity. We

once again use the transmon qubit for this purpose, and use the techniques outlined in

Ch.3. In sections. 3.4.2, 3.5.1, and 3.5.3, we used simulation tools to understand how the

165



qubit participates with the cavity mode, and as a result, determine the pertinent dispersive

Hamiltonian parameters that fully describe the dynamics. In this section we will be using

these same tools and techniques in order to instead determine, based on the interaction

strength, how much the qubit will decohere our cavity. First we will discuss the ways

mechanical coupling of the qubit chip to the mode can potentially lead to dephasing. Next

we will study how qubit location can be optimized to minimize the reverse-Purcell effect,

where the qubit decoheres the cavity, before discussing how the participation of the electric

field in the dielectric of the chip can limit mode coherence. Finally we will investigate how

the geometry of the qubit mount can effect mode coherence. These insights will then inform

our design considerations in the following sections.

6.2.1 Qubit vibration and induced dephasing

The frequency of our cavity is dependent on both the relative permittivity and permeability

of the material in our mode volume. The presence of a dielectric in the mode volume will

lead to a decrease in the the mode frequency. We have already seen this explicitly in Eq. 2.41,

which describes the frequency of the TEnml mode, showing that fnml ∝ 1/
√
µε, where ε

and µ are the relative permittivity and permeability respectively for the dielectric medium.

In most cases, we can take these values to be ∼ 1, since the mode volume is just vacuum.

With the addition of the qubit, however, we have also introduced a chip made of dielectric

material, which will inevitably lead to a shift in the cavity frequency.

In the static case, this shift is easily accounted for. In Ref.[149] the frequency shift was

used as a way to determine the insertion of the qubit into the cavity volume, with shifts

of ∼ 100MHz for insertion lengths on the order of a few hundred µm when inserted into

the coaxial cavity from the side. The next inevitable question is what would happen if the

chip—which is, in effect, a cantilever fixed at one end—were to vibrate due to a constant

drive? How much of a shift can we expect for vibrations on the order of nanometers? A

166



Figure 6.1: Chip orientation and participation in cavity E⃗-field: A diagram showing
the orientation of the chip in the cavity field. Above is a cross-section the chip undergoing
deflection due to cantilever vibration. When compared to the inset below, the chip with
highest deflection also has the highes |E|-field participation,

time-dependent detuning of the cavity frequency would lead to an effective dephasing of the

state. If the frequency of these vibrations are on the order of 1/T1,c, where T1,c is the cavity

frequency, then the effective intrinsic linewidth of the cavity will be broadened. Because of

this, it is important to quantify the scale of shift for a given vibrational amplitude, and the

vibrational frequency one can expect for a rigid cantilever.

To determine the expected frequency shift for a given displacement, we can begin with

Maxwell’s curl equations which gives the identities:

∇× E = jωεE⃗ (6.1a)

∇×H = −jωµH⃗ (6.1b)
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A perturbation in the field caused by a volumetric change in a media with permittivity

and permeability ε and µ will lead to a change in frequency from ω0 → ω. We can solve for

∆ω = ω − ω0 from Eqs.6.1 (a) and (b), with the approximate form becoming1:

∆ω

ω0
≃

∫
∆V (µ|H⃗|2 − ε|E⃗|2)dv∫
V0
(µ|H⃗|2 + ε|E⃗|2)dv

(6.2)

We can see that the integrand in both the numerator and denominator are simply the

magnetic and electric stored energy in the perturbing material, and can be rewritten using

Eqs.2.47 (a) and (b) to give a simplified expression:

∆ω

ω0
=

∆Wm −∆We

Wm +We
(6.3)

The above indicates that the fractional change in stored energy inside the chip is directly

related to the expected perturbation in frequency. The above also assumes that the field

profile due to the perturbation remains largely unchanged. In our approximation for the

chip this is a safe assumption given the small amount of the mode volume we expect the

chip to occupy.

Before we compute the above, we can note that, for sapphire, which make up our qubit

chip, we expect the permeability to be equal to that of vacuum, so any change in the position

of the chip should not change the stored energy of the H⃗−field. This simplifies Eq. 6.3 to

simply ∆We/We. We can get an idea of how the stored electric energy is distributed in

chip. In Fig. 6.1 we see that the E⃗−field participation is quite high, especially at the end

of the chip where we expect the largest changes in location due to vibration. As the chip

displaces in a given direction, we have a small volumetric change associated with it, ∆V . By

computing the integral in only this volume, we can calculate the frequency difference.

1. For a more detailed derivation see Sec. 6.7 in Ref. [144]
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To do this calculation, we can employ techniques discussed in Ch. 3, namely in Sec. 3.3.2.

Before we continue, you may be wondering, if we plan on using simulation techniques such

as those discussed in Ch. 3, why not just displace the chip and use eigenmodal simulations

to extract the new frequency? The main issue with eigenmodal simulations is the general

lack of numerical precision; for the shifts we are interested, which are ∼ 1part per billion, we

would need to set our convergence criteria to be atleast on the order of that level of precision.

In practice, the numerical floating point precision of the eigenmode simulation means that

successive simulations would have eigenmode frequencies that deviate by orders of magnitude

more than our required precision. Instead, we want to create a single eigenmode simulation,

with meshing that has a characteristic length smaller than our chip perturbations, and then

compute the above integrals for various displaced volumes. Ideally we could reuse the mesh

and simply move the chip location by our desired displacement to then compute the stored

energy, however doing so nullifies the previous mesh setup in HFSS. Instead, we will create a

number of non-model objects that represent the displaced chip volume, and simply integrate

over the object with sapphire’s dielectric constant.

The way the chip can be expected to vibrate is determined by geometry. With a length

of ∼ 25mm, width of 2mm and a thickness of < 500µm, the fundamental eigenmode of the

chip will be due to a displacement in the ŷ−direction as shown in Fig. 6.1. Fig. 6.2 shows

the HFSS setup described above. The setup in pyHFSS for the depicted setup is:

We additionally set our maximum mesh lengths over the volume of the perturbed chip

locations to ensure that the small perturbation to stored energy can be properly determined.

The assignment of a non-model object to each box in line 9 ensures that HFSS does not

attempt to treat the box boundaries as an electrodynamically interacting surface. This once

again shows the approximate nature of this simulation, in that the field profile should also

be perturbed. This however is already accounted for in Eq. 6.2.

Once the above simulation has run we can use the techniques discussed in Sec. 3.3.2,
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Fine Mesh
Volume

Non-modal
"Chips"

Figure 6.2: Perturbative chip simulation setup in HFSS: A depiction of the simulation
setup, with the sapphire chip highlighted in pink, the mode volume simulated in blue, and
the mesh volume in green. A diagramatic cutaway of the chip showing the displacement
and the location of overlapping ”non-modal” mesh boxes used to determine changes in the
stored electric energy. It is assumed that small displacements will only weakly change the
overall field profile of the resonator.

where we instead only compute the stored electric energy over the perturbed volume and

original chip volume. The calculation to do only this computation is:

Where we have written a compact function that takes the volume and relative dielectric

constant to computeWe. First we need to solve for the numerator, which represents the total

stored electric energy over the entire mode volume, and can be split into the stored energy

of the chip and vacuum. Using the above vol energy calc we can do this computation as

follows:

Where E energy total on line 3 isWe for the entire system. From there we can calculate

the perturbed stored energy stored E perturbed in the same manner for each displaced chip

box. To get just the energy in ∆V , however we need to subtract the unperturbed chip stored
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1 #create new chip box at new chip position that represents the perturbed location for

later integration↪→

2 new_z_locs=[]

3 new_chips=[]

4 perturb_vars=np.linspace(-chip_perturb, chip_perturb, variations+1)

5 for I, vars in enumerate(perturb_vars):

6 new_z_locs.append(EM_design.set_variable('Chip_var_%i_loc_z'%I,

value='%.3fum'%vars))↪→

7

8 new_chip_loc_box=model.draw_box_corner([chip_x_origin, chip_y_origin,

chip_z_origin+new_z_locs[-1]], size=[chip_x_dim, chip_y_dim,

-chip_thickness], name='new_chip_loc_box_'+str(I))

↪→

↪→

9 model.assign_non_model(new_chip_loc_box)

10 new_chips.append(new_chip_loc_box)

11

12 #do some meshing to better sample the E-field in the chip volume(s)

13 model.mesh_length(name_mesh='substrate', objects=[chip_mesh_box],

max_length='%.3fum'%100)↪→

14 model.mesh_length(name_mesh='vac_mesh', objects=[vac_mesh_vol],

max_length='%.3fum'%200)↪→

1 def vol_energy_calc(self, volume, variation, eps_r):

2 calcobject=HFSS.CalcObject([], self.setup)

3 smooth=False

4 vecE = calcobject.getQty("E")

5 if smooth:

6 vecE = vecE.smooth()

7 A = vecE

8 B = vecE.conj()

9 A = A.dot(B)

10 A = A.real()

11 A = A.integrate_vol(name=volume)

12

13 lv = self._get_lv(variation)

14 return eps_r*const.epsilon_0*A.evaluate(lv=lv)

energy. The final result for the perturbed frequency of the system is thus given by:

One design aspect we can vary in the design of our qubit-cavity system is the orientation
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1 chip_E_energy_0=energy_calc(eprh, volume=str(chip), variation='0', eps_r=11.2)

2 vac_E_energy=energy_calc(eprh, volume=str(vac), variation='0', eps_r=1)

3 E_energy_total=chip_E_energy_0+vac_E_energy

1 solns=EM_setup.get_solutions()

2 freq_0=solns.eigenmodes()[0][0]

3 delta_omega=freq_0*1E9*(np.array(E_perturb)-chip_E_energy_0)/(E_energy_total)

of the qubit chip. We can mount the chip horizontally, i.e. perpendicular to the axis of our

coaxial design, or vertically, where the chip is perpendicular to the coaxial axis. We will see

in a subsequent section that we can achieve the necessary coupling to the mode regardless

of this orientation, so either are valid solutions.

Fig. 6.3 (a) and (b) shows the sensitivity of the cavity mode to chip vibration. One inter-

esting takeaway is how the chip orientation and the natural symmetry of the coaxial cavity’s

fundamental mode effect the amount of dephasing that can occur for a given displacement.

Because the field gradient decays exponentially along the ẑ−axis, small displacements in the

chip lead to dramatic changes in the amount of stored energy in the chip volume, leading to

large fluctuations in frequency that follow an exponential relationship. Over the small dis-

placements we are interested in, ∆ω looks, locally, linear. Inversely, the vertically mounted

chip, with its fundamental mode leading to displacements in the ŷ−direction, the field, which

extends radially from the pin, leads to only a quadratic relation between frequency detuning

and displacement. This means that, by centering a chip along the ŷ−axis, one could expect

a quadratic suppression of dephasing amplitude.

Before we continue, we should make a few important notes about the above approxi-

mation. For one, this is a worst-case scenario; this simulation is treating these cantilever

vibrations as a displacement in the entire chip. In reality, the displacement of a cantilever

beam, ∆d ∝ x3, where x is some distance along the length of the cantilever such that
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(a) (b)

Figure 6.3: Chip displacement result: (a) shows the change in frequency for a given
displacement for a chip in the vertical orientation, showing a quadratic suppression in vi-
brational sensitivity. The inset shows a zoom in about zero, with the discrimination of the
simulation mesh leading to the step-like sensitivity and asymmetry of frequency to position.
(b) compares the vertical line in (a) to a chip at the z location mounted horizontally. The
line, which appears linear, but is actually weakly exponential over this range, shows a much
higher frequency dependence on location, due in part to the location of the chip in an evanes-
cent region of the cavity near the top of the pin.

0 < x < L where L is the cantilever length. We can see if Fig. 6.1 (b), however, that most

of the field’s stored energy is in the end of the chip where the displacement is the highest.

Two additional points of consideration is the displacement and natural frequency of our

free-vibrating cantilever chip. To calculate the displacement from the equations of motion,

we would need to know the driving amplitude, which would require a detailed understanding

of the way vibrational energy is coupled into the chip. This is difficult to fully quantify,

however we can deduce the maximum displacement of the chip, which is simply the point in

which the chip breaks. The point of breaking occurs when the stress on the chip is greater

than or equal to the maximum tensile strength of the sapphire. The stress on the chip is

given by:

σ =
Myn
I

(6.4)
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Where σ is the stress on the beam at a given location, M is the moment at the fixed

point of the cantilever, and I is the moment of inertia for the beam [76]. yn is the distance

from the neutral axis of the beam, which can be taken as yn = t/2 where t is the thickness.

The moment at the fixed end of the beam is simply given as Fax, where Fa is the force

applied and x is the distance from the fixed point. We can also write the static force applied

to the end of the beam (x = L) as:

FA =
Ewt3

4L3
d (6.5)

Where E is the modulus of elasticity (Young’s modulus) and d is the displacement of the

beam at the free end. The moment of inertia for a rectangular member is simply I = wt3/12

where w and t are width and thickness of the chip respectively. Plugging equation 6.5 into

Fax and substituting it into M and Eq. 6.4 we can get an expression that relates the stress

to the displacement:

d =
2σL2

3Et
(6.6)

The maximum stress, σmax is equal to the tensile strength of the material. For sapphire,

the tensile strength ranges in literature from 190−400MPa, whereas the modulus of elasticity

is given to be ∼ 375−400GPa [108, 162]. For the chip depicted in Figs. 6.1 and 6.2, L = 16.5,

while t = 460µm. This gives estimates of maximum deflection at the end of the chip being

between ∼ 170− 400µm. Given the high modulus of elasticity, however, for our 2mm wide

chip, a force of > 1N would need to be applied to the end of the chip. Given the small mass of

the chip, this means that the driving amplitude would need to be very high to even approach

this level of displacement. The inset in Fig. 6.3 (a) however shows what one may expect

from small displacements. The shape deviates from the parabola that we see over larger

displacements due to the finite precision of our simulation and minimum size of our mesh,
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however we can see that to get a ∼ 1Hz broadening of our resonance, we would still need

displacements of ∼ 100nm in the vertical orientation, whereas in the horizontal orientation

we estimate an > 50Hz shift for the same displacement.

Finally, we would like to estimate the natural resonant frequency of our cantilever. We

can calculate the natural frequency by treating the cantilever as a 1D beam of uniformly

distributed mass. By then splitting the beam into elements and solving the equation of

motion for each point, taking into account the boundary conditions, we can determine the

natural frequencies fi such that i = n− 1 where n is the number of nodes. We can also use

an approximate form for fi which is given by [192]:

fi ≈
Ki

2π

√
EIg

mLL
4

(6.7)

Where mL is the load per unit length, which for an unloaded beam, is simply mL = ρwt,

where ρ is the specific density, which is 3.98g/cm3 for sapphire. The finite element method

(see Appendix B) and approximate form in Eq. 6.7 give a natural resonance of between

∼ 90 − 100kHz for the chip in question. At these frequencies the period of oscillation is

shorter than the ringdown time of the cavities outlined in Ch. 5, meaning that we would

expect this dephasing to lead to homogeneous broadening of the cavity resonance. Although

we have seen that the chip can be displaced enough to broaden the cavity linewidth, given

the chip stiffness, and by sufficiently fixing the chip, we can hope to ensure that all chip

vibrations remain common mode with the cavity.

6.2.2 χ and the reverse-Purcell effect

In Sec. 1.1.2 we discussed the process in which a lossy cavity can increase the decoherence of

a qubit (or atom). We also discussed how, inversely, a qubit with a decay rate γ ≪ κ, where

κ is the intrinsic linewidth of our cavity, can increase the effective linewidth of the cavity.

These enhanced decay rates, known as the Purcell and reverse-Purcell effects, are described
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by Eqs. 1.7 and 6.2.2 respectively. For our purpose, we are interested in the qubit’s effect on

the storage mode of our high-Q cavity. In Eq. 6.2.2, we relate the effective rate in terms of

the coupling rate, g. Since we are in the dispersive regime, a more natural way of expressing

this effective enhanced decay rate is in terms of the dispersive coupling χ. For a transmon

qubit, we have computed χ in terms of g in Eq. 1.24. Solving in terms of g and plugging it

into Eq. 6.2.2 we get an effective Purcell rate of:

κp =
χ(∆ + α)

α∆
γ (6.8)

The rate above is κp = 1/Tp where Tp is the Purcell limited lifetime, which will give us

the effective cavity lifetime from Eq. 1.9. We can rewrite this more naturally in terms of the

linewidth κ as:

κeff = κint + κp (6.9)

From the above we see that we want κp ≪ κint. To illustrate this point, lets estimate

a value for κp from values comparable to the multimode cavity discussed in Ch.4. With an

ωa = 5GHz, ωc = 6.5GHz, an α =180MHz, and a qubit decay time of T 1 = 80µs. From

this we get a κp ∼ 80Hz. This value is over 2× higher than the internal linewidth for the

cavities described in Ch.5, which have κint ∼ 30Hz. This means that the effective lifetime

of the mode would be decreased from > 30ms to ∼ 12ms in this example. To combat this,

we can decrease the coupling of the qubit by lowering the χ. We remember from Sec. 3.5.3

that the coupling strength is directly proportional to the strength of the electric field at the

qubit location. We can use the simulation techniques to determine, based on the ẑ−location

and the insertion length, as indicated from Fig. 6.2 what we can expect the effective χ to

be.

If we want to ensure that our mode is not being limited by the qubit, we can aim for
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(a) (b) (c) (d)

Figure 6.4: Chip location vs χ: (a) shows an overlay of lines of constant χ between the

qubit and storage resonator, with the magnitude of the E⃗ field also shown. The inset is
highlighted in (b) for the target, χ = 33kHz line. (c) shows the sensitivity to vibration of
the chip at various locations. (d) shows the limited Q from dielectric with a loss tangent of
tan δ ∼ 1× 10−6, which represents a worst-case scenario for measured loss in sapphire, with
typical cryogenic loss tangents being < 1× 10−7 [146].

κp ≤ κint/10. With κp ∝ χ, that means we need to reduce our dispersive coupling by a factor

of ten from the above example, which gives an effective dispersive rate of χ ∼ 100kHz. Using

pyEPR, we can look at location vs χ for our sample. Fig. 6.4 (b) shows lines representing

ẑ−location and insertion length for values of constant χ. Fig. 6.4 (b) gives the shift in cavity

frequency vs displacement for the chip at certain locations for a single (χ = 33kHz) line,

showing how the location and insertion length affect sensitivity to dephasing as demonstrated

in sec. 6.2.1.

Finally, we also compare the location, based on the participation of the field in the chip,

the introduced dielectric loss given that our chip has a dielectric loss tangent tan δ ∼ 1×10−6

in (d). We compute the value of Qdiel as an extension of the concepts outlined in Sec. 2.3.1,
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by using the the expression:

Qdiel =
1

pe,chip tan δ
(6.10)

Where pe,chip is the ratio of electric field participating in the volume of the chip versus the

cavity volume, and is taken from Eq. 2.48 (b). Using the techniques outlined in Sec. 3.3.2,

we see that, while there is a minima in the sensitivity to dephasing near z ∼ 8mm, the static

field participation in the chip’s dielectric is still very high. The combination of minimizing

the reverse Purcell limited lifetime, the sensitivity to chip vibration, and the dielectric loss

from the chip, we want to locate the chip further into the evanescent region of the cavity

above the pin. With these three things considered, we can estimate the estimated loaded

quality factor from:

QL =

(
1

Qint
+

1

Qp
+

1

Qdiel

)−1

(6.11)

From this, and a choice of χ = 33kHz we get aQp ∼ 16×109, and similarly, for z ∼ 16mm,

a comparable Qdiel > 50 × 109, meaning that for an internal single photon quality factors,

with Qext ≫ Qint, QL should be ∼ 1.3× 109 if we are only looking at energy relaxation of

the storage cavity.

6.2.3 Other geometric considerations

While the participation of the qubit and the chip add a considerable source of loss to the

system, the addition of a qubit also necessitates additional holes and seams which can also

add to the loss of the system. One example of this is the qubit hole, which allows for the

insertion of the qubit into the cavity volume. We have shown in Sec. 2.3.3 that a hole

with a cutoff frequency higher than the cavity mode will lead to exponential decay of the

participating field along the length of the hole. In that section, we used a hole aligned along
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the ẑ−direction of a TE101 cavity to illustrate this scaling. In the case of the coaxial cavity,

the dipole coupling between the mode and hole is more complicated. In the optimization in

the last section, to achieve the desired coupling while simultaneously minimizing the effects

of dielectric loss and sensitivity to chip vibration, we located the chip in the evanescent

region of the cavity, where the mode is described by a TE11/TM01 modes of the circular

waveguide. We could try and analytically determine the scaling of this coupling, which is

complicated. Instead, we can see how the scaling effects loss for our specific geometry by

parametrically sweeping the diameter and length of the coupling hole, and see if we can glean

some basic intuition.

In the next section we will discuss the qubit and readout geometries in more detail, but

for now we will just note that the qubit chip has a width of 2mm (which was also used

in the estimates in Sec. 6.2.1). A starting point for a hole diameter is then r = 1.5mm.

From the relation derived from Eq. 2.64 we can get the waveguide cutoff frequency fcnm =

p′nm/2πr
√
µϵ. For the 1.5mm radius hole we get ∼ 58GHz, nearly a factor of 10 higher than

the target mode frequency. With ωhole ≫ ωr, where ωr is the cavity mode, we have ensured

that the mode’s field profile should evanescently decay exponentially with hole length. The

second factor, which we had originally derived using Bethe aperture coupling, is how much

of the mode’s field is actually coupled into the hole. In addition to this, we also have to

consider the amount of field participating at interfaces. We saw that, while the Poynting

vector, or the net flow of radiative energy out of the evanescent hole was imaginary, i.e. the

hole only added reactance to the system, there was non-zero field at the end of the hole

which could participate with lossy surfaces. We also saw that lossy surfaces could act as

parallel resistive shunts, meaning that higher impedance at the hole end led to lower loss as

a whole.

Fig. 6.5 (a) shows the boundary conditions of the qubit hole. The design shown has the

hole located at z = 16mm, as we determined in the previous section. For practical reasons,
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(b)

(c)

Figure 6.5: Chip and readout section boundary conditions: (a) shows a detail of the
interface between the readout section and cavity. Highlighted in blue is the cavity-readout
boundary, with a gseam set to 1×10−6Ω, which has been experimentally found to be typical
for indium joints in aluminum cavities [31]. In pink is the interfacing aluminum surface,
with boundary resistivity set to that of aluminum, representing a worst-case scenario. (b)
shows a side and front view for clarity. (c) shows simulation results for making the hole at
the cavity wall larger in diameter. We see a near exponential decrease of both Qseam (red)
and Qext (blue), as a whole. Qseam is taken from the computed admittance of the boundary
from simulation data, whereas Qext is the simulated Q value extracted. This shows that
the admittance at the seam is likely not dominant in the loss, but rather field participation
in the qubit, or lossy readout, or field interacting with the aluminum boundary (pink) are
dominant.

which will be discussed in the next section, the 2D qubit readout is contained in a secondary

aluminum section that is attached to the side of the cavity via a hermetic flange. The qubit

hole can then be split into two sections with an interface between the integral section (the

hole that is machined directly into the Nb cavity wall), and the primary readout section

which is made up of the aluminum readout attachment. This interface between the two

parts can, in effect, act as a lossy seam which acts as a parallel current shunt.

We can simulate the effect of the seam loss and the effect that changing the hole diameter

at the wall of the cavity. The reason we want to understand the effect of this hole diameter
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is to understand how successive etchings of this cavity can effect performance. In the qubit-

less coaxial cavity described in Ch.5, successive etching only changed the frequency in a

meaningful way. The diameter and depth of the cavity was also changed, but these changes

in geometry had seemingly little effect on performance between successive etchings. In this

case the evanescent coupling to this seam can lead to noticeable changes in quality factor if

the seam loss and material properties of the readout section, combined with the geometry,

are not properly accounted for. To conduct the simulation we incorporated the qubit chip

with readout into the cavity. We also added a coupling port with a 50Ω termination, setting

the coupling such that the readout mode, located at ∼ 7.5GHz has an effective Q ≈ 1.7×104.

The qubit is treated as a lumped-element inductor with a value that gives the qubit a linear

frequency component of ω01 ∼ 4.99GHz. We then set the boundary as an 25µm thick

gap with a resistivity equal to the native aluminum (2.58 × 10−8Ωm), and the wall is also

set to that value. In the actual device the seam is made via an indium ring. The Nb-In-Al

interface should all be superconducting at these temperatures, meaning that the native oxide

at the interface should dominate. To simulate this we used values derived from Ref. [31] for

Al-In interfaces which gave seam conductances (g⊘ from Eq. 2.61) of ∼ 106/Ωm, while

leaving the wall to have intrinsic resistivity of aluminum. This may represent a worst-case

scenario for our design, as the wall of the aluminum readout section at these temperatures

is superconducting, albeit it has a much higher residual resistivity to the bulk Nb cavity.

In Fig. 6.5 (b) we parametrically sweep the hole diameter at the cavity wall under these

different situations showing the relationship it has with hole diameter. Also listed are the

evanescent cutoff frequencies for the TE11 and TM01. Over this range of hole radius we see

that the scaling is roughly linear with diameter. The seam admittance is calculated in simu-

lation and plotted on the right axis of the plot in Fig. 6.5 (b), showing an inverse relationship

indicating the current density across the seam increases as more H⃗−field participates in the

hole. This calculation was done using Eq. 2.63. The dotted line represents the theoretical
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(a)

(b)

Figure 6.6: Kerr and cross-Kerr vs insertion length: (a) and (b) show the storage-
readout cross-Kerr, χsr and the storage self-Kerr χss respectively. The black line shows the
target insertion length for a χ ∼ 33kHz from above.

Q from the seam alone if g⊘ ∼ 1 × 106 is fixed, showing that most of the contribution in

Qint degradation is actually the evanescent participation with the lossy aluminum readout

section. We compare this with and without the addition of the lossy exposed surface of the

readout section to determine the contribution of participation from the aluminum readout

attachment and the seam itself assuming the readout coupling is included. We see that the

contribution of the seam is negligible when compared to the participation of the evanescent

field interacting with the higher-loss aluminum waveguide section of the readout.

6.2.4 Readout-storage cross-Kerr and induced readout loss

In our simulations of the qubit-storage cavity coupling, we can also extract the effective cross-

kerr interaction strength between the readout and storage cavities. These terms give rise to

a dispersive shift, mediated by t he qubit, which leads in a shift of the storage cavity for a

given occupation of the readout. We have seen these terms previously when describing the

multimode Jaynes-Cummings Hamiltonian in Eq. 4.7, which manifested in a state-dependent

shift with strength ksr, where we have replaced indices m and n for s and r respectively.
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Fig. 6.6 shows the predicted cross-Kerr interaction strength as a function of insert position at

the optimized ∼ 16mm ẑ-position.From Ch.3 we showed that the cross-kerr can be expressed

as
√
χssχrr where χss and χrr are the storage and readout self-Kerrs respectively. We see

that the storage-readout Cross-Kerr value is on the order of 10 − 100Hz. This means that

a direct readout of the storage cavity state via the state-dependent shift of the readout is

all but impossible, since the shift is much less than the readout cavity linewidth, which for

the design shown has a linewidth of > 100kHz. We will discuss how we actually determine

the storage-cavity occupation in a later section. This also highlights another way of seeing

the shot-noise dephasing problem discussed in some detail in Ch.4. In this case the storage

dephasing rate follows the form of Eq. 6.2.1, where the thermal occupation of the readout

leads to enhanced dephasing of the qubit. This, of course is inherited by the storage cavity.

In this limit, however, the approximation used in Ch.4 does not hold, since we have purposely

designed χ to be very small, meaning that for a 100µs qubit, χ ∼ γ.

6.3 Design Considerations

In the previous section we explored and made an attempt to optimize the design parameters

to minimize unwanted additional qubit induced loss in our storage cavity. With these con-

siderations in mind, combined with the insights gained in Ch.5 concerning the creation of

ultra-high Q niobium cavities, we can now create our quantum memory. In this section we

will discuss the realized design and construction of this system, in particular the 2D planar

readout, the additional considerations for hermetic sealing, and the unique qubit mounting

design used to facilitate these two design constraints.

6.3.1 Qubit and readout design

The 3D transmon qubit used in the Nb cavity shares the same basic geometry as that

discussed in Sec. 4.5.1. In contrast to the multimode cavity, which used a 3D readout design,
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Qubit
Storage
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Figure 6.7: 2D readout, orientation of chip and coupler (a) layout of qubit and readout
(b) pin geometry and coupling vs distance:

with the readout made using the flute technique, the niobium quantum memory makes use

of a 2D readout design, following the design discussed in Ref. [17], which utilizes a coaxial

stripline resonator that is capacitively coupled to the qubit. This was done, as with most

aspects of the cavity’s design, to accommodate the ability to be hermetically sealed for the

preservation of the Nb cavity surface, with the 2D design requiring fewer indium seals.

Fig. 6.7 (a) shows the 2D design of the chip. The mode of the readout is a λ/2 stripline

mode, with the length setting the frequency. By surrounding this stripline with groundplane

via the mounting hole, the effective electric field profile and resonant characteristics approach

that of a shunted section of coaxial waveguide, allowing for predictable control of frequency.

To make the stripline more compact a gentle serpentine structure was added to the design.

Optimetric simulations were used to produce a readout resonator with a center frequency of

∼ 7.5GHz.

Coupling between the qubit and the readout was controlled by adjusting the spacing

of qubit pad and the stripline. As discussed in Ch.3, g2 ∝ χ ∝ |E⃗|2 at the qubit. The

hole in which the chip was placed was designed with the aforementioned cutoff frequency

of fc > 50GHz. Because of this, the readout mode is evanescent in the waveguide section
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separating the qubit pad and the readout, meaning that |E⃗| ∝ e−βz, as shown by Eq. 2.67.

This has been shown to be in good agreement with measured systems in Ref. [17], and

provides accurate control and the creation of strong readout-qubit dispersive couplin χrq.

To couple power into and out of the readout, and provide a charge-drive for the qubit,

a port is added that allows for the evanescent coupling of the coaxial stripline mode to the

TEM mode of a coaxial stub-coupler. In literature, separate strongly coupled readout, and

weakly coupled drive ports are used to make the direct implementation of qubit operations

more straightforward. Due to the hermetic sealing, and the additional contraints that re-

quirement adds, only a single port was added to the readout in which both drive and readout

operations would be fed. In the later measurement section we will see how this port was

utilized. The hermetic connectors utilized a coaxial waveguide with a ⊘ 0.89mm provided

the correct impedance for the ∼ 400µm diameter coupling pin. The extremely high cutoff

of this port made coupling highly sensitive to the coupling length. Simulation was used to

estimate the correct length for the desired readout coupling, as shown in Fig. 6.7 (b)

The qubit pad and readout was patterned from evaporated niobium. The recipe is similar

to that discussed in Sec. 4.5.1, with the same thickness and quality sapphire used, and the

same junction fabrication parameters, however the use of the Nb base layer necessitates

the use of fluorine reactive ion etching instead of chlorine plasma. For the purposes of this

design the choice of niobium over aluminum baselayer was an arbitrary one. Qubit junction

parameters were computed using both q3d and pyEPR simulations to determine optimal Ec

and Ej parameters for a qubit |g⟩ − |e⟩ frequency of between 4− 5GHz. The details of this

simulation are discussed in Secs. 3.4.2 and 3.5.3.

6.3.2 Hermetic design and optimized qubit clamping

In Sec. 5.2.1 we demonstrated a simple technique for hermetically sealing the cavities, and

later showed that sealing, while not strictly necessary, can help ensure that the deleterious
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Figure 6.8: Schematic of 1 piece design and clamping action (a) action of clamping
(b) increased hold force from low-temperature contraction:

oxide growth is kept minimal. In the cavity case, this sealing was simple, with only the top

of the cavity, and the coupling port, being sealed via an indium wire. In the qubit-cavity

case, the addition of the readout section, which itself requires a coupling port and a way of

holding the qubit makes the task of hermetic sealing more difficult. In addition to creating

a gas-tight seal, the hermetic sealing also ensures a light-tight environment, which we saw

in Sec. 4.5.2 is an important requisite for reducing qubit dephasing.

The most challenging part of this system is the qubit mount. Previous two-piece mount

designs would be difficult to seal, given the perpendicular sealing surfaces. To solve this

problem a new single piece qubit mount was created. Fig. 6.8 (a) shows a schematic of this

design. A circular flange with an integral indium o-ring groove is attached to a post with

a slot cut to the exact thickness of the sapphire chip using a precision slitting saw. The

tines of the clamp are bent to have a slight convex geometry. A small screw (#000 − 120
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thread) flattens the tines around the chip, with the convexity and natural elasticity of the

copper providing a pre-loading force to the clamp. To combat differential thermal expansion

and the loosening of this clamp upon cooldown, a 60% bronze-filled PTFE compression ring,

machined to a slip fit, is placed over the clamping section. The integrated thermal contraction

of copper between 298K and 4K is ∆L/L ∼ 326× 10−5 [52], whereas polytetraftuorethylene

(PTFE) in its virgin form has an integrated thermal contraction nearly 5× greater (∆L/L ∼

180× 10−4) [22]. The addition of 40− 60% bronze adds dimensional stability and toughness

while reducing cold-flowing of the PTFE at low temperatures. This does however reduce the

effective thermal expansion by ∼ 20%. Because of the precision fit of the parts, no additional

indium or compliant material was required for adequate clamping. The cylindrical design also

ensure even pressure application on the bearing surfaces, reducing the chances of fracturing

the sapphire chip. A lip at the rear of the mount was made to be a precision slip fit with

the rear of the aluminum readout section as to ensure precise indication of the chip inside

of the section of cylindrical waveguide while reducing constraints.

The readout coupling port was also made hermetic. A copper flange was made with an

hermetic male SMP connector, with a 3.8mm×400µm pin2, was soldered into the flange. A

cylindrical boss cut into the flange was machined to a precision fit with a matching hole on

the readout side to precisely indicate the pin location, while an indium o-ring groove was

used to consistently seal the connector using 0.5mm diameter indium wire. This arrangement

is shown in Fig. 6.9 (a), with a detail showing the sealing surfaces of the chip holder and

readout port flange. A mounting flange was also added to the readout section to seal the

readout to the cavity side.

The entire cavity and readout assembly was bolted to an OFHC copper (alloy C101)

mounting bracket for adequate thermalization, with a sub-bracket thermally linking the

qubit clamp to the remainder of the mounting assembly. This detail is shown in Fig. 6.9 (b).

2. Pasternack part PE44921
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Figure 6.9: Cutaway for 3D cavity and qubit detail showing the hermetic readout
coupler:

The bracket also supported Eccosorb low-pass IR filters. The entire assemly was mounted

inside of a 2-layer µ-metal shield with an internal copper liner to thermalizer any errant IR

photons that still may be incident on the cavity.

6.4 Measurement

The qubit-cavity system measurement differs substantially from the cavity measurements

discussed in Ch.5. The basic setup for the readout of the qubit, as we will see in the

next section, shares the same basic setup as the cavity measurement, however we cannot

interrogate the storage cavity directly. Instead, we can use the unique properties of cavity

QED (and by extension, 3D cQED), to measure the cavity via the qubit. In this section

we will discuss how this is done, some of the unique challenges involved with such long-

lived cavity modes (and weakly coupled qubits), and discuss the first data from the system,

showing its potential as a store of quantum information.
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6.4.1 Measurement setup

The cryogenic side of the measurement setup for the coax and qubit, shown in Fig. 6.10,

shares the same basic topology as the setup previously used in Sec. 5.3.1. Instead of mea-

suring the cavity in reflection, however, the output line is coupled into the readout resonator

port. All qubit drive signals are also passed into this port via the directional coupler, with

the qubit being driven off-resonantly through the readout. A separate drive line is also added

directly to the cavity to allow for independent displacement drives on the storage mode. This

differs from the setup used in Sec. 4.5.2, where storage cavity drives were similarly driven

either off-resonantly through the readout, as was the case for the storage Rabi drive, or the

cavity was manipulated via the qubit using |f0⟩−|g1⟩ sidebands, as discussed in more detail

in [39, 37].

The largest changes to the measurement chain was done at room temperature. For time-

domain and pulse measurements, instead of sequencing pulses and conducting readout via

the PNAX, as was done in 5.3.1, am FPGA based Xlinx RFSoC (model ZCU216) was

utilized. The RFSoC hardware was used in conjunction with the Quantum Instrumentation

Control Kit (QICK) to generate time-domain pulse-sequences [173]. The ZCU216 features

16×2.5 GS/s DDC and 16×10 GS/s DUC channels which are configured into 16 ADC and

16 DAC channels respectively. The added XM655 mezzanine add-on board breaks out the

double-ended I/O into an 8DAC/8ADC single-ended channels via on-board baluns, with

each block having frequency ranges of < 1GHz, 1− 4GHz, 4− 5GHz, and 5− 6GHz [3].

For the readout, an external local-osscilator (LO), taken from a SignalCore SC5511A,

is mixed into the output DAC intermediate frequency (IF) using double balanced 2300 −

8000MHz mixers 3. The readout signal is split and the input signal is mixed down using a

conventional homodyne topology. One point of note in this scheme is the absence of analog

IQ-mixers, reducing the need for mixer calibration. The I − Q quadratures are obtained

3. Mini-circuits part ZX05-83-S+
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Figure 6.10: Measurement setup for cavity and qubit

in the digital down-conversion process block of the ADC, which incorporates digital IQ

downconversion as part of the FPGA architecture [173]. To reduce unwanted sidebands

3× 5− 10GHz bandpass filters are placed on the readout output. A separate qubit drive is
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directly synthesized from the 1 − 4GHz output of the ZCU216 (second nyquist zone), and

passed through a narrow bandpass filter of 3 − 4.3GHz. Finally, a separate cavity storage

drive is sythesized via mixing a second SC5511A LO into another double-balanced mixed

and filtered through a 5− 7GHz bandpass filter.

6.4.2 Readout and Qubit Characterization

Initial measurements were done under continuous power to determine the frequency of both

the readout resonator and, using two-tone spectroscopy, the qubit frequency. After this the

readout spectroscopy was done using the RFSoC measurement setup shown in Fig. 6.10 using

discrete pulses in the time-domain. The result of this is shown in Fig. 6.11. Following readout

spectroscopy, the second qubit drive tone is added. The spectrscopy, shown in Fig. 6.11 (b)

for the |g⟩ − |e⟩ transition, can then be used to optimize readout signal-to-noise. By adding

a π−pulse of the |g⟩− |e⟩ qubit transition, before doing readout spectroscopy we are able to

determine the dispersive coupling of the readout and qubit from the splitting of the peak,

which is equivalent to 2χqr
4. We can also park the readout tone at the ωr+χrq to maximize

the SNR of the qubit readout.

Next we can conduct time-domain experiments to study the time-dependent evolution of

the qubit. By coherently driving the qubit we can induce a Rabi oscillation, in which the

qubit rotates between ±ẑ [126]. This rate, shown in Fig. 6.12 is power dependent, and by

changing the qubit drive strength it is possible to induce oscillations that allow for swapping

the qubit from |g⟩ − |e⟩ in only 100 − 200ns to allow for fast resolved qubit readout. Once

the π-pulse has been calibrated we can conduct experiemnts tha study the evolution of the

qubit due to decoherence mechanisms. By initializing the qubit in |e⟩ and waiting some time

before doing a resolved π-pulse onto the qubit, we can determine the decrease in excited-state

population due to energy relaxation of the qubit, or the T 1. Finally, we want to study the

4. In Ch.3 and in the above sections we have denoted χ as equivalent to two times the dispersive shift as
defined in Eq. 1.24, however here we are using that definition for χqr
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(b)

(c)

(a)

Figure 6.11: Readout and qubit spectroscopy (a) shows the splitting of the readout
resonator line, with a splitting of χ. The dashed line represents the point of maximum
readout fidelity. (b) and (c) are the |g⟩ − |e⟩ and |e⟩ − |f⟩ wubit peaks respectively. The
anharmonicity from spectrscopy for this sample is α ≈ 175MHz

dephasing of the qubit, or T 2∗. To do this, as is canonical for qubit measurements, we apply

a π/2−pulse to the qubit, which produces a mixed (|g⟩+ |e⟩)/
√
2 state. After some delay we

can use a second π/2-pulse to map the state back onto the |e⟩-state of the qubit. By detuning

the drive strength from the qubit’s |g⟩ − |e⟩ transition frequency we can induce osscilations,

known as Ramsey fringes, into our measurement. This serves teh purpose of reducing the

effects small-detuning from the target qubit frequency, and inversely allows us to accurately

determine the qubit frequency by fitting the Ramsey frequency, which corresponds to the

detuning. This difference from the input Ramsey frequency and the measured oscillations

can be used to correct the qubit ωge transition. The exponential decay of these fringes also

give the T 2∗ of the qubit, or dephasing time. Rabi, T 1, and Ramsey measurements are

shown in Fig. 6.12 (a), (b), and (c) respectively.

With the qubit frequency optimized, and π-pulse calibration done, we can also optimize

the high-power dispersive readout to obtain high single-shot fidelity by tuning the readout

power and integration time of the ADC [151]. Doing so gives us single-shot fidelity, shown

in Fig. 6.12 (d) of > 75% without the need for the JPA which is shown in Fig. 6.10 (a).
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Figure 6.12: Qubit Characterization and π-pulse calibration (a), (b), and (c) are
Rabi, T 1, and Ramsey/T 2∗ respectively. (d) and (e) are single-shot qubit spectroscopy data
in I −Q and histogram form respectively, showing fidelity of F ∼ 75%

6.4.3 Storage characterization with qubit

With basic readout and qubit characterization done, we can begin the process of character-

izing the storage resonator. Instead of directly interrogating the storage resonator, as we did

in Ch.5, we will now use the dispersive interaction of the qubit to do both basic resonator

spectroscopy and measure decoherence. The first part, the resonator spectroscopy, is done

via a second direct storage drive line. The signal is synthesized by upmixing the RFSoC IF

to the frequency of the resonator. The RF storage is swept, with a resolved readout on the

qubit |g⟩ state. The dispersive shift of the due to photon occupation of the storage leads to a

characteristic resonance at the cavity frequency. To better resolve this peak and accurately

determine the frequency, the storage cavity strength and drive time are reduced until the

peak is no longer homogeneously broadened. This process, and the cavity spectroscopy is

shown in Fig. 6.13 in (a) and (b) respectively.

Once the cavity frequency is determined, we must calibrate the coherent drive strength

of the direct cavity drive. To do this we can use the dispersive interaction to calibrate
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Figure 6.13: Storage cavity spectroscopy pulse sequence and spec : (a) shows the
generalized time-domain pulse sequence for the storage cavity spectroscopy experiment. A
coherent tone applied to the storage cavity is swept in frequency, followed by a π-pulse on
the qubit |g⟩ − |e⟩ peak, followed by readout. The presence of photons in the storage will
lead to a displacement in the qubit peak, leading to a drop in signal. This process, however,
only happens when the drive is on resonance with the cavity. (b) shows this process in the
frequency domain. (c) is the measured spectroscopic data, with a cavity ω0 = 2π×6.655GHz.

the drive strength. Normally, the interaction is designed such that qubit linewidth γ is

much greater than χ, however, as demonstrated, we have intentionally made χ between the

qubit and storage cavity as small as possible to minimize the reverse Purcell effect. Because

of this, χ ≈ γ, which means we need to resolve the intrinsic qubit linewidth as closely

as possible. The width of the measured qubit peak is a convolution of the pulse (in the

frequency domain) and the intrinsic qubit lineshape. For a Gaussian pulse, the width of the

frequency domain lineshape is simple 1/σ, where σ is the time-domain width of the pulse

envelope. Because of limitations in the memory buffer of the RFSoC, the max Gaussian

width, at these frequencies, is only 2.5µs, which is much less than the extracted T 2∗ from

Fig. 6.12, which sets the qubit’s intrinsic linewidth. To combat this, a flat-top pulse with a

gaussian ramp is used. This new pulse, in frequency space, takes the form of a function,

with the width of the function being 1/2Tp, where Tp is the flat-top pulse width. This means

that, with a flat-top pulse Tp ≥ T 2∗, the linewidth should approach the intrinsic lineshape.

This, however, is only half the problem, since the power of the qubit pulse also changes
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Figure 6.14: Calibration of resolved |g⟩−|e⟩ peak : The plot shows the effect of the pulse
bandwidth on the peak width of the qubit |g⟩ − |e⟩ transition. The blue line represents a
typical gaussian resolved π-pulse, with a σ = 2.3µs, while the subsequent lines show flat-top
pulses with varying lengths and gaussian rise-times of 2.3µs. We see that for total pulse
lengths less than MAX(T 1, T 2∗), the contrast remains the same (orange), with no change
in peak height. For pulses ∼MAX(T 1, T 2∗), there is a clear loss of SNR since the qubit
is beginning to decay into a mixed |g⟩ − |e⟩ state (green). For times much longer than the
coherence time we see that the fidelity has dropped to roughly half (red), showing the qubit
is in a fully mixed state, although the overall peak width is now comparable to χ, allowing
for resolved number state spectroscopy.

the intrinsic linewidth. To see why, we must remember that the coherent drive produces a

cohernet state in the resonator with a poisson distribution, as shown in Eq. 5.6, that has a

photon variation of
√
n. Refs. [72] and [164] show that for situations where the qubit probe

time is longer than the readout cavity decay rate, the width of the qubit peak scales linearly

with mean photon number, while also approximating a lorentzian line shape. With this in

mind we must reduce the power under the induced linewidth, Γm ∼ 2n̄κrθ
2
0, is less than the

intrinsic qubit linewidth, where θ0 = χqr/κr, and κr is the readout decay rate. Fig. 6.14

(a) shows the effects of power reduction and pulse length on the intrinsic linewidth, while

(b) shows the effect that these changes have on the number resolved peaks of the storage

resonator under a coherent displacement.

Now that we can resolve the individual number-split peaks, we can conduct calibrations
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(a)
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Figure 6.15: Number splitting vs DAC output. : (a) shows qubit spectroscopy under
varying drive power on the storage resonator, with the power scaled to the highest power
listed along the x-axis. (b) shows a detail of one trace, overlaid with the predicted Poisson
distribution for a mean photon number of n̄ = 1.2, highlighting the deviation from the
expected coherent distribution. The falloff in amplitude with successively higher number-
states indicating a thermal instead of coherent state. The measured χ ≈ 29kHz for the above
data, showing the ability to resolve weakly dispersive coupled systems.

of the coherent drive strength. Ref. [163] showed the expected distribution of resolved

number-states of a cavity under a coherent drive. From this, in theory, we should be able to

calibrate the drive strength to achieve a known mean photon number and, for our purposes,

to extract the storage cavity-qubit χ and to conduct cavity ringdown using the displacement

of the qubit peak. We show in Fig. 6.15 the evolution of the resolved peaks vs DAC output

power. The first thing to note is that the splitting of the peaks is χ ∼ 35kHz, which indicates
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Figure 6.16: Storage cavity T 1: Using a displacement drive with a strength that fully
displaced the qubit |g⟩ − |e⟩, ringdown was done. This process is identical to the steps
described in Fig. 6.13 (a), except the storage drive frequency ωs was kept constant and on
resonance with the cavity, while the delay between drive and resolved qubit readout was
delayed. The increase in Pe indicates a drop in mean photon number in the cavity. The
fit, done using Eq. 6.12, shown in blue, gives a T 1

c av = 10.9 ± 0.38ms, which is a record
for coaxial geometries, although it does underperform the theoretical internal quality factor
from Ch.5 by a factor of 3.

the success of the above simulation in the calibration of the qubit-storage dispersive coupling

in Sec. 6.2.2. Another observation is that the distribution does not follow the poisson-like

distribution expect of a coherent-state, but instead appears as an almost thermal state [163],

which is shown in Fig. 6.15 (b).

We can use the above calibration to ensure that the cavity is sufficiently displaced such

that the qubit, when pulsed at the |g⟩ − |e⟩ transition, will have zero amplitude. Following

this procedure, we can do a time domain measurement on the displaced storage cavity, where

we do two resolved measurements of the qubit |g⟩ − |e⟩ transition separated by some time

interval. In doing so, we can watch the evolution of the cavity state in time. The decay

of the cavity coherent state can be modelled using the following function, as derived from

Ref. [150].
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P0(t) = e−|β0|2 exp(−κst) (6.12)

Where κs is the storage cavity linewidth, and subsequently T 1
s = 1/κs. The decay of the

resonator under this classical displacement is shown in Fig. 6.16. When fit, the data gives a

T 1
s = 10.9 ± 0.38ms. This value, which is less more than half of the loaded cavity lifetimes

found in Ch.5, is still nearly 10× greater than nearly identical aluminum cavities after a

qubit has been introduced [150]. This seemingly indicates that there are additional aspects

of the above system that must be considered for a full optimization of this system for use as

a quantum memory

6.5 Discussion and outlook

The above results are only preliminary, and represent only a few cooldowns. A more careful

accounting of loss in the system would be necessary to understand why the performance

above is less than what is theoretically possible based on the results of chapter 5. The

first, and most glaring omission from the above data is the measurement of cavity T 2∗.

Traditionally T 2∗ is done by preparing a (|0⟩ + |1⟩)/
√
2 cavity state using SNAP gates,

blockade, as detailed in Ch.4 or using the |f0⟩ − |g1⟩ sideband transition [124, 38]. With

the extremely weak dispersive coupling, and the necessary hierarchy of scales, requiring the

rabi drive rate to be much less than χ, the preparation time for such a state would mean

that preparation fidelity, even with these long coherence times, would be poor. SNAP gates

[87] would be faster, however they are limited by timescales of Tg ≤ 1/χ. The final option,

|f0⟩ − |g1⟩, similarly has a limitation to the Rabi drive rate, however for simple state-

preparation may be the easiest to implement. Another solution which has recently been

demonstrated for weak-dispersive systems, is the use of Echo Conditional Displacement

pulses to gain an enhancement in the interaction rate that scales like |α|, where α is the
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coherent drive strength on the cavity [66]. A challenge with this technique is the creation of

large displacement drives in a short period or time. To gain a real advantage it is necessary

to displace the storage resonator to |α| ≥ 100, which corresponds with n̄ ∼ 10000 photons.

Doing so with the coupling and internal quality factors of our cavity may be difficult, since

the drive strength required to displaced the cavity in timescales on the order of the gate time

would require large amounts of incident power at the cavity. A final and very rudimentary

option is to simply drive the cavity coherently to a number state that has a non-equal mixture

of |0⟩ and |1⟩. If the state is coherent, it should be possible to do so at mean photon numbers

of n̄ < 1, however as shown in Fig. 6.15 (a), there is no drive power that seems to produce a

coherent state, but instead the number splitting seems to be thermal in nature. If, however,

one were to make a state with only a mixture of |0⟩ and |1⟩, it would be possible to do a

Ramsey style experiment, with the only loss being that, because the state isn’t an equal

mixture, the Ramsey fringes would have subsequently less contrast.

The thermal state of the number splitting, and the decrease in coherence, may indicate

a more pervasive issue, namely that the system is rather hot. During the above experiments

the qubit temperature fluctuated between ∼ 50 − 65mK, or photon occupations of > 3%.

With an Ec ∼ 175MHz, and a ωge ∼ 2π × 3.6GHz, the qubit has a ratio of EJ/EC ∼ 60,

which makes the qubit’s |e⟩−|f⟩ transition far more susceptible to dephasing. The main way

to improve these is to simply switch the qubit for one with higher EJ , and to improve the

thermal environment of the qubit. The fridge this sample was cooled with, an Oxford Triton

200, has a base temperature of only 35mK on a good day, and no MXC shield, making a

change in fridge an easy solution to this problem. With that change, a better characterization

of the novel qubit clamp can also be done to determine if the one-piece design is on-par with

existing two-piece solutions. Once this issue is sorted—and a robust protocol for doing cavity

Ramsey experiments is developed—a more complete picture of the loss in this system can

be made.
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Finally, developing an active reset protocol may be necessary as experiments become

more complicated. The long decay times, even on the order of 10ms, means that experiment

times have become excruciatingly long. In fact, one of the main limitations in completing

these experiments in the last few months has been the time it takes to simply conduct an

experiment, with cavity T 1 experiments taking upwards of an hour for the date in Fig. 6.16.

With an active reset protocol, likely that swaps the cavity state into the qubit, would greatly

improve usability of the system.

In total, the above data is just a glimpse at the possibilities. With the allure of cavity T 1s

in excess of 25ms, based on Ch.5s resonator measurements, and the additional possibilities

for improving those lifetimes to T 1 > 100ms, means that this is only the first step in a

series of future experiments and research that may see a 100× improvement in 3D quantum

memories. With the addition of SRF technology, with T 1s of 300ms or greater, there is a

lot of headroom to see even more improvement. One question we can ask is, will there be a

point that the drawback in weak dispersive coupling to save cavity coherence comes at too

high a cost? Only time will tell, but either way, it is an exciting moment for superconducting

quantum memories as a whole.
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CHAPTER 7

FUTURE OUTLOOK

The work outlined in the previous chapters represent a next step in the evolution of 3D

cQED quantum systems. With improvements in coherence that correspond with over an

order of magnitude increase in coherence times, these techniques will usher in a new and

exciting chapter in superconducting quantum systems and quantum optics. In addition to

this, the advent of flexible multimodal quantum cavities, with high cooperatives across many

modes, represent a completely new class of scalable quantum memory architecture. While

these advancements in superconducting cavities, and the techniques, hardware, and software

development they have spurred, are exciting, there are still a number of things that can be

done to truly see them reach their full potential. In this chapter we will briefly go over some

of these future (and concurrent) research objectives, and discuss the exciting future for both

multimode and long-lived 3D quantum systems.

7.1 Improvements to multimode architecture

7.1.1 Reducing off-resonant effects

In Ch.4 we discussed two challenges associated with scaling multimode quantum memories.

One was the reduction of accumulated idling errors while doing operations on the register of

modes by increasing the mode coherences (for a given qubit coherence), which was addressed

in the intervening chapters. The second was dealing with the off-resonant effects caused

via the simultaneous dispersive coupling of the qubit to all of the modes in the register.

As the size of the register becomes larger, than the state-dependent shift on the qubit,

and subsequently on the other modes of the cavity, become more numerous. This is made

particularly worst if the Fock-state being prepared itself contain multiple photons. While in

theory one can calibrate for this, the number of kerr and cross-Kerr terms to keep track of
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scale quadratically with the number of modes.

There are a few options to combat this issue. One idea is to implement protocol that

dynamically decouples the qubit from the non-target modes. Dynamical decoupling (DD)

protocol have been popular in spin-systems for decoupling the quantum spin from a bath

of lossy degrees of freedom, suppressing decoherence [180, 179], with more advanced DD

protocol allowing for universal control and reduction of operational errors [181, 99]. Instead

of decoupling from a both of spins, however, the qubit would need to selectively decouple

from non-target modes, while preserving the robust state-preparation toolbox, and speed,

that have made these systems so appealing. Efforts currently exist to study the viability of

using these techniques, however the research is still in its early stages.

Another option to atleast alleviate the problem off unwanted off-resonant interaction is

to simply reduce the coupling between the qubit and the modes, effectively reducing the

shift. This only has limited utility, however, as the timescale over which gates can take

place is set by the dispersive coupling rate, Tg ∼ 2π/χ [186, 26]. By reducing this rate, one

would lose a lot of the advantages that having such a high-cooperativity system may bring,

and exacerbate both gate infidelity and idling errors by extending the time of operations

without extending the coherence times of either the cavity modes or the qubit. One recently

demonstrated solution to this problem involves the addition of a coherent cavity drive, which

leads to a phase-state displacement [66]. In this new displaced frame, the dispersive dynamics

are enhanced, with the displacement acting as a lever-arm, leading to large separations in

phase space depending on the qubit state. The net result is an enhancement in Tg ∝ 1/|α|,

or the sixe of the coherent state imparted onto the resonator. This is particularly exciting in

the context of ultra-high coherence systems, such as our Nb cavities, where weak dispersive

coupling is required to reduce reverse-Purcell decay of the storage mode. As of yet, no

multimode implementation has been demonstrated, but is actively being pursued by our

team in the existing multimode (MM2) system.
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Figure 7.1: Manipulate based multimodal memory : (a) shows the realized multimodal
architecture, with the addition of an intermediate ”manipulate” cavity, which acts as a high
Q intermediate to limit the cross-talk amongst storage modes. (b) shows a more generalized
schematic of the system’s interactions, while (c) shows a detail of the split manipulate cavity
geometry, with the delocalized manipulate mode split to be strongly coupled to the coupler
and qubit simultaneously.

7.1.2 Linear coupling and next-gen MM architectures

The previous section proposed techniques for reducing the effects of off-resonant interactions

in the existing multimode architecture, however these techniques don’t completely remove

the underlying problem. Only a complete decoupling of the non-linearity from the modes

would alleviate this issue, however doing so would remove the ability to have universal control

over the modes of our quantum memory. One solution, which is currently being developed,

is to have the qubit interact with an intermediate high-coherence cavity with one or two

modes. To transfer a prepared state into a storage mode, a SQUID based coupler, can be

parametrically driven to swap the state into the target mode.

Fig. 7.1 (a) shows the modified multimode memory with the intermediate manipulate
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cavity. State preparation in the manipulate cavity is done via traditional universal control

techniques, as outlined in [38]. To swap information from the intermediate cavity to the

storage mode, a linear coupler is employed.

Recently, couplers that utilize a 3-wave mixing element, or SNAIL, have been developed,

removing the 4th-order non-linearity and subsequently cross-Kerr interactions all together

[69]. Another option is the use of SQUID based couplers, which have been used in a number

of cQED where tunable interactions are desired, including qubit-qubit interactions [118,

40], qubit-resonator [2, 170] and resonator-resonator [193, 190]. It was demonstrated in

Ref. [193] that a SQUID loop driven via an RF-flux with detuning of ωi − ωj , where i and

j are the adjacent cavity’s mode frequencies, a beam-splitter swapping operation is induced

between modes. By reducing the anharmonicity of the squid-loop, such that Ej ≫ Ec,

the anharmonicity can be effectively minimized to a point where cross-Kerr terms become

negligeable.

Flux-modulation of the DC-SQUID loop requires the introduction of wires that must

have the required bandwidth to flux-pump the coupler while also reducing undesired loss at

the storage mode frequencies. Recent work, shown in Fig. 7.1 (b), has been done to design

a 3D linear coupler which utilizes a 5-pole bandpass filter, made of alternating capacitive

and inductive sections of stripline, to act as a Purcell filter, with ∼ 100dB of suppression of

frequencies in-band with the desired storage modes. This filter is, in essence, analogous to

stepped-impedance Purcell filters used to protect qubits from decoherence when dispersively

coupled to a strongly coupled readout line [32].

One last challenge addressed in this unique geometry is the ability to strongly couple the

transmon qubit and linear coupler to the manipulate cavity while reducing spurrious cross-

coupling. Using the flute technique, one can create a split TE101 cavity made of two identical

rectangular waveguide sections. The aperture separating the two is evanescent to the cavity

modes, however, making the section short allows for a controlled coupling across the qubit
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and coupler halves of the cavity. The net result is a two-mode cavity with modes split by

some gman. This style of coupling is analogous to the chain of CPW waveguide resonators

used in creating the 2D multimode in Ref. [124], where the capacitive coupling has been

replaced by a waveguide section. The dynamics, however, still follow a tight-binding mode

dispersion as described in Ref. [119]. By setting the splitting by gman ∼ 200MHz, it ensures

that the effective tunneling rate is higher than the effective swap time of the design qubit

and coupler with their respective readout and storage modes.

7.2 Improved Nb cavity based memories

In CH.6 we briefly discussed several immediate avenues for improving Nb based quantum

memories, and experiments to better characterize the loss mechanisms that can be effecting

the cavity T 1. In addition to this there are aspects of the Nb cavity manufacturing pro-

cess that can lead to further improvements in cavity performance. In addition to this, the

techniques outlined in this thesis may also be useful in improving 2D niobium resonators.

This last line of inquiry is currently being undertaken by F. Zhao in collaboration with our

lab, and will hopefully lead to a tickle-down effect in the performance of 2D systems. The

following sections will explore these directions more thoroughly.

7.2.1 Cavity annealing and Nitrogen doping

The optimization discussed in Ch.5 was primarily concerned with improving the initial etch

process. It was shown that the limiting factor in the performance of the cavity was two-

level systems inside of the surface oxide. By minimizing the time exposed to air, we were

able to minimize the effect. Recent work has shown that vacuum annealing the cavities at

∼ 450◦C can diffuse the oxide layer into the surface, minimizing loss [156]. In addition to

this, the addition of nitrogen into the surface, via N2 backfilling of the vacuum chamber

at T≥ 750◦C, has also shown a ≥ 3× decrease in the residual resistivity [82, 57, 58, 56].
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(a) (b)

Figure 7.2: Vacuum annealing preliminary results: (a) shows a picture of the furnace
exterior, with the large turbo-molecular pump located at right, with an inset showing the
interior water-cooled induction coil at room temperature and with a cavity under heating
at ∼ 750◦C. (b) shows a plot of a typical annealing run in the furnace, with a peak in H2
partial pressure at 450◦, and decreasing by 40− 80× over the course of 6 hours. The green
line is a 6 min long N2 pulse for nitrogen surface doping. The furnace was constructed by
the author.

This style of vacuum annealing system is also used to remove interstitial hydrogen from the

surface via high-temperature diffusion [19].

Fig. 7.2 (a) shows a picture of a recently built custom vacuum furnace that, in theory,

meets the specifications for conducting the above surface treatments. Based on the work

in Ref. [120]. The furnace uses a 75kHz fixed frequency induction coil to heat the cavity.

A residual gas-analyzer (quadrapole mass spectrometer), gives real-time information on the

composition of outgassing species. For nitrogen doping, the furnace also has a ultra-high

purity N2 gas line hooked up through an impedance and valve for precise control of N2 back-

filling. The entire furnace is controlled via a programmable logic controller and automation

is initiated via a computer interface. The furnace also has automated, PID controlled bake-

out heaters (8 channels in total). A ∼ 700L/s @ < 1 × 10−4 mBar turbo-molecular pump

allows for sustained pressures of ≤ 1× 10−6mBar at temperatures in excess of 750◦C.

Preliminary results, shown in Fig. 7.2 (b), show a > 40× reduction in the hydrogen

partial pressure, showing the efficacy of the system in removing trapped interstitial hydrogen
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at the surface, however measured cavities have shown a marked decrease in performance over

their un-annealed counterparts. One theory is that, because the hot-zone is confined to the

cavity and does not include the surrounding furnace, radiant heat from the cavity leads

to the outgassing of contaminants at the vacuum chamber walls, which can recondense on

the hot surface of the cavity. Ref. [81] showed the sensitivity of cavities to these types of

contaminants. The introduction of a susceptor that surrounds the cavity [59], and the use of

a getter, such as titanium, may act to reduce the effect of outgassing contaminants. Further

analysis of post-treated cavities, using the techniques outlined in Sec. 5.4, would be necessary

to make any conclusions, however. In addition to this, very little research has been done with

BCP etched cavities undergoing N2 treatment, with previous results using electropolishing

techniques.With the advent of these techniques, however, it is perhaps not unreasonable to

believe that single-photon cavity coherence could be further improved by a factor of 3− 9×,

leading to lifetimes of > 100ms for the ∼ 6.5GHz coaxial cavity discussed in this thesis.

7.2.2 Improving of 2D superconducting materials

The work in this thesis may also provide insights into making 2D niobium resonators better.

Recent results with tantalum showed marked improvements in qubit coherence times, which

have been demonstrated to be as high as 0.5ms [140, 188]. Tantalum, like niobium, is a group

V transition metal, and such has very similar surface chemistry and structural properties,

along with a high superconducting transition temperature (Tc ∼ 4.38 K). When compared to

niobium thin films, the properties appear better, however a longitudinal study that compares

thin films using similar growth techniques, etching, and intrinsic qualities such as residual

resistivity ratio values (RRR), has not been done. For example, recent results with Nb

films grown to 500nm using a nearly identical high-temperature sputtering process to that

used in Ref. [140] gave RRR values comparable to that produced in the high-performance

Ta devices (RRR> 40), and record coherences for 2D microwave resonators of ∼ 40 × 106
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at 3.9GHz [129]. It was found that the thicker film, sputtered at high temperature, has

much higher crystallinitity. Also, with a thickness of 500nm, which is much longer than λL,

even in a dirty limit, the base material begins to take on bulk like characteristics. This is in

contrast with the evaporated devices previously used, which utilize a 75nm film thickness and

RIE etching, which produces a thin film with typical RRR< 10. Also, given the similarity

of the wet-etch chemistry to that used in 2D Ta device fabrication (Ta etch uses a 1:1:1

HF:HNO3:H2O mixture) as that used in the 3D Nb cavities, there is also some question if

the recipe developed can be extended to 2D devices as well. This, combined with better

information as to the effect of sapphire substrate orientation, and loss tangent [146], could

produce 2D resonators with quality factors approaching 1× 108.
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CHAPTER 8

CONCLUSIONS

This thesis has been a detailing of the natural evolution of 3D cQED systems for use as

quantum memories. The development of multimodal cavities with record breaking cavity-

qubit cooperativities, and processes for reliably making seamless TE101 cavities and niobium

coaxial cavities will give the field as a whole more options for platforms to build quantum

hardware or investigate interesting quantum phenomena. In that sense this thesis is a small

stepping stone in a larger arch of quantum research. While it has not elucidated any funda-

mentally new quantum phenomena, it will hopefully be the motivation for future researches

to explore regimes that did not exist before the creation of these techniques.

By analogy, this work is much like the ”tock” in the Intel tick-tock model of develop-

ment. The work outlined by Matt Reagor, Eric Holland, and Theresa Brecht in 2013-2018

represented the first major move forward in coherence times in 3D systems. Since then,

qubit fabrication, and protocol for controlling these systems have improved dramatically, an

optimization stage much like the ”tick” cycle of CPU microarchitecture. But now, these

platforms are feeling dated, and the whims of theoreticians are beginning to butt up against

the reality of these systems. Now, with a factor of 10 improvement in coherence, we need to

rethink and re-investigate a lot of the processes and methods we take for granted. In that

sense we are entering a new cycle of development, with active research in niobium based

cavity systems now being undertaken by national and university research labs becoming

more prevalent. The trickle-down effect of these innovations will also work synergetically

with ongoing research in improved materials for qubit and 2D resonator fabrication, leading

to an uplift of the entire field. With this work, and other recent investigations into qubit

improvements, we will also see more mindfulness by quantum physicists into the underlying

material properties, bringing in a wider range of material scientists, physical chemists, and

condensed matter physicists into the quantum field.
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Stepping back and putting all of this into context, we are seeing the trajectory of this field

from nascent fundamental physics research, to a technical discipline in its own right. The

level of sophistication that has been introduced, at all levels, is requiring physicists to think

in more applied ways than ever before. My only hope is that, as we move forward, the field

embraces these more technical aspects of the job, and outlines standards and practices that

turn a small arcane field of study into a legitimate enterprise. We have seen in this thesis

that better accounting of the cryogenic environment as a whole, with some nuts-and-bolts

cryogenics engineering, can have drastic effects on the performance of these quantum sys-

tems. This is not to mention my other work in developing new kinds of cryogenic platforms,

which is a story for another time, and has only increased my appreciation for perhaps the

less glamorous aspects of our job. Needless to say, as these platforms also scale, an adoption

of these ideas, and stepping outside of the traditional rolls we play as physicists, will become

necessary to progress as a whole.

P
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APPENDIX A

NUMERICAL SOLVING OF CPB HAMILTONIAN IN

PYTHON

The following is adapted from the amazing Appendix C. example listed in Ref. [164] C,

which was originaly written in Mathematica, aka the lesser programming ”language”. For

posterity and thoroughness, I thus provide my example below.

To begin we must create cosine and ϕ matricies:

1import numpy as np

2import scipy

3import scipy.linalg as la

4import matplotlib

5from matplotlib import pyplot as plt

6from scipy import constants

7from scipy.optimize import brentq

8import math

9

10def cosmat(phi):

11 n=len(phi)

12 cos_vals=np.cos(phi)

13 return np.diag(cos_vals, 0)

14

15def ThetaMat(phi):

16 #create diagonal theta matrix using nd.diag

17 return np.diag(phi,0)

Then we can create the finite difference matrices with the requisite boundary conditions:

With the helper functions out of the way, we can construct the hamitonian and solve it:

Now that the functions are setup, we can run the code to solve the CPB hamiltonian for

various offset charge states, then plotting as a function of ng
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1def periodic_ddn(phi):

2 dims=len(phi)

3 ones=np.ones(dims)

4 delta=(max(phi)-min(phi))/dims

5 #using 4th order central difference with periodic BCs

6 dndn=-np.diag(ones[0:dims-2], -2)+16*np.diag(ones[0:dims-1],

-1)+16*np.diag(ones[0:dims-1],1)-30*np.diag(ones,0)-np.diag(ones[0:dims-2], 2)↪→

7 #set BCs

8 dndn[0,-1]=16.

9 dndn[-1,0]=16.

10 dndn[0,-2]=-1.

11 dndn[-2,0]=-1.

12 dndn[1,-1]=-1.

13 dndn[-1,1]=-1.

14 return (1./(12*delta**2))*(dndn)

15

16def periodic_dn(phi):

17 dims=len(phi)

18 ones=np.ones(dims)

19 delta=(max(phi)-min(phi))/dims

20 #using 4th order central difference with periodic BCs

21 dn=-np.diag(ones[0:dims-2], 2)+8*np.diag(ones[0:dims-1],

1)-8*np.diag(ones[0:dims-1],-1)+np.diag(ones[0:dims-2],-2)↪→

22 #set BCs

23 dn[0,-1]=-8.

24 dn[-1,0]=8.

25 dn[0,-2]=1.

26 dn[-2,0]=-1.

27 dn[1,-1]=1.

28 dn[-1,1]=-1.

29 return (1./(12*delta))*dn
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1def offset_CPB(Ec, Ej, n, n_offset):

2 #set size for hamiltonian

3 dims=201

4 #create phase space array to evaluate energies over

5 phi=np.linspace(-np.pi,np.pi,dims)

6 #Call our second order periodic finite difference matrix scaled appropriately wrt

phi array↪→

7 dndn=periodic_ddn(phi)

8 dn=periodic_dn(phi)

9 #calculate a diagonal matrix for cos evaluated over phase space

10 cosvals=cosmat(phi)

11 #create identity

12 I=np.diag(np.ones(len(phi)))

13 #assemble our uncoupled CPB hamiltonian

14 ham_cpb=-Ej*cosvals+4.*Ec*(-dndn-1j*n_offset*dn+I*n_offset**2/4)

15 #calculate unsorted eigen energies

16 US_eigen_vals=la.eig(ham_cpb)[0]

17 #print the first n eigenvalues after offsetting lowest energy to zero and sorting in

ascending order↪→

18 Eigen_Vals=np.real(sorted(US_eigen_vals-min(US_eigen_vals)))

19 return Eigen_Vals[0:n]
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1 offset_e=np.linspace(-2, 2, 200)

2 eig_vals=[]

3 ratio=4

4 Ec=0.175

5 Ej=ratio*Ec

6

7 fig, ax = plt.subplots(1, figsize=(4, 4))

8

9 for n_g in offset_e:

10 eig_vals.append(offset_CPB(Ec, Ej, n=4, n_offset=n_g))

11

12 eigs=np.array(eig_vals).T[1::]

13 E_01=eigs[0]

14 E_12=eigs[1]

15 E_23=eigs[2]

16

17 plt.plot(offset_e, (E_23), label='$E_{2}$')

18 plt.plot(offset_e, (E_12), label='$E_{1}$')

19 plt.plot(offset_e, (E_01), label='$E_{0}$')

20

21 plt.xlabel('$n_{g}$ ($e^{-}$)', fontsize=20)

22 plt.ylabel('Energy (GHz)', fontsize=20)

23 plt.title('$E_{J}/E_{C}=$%i'%ratio, fontsize=20)

24 ax.tick_params(axis='x', labelsize=15)

25 ax.tick_params(axis='y', labelsize=15)

26

27 plt.legend( fontsize=15, frameon=False, bbox_to_anchor=(1, 1))
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APPENDIX B

SIMULATING VIBRATIONAL MODES OF CANTILEVER

The below is modified from

https://github.com/apf99/Finite-Element-Modeling/blob/master/fem beam.py

originally written by Andrew Friedman for solving the 1D Euler-Bernoulli beam equation:
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1 import numpy as np

2 from scipy.linalg import eigh

3 import math

4 from matplotlib import pyplot as plt

5 import time

6

7 def beam(num_elems):

8 restrained_dofs = [1, 0, -2, -1]

9

10 l = .0165 / num_elems

11 Cm = (w)*(t)*3.98E-3*1E6 # rho.A

12 Ck = 400E9*1.622E-14 # E.I

13

14 # element mass and stiffness matrices

15 m = np.array([[156, 22*l, 54, -13*l],

16 [22*l, 4*l*l, 13*l, -3*l*l],

17 [54, 13*l, 156, -22*l],

18 [-13*l, -3*l*l, -22*l, 4*l*l]]) * Cm * l / 420

19

20 k = np.array([[12, 6*l, -12, 6*l],

21 [6*l, 4*l*l, -6*l, 2*l*l],

22 [-12, -6*l, 12, -6*l],

23 [6*l, 2*l*l, -6*l, 4*l*l]]) * Ck / l**3

24

25 # construct global mass and stiffness matrices

26 M = np.zeros((2*num_elems+2,2*num_elems+2))

27 K = np.zeros((2*num_elems+2,2*num_elems+2))

28

29 # for each element, change to global coordinates

30 for i in range(num_elems):

31 M_temp = np.zeros((2*num_elems+2,2*num_elems+2))

32 K_temp = np.zeros((2*num_elems+2,2*num_elems+2))

33 M_temp[2*i:2*i+4, 2*i:2*i+4] = m

34 K_temp[2*i:2*i+4, 2*i:2*i+4] = k

35 M += M_temp

36 K += K_temp

37

38 # remove the fixed degrees of freedom

39 for dof in restrained_dofs:

40 for i in [0,1]:

41 M = np.delete(M, dof, axis=i)

42 K = np.delete(K, dof, axis=i)

43

44 evals, evecs = eigh(K,M)

45 frequencies = np.sqrt(evals)

46 return M, K, frequencies, evecs
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1 errors = []

2 prev_frequency=0

3 for i in range(2,20): # number of elements

4 start = time.time()

5 M, K, frequencies, evecs = beam(i)

6 time_taken = time.time() - start

7 error = (frequencies[0] - prev_frequency) / prev_frequency * 100.0

8 prev_frequency=frequencies[0]

9 errors.append( (i, error) )

10 print ('Num Elems: {} \tFrequency: {}\tError: {}% \tShape: {} \tTime:

{}'.format( i, round(frequencies[0],3), round(error, 3), K.shape,

round(time_taken*1000, 3) ))

↪→

↪→

11

12 print('Exact Freq:', round(exact_frequency, 3))

13

14 element = np.array([x[0] for x in errors])

15 error = np.array([x[1] for x in errors])

16

17

18 # plot the result

19 plt.plot(element, error, 'o-')

20 plt.xlim(1, element[-1])

21 plt.xlabel('Number of Elements')

22 plt.ylabel('Error (%)')

23 plt.show()
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APPENDIX C

SNR ESTIMATION

1'''

2Pertinent functions. Noise power is the primary Friis calculation function,

3Power_n is a function that calculates power as a function of photon number,

4SNR is a wrapper function that takes in the params object to calculate the

5SNR, returning arrays for IFBW in Hz, noise and signal power in dB.

6'''

7def Noise_Power(params):

8 meas_chain=params['meas_chain']

9 IFBW=params['IFBW']

10 T_dev=params['T_dev']

11 PN_NWA=10**((params['PN_NWA']-30.)/10)

12 F=np.zeros(len(meas_chain))

13 G=np.zeros(len(meas_chain))

14 T0=290 #kelvin

15 kb=1.38E-23

16 amp_list=[]

17 for I, dev in enumerate(meas_chain):

18 if dev['type']=='atten':

19 L=10**(dev['loss']/10.)

20 F[I]=1+((L-1)*dev['T_atten'])/T0

21 G[I]=L**-1

22 elif dev['type']=='amp':

23 F[I]=10**(dev['NF']/10.)

24 G[I]=10**(dev['gain']/10.)

25 amp_list.append(dev['name'])

26 else:

27 print('ERROR: Not valid device type:'+str(dev['type']))

28 break

29 return

30 F_tot=F[0]

31 for i in range(1,len(G)):

32 F_tot+=(F[i]-1)/np.prod(G[0:i-1])

33 PN_tot=30+10*np.log10(kb*T_dev*np.prod(G)*IFBW*F_tot+PN_NWA)

34 return {'PN':PN_tot, 'Gain':G, 'Amps':amp_list}
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1def Power_n(params):

2 k_i=2*np.pi*params['k_int']

3 kc_1=2*np.pi*params['kc_1']

4 kc_2=2*np.pi*params['kc_2']

5 if params['meas_port']==1:

6 k_meas=kc_1

7 elif params['meas_port']==2:

8 k_meas=kc_2

9 else:

10 print('ERROR: Invalid port')

11 return

12 f0=params['f0']

13 n_bar=params['n_photon']

14 h=scipy.constants.h

15 #equation 2.53 from Audrey Bienfait thesis (pg.31)

16 power=(n_bar*h*f0*(kc_1+kc_2+k_i)**2)/(4.*k_meas)

17 print(30+10*np.log10(power))

18 print(power)

19 return power
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1def SNR(params):

2 params_noise={'meas_chain':params['meas_chain'],

3 'IFBW':params['IFBW'],

4 'PN_NWA':params['PN_NWA'],

5 'T_dev':params['T_dev']

6 }

7 params_signal={'k_int':params['k_int'],

8 'kc_1':params['kc_1'],

9 'kc_2':params['kc_2'],

10 'meas_port':params['meas_port'],

11 'n_photon':params['n_photon'],

12 'f0':params['f0']

13 }

14 noise_output=Noise_Power(params_noise)

15 G=noise_output['Gain']

16 IFBW=params['IFBW']

17 P_n=Power_n(params_signal)

18 #print(30+10*np.log10(P_n))

19 P_signal=30+10*np.log10(np.prod(G)*P_n)

20 P_noise=noise_output['PN']

21 if params['plot']==True:

22 plt.plot(IFBW, P_signal-P_noise, label="=>".join(noise_output['Amps']))

23 plt.xscale('log')

24 plt.xlabel("IFBW (Hz)")

25 plt.ylabel("SNR (dB)")

26 plt.xlim(np.min(IFBW), np.max(IFBW))

27 plt.legend(loc=0, prop={"size" : 10}, frameon=False)

28 plt.title("n=%s photon SNR"%params['n_photon'])

29 plt.grid(which='both')

30 return IFBW, P_signal, P_noise
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APPENDIX D

GAS-GAP HEAT-SWITCHES

D.1 Heat-switch operation and overview

You may be wondering why there is a section on the arcane inner workings of gas-gap heat

switches—a rather pedestrian cryogenic component—in this thesis on quantum memories.

The short answer is because I simply can, but the longer answer is because, before and

during the research described above, I was also working as a cryogenics engineer, developing

a novel kind of continuous adsorption refrigerator capable of driving a dilution unit. The

full description of this device, lovingly called the THeIA refrigerator by myself, could easily

have been another thesis. In fact, it was supposed to be my thesis, but was considered by

many to not have enough ”newness” to the problem. Being that I did the work to build and

characterize it (and to be clear, it does work) I decided to write another entire half to this

thesis going over this refrigerator, and the intricacies of its design and operation. Needless to

say, I bit off more than I could chew, and givem the sheer amount of work required to write

one thesis, I was unable to finish this second half. Instead, I provide you the one chapter

I did write as an appendix, with the hope that the reader, whoever they may be and with

whatever background they may have, may learn something new.

D.1.1 Heat-switch types and background

In Ch 11 the idea of a heat switch, or a device with variable thermal conductivity, was

used to couple the pump to the 4K plate during pumping, or thermally decouple the pump

during desorption as to not perturb the plate temperature. In this chapter I will discuss the

working principles underlying the design, construction, and operation of the gas-gap heat

switch. The gas-gap heat switch is just one class of variable thermal conductance devices

that are used to control the flow of heat at various points in a cryogenic cycle. The choice
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Figure D.1: Mechanical and superconducting heat switchs: (a) An HPD

Instruments© (now FormFactor©) mechanical heat switch. In ADR applications a high
temperature heat switch would connect the paramagnetic salt pill to a thermal sink during
the application of a constant magnetic field, lowering the spin entropy of the system. This
switch is then opened as the gradient is reduced, while a second switch, attached to the
cold-stage finger, is closed, cooling the system. Image taken from [195]. (b) A schematic of
a superconducting aluminum heat-switch used to connect a nuclear demagnetization stage
to the mixing chamber of the Bayreuth refrigerator [80]. Parallel strips of ultra-high purity
aluminum are used due to aluminum’s low critical field (10.5mT), high Debye temperature
(ΘD ≈ 400K), and availability in high purity form. Given its strong native oxide extra care
is taken to reduce the contact resistance of the aluminum to improve on-state conductivity.

of heat switch type is largely determined by the amount of on-state conductance, the heat

switch ”aspect ratio”, or the on-state vs off-state (κon/κoff), and the specific size constraints

of the system.

While this section will not be an exhaustive overview of the various types, to provide

context for the choice of using gas-gap heat switches for both the Breton and Whistler

fridges, I contrast the gas-gap heat switch to other common heat-switch designs. The most

intuitive of these designs is the mechanical heat switch Fig. D.1 (a), which uses mechanical

pressure to make contact between two high-conductivity pieces of metal. This design has

the advantage of very high on-state conductance and an incredibly high aspect ratio. A

drawback to this design however, is the large contact force, with the contact conductance

scaling κc ∝ F 1/3 [21, 47, 46]. This means for typical applications, such as cooling a
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paramagnetic salt pill for an adiabatic demagnetization refrigerator, forces in excess of 100N

are required to achieve conductivities approaching 1W/K. While screws are often employed

to increase mechanical advantage, large room temperature motors are still required to make

sufficient contact, necessitating room-temperature feedthroughs and adding to the overall

complexity of the system.

A mechanically simpler heat switch design is the superconducting heat switch, as shown

in Fig. D.1 (b), which takes advantage of the poor electron conductivity of a superconductor

when T ≪ Tc to limit it’s off-state conductivity, while achieving high thermal conductivity

in the presence of a magnetic field due to high electron conductivity when the metal is in a

normal state. In the limit where T ≪ Tc the switching ratio scales as κon/κoff ≈ αT−2,

with the proportionality constant α > 102 for a well optimized switch. As T ≥ 0.1Tc

then κon/κoff ∝ exp{(∆E(T )/kbT )}, where ∆E(T ) is the superconducting gap of the heat

switch metal used in the switch. This means for materials like aluminum, which exhibit

good on-state thermal conductivity, the operating temperature is ≤ 100mK [141, 79]. In

theory materials with higher Tc can be used, however materials like Nb and its alloys have

comparatively low normal-state conductivity, and still only operate well below 1K. This

makes them unusable for applications at or above 4K, as is the case for adsorption pump

applications. This aspect relegates them to sub-kelvin applications such as cooling nuclear

demagnetization stages for conducting sub-mK research.

In addition to these there are other, more exotic, heat switches have also been made,

which utilize the magnetoresistive effect. These switches however are limited to metals with

closed Fermi surfaces and require the use of single crystals in order to ensure a high on/off

aspect ratio. This, combined with the need of magnetic fields in excess of 1T, and difficulty

machining examples that have high l/w ratios, relegate them to niche applications [36].

There have also been attempts to utilize thermal expansion to make ”passive” mechanical

heat-switches, however these have been relegated to higher temperature (>80K) applications
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where the thermal expansion coefficient of many polymeric materials, such as UHMW-PE,

are large enough to achieve the high aspect conductivity ratios necessary while also being

easy to manufacture [60, 165].

D.1.2 Gas-gap heat-switch overview

In contrast to these designs, gas-gap heat-switches require no moving parts, and can operate

with relatively high-performance, of >100mW/K, at temperatures as low as 3K. This is done

by mediating heat transfer through a low-pressure working fluid that spans across two pieces

of high thermal conductivity material. Fig. D.2 shows the two states of a gas-gap heat switch.

In the off-state (Fig. D.2 (a)) a small piece of adsorbant material is passively cooled via a

weak thermal link or radiative cooling, adsorbing the helium and leading to a low equilibrium

pressure inside of the gap. At this point the mean-free path of helium atoms is far longer

than the gap (free-molecular regime), and heat transfer is dominated by conduction through

the outer support shell (grey) or radiation between the hot and cold end. As the adsorber

temperature increases (shown in Fig. D.2 (b)) the isosteric equilibrium helium pressure

increases. As the mean-free path of helium atoms approaches the gap length (transition

regime) the thermal conductivity is pressure dependent, before reaching a maximum as the

helium pressure increases to a point where the mean-free path is much shorter than the gap

(continuum regime) and thermal conductivity becomes pressure independent.

In the next few sections we will explore the kinetic theory underpinning this operation in

more detail. We will see that, because pressure (and subsequently thermal conductivity) are

mediated by the isosteric adsorption properties of our adsorber, we can have a high degree

of control over the conductivity of our switch, effectively turning it into a ”heat valve”

instead. From a control perspective this is highly advantageous for dynamical systems such

as continuous adsorption refrigerators. This, combined with their small size, high-reliability

and performance make them ideally suited for our application.
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Figure D.2: Gas-gap heat-switch operation: The two states of the gas-gap heat switch
are mediated by the presence of helium in the gap. An ”off” heat switch has the adsorber
cooled, and no gas in the gap, leading to thermal conduction only through radiative means,
or parasitic conduction through the heat-switch’s outer supporting shell.

In this chapter we will explore the technical challenges in building a high-performance

gas-gap heat switch, and show how its method of operation makes it ideal for continuous

adsorption refrigeration. To do this however will require a more thorough treatment of the

switching dynamics than has been previously performed in the existing literature, along with

characterization and calibration of these dynamics to take full advantage of them.

D.2 Theory of operation

D.2.1 Knudsen number, free-molecular and continuum heat transfer

In cryogenic systems the transfer of heat is often mediated by a working fluid. In liquids

phonon conductivity determines the thermal conductivity of the fluid, however in gases

the method in which heat can be transferred depends largely on the density of the fluid. At

higher densities energy is transferred through elastic collisions between individual atoms and

molecules, which, given a large number of atoms, leads to the gas acting like a homogeneous

mass. At low densities and pressures, where the scale of collisions for the gas atoms are longer

than the characteristic length of the container, energy is transferred by atoms colliding with
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the walls of the container. When the atom collides, it does not achieve thermal equilibrium

with the wall, leading to only partial energy transfer between the wall and atom. In the

case of a helium atom interacting with a hot surface, it will gain a small amount of energy

which it will carry to a lower temperature surface, where it will deposit some of that excess

energy, repeating the process. As one can see, the net transfer of energy in this low-density,

or ”free-molecular” regime, is directly proportional to the number of atoms and subsequently

the pressure of our system.

A useful way of determining the flow regime of a given system is the dimensionless

Knudsen number, which is simply the ratio of the mean-free path and the characteristic

length of the system:

Kn = λ/Le (D.1)

Where Le is the characteristic length of our system, which is generally written as:

Le = 4V/Aw (D.2)

V is the enclosed volume and Aw is the enclosed area. The gas mean-free path is derived

from kinetic theory and is a function of the gas molecule’s mean velocity, viscosity, and

pressure:

λ =
µ

p

(
πRT

2Mg

)1/2

(D.3)

Where µ is the gas viscosity and Mg is the molecular mass of the gas species. R is the

universal gas-constant, T is the gas temperature, and p is the gas pressure.

From the above we can determine the Knudsen number for any system. This quantity

gives us a useful way of describing what flow regime the system is in, with the division of

regimes being given as:
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Continuum: Kn < 0.01 (D.4)

Transition: 0.01 < Kn < 0.3 (D.5)

Free-Molecular: Kn > 0.3 (D.6)

In the continuum regime the total power throughput of the switch is independent of the

pressure, and can be treated as a simple 1D heat transfer problem:

Q̇cont = Fα
A

l

∫ Th

Tl

κ(T )dT (D.7)

Where Fα is the dimensionless accommodation factor, or the degree in which the gas

molecule reaches thermal equilibrium with the wall. A is the effective heat transfer area

and l is in this case the thickness of the sheet of gas, which is set by the gap length. κ is

the thermal conductivity of the gas. The above integral represents the maximum effective

conductivity of the heat switch, assuming that the switch is operating in a regime where

radiation, convection, and parasitic thermal conduction is negligible. Equation D.7 also

gives is the two main parameters for maximizing conductivity, the width of the gap and the

area of the two halves of the heat switch.

In the free-molecular and transition regimes the thermal conductivity is pressure depen-

dent. From Barron [21] eq. 5-63 we can get the mass flow rate of gas molecules interacting

with the surface from the average velocity and density:

m/A =
ρva
4

=
P

(2πRT )1/2
(D.8)

To determine the total energy flux along the surfaces of the heat switch we need to

determine the exchange in energy per unit mass of the gas as it interacts with the surfaces.

To determine this we need to know the change in both internal energy and kinetic energy
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per unit mass of the molecules striking the surfaces. This can be written as:

∆E = cv∆Tgas + 1/2R∆Tgas (D.9)

We can simplify the above into a more convenient form by making the transformation:

cv =
R

γ − 1
(D.10)

Where γ is the ratio of heat capacity under constant pressure and constant volume

(cp/cv). This transforms D.9 into:

∆E =
R(γ + 1)

(γ − 1)
∆Tgas (D.11)

While we know the temperature of the heat-switch’s hot and cold surfaces Th and Tc,

to determine the exchange in energy we need to know the gas molecule’s temperature after

interacting with the two surfaces to then determine ∆Tgas. A molecule starting at the cold

surface at temperature Tc will come into partial thermal equilibrium with the surface and

leave at some new temperature T ′
c , before interacting with the hot surface at temperature

Th, where it will exchange some energy before leaving at a new temperature T ′
h . To make

this more explicit we can write the factors for both the hot and cold surfaces as:

Cold Surface: αc =
T ′
h − T ′

h

T ′
h − Th

(D.12)

Hot Surface: αh =
T ′
h − T ′

c

Th − T ′
c

(D.13)

From the above we can solve for the actual difference in the gas molecule temperature as

a function of the wall temperatures and the two accommodation coefficients:
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Th − Tc =

(
1

αc
+

1

αh
− 1

)
(T ′

h − T ′
c ) =

T ′
h − T ′

c

Fα
(D.14)

Where T ′
h − T ′

c is ∆Tgas in equation D.9, Fα is the accommodation factor as shown

above in eq. D.7, written here for a simple case of two parallel walls. Fα however is geometry

dependant, and for the case of concentric cylinders takes on the form:

Fα =
1

αc
+
Ac

Ah

(
1

αh
− 1

)
(D.15)

This factor is analogous to the emissivity coefficient factor listed in table 5.4 of Barron

[21]. With the above in hand, we can combine equations D.8, D.11, and D.14 to arrive at

the power conducted through the switch at a given pressure P in the free molecular regime

at the cold surface Ac:

Q̇FM (P, T ) = FαPAc

(
γ + 1

γ − 1

)(
R

2πT

)1/2

(Th − Tc) (D.16)

In our heat switch this pressure p is a quantity that is dependent on the equilibrium

pressure of our adsorbent at a given temperature. In the next subsection we will connect

the isosteric adsorption properties of our heat-switch’s adsorber to arrive at a temperature

dependent conduction model for our switch.

D.2.2 Adsorption mediated switching

In equation D.16 we showed that the power through a heat switch in the free-molecular

regime is linearly dependent on pressure, but in most heat switches the pressure of the gas

inside the gap is dependent on the adsorber temperature. In section ?? we discussed the

nature of isosteric adsorption. There we saw that, under isosteric conditions, or rather when

the ratio of adsorbant to gas by mass is constant, the relationship between pressure and

temperature follow the Clausius-Clapyron relationship [177]:
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Qads = −R
(
d(ln(P ))

d(1/T )

)
n

(D.17)

Where Qads is the isosteric heat of adsorption. This form is analogous to to the coexis-

tence curve of an ideal saturated vapor-liquid system taken that the latent heat is constant

over the desired temperature range. Here we can ignore the change in specific volume be-

tween gaseous and adsorbed phases, in part because the specific volume of the gas phase

vg >> vads. This approximation holds well due to the difference in energy scales between

the binding energy of helium atoms to the adsorbant versus to each other. With this ap-

proximation in hand we can rewrite it in the form;

P (T ) = P0 exp(−Qads/RTads) (D.18)

From the isosteric condition set in equation D.17, equation D.18, only holds for systems

where both the mass of adsorbant and helium are fixed. In a gas-gap heat-switch this

condition is met. Combining equations D.18 with D.16:

Q̇FM (Tads, Tgap) = FαAcP0 exp

(−Qads

RTads

)(
γ + 1

γ − 1

)(
R

2πTgap

)1/2

(Th − Tc) (D.19)

In equation D.19 the distinction is made between the adsorber temperature (Tads) and

the temperature of the gas in the gap (Tgap). As we will see in section D.4.2 the gap

temperature can be treated as roughly constant if the hot end temperature is held constant

while changing the applying power.

D.2.3 Switching performance in the transition regime

In the previous section we created a complete temperature dependent model for gas-gap

thermal conduction in the free-molecular regime, and by D.2.1 we showed what the expected
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a. b.

Figure D.3: Model for gas-gap heat switch operation: (a) shows the equivalent circuit-
model for the flow heat from Th to Tl given an applied power Q̇in. κcont represents the
parasitic pathways for heat to travel from high to low temperature, while κfm(T ) represents
the variable temperature conductivity of the free-molecular and transition regimes. (b)
shows the expected response of thermal conduction for our theoretical heat switch for the
temperature dependent Knudson number Kd(T ).

max thermal conductivity should be in the continuum regime based on the heat switch

geometry and gas conductivity, but what about the transition regime described by eq. D.5?

As the name implies this regime in flow is somewhere in between a continuum and free-

molecular flow. In this regime the mechanisms that underpin thermal conduction become

poorly defined.

To connect the continuum and free-molecular regimes we can devise a simple two-fluid

model, with each phase having their own thermal conductance κcont and κfm. We can draw

this as a parallel circuit model where one path is a variable thermal conductor (κfm(T ))and

the other has a fixed conductance (κcond) as shown in fig. D.3 (a). Some power Q̇in is applied

leading to a temperature at the hot end of Th, while the cold end is fixed to a thermal sink

at Tc. We can write the total thermal conductance of the circuit as:

κ(T ) =

(
1

κfm(T )
+

1

κcont

)−1

(D.20)
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Applying eq. D.19 in place of κfm(T ) in eq. D.20, first by dividing the left hand side by

∆T = Th − Tc to give the thermal conductivity we arrive at:

κ(T ) =

(
1

Cads exp(−Qads/RTads)
+

1

κcont

)−1

(D.21)

Here the constants of eq. D.19 are combined into Cads for compactness.

To see how this function behaves over different flow regimes it is informative to plot the

conductivity against the Knudsen number Kn. Combining eqs. D.1, D.3, and D.18 we see

that kn ∝ exp(Qads/RTads). Fig. D.3 (b) shows the expected conductivity vs Kn for a

Qads of 2700J/mol, κcont or 140mW/K, and Cads of 3.5 × 105W/K, which are derived in

part from the geometry of the heat switch described in section D.3.2 and typical values for

adsorbant P0 and Qads [177, 91].

Fig. D.3 (b) gives a nice visualization of the switch behavior in the three regimes, as

described by eqns. D.4-D.6, with the continuum and free-molecular regimes demonstrating

the expected pressure independence and dependence respectively. Likewise the transition

regime demonstrates only weak pressure dependence. As we will see in section D.4.2, the

two-fluid model described by eq. D.20 shows good agreement with measured gas-gap heat

switch performance.

D.3 Heat-switch design and construction

D.3.1 Performance requirements and constraints

For adsorption pumping applications the primary constraint is the maximum conductivity.

As shown in the previous section this maximum conductivity occurs when the pressure of the

exchange gas pressure is high enough that the mean-free path is much shorter than the gap

width. This pressure independent value, κcont is described by the simple 1D conductivity

equation D.7, which is directly proportional to the exchange surface area of the switch, and
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Figure D.4: Thermal conduction of He4 gas: (a) shows the thermal conductance of
helium gas from the critical point to 50K. (b) shows the thermal conduction of our heat
switch in the continuous regime (i.e. not temperature dependent) for various temperature
differentials, with Tc fixed at 3.8K.

inversely proportional to the gap width. One difficulty in estimating the on-state performance

is the accommodation coefficients αc and αh, and subsequently the accommodation factor

Fα for a given system. The accommodation coefficient is dependent on surface composition,

temperature, and roughness, and is empirically derived for each surface. Low-temperature

data on helium accommodation coefficients is scarce, but for most metals it ranges from

≈ 0.6− 1 in the range of T ≈ 20− 3.5K [96, 21].

For our fridge, with molar flow rates of 100 − 200µmol/sec, we can expect a dissipated

power of 200−400mW at the 4K plate. For efficient adsorption to occur it is also necessary to

reduce the heat lift of the pumps during operation. For this reason a maximum conductivity

of 100−200mW/K is ideal to ensure a lift of less than 4K at full power dissipation. Using this

number as a guide we can find a suitable exchange area for our heat-switch by using eq. D.7.

Using eq. D.15, we can estimate the accommodation factor making the approximation that,

with a gap much smaller than the diameter of our concentric cylinders, Ac ≈ Ah. Taking a

worst-case estimate of αc ≈ 0.9 and αh ≈ 0.6, Fα ≈ 0.56.
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To calculate the thermal conductivity of the helium in our gap we need to know conduc-

tivity as a function of temperature (κHe(T )). Here we use the conductivity under isobaric

conditions, instead of saturated vapor pressure, since at the temperature this switch will op-

erate the saturated vapor pressure is > 100kPa, whereas the pressure needed for continuum

conduction with a Le for the heat-switch shown in D.3 is ∼ 4Pa. The thermal conductivity

of helium-4 from 3.5K−50K is shown in fig. D.4 a at 10kPa from [10].

With an estimation for the accommodation coefficient of helium taken from table 5.6

of [21] (shown in Fig. D.4 (b) inset), the conductivity of helium, and an Ac/lgap = 20, we

can expect a continuum conductivity of κcont ∼ 168mW/K given a ∆T ∼ 4K. To obtain

a Kn value that gives the desired switching characteristics as shown in fig. D.3 (b), an

lgap ∼ 100µm is desired, giving a desired exchange area Ac ∼ 20cm2.

D.3.2 Heat switch design and components

In the previous section we outlined the design parameters required for a target performance.

Translating this to a real-world design requires a few additional considerations that have not

been discussed. These include reducing parasitic load while the switch is in the off-state,

the creation of hermetic seals, and heating and cooling the adsorber with a high degree of

control. There are additional practical design considerations one has to make concerning the

construction of the heat-switch itself. The high-tolerances of the gap and close fitting of the

parts, along with the need for helium leak-tight joints makes gas-gap heat-switch construction

particularly challenging, so careful design is necessary for successful implementation.

Figure D.5 shows a cutaway of the heat switch design. To make the heat switch easier

to manufacture and more compact the switch is a double concentric design, with an inner

and outer cylinder with a total surface area of 21cm2 out of OFHC copper. A stainless steel

(304) tube of ∅22.2mm with a wall thickness of .23mm. Two flanges provide additional

support to the thin tube, while also providing a surface for an indium seal between the tube
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Figure D.5: Cross-section of THeIA gas-gap heat switches

and top and bottom heat-switch halves.

From the support tube dimenstions we can compute the parasitic heat load through the

tube using the NIST TRC database for 304 stainless steel [95], as shown in fig. D.6. From

this and fig. D.4 (b) we can also determine a theoretical aspect ratio of κon/κoff > 240, for

the range 35 > ∆T > 1 with a Tc of 3.8K, which is more than acceptable for our desired

application.

The adsorber is made of a copper can that is attached to the heat switch via a ∅ ∼1.5mm

with a 0.5mm wall thickness. A stainless steel flange with an indium seal allows the adsorber

to be made in two pieces. Additional holes in the copper housing are created for a 10kOhm

resistor for the heater and a for a DT670 silicon diode from Lakeshore Cryotronics ©.

D.3.3 Construction and gas-charging

The tight tolerances of the heat switch requires extra attention to be paid to the accumulation

of small dimensional deviations at every step. The most important aspect of this is the

concentricity and parallelism of the various components with respect to one another, and

the creation of datum surfaces that properly indicate the location of the two heat-switch
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Figure D.6: Expected parasitic heat load through the stainless steel supporting
shell for various temperatures

halves to one another. This is most important for the supporting shell, which is made of

three components that are assembled into a contiguous leak-tight housing.

Fig. D.7 (a-c) shows the construction of the shell. Fig. D.7 (a) shows the jig used during

silver brazing 1 of the top and bottom flange ring to the main support tube to maintain

parallelism of the sealing surfaces. Fig. D.7 (b) shows a custom mandrel for repeatable

indication of the now brazed tube for final machining of the inner datum surfaces that

indicate the top and bottom of the heat switch, before Fig. D.7 (c) showing complete assembly

with fill and adsorber tube.

In addition to the parts mentioned above, a small 4K radiation shield is placed over the

adsorber for passive cooling. ∅0.5mm pure indium wire was used to seal the switch top and

bottoms halves to the support tube and seal the adsorber can. A 1/8” tube weld Swagelok

VCR©2 was also brazed onto the fill tube for easy attachment of either a fill or pinch-off

tube for helium charging. An amount of ∼0.1g of activated charcoal 3 was sealed into the

adsorber volume, and packed, without additional epoxy, to ensure good thermalization to the

1. AWS BAg-36 (P07454) alloy was used for all braze joints

2. Swaglok SS-1-VCR-3

3. Fisher 05-685A
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Figure D.7: Pictures of manufactured parts and steps of construction for gas-gap
heat switch: (a) shows a SS shell assmbly jigged for silver brazing. Brass posts ensure that
the end-flanges remain parallel to one another while udnergoing heating. (b) shows a brazed
shell on a mandrel to undergo post-braze machining to finalize the dimensions and enser
parallelness and concentricity. (c) shows a nearly complete shell with the fill and adsorber
tubes in place. (d) shows the complete finalized parts for a version 1 THeIA switch (now in
Breton), while (e) shows four version 2 switches following construction and testing.

copper adsorber. For the heater a 10kOhm 0805 size surface mount resistor is soldered to two

43 AWG phosphor-bronze wires before being encapsulated in Stycast© 2850FT (using 23LV

catalyst) and finally epoxied into a hole machined into the adsorber housing. Lakeshore©

DT-670-SD silicon diode thermometers are also inserted into the housing using GE varnish

and connected with 4×43 phosphor bronze ribbon wire.

A crucial step in the production of a gas-gap heat switch is the charging of the switch

with he-4 gas. Fig. D.8 shows the charging circuit used. The heat switch fill line attached

to a ∅1.5mm OFHC copper tube to a regulated high-pressure tank of UHP (99.999% he-

4) via an isolation valve. A second isolation valve is attached to a dry 2-stage ultra-high
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Figure D.8: Gas filling and pinch-off layout: The heat-switch is evacuated and filled
via a 1/16” (1.5mm) OD copper tube. Two isolation valves allow for the evacuation of the
fill-lines via a turbo and dry lobe vacuum pump, while a regulated ultra high-purity UHP
He4 with a compound gauge allows for precision filling of the switch.

vacuum pump capable of pressures P < 1 × 10−7mbar. The switch is initially pumped

down to P < 1 × 10−5mbar with the tank isolation valve closed. The heat-switch is also

leak-checked at this time. Care should be taken to purge the helium regulator to reduce

water or air ingress. Once the base pressure is reached the vacuum isolation valve is closed,

before opening the filling side valve. The regulator outlet pressure, measured via a compound

gauge, is slowly increased to the desired pressure. Finally a hydraulic pinch off tool4 is used

to crimp the copper fill tube shut, permanently sealing the heat-switch. If refilling is needed

the fill tube can be replaced via the attached Swagelok VCR.

D.4 Characterization and performance

D.4.1 Experimental setup

The heat-switch is attached to the 4K plate of the refrigerator. A Lakeshore DT-670-CU

thermometer is placed on the 4K plate and the top of the heat-switch for measuring Tc and

4. Solid Sealing Technology KT35046
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Figure D.9: Gas-gap heat-switch measurement layout and location in fridge: (a)
the setup of the heat-switch measurement. (b) the location of the pump in the fridge under
pump 2 of the THeIA refrigerator. Note the small copper wire shorting the adsorber to the
plate to allow for faster reset of the adsorber temperature, allowing for more accurate PID
stabilization.

Th respectively (locations showed in fig. D.9 (a). A ∼36ohm, 15W cartridge heater 5 is

attached via a 4-wire configuration for more accurate measurement of the applied power.

For accurate measurement of the adsorber temperature vs the thermal conduction a way

of stabilizing Tads. Closed-loop PID control, using proportional-on-measurement (POM)

feedback was implemented. A BK Precision 8130B provided the power for the adsorber

heater, via a 10kOhm resistor directly mounted to the adsorber. A Lakeshore DT-670-

SD thermometer is mounted to the adsorber using GE varnish and wrapped tightly to the

adsorber surface with Kapton tape. A small wire attached to a tightly fitting copper sleeve

via lead-tin solder is attached at one end to the adsorber and at the other end to the 4K

plate. The length of wire is chosen to guarantee a few mW of heat conduction with the

adsorber at 15K. This gives the adsorber a ”damping” term in the PID control, allowing for

more accurate and faster temperature stablization.

5. Thor Labs HT15W
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Figure D.10: Heat switch performance: (a) shows the variation of adsorber temperature
and applied power required to stabilize Th over time. (b) shows the change in Th and Tc over
the same time span. (c) shows the thermal conductivity of two identical version 2 THeIA
heat switches with different fill pressures.

D.4.2 Heat-switch performance and analysis

Two identical heat switches were filled with either 0.33 bar or 0.5 bar. Th was stabilized at

a fixed temperature of 10K, while the the adsorber temperature was varied. Between every

set adsorber temperature the system was allowed to stabilize for 5 minutes. Once stable the

applied power was determined, and the temperature differential was computed. From this

a conductivity for the switch could be determined. Fig D.10 shows this process being done,

with (a) showing adsorber power and applied power required to stabilize Th, (b) showing

Th and Tc, and (c) showing the scaling of thermal conduction to the switch vs the adsorber

temperature.

Fig. D.10 (c) shows that the higher fill pressure leads to higher thermal conduction in

the continuous regime for the same adsorber temperature, indicating that the equilibrium

isosteric adsorption pressure for the given ratio of helium to adsorbant likely favors the

larger fill pressure. A second observation is that, for the given fill pressures both perform

comparably to the predicted continuous regime conduction performance predicted in Fig. D.4
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(b). Another observation is how closely our model, outlined in Eq. D.19, fits our data, with

only a proportionality factor needed for the mess of fixed variables in our system. This

thermodynamic model, and the data above, are important parameters for the complete

control of the continous fridge, as they allow us to dynamically control the flow of heat out

of our pumps, giving us full closed-loop control over the continuous cycle.
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