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Topological and strongly correlated materials are exciting frontiers in condensed-matter physics, married
prominently in studies of the fractional quantum Hall effect [H. L. Stormer et al., Rev. Mod. Phys. 71, S298 (1999)],
There is an active effort to develop synthetic materials where the microscopic dynamics and ordering arising from
the interplay of topology and interaction may be directly explored. In this work, we demonstrate an architecture
for exploration of topological matter constructed from tunnel-coupled, time-reversal-broken microwave cavities
that are both low loss and compatible with Josephson-junction-mediated interactions [A. Wallraff ef al., Nature
(London) 431, 162 (2004)]. Following our proposed protocol [B. M. Anderson et al., Phys. Rev. X 6, 041043
(2016)], we implement a square lattice Hofstadter model at a quarter flux per plaquette (o« = 1/4), with time-
reversal symmetry broken through the chiral Wannier orbital of resonators coupled to yttrium-iron-garnet spheres.
We demonstrate site-resolved spectroscopy of the lattice, time-resolved dynamics of its edge channels, and a direct
measurement of the dispersion of the edge channels. Finally, we demonstrate the flexibility of the approach by
erecting a tunnel barrier and investigating dynamics across it. With the introduction of Josephson junctions to
mediate interactions between photons, this platform is poised to explore strongly correlated topological quantum

science in a synthetic system.
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I. INTRODUCTION

Initial interest in the quantum Hall effect arose from the
unexpected observation of quantized transport in electronic
heterostructures [1]. In the intervening years, we have come to
understand that this property is the direct result of a topological
winding number of the Bloch wave function in the Brillouin
zone: physics which is robust not only to disorder but also to
interparticle collisions [2]. In this interacting case, the lowest-
lying excitations, i.e., “anyons,” are of particular interest as
they are quasiparticles of fractional charge [3], believed to have
fractional statistics [4]. To date, definitive proof of fractional
statistics remain elusive, though transport measurements in
anyon interferometers [5,6] are highly suggestive [7].

With new material platforms come new measurement
techniques and new perspectives on the underlying physics;
both particle-by-particle construction of topological fluids [8]
and impurity interferometry [9] promise direct experimental
signatures of the geometric phase acquired when anyons are
transported around one another [10], but require either the
ability to construct a small Laughlin puddle one particle at
a time or the binding of an anyon to a mobile impurity that is
itself transported through an interferometer. While it is unclear
how to achieve this in electronic materials, synthetic material
platforms have begun to emerge where such microscopic
control is feasible.

Synthetic topological materials fall into two principal
categories: those made of ultracold atoms [11] and those made
of light. In both cases, the challenges are (1) to engineer a
synthetic gauge field for the (charge neutral) particles and
(2) to mediate interactions between them. In the case of
ultracold atoms, s-wave contact interactions arise naturally
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[12], while inducing gauge fields requires rotation of the
atomic gas [13,14], Raman couplings [15,16], or lattice
modulation [17-19], at the cost of reduced energy scales and
challenges in state preparation [20]. For materials made of
light, synthetic magnetic fields have been realized across the
electromagnetic spectrum, from the optical [21-23] domain to
microwave [24] and even rf [25] photons. Because photons do
not naturally interact with one another, the principal challenge
is to realize a topological metamaterial which is compatible
with strong interactions. In the optical domain, Rydberg
electromagnetically induced transparency is a possibility [26];
in the microwave, circuit quantum electrodynamics (cQED)
tools offer a viable solution [27,28].

In this work, we engineer a synthetic time-reversal
symmetry-breaking magnetic field for microwave photons in
a square lattice, where the magnetic length is twice the lattice
vector. Importantly, we employ seamless three-dimensional
(3D) microwave cavities all machined from a single block of
aluminum, so our metamaterial is scalable and directly com-
patible with the cQED toolbox [29] for entering the fractional
Chern regime, as it is composed only of aluminum for the cav-
ities, plus yttrium-iron-garnet (YIG) spheres and neodymium
magnets to produce the synthetic magnetic field. Circumnavi-
gating a single plaquette induces a 5 geometric phase, making
the material equivalent to a quarter-flux Hofstadter model.

In Sec. II, we describe and characterize the essential
components of the Chern insulator and explain how these
elements are combined to realize a quarter-flux Hofstadter
model. Section III investigates the spectral properties of the
realized model, observing four bulk bands and topologically
protected edge channels living within the gaps between the
top and bottom bands; using our single-site spatial resolution,
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FIG. 1. Schematic and photograph of microwave Chern insulator
lattice. (a) Schematic of the cavity layout. The white circles denote
cavities that do not shift the phase of a photon passing through them,
while the cavities with the arrows shift the phase depending on the
physical angle between the couplers. This layout guarantees phase
of 7 per plaquette. (b) Photograph of a 5x5 section of the lattice
measured in the data presented in the paper. The lattice sites are each
tuned to 9.560 GHz £1 MHz and evanescently tunnel coupled with
hopping rate 30 MHz 1 MHz. The typical resonator quality factor
for fundamental cavities is Q = 3000 and for the YIG cavitiesis Q =
1500. The lattice spacing is 1.96 cm, resulting in a total edge-to-edge
(including outer walls) lattice dimension of 24.0 cm. (c) Side profile of
a 5x 5 lattice cut so that both types of cavities are visible. The second
and fourth cavities are the phase-shifting YIG cavities, while the first,
third, and fifth cavities are the fundamental cavities. The couplers are
visible in between the cavities as gaps in the cavity walls. They are
milled from the opposite side of the lattice as the cavities.

we are able to directly measure the dispersion of the edge
channels. In Sec. IV, we measure edge transport around the
Chern insulator, observing chiral, backscatter-free dynamics.
In Sec. V, we demonstrate that the system may be reconfigured
as a microwave tunnel junction and explore the dynamics
across the tunnel barrier; Sec. VI concludes.

II. EXPERIMENTAL SETUP

To implement a quarter-flux Hofstadter lattice, we build
upon the design described in [29]. The central innovation
of this work is that while the Peierl’s phase which encodes
the synthetic gauge field is typically encoded in the tunnel
coupling between lattice sites, in practice the phase can arise
from the spatial structure of the sites themselves rather than
manipulation of the tunnel couplers [27,30]. Engineering the
on-site Wannier function of every fourth lattice site to exhibit
a 27 phase winding ensures that every plaquette contains
a phase-engineered site, as shown in Fig. 1(a), and thereby
induces a flux per plaquette of @ = %.

The metamaterial is milled into a block of aluminum [see
Fig. 1(b)] and is composed of three components: (i) funda-
mental mode cavities, (ii) chiral cavities, and (iii) evanescent
couplers. The cavity design [Fig. 1(c)] enables machining of

the structure from only two sides, and completely removes
seam loss as a source of Q reduction [31]. Lattice sites are either
single postcoaxial resonators oscillating in their fundamental
mode with a spatially uniform phase profile or are three
postcoaxial resonators with a chiral phase profile designed to
produce a synthetic gauge field. The final ingredient is the
couplers, which induce the tunneling term in the Hofstadter
Hamiltonian [Fig. 1(c)]. The chiral cavities are designed so
that a photon tunneling into and subsequently out of the cavity
acquires a phase equal to the angle between input and output
arms. When the lattice is arranged as shown in Fig. 1, a photon
traveling in the smallest closed loop (plaquette) acquires a 3
geometric phase.

In the fundamental mode cavities, a single post protrudes
into an otherwise empty rectangular box. The length of the
post sets the frequency of the resonator’s fundamental mode
to 9.560 GHz (to within 1 MHz), with the next mode at
approximately twice this frequency (see Appendix A). The side
lengths of the box ensure that its cutoff frequency is higher than
the post mode, resulting in localization of the post mode even
without a lid on the resonator, with a mode Q determined by
the length of the cylinder, until surface losses dominate.

The second type of cavity exhibits modes whose phase
depends on the location in the cavity. This chiral cavity is
structurally similar to the fundamental coaxial cavity, but with
three equal-length posts arranged in an equilateral triangle at
the center of the cavity, instead of a single post [Fig. 1(c)].
These three closely spaced posts constitute three coupled
degenerate resonators, and hence behave as a three-site tight-
binding model with periodic boundary conditions. The result is
one (quasimomentum g = 0) mode in which all posts oscillate
with the same phase, and two degenerate modes at a higher
frequency (1 GHz higher in this lattice), at g = :t%”; the
electric charge accumulation in these latter two modes travels
from post to post clockwise or anticlockwise, respectively.

To break the time-reversal symmetry of the lattice and
thereby induce a chirality in the system, it is essential that
only one of the two degenerate modes at |g| = 27” couples
to the lattice bands. To achieve this, a 1 mm YIG sphere
is inserted between the three posts [Fig. 1(c)]. When a dc
magnetic field Bpc is applied to the YIG, it behaves as a
macroscopic electron spin whose magnetic moment precesses
at the Larmor frequency w; = wp Bpc, and with a handedness
set by the direction of the magnetic field (up = 28 MHz/mT is
the Bohr magneton). When the YIG sphere is installed between
the three posts of the cavity, where the microwave magnetic
field is strongest, the precessing magnetic moment couples
strongly to a cavity mode which co-rotates (g = ZT”), and
weakly to the one which counter-rotates (¢ = —ZT”). Figure 2

shows the observed behavior of the g = i%” modes as the
dc magnetic field is varied, tuning the YIG frequency through
the bare |g| = 27” mode frequency: the YIG induces a large
avoided crossing with the co-rotating “bright” mode and a
smaller asymmetry-induced avoided crossing in the counter-
rotating “dark mode”. Fine adjustment of the magnetic field
strength can further be used to tune the frequency of the
YIG cavities.

To probe the spatial structure of the chiral modes, we insert

two antennae into one of the chiral cavities, separated by 45°.
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FIG. 2. S$),-S;; transmission between two antennas 45° apart in a
single YIG cavity as a function of magnetic field. There is stronger
coupling between the cavity mode with the same chirality as the
YIG sphere. The largest frequency splitting is 446 MHz. The color
indicates the phase shift a photon acquires in transmission. After
subtracting the two different directions of transmission to eliminate
phase noise from cables and impedance mismatches, one chiral mode
has a phase shift of 90°, while the other has a phase shift of —90°,
indicating the modes are of opposite chirality.

Figure 2 shows the observed phase difference between exciting
one and measuring the other, and the reverse, indicating that
the dark mode exhibits a phase difference of 90°, while the
bright mode exhibits a difference of —90°, consistent with their
opposite chiralities.

To build a 7-broken model, our engineered Hamiltonian
must employ only one of these two chiral modes; accordingly,
the dark-bright mode splitting of 350-450 MHz (depending on
Bpc) sets the spectral domain into which the engineered Chern-
band structure must fit. While the dark mode is the better choice
in a superconducting resonator because YIG loss is larger
than the bare resonator loss, in our case technical concerns
make the bright mode preferable for lattice engineering (see
Appendix A).

The lattice sites are tunnel coupled by milling out slots
between them. Because the lowest mode of these slots is above
the cutoff of the lattice, these slots couple sites together without
inducing radiative loss. The width and depth of the couplers
set the tunneling energy, which we tune with a screw (see
Appendix A) to 30 MHz with precision &1 MHz, in accordance
with the requirement that the total band structure be narrower
than the minimum 350 MHz dark-bright splitting.

III. SPECTRAL PROPERTIES OF A MICROWAVE
CHERN INSULATOR

A defining characteristic of a topologically nontrivial band
structure is an insulating bulk and conducting edges [32].
To demonstrate that our microwave lattice exhibits these
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FIG. 3. (a) Measured transmission spectrum between two bulk
(purple) and two edge (orange) sites. The purple trace is the transmis-
sion between adjacent cavities in the bulk of the lattice [(5,6) and (6,6)
defined from the upper-left lattice corner], while the orange trace is the
transmission between cavities on the edge of the lattice [sites (1,1) and
(1,11)]. The differential response between upper and lower gaps arises
from the distance difference for clockwise and anticlockwise edge
propagation between probe and measurement sites. (b) Projected band
structure of both the bulk (blue/white density plot, with spatial Fourier
limited resolution) and edge (red points) of the system, compared with
theory for a oo = 1/4 Hofstadter strip (purple/orange/gray-dashed
curves). The bulk data result from a site-by-site measurement of the
system response. The dispersion of the edge channel (explained in
Appendix C) is extracted from the measured cavity-to-cavity phase
shift. Within the bulk bands, this phase is sensitive to disorder
and overall geometry, resulting in a near-random signal which we
omit from the plot. The bulk-bulk transmission exhibits four distinct
bands which arise from the four-site magnetic unit cell. Gaps are
apparent between the first and second bands, as well as the third and
fourth bands. The magnetic unit cell has two sites in each direction,

compressing the Brillouin zone to [-7, 7 ].

properties, we probe it spectroscopically by placing a dipole
antenna into each cavity. Figure 3(a) shows a typical transmis-
sion spectrum between bulk lattice sites. We observe energy
gaps in the bulk response, within which the edge-localized
channels reside, consistent with the computed band structure
[29] shown in Fig. 3(b). The chirality of the edge channels
results in an asymmetric edge-edge response in the band gaps:
the edge modes in the lower and upper gaps have opposite
group velocities and finite damping, so the accrued decay is
smaller when the excitation travels the “short way” versus the
“long way.”

When the system is excited in the bulk within the bulk band
gap, we observe a localized response as shown in Fig. 4(a),
resulting from vanishing density of states in the bulk at energies
within the band gap. On the other hand, when the system
is excited on its edge within the bulk band gap, we observe
the delocalized response shown in Fig. 4(b), resulting from
the presence of a chiral edge channel within the bulk energy
gap. Decay in the lattice allows us to observe the chirality
of the edge mode in the steady-state response. At 9.6 GHz,
the channel travels counterclockwise, as anticipated from the
band structure in Fig. 3(b). By taking a Fourier transform of
the spatially resolved (complex) transmission, we are able to
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FIG. 4. (a) Thelattice’s response to an edge excitation (red arrow),
at a frequency of 9.622 GHz which is within the band gap. The
presence of an edge channel at this frequency results in a delocalized
chiral response along the system edge, decaying due to the finite
resonator Q’s. (b) The response of the lattice when a bulk site (red
arrow) is excited continuously at a frequency of 9.569 GHz within the
upper band gap. The absence of bulk modes at the excitation frequency
results in exponential localization of the response to the edge.

reconstruct the bulk band structure of the lattice. For simplicity,
we project out a transverse spatial coordinate, and plot the
resulting 1D band structure in blue in Fig. 3(b).

The site-resolved probes accessible in our system enable us
to directly access the dispersion of the edge channel, which we
achieve by probing the system edge within the bulk energy
gap and measuring the phase accrued per lattice site as a
function of frequency (see Appendix C). Figure 3(b) shows
the observed dispersion in red, in good agreement with the
theoretical prediction shown in gold in the band gaps.

IV. DYNAMICS OF MICROWAVE CHERN INSULATOR

A major advantage of using microwave photons is that time-
resolved edge-transport measurements are possible. Instead
of exciting the lattice with a cw signal from a network
analyzer, we can also apply a pulse to the single site on
the edge and observe its chiral propagation. In what follows,
we excite the center of the upper band gap (9.6 GHz) with
the shortest Gaussian pulse not Fourier broadened into the
nearby bulk bands (75 ns), at site (1,1). We then measure
the response at each site as the pulse propagates. Figure 5
shows the response of the system edge; the pulse travels
in one direction with a well-defined and constant velocity,
exhibiting no backscattering due to the protection provided by
the chirality of the system. The group velocity is measured to be
0.32 £ .04 sites/ns, consistent with the measured dispersion g—‘;
at 9.6 GHz (0.328 £ .002 sites/ns). Weak Fourier broadening

into the bulk bands is also apparent in the data as a small
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FIG. 5. Spatiotemporal response of the edge cavities to a 50 ns
pulse centered on 9.6 GHz. The x axis is the indexed cavity number of
each of the 40 edge sites and the y axis is time. The brightness reflects
the relative normalized transmission between the excited cavity and
the measured cavity. The grid on the right illustrates the mapping
used by the x axis of the plot on the left. The solid cavities are the
indexed sites, while the white bulk cavities are not indexed in the plot.
The chirality of the edge channel is reflected in the unidirectional
travel of the pulse. The weak stationary response results from a small
Fourier-broadened excitation of bulk modes.

excitation fraction over all sites that does not propagate. A
movie showing the pulse propagating through the lattice is
shown in the Supplemental Material [33].

V. PHOTONIC TUNNEL JUNCTION

Looking forward to exploration of strongly interacting topo-
logical phases [29], it will be essential to fabricate metamaterial
structures which operate as spatial interferometers [34,35].
Suchdevices afford direct sensitivity to the charge and statistics
of edge excitations through response of the interference fringe
to magnetic flux and enclosed anyons, respectively.

As a first step towards this objective, we harness the
extraordinary flexibility of our platform to realize a photonic
tunnel junction, analogous to half of a solid-state edge channel
interferometer [5]. We realize the tunnel junction by detuning a
single column of lattice sites inour 11 x 11 sample, leaving only
a single site in the center of column at its original frequencys;
this produces a “wall” between two subsamples, with a narrow
gap through which photons may tunnel.

Figure 6 shows this arrangement; a propagating edge exci-
tation may either tunnel across the gap and stay in the original
ring in which it was traveling or continue along the edge into the
neighboring ring, akin to a chiral edge beam splitter. Results are
shown in Fig. 6 for an excitation starting at cavity site (1,1). It
bears mentioning that while a fraction of the excitation remains
in the original ring and a fraction hops to the other ring, none
is backscattered, illustrating robustness of the edge channel to
disorder. The added disorder brings edge channels from both
sides of the lattice together, opening a path for photons from
one side to enter a backwards edge mode of the other side of
the lattice. However, the photons only travel with one chirality,
as shown in Fig. 6.
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FIG. 6. A wallis builtinto the lattice by detuning all but one of the
cavities in the sixth row, separating the lattice into two 11 x5 lattices
connected by one cavity. This effectively makes a beam splitter for
running wave edge modes, as shown schematically at the right. When
the lattice is pulsed at 9.6 Ghz (in the top band gap), the response is
shown in the figure on the left. The pulse splits when it reaches the
gap in the wall (end of the red), transmitting most of the pulse to the
green part of the lattice and some of the pulse into the blue, unexcited
11 x5 sublattice. The grid on the right shows how the edge cavities
are indexed in the plotted data, where the color indicates how the edge
sites are indexed. Sites are counted first in the red region, then around
the lattice in the blue region, and then from the blue region into the
green region.

VI. OUTLOOK

We have demonstrated a complete toolbox for the development
of low-loss topological microwave lattices and harnessed this
toolbox to realize a quarter-flux Hofstadter model. The result-
ing synthetic material is to be probed site by site, revealing
an insulating bulk and topologically protected chiral edge
channels. We showcase the flexibility of the approach by recon-
figuring the lattice to act as a tunnel junction, pointing the way
to anyon interferometry once circuit quantum electrodynamics
tools provide interactions between lattice photons.

Looking ahead, the next step is to marry these microwave
resonator arrays with the tools of circuit quantum electro-
dynamics [28], thereby inducing on-site interactions. These
interactions correspond to a Hubbard U in the Hofstadter-
Hubbard model, immediately enabling studies of fractional
quantum Hall phases of interaction photons [29]. Because the
demonstrated lattice is already low loss at room temperature
(~3.5 MHz linewidth), the typical transmon qubit anharmonic-
ity of 200 MHz [36] is sufficient to induce strong correlations
between lattice photons. To prepare the photons in low entropy
phases of the resulting models, it will be crucial to harness
state-of-the-art theoretical tools to populate these models near
their many-body ground states. For small systems, this will
rely upon spectroscopically resolved excitation of many-body
states [10], while for larger systems, engineered dissipation
[37—40] will allow for preparation of incompressible phases.
In sum, the platform opens many exciting prospects at the
interface of topology, many-body physics, quantum optics, and
dissipation.
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APPENDIX A: ENGINEERING THE MODES
IN COAXTIAL MICROWAVE CAVITIES

In our prior proposal [29], cylindrical cavities were used
to create the degenerate mode structure necessary from which
the chiral modes are constructed. While the cylindrical cavity
supports the required modes, it has two technical limitations.
First, the diameter must be of the order of A, which makes
the lattices physically large. More importantly, it is difficult
to construct cylindrical cavities without a seam, introducing
associated losses [41]. In typical 3D qubit experiments [42], the
seam is cut such that no current crosses it, which significantly
reduces loss. However, for chiral modes this cannot be done and
quality factor is limited by this loss mechanism even at room
temperature, especially for larger lattices. A significant innova-
tion in this work is to use seamless cavities engineered to have
appropriate mode structure. This geometry is both compact and
has no seam loss, making it ideal for current and future studies.

Cavities with a single post support two varieties of mi-
crowave modes:

(i) A mode whose frequency is dependent primarily on
the length of the post [Fig. 7(a)]. This mode is analogous
to a coaxial cable which is shorted at one end and open at
the other, with the post acting as the coax center pin and
the outer wall acting as the coax shield. In this quarter-wave
resonator, the mode frequency is approximately four times the
post length, and higher-order modes are odd-integer multiples
of this fundamental frequency.

(i) Modes originating from the box in which the post
resides. The lowest frequency of this type of mode is set by the
two smallest dimensions of the box. We choose a cross section
that is small enough that the lowest-frequency box mode is
1 GHz above the fundamental mode of the coaxial resonator.

As we reduce the cross section of the box, the surface-
to-volume ratio increases, thereby increasing resistive surface
losses, i.e., the dominant loss channel for room-temperature
resonators. Accordingly, we choose a radius that maximizes
the Q of the post modes while ensuring the cutoff of the box
modes is well above the frequency of the fundamental post
mode (to avoid resonant or evanescent outcoupling of energy
from the post mode to the outside world through the box
modes). Since the frequency of the post mode is strongly
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(a) (b)

(c)

FIG. 7. (a) Fundamental mode cavity electric field. The mode is localized at the bottom of the cavity. (b) Electric field simulation of one of
the chiral YIG cavity modes. A video that shows the rotation as a function of time is available in the Supplemental Material [33]. (c) Magnetic
field of one of the chiral YIG cavity modes viewed from the top. The field at the center of the cavity rotates in time, coupling to the magnetic
moment of the YIG. A video is available in the Supplemental Material [33].

dependent on the length of the post, an aluminum screw
(low-loss dielectric can be used at low temperatures) threaded
into a hole in the post enables fine control of the post-mode
frequency to <0.01% (1 MHz).

The three-post cavities exhibit similar box modes, but with
the addition of two more post modes (one mode per post).
In order to break time-reversal symmetry, we first create two
degenerate modes with opposite chirality (thereby preserving
time-reversal symmetry) that maintain the loss properties of
reentrant seamless cavities. (Single-post cavities exhibit an
excited manifold composed of two time-reversal symmetric
modes, but these are at approximately twice the frequency
of the fundamental mode and the position of the maximum
magnetic field moves as a function of time, making these
cavities incompatible with coupling to a ferrite.) The additional
post modes couple to one another through the box modes.
In the case of three posts, the spectrum of fundamental post
modes resolves into a ¢ = 0 mode where all posts resonate
in phase, and two degenerate higher-energy modes with g =
+ 2?”, where the field’s maximum hops from post to post either
clockwise or counterclockwise. The mode structure is shown
in Fig. 7(b) (electric field) and in Fig. 7(c) (magnetic field)
and animations are available in the Supplemental Material
[33]. The magnetic field is not maximal at cavity center, but
exhibits sufficient concentration to couple strongly to the ferrite
(YIG sphere); at resonance, the bright mode to ferrite coupling
reaches 1.4 GHz.

In order to break time-reversal symmetry, we break the
degeneracy between the two circular modes in the three-post
cavities. This gives a linear angular dependence to the phase of
the cavity mode, since a rotating cavity mode acquires phase as
it rotates through the cavity. For these cavity modes, a photon
traveling a full rotation around the cavity shifts its phase by
2m. To break the degeneracy, we couple the rotating modes
of the cavity to a ferrite material called YIG (yttrium iron
garnet) that has its own chiral modes. When a magnetic field
is applied to YIG, it behaves like coherent electron spins. The

magnetic moment precesses at a frequency f = y B, where
y is the gyromagnetic ratio 28 GHz/T and B is the dc field
strength. This precession has the same chirality as one of the
cavity modes and the opposite of the other mode. Due to what
amounts to a rotating-wave approximation in real space, the
YIG couples much more strongly to the cavity mode precessing
with the same frequency. In Fig. 2, we show the magnetic field
dependence of the frequency of the circular modes. One of
the modes shifts in frequency more than the other as we tune
the magnetic field, giving a maximum frequency separation in
the cavities of 400 MHz. The phase shift through the bright
mode is the same and equal to two times the angle between
the antenna (the factor of 2 comes from measuring S12-S21
to eliminate cable and connector phase), while the phase shift
through the dark mode is 2Pi minus the phase shift in the bright
modes since this mode is orbiting with opposite chirality. The
uniform oscillating mode is also shown on this plot at the lowest
frequency. The phase shift through this mode is O since it has
no spatial dependence on phase.

The dark mode does interact to some degree with the YIG
spheres in these types of cavities (as opposed to perfectly
circular cylindrical cavities). This is primarily because the
modes of the resonators are not perfectly circularly polarized
and because the bias field is not perfectly homogeneous.
Additionally, the coupling to the YIG sphere is quite strong,
making these effects easily observable as additional avoided
crossings in Fig. 2. At low temperatures, we will couple the
lattice to the dark mode since it will hybridize less with the
YIG modes (cavity modes are higher Q when the cavity is
superconducting). At room temperature, it iS convenient to
couple to the bright, higher-frequency YIG mode since it not
only has similar Q to the dark mode, but also only has the
one dark mode nearby in frequency. Also, since it is higher
frequency, it allows the fundamental cavities to have less screw
length protruding into the cavity and thus somewhat better Q’s.

The couplers can be thought of as higher-frequency res-
onators between neighboring cavities that couple the cavities
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with a strength ng , where g is the direct coupling of the cavities
to the coupler and A is the detuning. Thus one way to increase
the coupling between cavities is to bring the posts of the cavities
closer together, which increases g. Similarly, any method that
concentrates the mode of the coupler closer to the posts will
increase the coupling. To increase A, we can either increase the
size of the coupler or add a post in the coupler so that the coupler
has its own post mode. By carefully selecting the length of this
post, we can keep the couplers off-resonant to the lattice, but
decrease A significantly for higher coupling. We use a tapped
screw as the post so that we can tune the coupling between
lattice sites. The screws allow the frequency of the coupling
to be tuned from 20 MHz to 100 MHz, though to keep the
band structure of our lattice comfortably within the 400 MHz
splitting between the chiral YIG cavity mode (so that the YIG
mode with opposite chirality does not hybridize with any lattice
modes), we tuned the coupling in this paper to 30 MHz.

APPENDIX B: MEASURING THE LATTICE

Every cavity has a microwave antenna weakly coupled to
it from the top, so that the antenna does not add significant
loss or shift the frequency of the resonator. The length of
all the antennas is kept the same so that the coupling to
each cavity is the same. Each antenna is then connected to
a vector network analyzer through a switch network so that we
can measure the transmission between any two cavities. We
can measure reflection off any site as well, though reflection
measurements are more sensitive to impedance mismatches in
the cables and switches. Effectively, this allows us to perform
measurements akin to a scanning tunneling microscope, for
microwave metamaterials. See Fig. 8 for a schematic of the
measurement apparatus.

Using the same network of antennas, we can pulse the lattice
and measure the response as a function of time. To create the
pulse, we mix a 9.6 GHz sine wave signal with a 75 ns long
Gaussian pulse (50 ns for the wall experiment). The pulse must
be short enough in the time domain so that it does not interfere
with itself, but long enough so that the pulse is not so wide in

Network
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FIG. 8. The lattice is shown on the right. A lid for the lattice is
made so that one of the gold-colored antennas is connected to every
lattice site. These antennas are connected through an rf switch to the
network analyzer so that arbitrary transmission between pairs of sites
can be measured.
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FIG. 9. We measure the difference in phase between an excited
edge cavity and other edge cavities as a function of distance. The
edge cavity number starts at 12 and ends at 18 so that only one
edge is fit to a line, to avoid additional dispersion introduced by the
corner. We choose the side furthest from the the excited cavity to
minimize the effects of direct coupling. For the frequency shown here
(w =27 x9.61 GHz), the lattice momentum is half the slope, or
—54 deg per cavity.

frequency space that it strongly excites the bulk bands. We use
a shorter pulse for the wall data since the pulse takes less time
to come back to the originally excited cavity. To measure the
pulse, we first use an in-phase—quadrature (IQ) mixer to mix
the signal coming out of the measured cavity with the 9.6 GHz
oscillator to make the signal near dc. We then measure the IQ
output on a scope to get both the phase and the amplitude of
the response as a function of time.

APPENDIX C: DISPERSION OF THE EDGE CHANNEL

The dispersion an edge channel can be measured directly
from the evolution of the phase response along an edge of the
lattice, when the system is excited on an edge within the bulk
band gap. In a square lattice, the dispersion is constant along
a side but changes near the corners, so we examine the phase
response on noncorner sites along a single side of the lattice
[i.e.,sites (11,2) to (11,10)]. Plotting the phase shift as function
of distance between the excitation port and the measuring port
yields a line with slope equal to the lattice momentum (see
Fig. 9 for a sample data set). In our measurements, we subtract
the S12 direction from the S21 direction in order to eliminate
the phase shifting from cable length and connectors. This
subtraction means that the slope of the line is actually twice the
lattice momentum. The S12 excitation moves around the lattice
in the opposite direction as the S21 excitation, so they travel
a different distance. When S21 is subtracted from S12, this
discrepancy manifests itself as a constant offset proportional
to the perimeter of the lattice; the slope of the phase vs distance
plotis unaffected. The phase shift per cavity can be a significant
fraction of 2, so phase unwrapping is necessary to recover
the slope. Using this technique at a frequency within the bulk
bands results in a near-random signal since this phase at that
frequency is sensitive to disorder and overall Geometry.

A video of pulse propagation can be found in the Supple-
mental Material [33]. In this video, the measured response is
renormalized at each time before plotting, so that even after
decay the pulse can be seen clearly.
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