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4.4 Magnitude and Phase of transmission through a superconducting YIG cavity as
a function of magnetic field between two antenna with π

4 radians between the
referenced from the center of the cavity. At zero field, the two mode are near
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4.8 Left. We pulse edge site (1,1) of the lattice in the lower band gap at an edge
mode frequency of 9.003 GHz (see Figure 4.7) with a Gaussian pulse of width
80 ns. The blue is the response as a function of time and which edge site. The
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5.3 Single tone spectroscopy of a resonator coupled to a qubit. This is a different
sample than will be used later. No magnet is in this particular sample, and there
is only one cavity mode which has a low coupling quality factor. The frequency
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ABSTRACT

The recent rapid advancement in the ability to create and manipulate superconducting qubit

systems has created an exciting opportunity to construct quantum materials from the ground

up, artificial atom by atom. This thesis will explore the creation of a new architecture of

quantum simulation in which we use the circuit quantum electrodynamics toolbox to build

quantum topological materials that so far have proven difficult to understand with theory,

simulate with computational methods, and realize/measure with other quantum systems.

Specifically we design a two-dimensional material in which microwave photons living in a

superconducting 3D microwave cavity lattice interact strongly with a time-reversal symmetry

breaking magnetic field and with each other. This is the first photonic topological lattice

platform compatible with strong interactions. The combination of these interactions will

enable the study of fractional quantum Hall systems, where fractionally charged particles

called anyons are theorized to exist. This thesis describes how to engineer a tunable, low

loss microwave lattice, create a magnetic field for chargeless photons using ferrite crystals,

and generate inter-particle interactions using Josephson junction transmon qubits.
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CHAPTER 1

INTRODUCTION

One of unifying goals among the diverse field of condensed matter physics is trying to un-

derstand how macroscopic properties of materials emerge from simple repeating building

blocks. These “emergent phenomena” occur in all type of systems, from granular materi-

als where the shapes of the constituent particles can determine how the material collapses

under pressure [6] to elemental metals where effective attractions between electrons due to

the atomic lattice results in a reorganization of the electrons into Cooper pairs and dissi-

pationless charge transport [7]. Quantum materials have particularly interesting emergent

phenomena, since the strange properties of quantum mechanics, such as entanglement and

wavefunction topology, define the macroscopic behavior of the material. Entanglement can

lead to non-local effects and new types of quasiparticle formation (Cooper pairs or Bogoli-

ubov quasiparticles [8]), and when combined with topological effects can create even more

exotic quasiparticles that have different exchange statistics and fractional charge like anyons.

Interactions between the particles are what causes entanglement, but random defects or ther-

mal lattice excitations that are in most systems often end up scrambling the phase of the

quantum wavefunction, which can make entangled quantum materials difficult to realize.

However, the discovery of high-temperature superconductivity [9] and the quantum Hall ef-

fect at zero field showed that macroscopic quantum effects can be realized at less extreme

conditions and spurred the community towards developing many new quantum systems.

There are several challenges to designing quantum materials that makes creating artificial,

customizable quantum systems a rich field of research. There are many open questions

theoretically, since adding interaction/entangling terms to the Hamiltonian makes them

analytically unsolvable and numerically unreachable for large systems due to the exponential

scaling of the Hilbert space size with particle number. Experimentally, synthetic quantum
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materials offer Hamiltonians designed from the ground up, with every interaction, coupling,

and frequency term controllable. Quantum phenomena can be more completely mapped

out through correlation functions measured not only on a site-by-site basis, but also as a

function of time, since the energy scales of interactions vary depending on what particles are

being used. The potential ability to control all of these parameters and then to measure the

interplay of interactions comprehensively has created a community with the goal of building

synthetic quantum materials from larger particles such as atoms or photons or even phonons.

While considerable success has been achieved in creating quantum materials out of cold atoms

trapped with lasers, we have developed a novel architecture for studying quantum materials

using tools from the circuit quantum electrodynamics (cQED) toolbox. In this system, the

interacting quantum particles are microwave photons that are trapped in microwave cavities

(Figure1.1). Although microwave photons do not interact naturally with one another, the

pursuit to develop a digital quantum computer has lead to the creation of powerful tools

to create synthetic “atoms” with customizable energy levels that are so anharmonic that

absorbing a single microwave photon can change the frequency of absorbing another photon

by more than 5% of the frequency. One of the most successful tools developed to date is

the transmon qubit [10], which has long lifetimes (> 100µs [11]) while still maintaining large

anharmonicities (100− 400 MHz). These artificial atoms can mediate interactions between

microwave photons via a blockade effect, similar to the Rydberg blockade that is used in cold

atoms [12]. The sheer flexibility, control, and favorable interaction strength to decay ratio

makes the microwave photon a promising candidate with which to build quantum materials.

This work has pioneered several paths toward specifically making quantum topological ma-

terials out of microwave light a reality. We have developed and tested a method to combine

strong nonlinearities with time reversal symmetry breaking topology in a low-disorder sys-

tem where dynamics and eigenmodes are easily measured. This work is easily translatable to

Bose-Hubbard model physics as well - combined with the dissapitive stabilizer [13] developed
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Figure 1.1: The three main architectures for building quantum materials. Shown on the
right are two examples of cQED simulators– 3D cavities and printed 2D circuits

alongside the Chern insulator we can explore physics with large interactions and arbitrary

filling factors (Chapter 6). Finally, this system already has the qualities to explore new

physics in chiral quantum optics [14], since we have already coupled single photon emitters

to chiral edge channels. Superconducting circuits and cavities are powerful tools not only to

perform universal quantum computation, but also to study quantum materials, condensed

matter physics, and quantum optics.

In this thesis, I will discuss the work done specifically to create a 3D microwave photon

material that not only has strong inter-particle interactions, but also has a similarly strong

magnetic field interacting with the microwave photons. These two interactions are married

prominently in studies of the fractional quantum effect, which is the one of the main directions

we intend to explore.
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1.1 Topological Materials and the Fractional Quantum Hall

Effect

Initial interest in the quantum Hall effect arose from the unexpected observation of quantized

transport in electronic heterostructures [15]. In the intervening years, we have come to

understand that this property is the direct result of a topological winding number of the

Bloch wave-function in the Brillioun zone – physics which is robust not only to disorder

but also to inter-particle collisions [16]. In this interacting case, the lowest-lying excitations,

“anyons,” are of particular interest, as they are quasi-particles of fractional charge [17],

believed to have fractional statistics [18]. The statistics of particles in a quantum material

strongly affect the macroscopic behavior – for example, superfluid formation is possible

because of bosonic statistics. Anyons could not only be the building blocks for whole new

classes of quantum materials, but there are also proposals suggesting that the robustness of

anyons and the ability to store information in “braiding” anyons’ paths in time could make

anyons a promising candidate for quantum computing [19].

To date, definitive proof of fractional statistics remain elusive, though transport measure-

ments in anyon interferometers [20, 21] are highly suggestive [22]. As new material plat-

forms are developed, so are new measurement techniques and new perspectives on the un-

derlying physics; both particle-by-particle construction of rotating punctured topological

fluids [23] and impurity interferometry [24] promise direct experimental signatures of the

braiding phase/braid group of anyons, but require either the ability to construct a small

Laughlin puddle one particle at a time, or the binding of an anyon to a mobile impurity that

is itself transported through an interferometer. While it is unclear how to achieve this in

electronic materials, microscopic control in synthetic materials made of much larger photons

or trapped atoms is feasible.

Synthetic topological materials fall into three principal categories: those made of ultracold
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atoms [25], phonons [26, 27], and those made of light. In both cases the challenges are (1)

to engineer a synthetic gauge field for the (charge neutral) particles; and (2) to mediate

interactions between them. In the case of ultracold atoms, s-wave contact interactions arise

by default [28], while inducing gauge fields requires rotation of the atomic gas [29, 30], Raman

couplings [31, 32], or lattice modulation [33, 34, 35], at the cost of reduced energy scales

and challenges in state preparation [36]. For materials made of light, synthetic magnetic

fields have been realized across the electromagnetic spectrum, from the optical [37, 38, 39]

domain, to microwave [40] and RF [1] photons, to even phonons [26]. Because photons do

not naturally interact with one another, the principal challenge is to realize a topological

meta-material which is compatible with strong interactions. In the optical domain, Rydberg

electromagnetically induced transparency is a possibility [12, 41]; in the microwave, circuit

QED tools offer a viable solution [42, 43].

1.2 Advantages and Challenges of Building Quantum Materials

Using Circuit QED

Due to many impressive results in building quantum materials, trapped atomic lattices

are the standard to which to compare synthetic quantum material systems. The largest

raw parameter advantage superconducting circuits have is the interaction strengths, which

control the dynamics of the material. While cold atoms typically have kilohertz dynamics,

circuits can be designed to have interaction strengths ranging all the way to gigahertz.

Atomic lifetimes can be very long, often up to seconds [44], but 3D microwave cavities have

also recently advanced to having lifetimes of several seconds in FermiLab SRF cavities [45].

While these cavities are not yet practical to use while making quantum materials, cavities

that we use in our lattices have already achieved lifetimes greater than 100 milliseconds

after etching and baking. Transmon qubits, the source of the nonlinearities and interactions
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in our material (which we describe later in the thesis), have lifetimes in state of the art

samples of 100µs, though these lifetimes are constantly increasing. Circuit QED systems

have the potential to have much larger ratios of the interaction energies to the lifetimes of

the particles in the system, which is important in order to explore the dynamics of a material

before particles decay.

Another benefit that comes with using cQED is the flexibility of both printed circuits and 3D

cavities. Parameters of the circuits are completely tunable, either in the fabrication or often

by knobs that can be turned mid-experiment. For example, the frequency of qubits can be

tuned by changing the magnetic field through a superconducting quantum interference device

(SQuID) loop. The coupling between elements such as cavities and qubits can be calculated

by simulation and then fabricated with high precision. Useful features such as inductors,

capacitors, waveguides, and cavities are near lossless and can be created modularly as needed.

Furthermore, circuits and cavities can be coupled and connected to each other synthetically,

allowing control over which mode is coupled to another mode, instead of only coupling to

each other as a function of proximity. This allows interesting lattice models to implemented,

such as lattices in hyperbolic space [46], higher dimensional lattices [2], or Möbius strip

boundary conditions [1]. Superconducting circuit materials are built from the ground up,

site-by-site, which has exceptional potential for control over the desired Hamiltonian.

The microwave toolbox also has answers in how to create magnetic field for interacting

photons, which can be difficult in interacting atom systems. In Chapter 2 I go into much

more detail on how we specifically do this. Yttrium Iron Garnet (YIG) is a ferrite that

has a chiral, high quality factor mode that can be tuned into the microwave regime and

coupled to microwave cavities to break time reversal symmetry and impose a magnetic field

on microwave photons. The vast resources available when working in the microwave regime is

an advantage that solves many problems not only in material design but also in measurements

and characterization.
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Finally, microwave lattices are physically much bigger than any other quantum simulator

(centimeter scale), and this allows access to individual lattice site spectroscopy. We can

control which sites or modes we populate or measure. We can directly measure correlation

functions on a single site level, which can lend insight into how entangled materials work.

Microwave photons can be observed moving from one site to another, and they can also be

measured as a function of time. This allows dynamics of the system to be measured more

thoroughly than any other system.

However, there are also significant challenges using microwave photons to make quantum

materials. While there is great control over individual sites, this inversely means that each

individual site must be controlled well, or the disorder in the system can be a limiting

factor. All of the control knobs on the system are for individual sites, and there are no

global control knobs like the ones available in atomic systems. In practice, this will limit

system sizes (especially combined with the larger lattice sites).

Additionally, controlling the loss in microwave systems can be difficult since new elements

must be added to break time-reversal symmetry, which can add potential loss channels. Only

certain lossless materials can be used inside of the system, and transmons must be made

carefully to avoid limiting the system from loss. Lossy modes from antennas or cavity seams

(more on this in section 2) must be carefully removed or else they can limit the system.

Last, none of the interactions (magnetic field or inter-particle) come by default for microwave

photons and must be individually engineered. While this is useful because it allows creative

freedom in the design, this also add a lot of complexity to the system. For example, in order

to generate equal particle-particle interactions on every site, a qubit must be controlled,

maintained, and added to each lattice site. This greatly increases either the cost and instru-

ment requirements (if every qubit must be controlled actively during an experiment) or it

must be designed around (qubits would have to be more passive and not frequency tunable).
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1.3 Thesis Overview

In Chapter 2, I will discuss the many techniques we developed in designing the 3D microwave

cavities that serve as the lattice sites for the material. In this section I will discuss how we

trap the photons effectively and efficiently, how we control the site frequencies and tunneling

rates, and how we engineer cavities that are used to generate a synthetic gauge field for the

photons. In Chapter 3, I will show how we made the first Chern insulator for microwave

photons and then examine the properties of the material we created. This material was

measured at room temperature without particle interactions and superconducting cavities.

In Chapter 4, I will explain how we adapted the Chern insulator to work at cryogenic

temperatures. I will go through all of the technical innovations that were required to make

this happen. In Chapter 5, I will explore the recent efforts to couple transmon qubits to the

lattice sites in order to generate the nonlinearity necessary to create effective inter-particle

interactions. This will include a detailed explanation of the cQED techiniques and theory

used in coupling a single qubit to a single lattice site. This section will end with the most

recent results in coupling a transmon to the topologically protected edge modes of the lattice.

In Chapter 6 I conclude with an outlook of the exciting work that can now be done with

these systems.
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CHAPTER 2

MICROWAVE CAVITIES AS PHOTONIC LATTICES

2.1 Introduction

Most of technical innovation covered in this thesis centers on how to engineer lattices for

microwave photons out of 3D cavities. These lattices define the potential which the mi-

crowave photons experience. Using 3D microwave cavities as the lattice gives you several

advantages in both creating and studying quantum materials, explained in greater detail in

the introduction. First, microwave photons are centimeter in scale. This means that each

lattice site’s pertinent parameters can be customized and added modularly, and individual

sites can be resolved and thus dynamics can be studied with single site resolution. Addition-

ally, the connectivity between cavities can be controlled. Unlike other quantum materials,

the particle’s probability to tunnel to adjacent lattice sites is not just a function of distance

between sites. Both long-range tunneling and short-range blockading of tunneling can be

achieved to engineer exotic geometry [46], higher dimensionality [2], or lattice models with

connectivity that leads to exotic band structure [1]. Finally, 3D microwave cavities allow

you freedom to tailor-make the wavefunction of individual lattice sites, and we use that

freedom to develop many of the significant technological innovations that allow the creating

of topological quantum materials.

In the pursuit of developing tools that break time-reversal symmetry and create inter-particle

interactions simultaneously, we explored using many different microwave platforms. We

started with transmission lines of inductors and capacitors to create a time-reversal invariant

topological insulator [1], shown in Figure 2.1. We then tried to break time-reversal symmetry

in this setup by replacing some of the capacitors with varactors that could be modulated in

real time, generating a time-reversal symmetry breaking gauge field similar to results with
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Figure 2.1: (a) 14x14 topological circuit discussed in our earlier paper [1] (b) Weyl semimetal
made from inductors and capacitors [2]

both microwaves [47, 43] and atoms [48]. Similarly, we tried coupling an Yttrium Iron Garnet

sphere (much more detail on these work in section 2.3) to the inductors, since an applied

magnetic field on the YIG sphere coupled to an inductor can tune the its inductance. While

these schemes are not necessarily unreachable, extra loss is added when using varactors, and

the inductive tuning is quite small and requires large fields. We realized that moving to 3D

lattices improves most of the parameters (such as quality factors of resonators) of the system

while providing potential paths towards strongly breaking time-reversal symmetry in a way

that maintains high quality factors (Section 2.3) and qubit compatibility (Chapter 5).

2.2 Trapping Photons Effectively

Achieving a long particle lifetime for the photons trapped in the microwave lattice is im-

portant because otherwise the particles will decay before any of the interesting interactions

occur. 3D microwave cavities have been shown to be incredibly good at trapping photons for

long times, up to seconds for certain cavity geometries [45]. These long life times, especially
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compared to the interaction strengths achievable with microwave photons are what make

microwave photons a particularly exciting candidate to achieve universal quantum comput-

ing. Interactions with qubits can reach gigahertz, qubit anharmonicities (of transmons) are

typically hundreds of megahertz, and interactions with magnetic fields in our lattice break

time reversal symmetry by ∼400 MHz, which is what limits how large our site-to-site tun-

neling to ∼30 Mhz. However, achieving high life times also is one of the central challenges

to making a microwave system a good quantum material, and constant care has to be taken

to avoid loss mechanisms.

There are three main categories of loss that must be considered in order to achieve high

lifetimes in cavities: leakage to the vacuum or other modes, material effects (usually resistive

or dielectric losses), and measurement losses. Leakage to the vacuum comes in several forms,

most notably due to evanescent decay out of a hole in the cavity or coupling to modes that are

created from a seam in the cavity if the cavity is not monolithic. Typically these loss sources

can be removed or minimized by careful design of the cavity geometry. Material losses, on

the other hand, are impossible to completely remove but there has been ample work on

minimizing it [49, 45]. The metal that sets the boundary of the cavity will have resistive

losses, though by using superconductors the loss can be greatly reduced. However, there are

typically impurities such as oxides or hydrides on the surface of these materials that are more

lossy. These effects can also be greatly reduced by etching and baking superconductors to

purify them, while also keeping the materials under vacuum [45]. Finally, the measurement

of the cavities itself also can be a loss source. See section 2.5.1 for more details on how that

loss channel is managed.
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2.2.1 Geometric Design

In addition to avoiding loss mechanisms, several things must be taken into account when

designing the geometry of the lattice sites. First, the geometry sets the mode density of

the resonator. Typically a low density of modes is desired since tuning and controlling a

single mode per lattice site is easier and most of the Hamiltonians we are building only need

one mode per lattice site. We first look at the most classic of 3D cavity modes such as

cylinders or rectangular prisms, or any 3D cavity that can be described by 3 or less length

scales (perturbations of length scales much less than a wavelength will not change the basic

behavior as well). If we solve for the eigenmodes of a rectangular prism as an example, we

get the following result:
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where a,b, and c are the side lengths of the cavity and l,m, and n are the mode indices. An

important additional restraint is also imposed that only one of the mode indices can be zero

in order to solve Maxwell’s equations. This means that the lowest frequency mode is set by

the two longest lengths, and that the third length can be minimized so that it contributes

only cavity modes of much higher frequency. Thus in order to constrain cavity modes to one

ground state well isolated in energy, the cavity must have one dimension that is much smaller

than the wavelength of the mode being used for the lattice, while the other two dimensions

are free to set frequency of the lowest energy mode.

The second constraint on cavity design is that it requires that the cavity support chiral cavity

modes, since chiral modes will be essential in generating the magnetic field for the photons.

Chiral cavity modes are modes where the phase of the excitation varies linearly with the

angular position in the cavity, wrapping from 0 to a multiple of 2π (see Figure 2.2). If you
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animate these modes as a function of time, you see the mode pattern rotate either clockwise or

counterclockwise. In order to have chiral modes, a cavity must have some rotation symmetry.

For rectangular prism cavities, this imposes the restriction that the largest two dimensions

must be equal. Second, because of time-reversal symmetry, any chiral cavity mode must have

a degenerate chiral cavity mode of the opposite chirality paired with it. This means that the

lowest frequency mode cannot be chiral since the lowest frequency mode is nondegenerate

(as long as one dimensions is much shorter than the other two). Because of this care must

be taken to ensure the ground state of the chiral cavity mode is sufficiently separated in

frequency from the higher energy chiral modes.

In my earlier work [3] I employed cylindrical cavities, since they fulfill all of these conditions,

while also having the best volume to surface area ratio which minimizes resistive losses in the

surrounding conductor (This is especially important at room temperature where the metal is

not superconducting). They can have well isolated ground state modes by making the height

of the cylinder much smaller than the the diameter. The next excited modes of the cylinder

are two degenerate chiral modes, as shown in Figure 2.2. In section 3.3 we discuss how these

chiral cavities can be used for making a Chern insulator. In Figure 2.9 we summarize how

the frequencies of all the modes depend on geometry and magnetic field.

However, cylindrical cavities had several drawbacks that required a different cavity design in

order to overcome. First, the diameter must be on the order of the wavelength which makes

the lattices physically large. More importantly, it is difficult to construct cylindrical cavities

without a seam, introducing associated losses[50]. In typical 3D qubit experiments[51], the

seam in these type of cavities is cut such that no current crosses it significantly reducing

loss. However, for chiral modes this cannot be done since the direction of the current rotates

in time. This seam loss limits the quality factor even at room temperature, especially for

larger cavities and lattices. A significant innovation in this work is to use reentrant-style

cavities [52] (see Figure 2.3a) engineered to have appropriate mode structure. This geometry
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Figure 2.2: a. The electric field magnitude and phase of the lowest three modes of a cylin-
drical cavity where the height is much smaller than the radius. The first column is the lowest
energy mode, where the phase is uniform in the cavity. The second and third columns are
two separate ways to describe a mode in the second manifold of modes. Since the cavity is
cylindrical, the mode can either be descibed in a linear basis like the second column, or it
can be described in a circular basis like the third column. For the circular basis, the phase
wraps around the cavity from 0 to 2π b. Phase acquired by photons tunneling through the
different modes of the cavity. For the fundamental cavity, this phase is always zero. However,
for the second mode, the phase acquired depends on both the angle between the tunneling
ports and the basis chosen! This is rectified by the second degenerate mode in the manifold
that cancels the total phase to zero for both modes. This figure is from our original theory
proposal paper [3].
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(a) (b)

Figure 2.3: (a) Reentrant cavity made of aluminum (b) Reentrant cavity made of super-
conducting niobium with three posts that supports chiral modes.

is both compact, and has no seam loss, making it ideal for current and future studies.

The reentrant post in these cavities creates a new mode in the system. Adding this post is

effectively adding a 1D resonator inside the cavity. For example, if a 1D metal rod could

be put in a rectangular prism, the rod would have modes dependant only on the length of

the rod, with the wavelength of the lowest energy mode being equal to the length of the rod

divided by two. If this rod was then connected to the side of the cavity, the rod would still

have modes dependent on the length of rod, but instead of a λ
2 wavelength, the lowest energy

mode would have a wavelength of λ
4 . This rod can have a thickness, and the thickness of

the rod only perturbatively affects the rod mode frequency. This rod becomes the reentrant

post that causes the mode that is used for most of the work in this thesis. Since the post

mode is essentially 1D, the post can fit inside a rectangular prism (box) cavity while having

substantially lower frequencies than the lowest frequency mode of the box. This is because

the lowest frequency of a box is determined by the two longest dimensions of the box, so

that 1 dimension of the box can be arbitrarily long without lowering the frequency of the

ground state. This long dimension can align with the long dimension of the post. Thus the
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(a) (b) (c)

Figure 2.4: a. Fundamental mode cavity electric field. The mode is localized at the bottom
of the cavity. b. Electric field simulation of one of the chiral YIG cavity modes. A video
that shows the rotation as a function of time is available at https://youtu.be/gHoyFxkw9iQ.
c. Magnetic field of one of the chiral YIG cavity modes viewed from the top. The field at
the center of the cavity rotates in time, coupling to the magnetic moment of the YIG.

mode of the post is trapped inside a cavity that has no modes near it in frequency. This

becomes especially useful since the modes of the box before the post was put in the cavity

now can be quite lossy since they can be pushed several gigahertz away in frequency from the

post mode of the cavity and effectively ignored. In fact, the end of the box on the opposite

side of the cavity from the post can be completely open to air and still the modes of the

post retain high quality factors. This allows these reentrant cavities to be monolithic by

simply machining from one side of a piece of metal (see section 2.2.4 for more information

on fabrication). The electric field and magnetic field of the mode is shown in Figure 2.4. In

this post mode, current flows up and down the post, resulting in maximum charge build-up

at the top of the post which causes the electric field to be at a maximum and point radially

outward at the top of the post.

In these re-entrant cavities, there are several parameters that can be controlled. First, the
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length of the post largely determines the frequency of the mode. This is convenient because

we can then run an aluminum or dielectric screw through the middle of the post to allow

tuning of the post mode, or the posts can be physically shortened. Second, the cross-sectional

area of the box can affect the quality factor of the cavity. Increasing this increases the surface

to volume ratio, thereby decreasing surface losses, which is by far the dominant loss source

for room temperature cavities and often the limiting loss source even when the cavity is

superconducting. However, the cross-section becoming larger also lowers the frequency of

the lossy box mode of the resonator, which can also be a dominant loss source in the system

if it is too close. We then optimize this size to achieve the highest quality factors possible in

the cavity. Cavity eigenmodes can be simulated with different parameters in computation

microwave cavity solvers such as ANSYS Electronic Desktop or COMSOL.

2.2.2 Other Cavity Designs

Other cavity designs were tried and used for long periods of time before we discovered how to

use the reentrant post cavity design and they possessed their own useful qualities. Shown in

Figure 2.5a is linear chain of seven “flower” cavities. These are basically cylindrical cavities

except four corners are pinched. This design was originally inspired by an attempt to make

YIG cavities and fundamental cavities simultaneously the same radius and frequency so that

they fit uniformly on a square lattice, which is difficult since the YIG cavities use higher

order modes (section 2.3). By pinching in the corners of the cavity, the frequency of the

fundamental cavity could be raised while keeping the overall radius the same. In this lattice

we implemented and tested the Hamiltonian tomography (section 2.5.3). Another type of

cavity we tried was a cylindrical cavity with intentional disorder in one of the x or y direction

in order to break the degeneracy between the two higher order modes in a cylindrical cavity

(Figure 2.5b) This could make cavities that shift the phase of photons that pass through

them by either 0 or 180 degrees. These could be implemented in some proposals [53]. Finally
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(a) (b) (c)

Figure 2.5: Left. “Flower” cavity design. Seven of the cavities are arranged in a 1D
chain that wraps around the copper. Middle. Electric field simulation of one of the chiral
YIG cavity modes. A video that shows the rotation as a function of time is available at
https://youtu.be/gHoyFxkw9iQ. Right. Magnetic field of one of the chiral YIG cavity
modes viewed from the top. The field at the center of the cavity rotates in time, coupling
to the magnetic moment of the YIG.

we employed some reentrant cavities with four posts shown in Figure 2.5c that also had chiral

modes, but the mode spacing with the other modes in the manifold was too small.

2.2.3 Material Effects and Cryogenics

There are several factors to consider when choosing the material to make the lattice. At

room temperature, the primary concern is conductivity, thus making copper and aluminum

ideal choices (silver has a slightly higher conductivity but much more expensive). Aluminum

is easiest to machine though it has 61% the conductivity of copper. We used aluminum at

room temperature for the lattices measured in this thesis.

After cooling the lattice to cryogenic temperatures in the dilution refrigerator, the choice on

which material becomes more nuanced as many materials start superconducting. Since some

of the lattice cavities require DC magnetic fields applied to ferrite crystals put inside them
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(more details in chapter 3), type II superconductors with a high second critical field perform

better, so that flux can penetrate the cavity but not destroy its superconducting properties.

Niobium and Niobium titanium both can withstand high fields (∼1800 Gauss Hc1 and 4000

Gauss Hc2 for high purity niobium [54]) before going normal. Niobium titanium has a larger

critical field than niobium, but the differences proved negligible (more details in chapter 4).

2.2.4 Fabrication

All cavities and lattices were made using CNC milling. Some of the design decisions were

constrained by the limitations of milling, most notably how small the cavities can be machines

while maintaining structural stability of the post inside the cavities. Many of the prototypes

were machined by myself at the student shop while the final versions were made by the

company Zero Hour Parts.

2.3 Breaking Time Reversal Symmetry in Microwave Cavities

The first main step I took in building topological quantum materials out of light was designing

a magnetic field that interacted strongly with microwave photons. Magnetic fields both break

time reversal symmetry and induce interesting topological states. In chapter 3 I discuss how

to make a magnetic field for photons in greater detail, but the essential requirement is that

photons have to acquire extra, nontrivial (not a multiple of π) phase as they tunnel from

site to site. In addition, in order to generate a uniform magnetic field of the right strength,

the phase photons acquire from tunneling must be carefully controlled. A central innovation

of my work was designing individual cavities that strongly broke time reversal symmetry

and the ability to tune tunneling phases while maintaining high quality factors and a low

density of states. This is accomplished by first making a cavity with chiral modes that are
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high quality factor and isolated in energy, and then breaking the degeneracy between these

two chiral cavity modes. To break the degeneracy, we couple the rotating modes of a cavity

to a ferrite material called YIG (yttrium iron garnet) that has its own chiral modes. When

a magnetic field is applied to YIG, it behaves like coherent electron spins. The magnetic

moment precesses at a frequency f = γB, where γ is the gyromagnetic ratio 28 GHz/T and

B is the DC field strength. This precession’s chirality is set by the direction of the magnetic

field and always has the same chirality as one of the cavity modes and the opposite of the

other mode. Due to what amounts to a rotating wave approximation in real space, the YIG

couples much more strongly to the cavity mode precessing with the same frequency.

I first achieved time-reversal symmetry breaking in cylindrical cavities. The first two excited

states of a cylindrical cavity are chiral modes, though because they are degenerate the two

modes can be described in a linear basis as well. This would make the two modes have

identical structure but rotated π
2 (see Figure 2.2). Not only do these fields have a chiral

modes, but the chiral modes have maximums of their magnetic field sitting at the center of

the cavity (Figure 2.7) shows the magnetic field of a cylindrical cavity mode). The magnetic

field at this location precesses at the cavity frequency. This allows us to place a YIG sphere

at the center of the cavity to maximize the coupling between the YIG and the cavity without

breaking the circular symmetry that is necessary for chiral modes. In Fig 2.6, we show the

magnetic field dependence of the frequency of the circular modes (details on the measurement

setup given in section 2.5.1). One of the modes shifts in frequency much more than the other

as we tune the magnetic field, resulting in a splitting of 100 MHz. This splitting is effectively

how much time reversal symmetry is broken in the cavities. We term the mode that interacts

strongly with the YIG sphere the “bright” mode and the noninteracting mode the “dark”

mode. The dark mode is particularly interesting since it does not hybridize with the YIG

sphere and thus its quality factor is set only by the quality factor of the cavity (the YIG

dielectric loss is small (quality factors of the YIG mode are ∼3000 at room temperature at

our fields and frequencies [55]) and it turns out the mode itself is not that lossy at cryogenic
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Figure 2.6: a. Predicted spectra of the YIG mode and the two chiral cavity modes as
a function of magnetic field. The YIG mode interacts with a cavity mode of the same
chirality, but does not interact with the mode of the opposite chirality. b. Simulated phase
of transmission through a YIG cavity when the two ports are 45◦ apart. On resonance (the
rightmost plot) the phase of the dark modes is exactly opposite the phase of the bright modes
due to the opposite chirality. c. Measured transmission of a cylindrical cavity with a YIG
sphere at its center as the magnetic field on the YIG sphere is sweeped. The cavity behaves
as modeled except for the extra YIG modes interacting with the cavity at higher magnetic
fields. d. The YIG is tuned into resonance with the cavity modes and two antennas are
put into the cavity with a 45◦ angle between them. The phase is measured in blue and
magnitude the magnitude is plotted in gold in order to show the frequency of the modes.
At the mode frequencies, the two dark modes have a phase shift equal to twice the angle
between the antennas, while the bright mode has the opposite phase, indicating opposite
chirality. Figure a and b come from our paper theoretically proposing this model [3].
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Figure 2.7: a. Simulated electric field of one of the second excited states of a cylindrical
cavity.b. Simulated magnetic field of one of the second excited states of a cylindrical cavity.
The magnetic field is strongest in the center.

temperatures. This is discussed in greater detail in chapter 4). We can also directly measure

the chirality of the modes by measuring the phase of transmission through the cavity. Chiral

cavity modes have a linear phase gradient (see Figure 2.2) as a function of the angle in the

cavity, so we would expect to observe a transmission phase that is either equal to the angle

between the measurement ports relative to the cavity center or 2π minus that angle. In

Figure 2.6 we plot the phase as a function of frequency between two measurement ports that

have a π
4 angle between them. In order to eliminate cable and connector phase, we measure

S12 -S21 (transmission from port 1 to 2 minus transmission from port 2 to 1), so the actual

phase plotted in Figure 2.6 is two times the actual phase. The phase observed for the dark

mode is 3π
2 while the phase observed for the hybridized dark modes is π

2 , which is consistent

with twice the angle between the ports. The main takeaway here is that we have created a

high quality factor cavity mode that can be used to control the phase of microwave photons

by breaking time reversal symmetry. The main limitation is the size of the splitting between

the bright and dark modes, since the phase in the bright and dark modes is different, which

means that we only want photons to interact with a single mode. This constrains terms we

introduce later such as the tunneling rate and disorder to be much smaller than this splitting.
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However, we needed to design a cavity that behaved similarly but was compatible with

the re-entrant post cavities described earlier in this section. The excited manifold of the

re-entrant post cavities is composed of two time-reversal symmetric chiral modes, but the

maximum magnetic field position in these modes moves in the cavity as a function of time,

making these cavities incompatible with coupling to a ferrite. Additionally, these modes are

at approximately three times the frequency of the fundamental mode which causes other

issues when trying to isolate the two modes in frequency. The goal then was to create a

degenerate pair of chiral modes that had a stationary magnetic field maximum. One simple

way to create extra modes in a cavity is to add more posts. Each additional post will add

another mode. Adding a second post of the same length does not create a degenerate set of

modes however, since the two posts couple to each other through the box mode of the cavity,

and the resultant two modes are one mode where the two post mode oscillate in phase with

each other while the other mode has the two modes oscillating π radians out of phase, similar

to a system of two coupled masses on springs. Adding a third post in a triangular pattern (as

shown in Figure 2.4b) results in a more promising dispersion of modes. When the post modes

couple to one another through the box modes, the spectrum of the post modes resolves into

one lowest energy mode where all posts resonate in-phase, and two degenerate higher-energy

modes. Since there is still a rotational symmetry in the system, these two degenerate modes

have a rotational basis in which they can be measured. The field structure of these modes

is shown in Figure 2.4b (electric field) and in Figure 2.4c (magnetic field) and animations

are available in the supplemental materials online. The field’s maximum hops from post to

post either clockwise or counterclockwise as a function of time/phase.The magnetic field is

not maximal at the cavity center, but exhibits sufficient concentration to couple strongly to

the YIG sphere; at resonance, the bright mode - ferrite coupling reaches 1.4 GHz.

In Figure 2.8, we show the magnetic field dependence of the frequency of the circular modes

in three post cavities coupled to a YIG sphere placed in the center of the posts. One of the

circular modes shifts in frequency more than the other as we tune the magnetic field, giving
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Figure 2.8: S12-S21 Transmission between two antennas 45◦ apart in a single YIG cavity
as a function of magnetic field. There is stronger coupling between the cavity mode with
the same chirality as the YIG sphere. The largest frequency splitting is 446 MHz. The
color indicates the phase shift a photon acquires in transmission. After subtracting the
two different directions of transmission to eliminate phase noise from cables and impedance
mismatches, one chiral mode has a phase shift of 90◦ while the other has a phase shift of
−90◦, indicating the modes are of opposite chirality. This picture comes from our paper [4].
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a maximum frequency separation in the cavities of ∼400 MHz. Similar to the cylindrical

cavity, the phase shift through the bright mode is the same and equal to two times the angle

between the antenna, while the phase shift through the dark mode is 2Pi minus the phase

shift in the bright modes since this mode is orbiting with opposite chirality. The uniform

oscillating mode is also shown on this plot at the lowest frequency. The phase shift through

this mode is 0 since it has no spatial dependence on phase. The dark mode does interact to

some degree with the YIG spheres in these types of cavities (as opposed to perfectly circular

cylindrical cavities). This is primarily because the modes of the resonators are not perfectly

circularly polarized and because the bias field is not perfectly homogeneous. Additionally,

the coupling to the YIG sphere is quite strong, making these effects easily observable as

additional avoided crossings in Figure 2.8. At low temperatures we will couple the lattice

to the dark mode since it will hybridize less with the YIG modes (cavity modes are higher

Q when the cavity is superconducting). At room temperature it is convenient to couple to

the bright, higher frequency YIG mode since it not only has similar Q to the dark mode,

but also only has the one dark mode nearby in frequency. Also, since it is higher frequency,

it allows the fundamental cavities to have less screw length protruding into the cavity and

thus somewhat better quality factors.

I chose to work at 9.6 GHz since at this frequency I could maximize the coupling to the

YIG sphere while not having the higher frequency modes of the YIG sphere complicate the

cavity-YIG coupling (Figure 2.6 shows the higher order modes). Figure 2.9 summarizes the

how the frequencies of the modes depend on geometry and the YIG sphere. The cavity we

ended up using for the rest of this thesis is the last column, the YIG cavity with 3 posts.
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Figure 2.9: The fundamental and next highest excited manifold of modes for the four types of
cavities discussed in the section. The two cavities on the left are the bare cavities- the lowest
modes are the fundamental mode not used for the chiral cavities, then two excited modes are
degenerate and have opposite chirality. The cylindrical cavity mode spacing is determined
by zeros of the Bessel functions, while the 3 post cavity mode spacing is determined by
the coupling between the three posts gpost (the three posts are essentially three separate
resonators hybridizing equally to each other), or essentially how close they are to each other.
When the YIG sphere is added and tuned to the excited manifold frequency, it hybridizes
with the mode of the same chirality and splits it in energy by gTRSB in both cases. Left
at the original excited manifold frequency is a mode of the opposite chirality, which is the
chiral, time-reversal symmetry broken mode we needed to engineer a magnetic field.
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Figure 2.10: Cavities coupled to each other in a 1D lattice. In this particular version, there
are posts in both the cavities and the couplers. Tuning the post lengths with a screw allows
both the frequency of the cavity and the coupling between sites to be tuned.

2.4 Tunnel Coupling

The cavities are coupled by drilling a hole from the other side of the lattice in between the

lattice sites. As long as the couplers’ cross-sectional areas are small enough so that frequency

of the mode in the couplers is much higher than the lattice site modes, then negligible loss is

introduced from the couplers. The couplers can be thought of as higher frequency resonators

between neighboring cavities that couple the cavities with a strength g2

∆ , where g is the direct

coupling of the cavities to the coupler and ∆ is the detuning. Thus one way to increase the

coupling between cavities is to bring the posts of the cavities closer together which increases

g. Similarly, any method that concentrates the mode of the coupler closer to the posts will

increase the coupling. To increase ∆, we can either increase the size of the coupler or add

a post in the coupler so that the coupler has its own post mode. By carefully selecting

the length of this post, we can keep the couplers off-resonant to the lattice, but decrease ∆

significantly for higher coupling. We use a tapped screw as the post so that we can tune the

coupling between lattice sites. The screws allow the frequency of the coupling to be tuned

from 20 MHz to 100 MHz, though to keep the band structure of our lattice comfortably

within the 400 MHz splitting between the chiral YIG cavity mode (so that the YIG mode

with opposite chirality does not hybridize with any lattice modes), we tuned the coupling in

the room temperature lattices to 30 MHz.

For the cryogenic lattice, we remove the tuning screws and set the tunneling rate by the size
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of the coupler, since screws can be a loss source at higher quality factors. Since the YIG

splitting is smaller (discussed more in chapter 4), the coupling rate is lowered to 15 MHz.

2.5 Measuring Cavities

2.5.1 Microwave Cavity Measurements

When measuring a microwave cavity, several factors must be considered. For all of the

cavities in this thesis, the method of coupling is the dipole antenna. Essentially this is just

a single wire (antenna) that protrudes into the cavity and couples to the cavity mode by

aligning with the electric field of the cavity. The coupling is determined by how much the

antenna aligns with the electric field of the cavity.

Getting the right coupling to the cavity can be a challenge. If the coupling is too high, then

the cavity quality factor and frequency can be affected by the antenna. If the coupling is too

low, then the signal to noise will not be high enough to learn anything about the resonator.

Typically the antenna will be put on top of cavity where the electric field profile is decaying

exponentially. This makes the coupling to the cavity highly sensitive to the antenna length.

Furthermore, in order to achieve the desired couplings (in the YIG cavities), the antenna

must be so long that the antenna will support its own modes near the cavity frequency.

These modes are extremely lossy and can spoil the quality factor of the cavity.

2.5.2 Setup of the Lattice Measurements

Every cavity has a microwave antenna weakly coupled to it from the top, so that the antenna

does not add significant loss or shift the frequency of the resonator. The length of all the

antennas are kept the same so that the coupling to each cavity is the same. Each antenna
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Figure 2.11: The lattice is shown on the right. A lid for the lattice is made so that one of
the gold-colored antennas is connected to every lattice site. These antennas are connected
through an RF switch to the network analyzer so that arbitrary transmission between pairs
of sites can be measured.

is then connected to a vector network analyzer through a switch network so that we can

measure the transmission between any two cavities. We can measure reflection off any site

as well, though reflection measurements are more sensitive to impedance mismatches in the

cables and switches. Effectively, allows us to perform measurements akin to an scanning

tunneling microscope, for microwave metamaterials.

Using the same network of antennas, we can pulse the lattice and measure the response as a

function of time. For the room temperature lattice we create the pulse by mixing a 9.6 GHz

sine wave signal with a 75 ns long Gaussian pulse (50 ns for the beam-splitter experiment).

The pulse must be short enough in the time domain so that it does not interfere with itself,

but long enough so that the pulse is not so wide in frequency space that it strongly excites

the bulk bands. We use a shorter pulse for the wall data since the pulse takes less time to

come back to the originally excited cavity. To measure the pulse, we first use an IQ mixer to
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mix the signal coming out of the measured cavity with the 9.6 GHz oscillator to make the

signal near DC. We then measure the IQ output on a scope to get both the phase and the

amplitude of the response as a function of time.

2.5.3 Hamiltonian Tomography

After all the lattice sites are coupled, measuring the individual properties of each lattice

site becomes difficult because all of the modes hybridize. This is important because dis-

order enters the lattice through fluctuations in the individual lattice site frequencies (and

couplings). Since there are so many sites and therefore modes, it is exceedingly difficult to

decipher where disorder is in the lattice from reflection measurements from different sites. If

one tried to fit the spectrum of N peaks (N is the number of lattice sites), there would be a

number of fitting parameters equal to the number of lattice sites plus the number of couplers

(N + 2(
√
N − 1)

√
N = 3N − 2

√
N , or 341 for the room temperature lattice). In addition,

there would be many degenerate solutions. In practice, we detune neighboring lattice sites

effectively decoupling lattice sites one at a time so that we can measure the uncoupled res-

onator frequency. To measure tunneling rates, we detune all neighboring lattice sites except

for two cavities, tune them into resonance, and then measure the splitting between the two

cavities. This splitting is equal to 2t. This method is functional, but especially tedious using

the cryogenic lattice. We developed a more elegant solution to deciphering the individual

site frequencies of a coupled lattice that uses reflection measurements to determine lattice

site frequencies and transmission measurements to measure tunneling frequencies [56]. Much

of the detail on the math behind the technique can be found in the paper, but I wanted to

make a few remarks on the practicality of using this technique as well as discuss potential

methods for making it work in experiments.

A key component of this technique relies on integrate the area under the reflection or trans-
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mission responses. Essentially, the weighted average of the frequency vs the response for

reflection spectra is the uncoupled frequency of the site being measured, and the weighted

average of the transmission measurement is the direct coupling between the two sites be-

tween which transmission is being measured. However, this technique only works if the back-

ground noise is either uniform or much small than the total response of the lattice modes.

In practice, this is often not the case, since there are typically some types of impedance mis-

match between cables and couplers, which leads to frequency dependent background noise.

These impedance mismatches are particularly troublesome for reflective measurements ver-

sus transmission measurements due to reflection having a baseline of all the signal being

reflected while transmission has a baseline of none of the signal being transmitted. The

impedance mismatches in reflection affect the whole signal, even off resonant. These back-

grounds can be fit out which will minimize the error on the lattice measurement. All of this

was done and we found the technique useful on all of the fundamental cavities. However, in

the YIG cavities a different problem emerged. The mode of the YIG cavity is much more

localized near the posts than the fundamental cavities, so the antennas that couple to the

YIG cavities are required to be longer to get a decent signal. The longer antennas in the YIG

cavities then couple directly to the neighboring fundamental cavities in the lattice (in fact

it couples about equally to the YIG cavity and the neighboring fundamental cavities). This

direct coupling to the neighboring cavities invalidates the math that allowed us to measure

the uncoupled frequency of the cavity through reflection. The amount the antenna couples

to each cavity can then be measured and new procedures can be done to back out the un-

coupled frequency, but this in combination with the noisy backgrounds led us to temporarily

abandon this technique in tuning the lattice.

Besides improving the fitting of the background and the coupling of the antennas, another

step can be done to make Hamiltonian tomography more useful. One technique I tried for

awhile was putting two antennas on a lattice site and then doing transmission from one site

to itself. This greatly improves the background noise, except if the antennas have a direct
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coupling to each other. The direct coupling would put a background on the transmission

measurement. Avoiding this direct coupling is not trivial since being in the same cavitiy

naturally forces the antenna in close proximity, though there are many ways of coupling to

the cavity and perhaps one way could be found that minimizes this problem.
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CHAPTER 3

CHERN INSULATOR OF MICROWAVE PHOTONS

This section is based off the work published in our paper [4], with added technical and

theoretical details.

3.1 Introduction

The two main challenges we wanted to overcome in this thesis was to develop a material

that simultaneously has both magnetic field and inter-particle interactions for microwave

photons. The first step we took was to engineer the magnetic field interaction in such a way

that it would be compatible with adding inter-particle interactions afterward. With that in

mind, we design our lattice sites in such a way that they can work cryogenically (Chapter 4)

and support coupling to transmon qubits (Chapter 5). First I will discuss theoretically how

to make a magnetic field for photons, even though photons have no charge, then we will show

how implement that theoretical model with 3D microwave cavities. Next I will show in detail

the topological effects that emerge when a magnetic field is applied to particles in a lattice,

taking advantage of the site-by-site resolution we have with our cm-scale particles. This

system is directly compatible with the cQED toolbox [3], as it is composed only of a seamless

machined-aluminum 3D resonator array, with one Yttrium-Iron-Garnet (YIG) sphere and

one Neodymium magnet per plaquette, all of which function cryogenically. Furthermore, the

reentrant style of cavities have been successfully coupled to transmons with great results [52].
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3.2 Creating an Artificial Magnetic Field for Light

In order to understand how to create an effective magnetic field for a photon, we first have

to look at what a magnetic field does to a charged particle, especially in two dimensions.

The charged particle is trapped in a cyclotron orbit, and the particle’s wavefunction picks

up extra phase proportional to the magnetic flux the particle’s path encloses:

∆φ =
q

~

∫
A
B · dr2 =

q

h
Φ

,

where q is the particle charge, B is the magnetic field, and Φ is the enclosed flux. This is

known as the Aharonov-Bohm effect. This relationship is important because it also works

inversely- if a particle acquires additional phase when it travels in a closed loop, there is an

effective magnetic field acting on the particle. The challenge then becomes finding a way to

control the phase of photons as they move throughout the lattice. In Chapter 2 we describe

how we make cavities that can shift the phase of photons, and in Figure 3.1a we show how

these cavity sites can be patterned so that no matter what loop the particle moves in, the

flux per area the particle encloses is the same, which results in a uniform magnetic field for

the photon.

Magnetic fields cause nontrivial topology, as can be seen intuitively in a two-dimensional

electron gas. Applying a magnetic field to the gas localizes electrons in the bulk into cyclotron

orbits. These tightly localized electrons are insulating. However, near the edge of the

material, the electrons try to move in the cyclotron orbits, but bounce off the potential

barrier of the edge, resulting in a traveling mode of the electron as it skips along the edge.

These modes along the edge of the material are conducting, and they only conduct with one

chirality, which is set by the direction of the magnetic field. These modes are resistant to
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backscattering and disorder, since there are no modes of the opposite chirality supported by

the system. The insulating bulk combined with a conducting edge is a key hallmark of a

topological insulator.

In this thesis, we build a Chern insulator equivalent to a quarter flux Hofstadter model. The

typical form of this Hamiltonian for this model is the following:

H = −t
∑
µ,ν

aµ,νa
†
µ,ν+1 + aµ,νa

†
µ+1,νe

iαν + aµ,ν+1a
†
µ,ν + aµ+1,νa

†
µ,νe

−iαν (3.1)

with a resulting magnetic field of

B =
α

A

h

q2
e

(3.2)

This model is one convenient way in which to generate a uniform phase per plaquette that

has been successful in systems in which the tunnel coupling phase is controllable. As will be

explained in section 2.3, we create a similar Hamiltonian but with a different gauge since we

do not directly control the phase on the tunneling term, but rather use interspersed chiral

cavities to generate the Berry phase.

3.3 Experimental Setup

To implement a quarter-flux Hofstadter lattice, we build upon the design described in [3].

The central innovation of this work is that while the Peierl’s phase which encodes the syn-

thetic gauge field is typically encoded in the tunnel-coupling between lattice sites, in practice

the phase can arise from the spatial structure of the sites themselves rather than manipu-

lation of the tunnel couplers [43, 57]. We engineered the on-site Wannier function of every
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fourth lattice site to exhibit a 2π phase winding. This ensures that every plaquette contains

a phase-engineered site, as shown in Figure 3.1a, and thereby induces a flux per plaquette

of α = 1
4 .

The meta-material is milled into a block of aluminum (see Figure 3.1b and Section 2.2.4 for

more details) and is composed of three components- (i) fundamental mode cavities; (ii) chiral

cavities; and (iii) evanescent couplers. The cavity design (Figure 3.1c) enables machining

of the structure from only two sides, and completely removes seam-loss as a source of Q-

reduction [52] (see section 2.2.1). Lattice sites are either a single post coaxial resonators

oscillating in their fundamental mode with a spatially uniform phase profile, or are three

post coaxial resonators with a chiral phase profile designed to produce a synthetic gauge

field (section 2.3). The final ingredient is the couplers, which induce the tunneling term

in the Hofstadter Hamiltonian (Figure 3.1c). The chiral cavities are designed so that a

photon tunneling into- and subsequently out-of- the cavity acquires a phase equal to the

angle between input and output arms. When the lattice is arranged as shown in Figure 3.1,

a photon traveling in the smallest closed loop (plaquette) acquires a π
2 geometric phase.

In the fundamental mode cavities, a single post protrudes into an otherwise empty rectan-

gular box. The length of the post sets the frequency of the resonator’s fundamental mode

to 9.560 GHz (to within 1 MHz), with the next mode at approximately at twice this fre-

quency (see SI section 2.4). The side lengths of the box ensures that its cutoff frequency is

higher than the post-mode, resulting in localization of the post-mode even without a lid on

the resonator, with a mode-Q determined by the length of the cylinder, until surface-losses

dominate.

The second type of cavity exhibits modes whose phase depends on the location in the cavity.

This chiral cavity is structurally similar to the fundamental coaxial cavity but with three

equal-length posts arranged in an equilateral triangle at the center of the cavity, instead

of a single post (Figure 3.1c). These three closely spaced posts constitute three coupled
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Figure 3.1: Schematic and photograph of microwave Chern insulator lattice. a. Schematic
of the cavity layout. The white circles denote cavities that do not shift the phase of a
photon passing through them, while the cavities with the arrows shift the phase depending
on the physical angle between the couplers. This layout guarantees phase of π2 per plaquette.
b.Photograph of a 5x5 section of the lattice measured in the data presented in the paper. The
lattice-sites are each tuned to 9.560 GHz ±1 MHz, and coupled evanescently tunnel-coupled
with hopping rate 30 MHz ±1 MHz. The typical resonator quality factor for fundamental
cavities is Q = 3000 and for the YIG cavities is Q = 1500. The lattice spacing is 1.96 cm,
resulting in a total edge-to-edge (including outer walls) lattice dimension of 24.0 cm. c. Side
profile of a 5x5 lattice cut so that both types of cavities are visible. The 2nd and 4th cavities
are the phase shifting YIG cavities, while the 1st, 3rd and 5th cavities are the fundamental
cavities. The couplers are visible in between the cavities as gaps in the cavity walls. They
are milled from the opposite side of the lattice as the cavities. This picture comes from our
paper [4].
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degenerate resonators, and hence behave as a three-site tight-binding model with periodic

boundary conditions. The result is one (quasi-momentum q = 0) mode in which all posts

oscillate with the same phase, and two degenerate modes at a higher frequency (1 GHz

higher in this lattice), at q = ±2π
3 ; the electric charge accumulation in these latter two

modes travels from post-to-post clockwise or anti-clockwise, respectively.

To break the time-reversal symmetry of the lattice and thereby induce a chirality in the

system, it is essential that only one of the two degenerate modes at |q| = 2π
3 couples to the

lattice bands. To achieve this, a 1mm YIG sphere is inserted between the three posts (Figure

3.1c). When a DC magnetic field BDC is applied to the YIG, it behaves as a macroscopic

electron spin whose the magnetic moment precesses at the Larmor frequency ωl = µBBDC ,

and with a handedness set by the direction of the magnetic field (µB = 28MHz/mT is the

Bohr Magneton). When the YIG sphere is installed between the three-posts of the cavity,

where the microwave magnetic field is strongest, the precessing magnetic moment couples

strongly to cavity mode which co-rotates (q = 2π
3 ), and weakly to the one which counter-

rotates (q = −2π
3 ). Figure 2.8 shows the observed behavior of the q = ±2π

3 modes as the

DC magnetic field is varied, tuning the YIG frequency through the bare |q| = 2π
3 mode

frequency: the YIG induces a large avoided crossing with the co-rotating “bright” mode,

a smaller asymmetry-induced avoided crossing in the counter-rotating “dark mode”. Fine

adjustment of the magnetic field strength can further be used to tune the frequency of the

YIG cavities.

To probe the spatial structure of the chiral modes, we insert two antennae into one of the

chiral cavities, separated by 45◦. Figure 2.8 shows the observed phase difference between

exciting one and measuring the other, and the reverse, indicating that the “dark” mode

exhibits a phase-difference of 90◦, while the “bright” mode exhibits a difference of -90◦,

consistent with their opposite chiralities.

To build a T-broken model, our engineered Hamiltonian must employ only one of these two
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chiral modes; accordingly, the “dark”-“bright” mode-splitting of 350− 400 MHz (depending

on BDC) sets the spectral domain into which the engineered Chern-band structure must

fit. While the “dark” mode is the better choice in a superconducting resonator, YIG loss is

much larger than the bare resonator loss, in the room temperature case technical concerns

make the “bright” mode preferable for lattice engineering since it only has modes below it

and none above it while maintaining the same quality factor.

The lattice-sites are tunnel-coupled by milling out slots between them; because the lowest

mode of these slots is above the cutoff of the lattice, these slots couple sites together without

inducing radiative loss. The width and depth of the couplers set the tunneling energy, which

we tune with a screw (see Figure 2.4) to 30 MHz with precision ±1 MHz, in accordance

with the requirement that the total-band-structure be narrower than the minimum 350 MHz

“dark”-“bright” splitting.

3.4 Assembling the Lattice to Create a Uniform Field

Using these cavities, we create an 11x11 lattice (Figure 3.2 arranged in the pattern shown in

Figure 3.1a, where the white circles are fundamental cavities and the colored cavities are the

YIG cavities. This arrangement causes any plaquette traced in the lattice to acquire a flux

per area of 1
4 . We can simulate our lattice using a tight binding model with the appropriate

phase added into tunneling rates (see Appendix B for code), both with continuous boundary

conditions and as an exact 11x11 lattice. The continuous boundary condition simulation is

useful to calculate a band structure, as shown in Figure 3.3.

Next we calculate reflection measurements as a function of frequency off different sites of an

11x11 lattice. We first calculate the reflection off site (5,5), a cavity in the bulk of the lattice.

This response is in gold in Figure 3.4. The four bulk band form symmetrically around the

bare cavity frequency (9.6 GHz), and two large gaps are near 9.55 and 9.65 GHz. When we
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Figure 3.2: 11x11 Lattice that the rest of the data in the section is taken from.
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Figure 3.3: Band structure of the Hamiltonian in equation 3.1 calculated using periodic
boundary conditions in the x direction, so that there are two edges of the system parallel
to the x direction. The higher and lower black bands result from the bright modes in the
YIG cavities and are detuned in frequency enough so that they do not appreciably affect the
lattice band structure. The four grey bands are the bulk bands of the lattice. In the gap
between the bulk bands are where the edge states of the system. The two colors correspond
to the top and the bottom edges. The slopes of the chiral modes indicate the direction the
modes propagate. On each edge, the modes going one direction are at a different energy
than the modes going the opposite. This picture comes from our paper [4].
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Figure 3.4: Simulated transmission measurements through an 11x11 Chern insulator with
the Hamiltonian we are building. The gold curve is the reflection off the (5,5) bulk site, and
the blue is transmission from the (1,1) edge site to the (1,10) edge site. The edge modes can
be seen in the gap between the bulk bands. This picture comes from our paper [4].

calculate the transmission through edge site cavity (1,1) to anothe edge site cavity (1,10), we

see that there are edge modes located in the band gap of the bulk modes. In fact, the loss in

the system shows that the chirality of the upper edge band is different than the lower edge

band. One chiral path along the edge takes a much shorter route than the other direction,

which means that less photons are lost in transit and the transmission for that direction has

a bigger response. In order to see that these modes are localized to the edge, we instead

excite an edge cavity in the band gap and see the response of the lattice as a function of

spatial position. This is shown in Figure 3.5. The red line is the excitation frequency and

the plots on the right show the response of the lattice at that frequency when the (1,1) edge

cavity is excited. Here the difference in the chirality between the upper and lower band is

more clear. These chiral edge modes are hallmarks that indicate the particles are under the

influence of a magnetic field.
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Figure 3.5: Top. Spatial response of the lattice when cavity (1,1) is excited at a frequency of
9.555 GHz. The mode is localized to the edge and counterclockwise chiral. Bottom Spatial
response of the lattice when cavity (1,1) is excited at a frequency of 9.65 GHz. The mode is
localized to the edge and clockwise chiral. This picture comes from our paper [4].
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3.5 Spectral Properties of a Microwave Chern Insulator

A defining characteristic of a topologically non-trivial band-structure is an insulating bulk

and conducting edges [58]. To demonstrate that our microwave lattice exhibits these prop-

erties, we probe it spectroscopically by placing a dipole antenna into each cavity. Figure

3.6a shows a typical transmission spectrum between bulk lattice sites in an 11x11 lattice

(pictured in Figure 3.2). We observe energy gaps in the bulk response, within which the

edge-localized channels reside, consistent with the computed band structure [3] shown in

Figure 3.6b. The chirality of the edge channels results in an asymmetric edge-edge response

in the band gaps: the edge modes in the lower- and upper- gaps have opposite group ve-

locities and finite damping, so the accrued decay is smaller when the excitation travels the

“short way” versus the “long way”.

When the system is excited in the bulk within the band-gap, we observe a localized response

as shown in Figure 3.7a, resulting from the absence of resonant modes to excite. On the

other hand, when the system is excited on its edge within the band-gap, we observe the

delocalized response shown in Figure 3.7b), resulting from the presence of the chiral edge

channel within the bulk energy-gap. Decay in the lattice allows us to observe the chirality of

the edge mode in the steady state response; at 9.6 GHz, the channel travels counterclockwise,

as anticipated from the band structure in Figure 3.6b.

We Fourier transform the complex transmission as a function of position to directly measure

the bulk band structure of the lattice. The 2D projection of this band structure is what is

plotted in blue in Figure 3.6b.

The site-resolved probes accessible in our system enable us to directly access, for the first

time, the dispersion of the edge channel, which we achieve by probing the system edge

within the bulk energy gap and measuring the phase accrued per lattice site as a function

of frequency (See SI 3.6). Figure 3.6c shows the observed dispersion, overlaid with the
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Figure 3.6: a. Measured transmission spectrum between two bulk (purple) and edge (orange)
sites. The purple trace is the transmission between adjacent cavities in the bulk of the
lattice ((5,6) and (6,6) defined from the upper-left lattice corner), while the orange trace is
the transmission between cavities on the edge of the lattice (sites (1,1) and (1,11)). The
differential response between upper and lower gaps arises from the distance difference for
clockwise and anti-clockwise edge propagation between probe and measurement sites. b.
Projected band structure of both the bulk (blue/white density plot) and edge (red points)
of the system, compared with theory for a α = 1/4 Hofstadter strip (purple/orange/gray-
dashed). The bulk measurement results from a site-by-site measurement of the system
response. The dispersion of the edge channel (explained in the SI) is extracted from the
measured phase shift between cavities. Within the bulk bands, this phase is sensitive to
disorder and overall geometry, resulting in a near-random signal. The bulk-bulk transmission
exhibits four distinct bands which arise from the four-site magnetic unit cell. Gaps are
apparent between the first and second bands as well as the third and fourth bands. The
magnetic unit cell has two sites in each direction, compressing the Brillioun zone to

[
−π2 ,

π
2

]
.

This picture comes from our paper [4].
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Figure 3.7: a. The response of the lattice when a bulk site (red arrow) is excited continuously
at a frequency of 9.569 GHz within the upper band. The absence of bulk modes at the
excitation frequency results in exponential localization of the response. b. The lattice’s
response to an edge-excitation (red arrow), at the a frequency of 9.622 GHz which is within
the band gap. The presence of an edge channel at this frequency results in a de-localized
chiral response along the system edge, decaying due to the finite resonator Q’s. This picture
comes from our paper [4].
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Figure 3.8: We measure the difference in phase between an excited edge cavity and other
edge cavities as a function of distance. The edge cavity number starts at 12 and ends at
18 so that only one edge is fit to a line, do avoid additional dispersion introduced by the
corner. We choose the side furthest from the the excited cavity to minimize the effects of
direct coupling. For the frequency shown here (ω = 2π × 9.61 GHz) the lattice momentum
is half the slope, or −54 deg per cavity. This picture comes from our paper [4].

theoretical prediction, showing good qualitative agreement.

3.6 Dispersion of the Edge Channel

The dispersion an edge channel can be measured directly from the evolution of the phase

response along an edge of the lattice, when the system is excited on an edge within the

bulk band-gap. In a square lattice, the dispersion is constant along a side but changes near

the corners, so we examine the phase response on non-corner sites along a single side of

the lattice (i.e. sites (11,2) to (11,10)). Plotting the phase shift as function of distance
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between the excitation port and the measuring port yields a line with slope equal to the

lattice momentum (see Figure 3.8 for a sample data set). In our measurements, we subtract

the S12 direction from the S21 direction in order to eliminate the phase shifting from cable

length and connectors. This subtraction means that the slope of the line is actually twice

the lattice momentum. The S12 excitation moves around the lattice the opposite direction

as the S21 excitation, so they travel a different distance. When S21 is subtracted from S12,

this discrepancy manifests itself as a constant offset proportional to the perimeter of the

lattice; the slope of the phase vs distance plot is unaffected. The phase shift per cavity can

be a significant fraction of 2π, so phase unwrapping is necessary to recover the slope. Using

this technique at a frequency within the bulk bands results in a near-random signal since

this phase at that frequency is sensitive to disorder and overall geometry.

3.7 Dynamics of Microwave Chern Insulator

A major advantage of using microwave photons is that time-resolved transport measurements

are possible. Instead of exciting the lattice with a constant signal from the network analyzer,

we can also pulse a cavity on the edge and watch the pulse move in time with an oscilloscope.

We mix a sinusoid of 9.6 GHz and a Gaussian with a width of 75 ns and excite the (1,1)

cavity. Then we measure the response of each cavity as a function of time after the initial

pulse. Figure 3.7c plots the response of the edge cavities as a function of time. The pulse

travels in one direction with a well-defined constant slope. There are no backscattering

modes due to the protection provided by the topology of the system. The pulse is visible

for two cycles around the whole lattice. The group velocity is measured to be 0.32 ± .04

cavities/ns. This is consistent with the group velocity ∂ω
∂k measured from the slope of the

dispersion line at 9.6 GHz (0.328 ± .002 cavities/ns). The pulse is short enough that there

are some frequency components of the pulse that excite the bulk modes, and these can also

be seen in the data. At the time where the pulse starts, a small excitation over all the
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Figure 3.9: Spatio-temporal response of the edge cavities to a 50 ns pulse centered on 9.6
GHz. The x-axis is the indexed cavity number of each of the 40 edge sites, and the y-axis is
time. The brightness reflects the intra-cavity intensity. The chirality of the edge channel is
reflected in the unidirectional travel of the pulse. The weak stationary response results from
a small Fourier-broadened excitation of bulk modes. This picture comes from our paper [4].

cavities does not move as a function of time. This is consistent with bulk modes. A video

of pulse propagation can be found in the online supplementary materials. In this video, the

measured response is renormalized at each time before plotting, so that even after decay the

pulse can be seen clearly.

3.8 Photonic Tunnel Junction

Looking forward to exploration of strongly interacting topological phases [3], it will be essen-

tial to fabricate meta-material structures which operate as spatial interferometers [59, 60].

Such devices afford direct sensitivity to the charge and statistics of edge excitations through

response of the interference fringe to magnetic flux and enclosed anyons, respectively.
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Figure 3.10: A wall is built into the lattice by detuning all but one cavities in the sixth row,
separating the lattice into two 11x5 lattices connected by one cavity. This effectively makes
a beam-splitter for running wave edge modes, as shown schematically at right. When the
lattice is pulsed at 9.6 Ghz (in the top band gap), the response is shown in the figure on the
left. The pulse splits when it reaches the gap in the wall (end of the red), transmitting most
of the pulse to the green part of the lattice and some of the pulse into the blue, unexcited
11x5 sublattice. This picture comes from our paper [4].

As a first step towards this objective, we harness the extraordinary flexibility of our platform

to realize a photonic tunnel junction, analogous to half of an solid-state edge-channel inter-

ferometer [20]. We realize the tunnel-junction by detuning a single column of lattice sites in

our 11x11 sample, leaving only a single site in the center of column at its original frequency;

this produces a “wall” between two sub-samples, with a narrow gap through which photons

may tunnel.

Figure 3.10 shows this arrangement; a propagating edge excitation may either tunnel across

the gap and stay in the original ring in which it was traveling, or continue along the edge into

the neighboring ring, akin to a chiral-edge beam-splitter. Results are shown in Figure 3.10

for an excitation starting at cavity site (1,1)- it bears mentioning that while a fraction of

the excitation remains in the original ring and a fraction hops to the other ring, none is
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back-scattered, illustrating robustness of the edge channel to disorder. In the future, we

plan to couple the central site to a transmon qubit. This would make that site nonlinear

with photon number, so that when the site is excited, the cavity moves off resonance. This

would effectively make the site a wall, and the rest of the pulse would stay in the left side of

the lattice. However, the qubit could then emit into the right side, not only making a single

photon source, but also trapping that single photon into a chiral edge mode.

3.9 Conclusion

We have demonstrated a complete toolbox for the development of low-loss topological mi-

crowave lattices, and harnessed this toolbox to realize a quarter flux Hofstadter model.

The resulting synthetic material is be probed site-by-site, revealing an insulating bulk and

topologically protected chiral edge channels. We showcase the flexibility of the approach by

reconfiguring the lattice to act as a tunnel-junction, pointing the way to anyon interferometry

once circuit quantum electrodynamics tools provide interactions between lattice photons.

Looking ahead, the next step is to marry these microwave resonator arrays with the tools of

circuit quantum electrodynamics [42], thereby inducing on-site interactions. These interac-

tions correspond to a Hubbard U in the Hofstadter-Hubbard model, immediately enabling

studies of fractional quantum hall phases of interaction photons [3]. Because the demon-

strated lattice is already low-loss at room-temperature (∼ 3.5 MHz linewidth), the typical

transmon qubit anharmonicity of 200 MHz [61] is sufficient to induce strong correlations

between lattice photons. To prepare the photons in low entropy phases of the resulting mod-

els, it will be crucial to harness state-of-the art theoretical tools to populate these models

near their manybody-ground states. For small systems, this will rely upon spectroscopically

resolved excitation of manybody states [23], while for larger systems engineered dissipa-

tion [62, 63, 13, 64] will allow for preparation of incompressible phases. In sum, the platform
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opens many exciting prospects at the interface of topology, many-body physics, quantum-

optics, and dissipation.
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CHAPTER 4

ADAPTING THE CHERN INSULATOR FOR CRYOGENIC

TEMPERATURES

4.1 Introduction

Designing a Chern insulator that works at cryogenic temperatures has a several benefits

that can make the system an incredible tool for studying both quantum materials and chiral

quantum optics. We use dilution refrigerators to cool samples to below 20 mK. The first

benefit of cooling cavities to these temperatures is that we can make the lattice out of

superconducting metal, so that the surface losses of the cavity are greatly reduced. Shown

in Figure 4.1 is a picture of a niobium lattice. Since surface losses are the dominant loss

source at room temperature, we can reach much higher quality factors for 3D cavities. Some

of the best quality factors achieved in our lab for similar cavity geometries are as high

as ∼100 million. Higher quality factors mean that our particles will live longer, which is

important since we want the interesting interactions to dominate the physics simulated and

observed, not particle loss. We want the frequency of particle loss to be much smaller than

the other interaction frequencies in our system, such as tunneling, magnetic field strength,

and inter-particle interactions. The other interesting benefit to cooling the Chern insulator

to 20 mK is that we can then access quantum physics. First, we can couple Josephson

junction transmon qubits (see chapter 5 for more details on qubits) to lattice sites. These

qubits both have large single photon nonlinearity (∼300 MHz) and couple strongly to 3D

cavities. When a qubit couples to a lattice site it hybridizes and the lattice site inherits some

of the nonlinearity. This nonlinearity then creates a blockade interaction, as a cavity shifts

in frequency after absorbing a photon, so that another photon of the same frequency cannot

excite the lattice site and thus is repelled. With this in mind the first step towards making our
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photonic material quantum is to make the Chern insulator work at cryogenic temperatures.

Achieving this requires sending magnetic fields through superconductors without destroying

the quality factor of the cavities and designing a new way to tune the cavities.

Figure 4.1: The 5x5 Chern insulator lattice made out of niobium so that it superconducts.
On the edge of the lattice are three additional cavities. They are higher in frequency (10
GHz) and will be used later when we add qubits to the lattice.
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4.2 Cryogenic Phase-Shifting Cavities

The first major challenge to making a Chern Insulator out of superconducting cavities was to

modify the design of the phase-shifting cavity so that it is superconducting and high quality

factor, but also can have a YIG sphere inside that is biased with a magnetic field. This is

difficult for several reasons. First, magnetic fields either are repelled by superconductors or

they pierce them and create normal regions that are lossy (see Figure 4.2). Second, the size

of the magnetic field must all be accurate to correctly bias the YIG sphere. Last, the YIG

sphere must be mounted so that the frequency of the cavity is accurate and controllable, but

the cavity quality factor is maintained (glues and pastes add large dielectric losses).

The first thing we did was make three post cavities out of niobium and measured their

quality factors as a function of temperature and magnetic field. We made single cavities

that were small enough to fit a Quantum Design PPMS fridge. This fridge can cool 1

inch diameter samples (shown in Figure 4.2a) to 2 Kelvin in 3-4 hours, which is convenient

when iterating quickly. Additionally, the PPMS is equipped with an electromagnet that can

generate uniform magnetic fields up to 7 Tesla, which is much larger than the bias fields

required on the YIG sphere (0.3 Tesla). In Figure 4.2b, I show the quality factor of a three

post cavity without a YIG sphere and no applied magnetic field as a function of temperature.

The max quality factor of 1.5 million is reached at 2K, though at lower temperatures (20

mK) reached in the dilution fridge quality factors combined with surface etching we achieved

cavity quality factors of 20 million.

If the field is instead applied after the cavity has gone superconducting, then at field below

the critical field (∼1800 Gauss) the superconductor repels the field and no field reaches inside

the cavity. At fields greater than the critical field, the superconductor breaks down and the

cavity quality factor plummets. Even if the field is then turned off, the field stays trapped

in the superconductor and the cavity remains low quality factor. This repulsion of magnetic
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Figure 4.2: Left. Niobium 3 post cavity used to test how to achieve high quality factors
with a YIG sphere in the cavity that is biased with a magnetic field. In the center of the 3
posts is a small indentation in which the YIG will rest. Right. Temperature dependence of
the quality factor of the niobium cavity without and YIG sphere or field. This set the limit
on the maximum quality factors we can obtain in these cavities of ∼1 million (unless further
surface treatment techniques are implemented).

fields makes developing a method of tuning the field on the YIG sphere particularly difficult.

Next, we look at the effect of a magnetic field on the three post cavity. In Figure 4.3 I show

the quality factor of a cavity that is cooled in a magnetic field. For every data point the

cavity is warmed above the superconducting transition point, the magnetic field is changed,

and then the cavity is cooled in the magnetic field. The quality factor of the cavity quickly

drops with increasing magnetic field. The field required on the YIG sphere is approximately

2500 Gauss, and at those fields the quality factor of the cavity drops to below 20000. Already

we learn that simply applying a strong field to tune this YIG into resonance will not work

for the cryogenic lattice. Next, we add a YIG sphere into cavity and measure the effects

of just adding the YIG sphere to the cavity on the quality factor (no magnetic field). Fig.

4.3 shows that the quality factor is somewhat worsened, but still greater than 300000 when

a YIG sphere is added to the cavity, which means the YIG sphere has some dielectric loss

that will limit us from going to much higher quality factors. This is a different effect than

the loss caused by coupling to the YIG mode which will be examined later in this section.
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Figure 4.3: Top. Quality factor of a three post cavity as a function magnetic field. For
every measurement, the cavity is warmed above the superconducting transition, then the
cavity is cooled within the magnetic field and the quality factor is measured. The quality
factor dies far below the field that tunes the YIG to the cavity resonance. Bottom. Quality
factor of the 3 post cavity with a YIG sphere as a function of temperature. The YIG sphere
lowers the quality factor of the cavity but the quality factors still reach ∼300K.
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All of these results tell us if we can solve the problem on how to route enough field to the

YIG sphere without putting to much magnetic field into the niobium, then we can possibly

achieve quality factors of around 300000, which is ∼100 times better than room temperature

and corresponds to lifetimes around 200µs.

Before solving this problem, we wanted to make sure that the YIG cavities’ phase shifting

properties still behave similar at cryogenic temperatures. In Figure 4.4, we plot the frequency

and phase of the modes in the YIG cavity as a function of magnetic field by measuring

transmission through the YIG cavity that are π
4 radians apart from each other. As seen in

the room temperature phase shifting cavities, we break the degeneracy between the chiral

modes. The quality factor of these modes is only 20000, a factor of 5 times bigger than

the quality factor at room temperature. However, the phase shift in the cavity even with

minimal applied field is equal to the angle between the transmission ports, which means the

cavities can work at cryogenic temperatures.

While many ideas to increase the YIG cavity quality factor were tested, we settled on us-

ing small permanent magnets as close to the YIG sphere as possible without being in the

cavity. Fig. 4.5 shows a schematic of the setup. This minimizes the magnetic field in the

superconductor and localizes most of the field in the YIG sphere. However, using small

permanent magnets ( 1
16 diameter and length) to get to 3000 gauss at the center of the YIG

is not possible. We found that if we maximized the YIG to cavity coupling, then even if the

magnetic field was not strong enough to put the YIG mode on resonance with the degenerate

chiral cavity modes, the splitting between the two chiral modes would be large enough that

we could maintain site-to-site couplings much larger than our disorder. At cryogenic tem-

peratures we estimated our disorder to be ∼1 MHz (more details on this in section 4.3), so

we set a minimum on the site-to-site coupling to 15 MHz. This means that the chiral modes

must be split by around 200 MHz to keep the frequency shifts from off resonantly coupling

to the out-of-band chiral modes below 1 Mhz. Figure 4.5 shows both a schematic picture
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Figure 4.4: Magnitude and Phase of transmission through a superconducting YIG cavity
as a function of magnetic field between two antenna with π

4 radians between the referenced
from the center of the cavity. At zero field, the two mode are near degenate and are red,
which indicates there is zero phase shift in transmission. As the field is increased, the modes
split in frequency and change color to purple and green. This is the time-reversal symmetry
breaking between the two modes. The difference in phases arises from the chiralty of the two
modes, since one mode will take the “shorter” route between the antenna, while the other
takes the “longer” route. The phase has an additional factor of two since we are subtracting
the transmission of S12 from S21 to eliminate cable noise.
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Figure 4.5: Left. Schematic of how we applied magnetic field to the YIG without destroying
the cavity quality factor. A 1

16 inch diameter hole is drilled into the niobium on the opposite
side of the cavity almost such that the hole breaks into the cavity. .020 inches of material
is left behind, and a neodynium magnet is put into the hole. This biases the YIG sphere,
but puts less magnetic field onto the critical areas in the cavity (the tops of the posts).
Right. The YIG is biased but it is not on resonance, so the only two modes seen are the
dark mode (lower frequency dip) and the bright mode (higher frequency dip). The coupling
between the YIG sphere and the cavity is large enough so that the modes are split by 180
MHz. Since less field is applied the quality factor of the cavity still reaches ∼200000. The
shape of background of the measurement is due to impedance mismatches between wires and
connectors in the measurement apparatus, specifically because these impedance mismatches
change as a function of temperature so they cannot be calibrated out.
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for the magnetic configuration and the transmission through the biased cavity while at 2K.

Even though the splitting has been halved to 200 MHz, the quality factor of the modes now

reaches 200000, 100 times better than room temperature lattices.

4.3 Tuning Cavities at 20 mK

After designing a chiral YIG cavity that works in a dilution fridge, we then developed a

technique to tune the cavities to the same frequency. Logistically this is difficult because

of two main reasons. First, the cavities shrink as they cool, which changes the cavities’

frequencies differently from cavity to cavity. Second, actively tuning the cavity is challenging

while it is in the dilution refrigerator since the lattice is physically inaccessible to tune.

Furthermore, even if the sites were tunable, measuring individual bare site properties to

know which site to tune is difficult when all of the sites are coupled.

We first tested using screws similar to how we did with the room temperature Chern insu-

lator. However, we found a few issues with this method. The main problem was stabilizing

the screws so that consistently cooled down to the same frequency and quality factor. With

superconducting screws made out of aluminum, we noticed that the contact between the

screw and cavity changed between cooldowns, which would change the frequency and the

quality factor. Instead, we tried using dielectric screws. These performed somewhat better

but still were susceptible to inconsistency over time and cooldowns. We decided that instead

of using screws to tune lattice sites, we would semi-permanently tune sites by sanding down

the posts of the cavity until they were at the right frequency. Although more tedious at first,

this resulted in cavities maintaining precise frequencies over periods of time longer than we

were measuring them (months). If a cavity was sanded down too much, small amounts of

indium (a soft superconductor) can be pressed on top of the post. This allows for gradual

tuning of the cavity to both higher and lower frequencies. The same techniques can be used
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to tune the YIG cavity as well, though care must be taken to both not break the smaller

post and balance the tuning of each post in the cavity. In an extreme situation where one

post is tuned much more than another post the degeneracy of the modes will be broken in a

non-chiral basis, which would make the cavity not phase shift like it is required to in order

to generate the magnetic field.

Once we had a way to tune the cavities consistently, we then solved the issue of the cavity

frequencies changing as the lattice cooled. Since metal contracts as it cools, the frequencies

of the cavities are higher at cryogenic temperatures than at room temperature. Also, the

cavities shift frequencies differently depending on what type of cavity (YIG or fundamental)

and where it is in the lattice (corner, edge or in the bulk). However, we found that from

cooldown to cooldown the shift stayed the same, so we measured the shift of each type of

cavity and then compensated for the shift differential at room temperature. This made it so

that the lattice sites actually tune into degeneracy as the lattice cools.

4.4 Measuring the Chern Insulator

Once the lattice is tuned, we then have to measure it. This is also more difficult in a dilution

refrigerator since both radio frequency lines and switches are more costly in space, money,

and time. To make this easier, we made a 5x5 lattice so that there are as few sites as possible

while maintaining a definite bulk and edge. In order to measure the lattice, we again put

antennas on every site. Each antenna is undercoupled, with a coupling Q (see section 2.5.1

on coupling Q’s) of approximately 106 to a single uncoupled site, while the internal Q’s are

∼2∗105. Upon coupling the cavities, the coupling Q varies greatly between modes since they

have different spatial profiles, but they are always more than the original coupling Q since the

maximum coupling to the antenna happens when the mode is fully located on the site with

the antenna. These antennas are then wired to switches that are also cooled to cryogenic
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temperatures. The switches that worked at these temperatures were Radiall 10 way switches,

part number R573412045. We used two 10-way switches so that we could measure most of

the 25 sites of the lattice. For a picture of the setup, see Figure 4.6. These switches were then

routed through a directional coupler so that we could perform both reflection measurements

and transmission measurements on the lattice, although transmission could only be done

between sites connected to different switches. out of the five last sites not connected to the

switches, four of them were the YIG cavities. We wired input lines to these cavities. For the

last fundamental site not connected through the switches, we used a circulator and our last

output line so that we could also do reflection measurements on this site. This site was a

corner site and the site we later used to pulse the edge modes of the Chern insulator. Having

one site not on the switches allows us to measure transport from that site to all the other

sites instead of just half of them.

We then followed a procedure similar to the methods used in measuring the room temperature

lattice. We measured transmission through the lattice and reflection on the lattice using all

of the possible ports. In Figure 4.7 we show results measuring reflection on the center site

(3, 3) of the lattice and compare them to a reflection on the edge site (5, 1). Since both the

number of sites went down and the quality factor of the modes went up compared to the

room temperature lattice, the individual modes of the lattice can now be resolved. According

to calculation of the band structure there are three edge modes in each gap between the bulk

bands (shown in Figure 4.7). In the data we see the four bulk bands at 8.985 GHz, 9.02

GHz, 9.051 GHz, and 9.083 GHz. The peak in the center of both spectra at 9.037 GHz is

from the 5 degenerate modes near the Dirac cone formed from the two middle bulk bands

touching at certain momenta. This frequency being the center of the spectrum is consistent

with the frequency to which we tuned the lattice. The modes in between these bands are

delocalized since their momenta are fixed. In between the two lower frequency bulk bands

are three edge modes at 8.996, 9.004, and9.010 GHz. In between the two higher bulk bands

are two peaks at 9.065and9.072 GHz. The taller peak at 9.065 GHz is likely two degenerate
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Figure 4.6: Physical setup of the tuned cryogenic lattice. On the left is the lattice with
coaxial wires attached to SMA antennas mounted on top of every lattice site. The coax
cables are routed through the ten way switches in the middle of the picture to minimize the
number of through lines needed (lines running all the way through the fridge). On the right
is the directional coupler that allows us to perform reflection measurements from a single
SMA antenna.

64



Figure 4.7: Reflection measurements on the lattice in different locations. The blue is a
reflection on the middle site (3,3). The four bulk bands and the modes near the Dirac mode
can be seen, with large gaps in mode between the first and second modes and the third and
fourth mode, as predicted from band structure calculations (see Figure 3.3). The red plot is
a reflection measurement on the edge site (5,1). The modes represented most strongly are in
the gaps of the bulk reflection and the ones near the Dirac cone. The modes are the chiral,
protected edge modes.
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9.003 GHz Pulse 9.064 GHz Pulse

Figure 4.8: Left. We pulse edge site (1,1) of the lattice in the lower band gap at an edge
mode frequency of 9.003 GHz (see Figure 4.7) with a Gaussian pulse of width 80 ns. The blue
is the response as a function of time and which edge site. The edge site index is unwrapped
around the lattice just like in the similar result at room temperature in chapter 3. The pulse
moves around the edge in only one direction, demonstrating the chirality and time-reversal
symmetry breaking of the edge channel. For this frequency, the pulse takes ∼160 ns. Right.
We then pulse the same lattice site at 9.064 GHz, exciting the edge modes in the upper band
gap. These modes have opposite chirality, as can be seen by the different slopes of the pulse
in the two plots. The pulse at this frequency also travels with a greater velocity, completing
a round trip in ∼100 ns, though there is some interference, possibly caused by exciting other
modes in the lattice with the broad pulse and the length of the pulse being comparable to
the time it takes for the pulse to travel around the lattice.

edge modes, as predicted by simulation.

To further test that these are chiral edge channels, we again take advantage of the ability to

pulse the lattice at the frequency of the edge channels (see Figure 4.8. Pulsing the lattice

allows us to see transport as a function of time, verifying that these modes can transport

photons chirally, which is a signature feature of a Chern insulator. To generate the pulse

we mix a sinusoid of the lattice frequency we are exciting and a Gaussian with a width of

80 ns. This pulse time is long enough that it excites only the modes in the lower band gap,

but is short enough that it is over before the pulse travels around the lattice. We excite

66



Figure 4.9: Left. The response on a single site as a function of time after a pulse is input
into the edge mode at 9 GHz. Instead of fitting the function exactly, we bin the data and fit
it with an exponential to get an estimate of the decay time of the edge channel. For these
modes, the decay time is 4.0µs Right. Similar measurement but for the upper edge band
at 9.064 GHz. The lifetime of this mode is 2.9µs

the (1, 1) cavity and measure the response of each cavity as a function of time after the

initial pulse. Figure 4.8 plots the response of the edge cavities as function of time when we

excite the (1, 1) cavity at both 9.004 GHz and 9.064 GHz. Both excitations are chiral, but

they have the opposite chirality. This can be seen by the opposite slopes of the pulse for

each of the edge modes. The slopes of the lines are the velocity of the pulse. For the 9.004

GHz pulse, the velocity is 0.09 sites/ns, while for the 9.064 GHz pulse, the velocity is 0.16

sites/ns. The amplitude can be binned and then fit to an exponential decay function to get

the lifetime of the mode, as shown in Figure 4.9. The lifetime of the 9.064 Ghz edge mode

is 2.9µs while the lifetime of the 9.004 Ghz edge mode is 4.0µs. The difference in the edge

modes’ velocity is still not understood. Since there are only three edge modes, the slope the

dispersion is not as well defined, but the total gap size of the modes are similar, so the slope

should not vary much. A video of the pulse propagating through the lattice is online at

https://www.youtube.com/watch?time continue=13&v=-mpLZylrfEQ or on the Simon lab

website.
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4.5 Conclusions

This was a major step in the work towards making quantum topological materials out of

photons. We designed and created a Chern insulator that not only works at cryogenic tem-

peratures, but also has cleaner dynamics and better parameters than any other system. The

particles have lifetimes of microseconds while all the other important timescales (tunneling,

nonlinearity of the qubits, and interaction energy) in the system are tens of nanoseconds or

smaller. Furthermore, this system is completely modular, allowing for different sized lattice

or other features to be added as needed.

There are certainly ways to improve the system, since there is a lot of room to improve both

the cavity lifetime, the time-reversal symmetry breaking, and the tuning. Both of the first

issues are limited by the way we apply magnetic field to the YIG sphere. By coming up

with a better way to funnel magnetic field to the YIG, we could both increase the field on

the YIG and decrease the field causing normal regions in the superconductor. There are

implementations of a superconducting magnetic “hose” [65] that would be compatible with

the YIG cavities, if a hole was drilled all the way through to the YIG. This cannot be done

with just a magnet since the magnet being anywhere near the cavity mode destroys the cavity

quality factor. The methodology on tuning the lattice can be upgraded as well, though this

requires adding magnetic coils to either replace or enhance the permanent magnet. Tuning

the fundamental cavities is quite easy since they all shift in frequency in a consistent way

(after taking into account the location in the lattice), but tuning the YIG cavities is more

difficult since the YIG is only held in place by the magnet itself. Adding a coil would allow

the frequency of the YIG site to be tuned, though this preferably would be done while the

whole lattice is tuned so that the lattice would not have to be warmed up again. This means

that either the lattice would need some way to block or detune the YIG cavities’ neighbors,

or the Hamiltonian tomography needs to be upgraded to work on the YIG cavity [56].
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CHAPTER 5

COUPLING QUBITS TO THE CHERN INSULATOR TO

ENGINEER PARTICLE INTERACTIONS

The final piece of the material simulation toolbox we developed was nonlinear lattice sites

that can be used to induce effective particle-particle interactions. This last component is

necessary to access quantum phenomena in materials, since nonlinear lattice sites allow you to

control the number of photons in each mode, and create interactions that entangle particles.

The nonlinearity is achieved by coupling a transmon qubit to the lattice sites. Transmons

are essentially LC resonator with a nonlinear inductor (see section 5.1 for details on how the

qubit was designed). This nonlinearity in the inductor causes the LC resonator to have large

anharmonicities (∼300 MHz in our qubits). These anharmonicites are significantly larger

than the tunnel coupling between lattice sites, which means that only one particle can be in

a particular mode because the 2 photon state of any mode will be outside the band structure

of the lattice. To achieve these large anharmonicities the transmon has to replace the linear

lattice site resonator, otherwise the anharmonicity of the lattice site will be reduced because

the hybridization with the linear resonator essentially divides the anharmonicities between

the two modes. While this is possible (see Chapter 6), the work discussed in this section will

instead focus on dispersively coupled transmons. In this setup, the transmon is detuned from

the lattice site by ∼1 GHz, so the lattice site mode is weakly hybridized with the anharmonic

transmon mode. This configuration is a good intermediate step with which to work since the

lattice can be largely unmodified while the interplay between nonlinearity and chiral modes

can still be explored.
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Figure 5.1: Top Left. Top down view of a 5x5 lattice with a single qubit coupled to an
edge site resonator. The top left cavity has a sapphire chip (blue) inserted such that some
of the qubit is in the latttice site cavity and some is in the the smaller readout resonator
cavity on the edge. Also in this particular lattice design are three other readout cavities in
case we wanted to couple more qubits to the edge sites. Top Right. Bottom view of the
lattice. The SMA antenna that couples to the readout cavity is mounted in an inset so that
the dipole antenna is short enough so that it has no modes near the cavity frequencies. The
qubit is clamped via a copper part that screws into the inset with the sapphire chip coming
out of it. This then allows for us to put a separate copper piece over this inset to further
make the cavity light-tight. All of the holes in the cavity are then covered with thermalized
copper lids that are sealed tight around the cavity with indium. Bottom. Cross sectional
cut through the lattice so that the inside of the lattice can be seen. The qubit protrudes
into the cavity so that the junction sits in the coupler between the readout resonator and
the lattice cavity. Pads of the qubit extend into each cavity to couple to the cavities.
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5.1 Designing the Qubit

The qubit systems we use are often called 3D qubits since they consist of 1 or more 3D

microwave cavities coupled to a transmon qubit. Figure 5.1 is a diagram of the setup and

Figure 5.2 shows a model of this setup in the software (ANSYS HFSS) that is used to solve

for the qubit and cavity parameters. The transmon is suspended between two different

cavities. The cavity on the right represents the lattice site the qubit is coupled to and the

cavity on the left is the readout cavity of the qubit. The readout cavity is tuned to higher

frequency than both the qubit and lattice, but the coupling Q of the readout cavity is much

lower so that photons can be taken more efficiently out of this cavity. The frequency of this

cavity changes depending on the qubit state. This allows us to measure the state of the

qubit nondestructively by measuring reflection or transmission through the readout cavity.

This is discussed in more detail in section 2.5.1. We suspend the transmon in the lattice so

that one pad of the qubit reaches into the readout cavity while the other reaches into the

lattice cavity. This allows the qubit to couple to both resonators, and the amount of the

coupling between each resonator can be controlled by changing either pad. Using HFSS to

calculate the admittance of the cavity near the junction position allows us to solve for the

parameters of the qubit using the black box code [5].

Designing a 3D qubit is challenging because there are many important parameters that need

to simultaneously be controlled. Fortunately, there are quite a few ways to control these

parameters, though often changing one design feature affects several of the qubit parameters.

The following list is a comprehensive description of the parameters that also will serve as

a definition of terms for the rest of this section. A diagram showing the terms is in the

following table.
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Figure 5.2: HFSS schematics of the qubit-cavity system with only one lattice site. These
simulations are used to calculated the admittance at the location of the qubit. The admit-
tance is used in conjunction with the black box code [5] to calculate the relevant parameters
of the qubit. The second plot is the qubit system viewed upside down so that the actual
pads of the qubit can be seen within the coupler between the readout and lattice cavity.
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Independent Design Parameters:

ωl Frequency of the lattice cavity. This is controlled most directly by the length of the

post of the cavity, though it changes depending on how much the qubit is in the cavity,

due to the high dielectric constant of sapphire and the coupling to the qubit.

ωr Frequency of the readout cavity. This is also controlled by the length of the post in

the readout cavity.

EC The energy stored in the capacticance of the transmon. This is controlled largely by

the size and geometry of the pads of the qubit

EJ The energy stored in the Josephson junction. This is set by the resistance of the

junction, which is determined by the junction area and the thickness of the oxide

layer between the junction pads

gl Coupling of the lattice cavity mode to the transmon. This is largely controlled by

how much the pads of the transmon align with the electric field of the lattice cavity.

gr Coupling of the readout cavity mode to the transmon. This is largely controlled by

how much the pads of the transmon align with the electric field of the readout cavity.

Qc Coupling quality factor determined by how strongly the measurement antenna is cou-

pled to a cavity.

Ql Internal quality factor of a cavity mode.

Dependent Parameters

2χl The frequency the lattice mode changes when the transmon is excited from the g to

the e state. Determined by χl =
g2l
∆l
∗ α
α+∆l

, where ∆l is the frequency difference

between ωl and ωq
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2χr The frequency of the readout mode changes when the transmon is excited from the g

to the e state. Determined by χr =
g2r
∆r
∗ α
α+∆r

, where ∆r is the frequency difference

between ωr and ωq

α Nonlinearity of the transmon. This is the energy difference between the transmon

energy levels. This is equal to EC

ωq Frequency of the g to e transition of the transmon. This is set by EJ and EC by the

formula ωq =
√

8EJEC − EC

Kl Self Kerr shift of the lattice mode. This is the difference in energy between the 0-

¿1 transition and the 1-¿2 transition of the lattice mode, caused by coupling to the

anharmonic transmon. This can be calculated by Kl =
χ2l
α

Kr Self Kerr shift of the readout mode. This is the difference in energy between the 0 −→ 1

transition and the 1 −→ 2 transition of the readout mode, caused by coupling to the

anharmonic transmon. This can be calculated by Kr =
χ2r
α

To plan the design parameters of the qubit, we first must look at our constraints due to the

lattice. The frequency of the lattice is set to ∼9 GHz by the frequency of the YIG cavities.

For the first iteration of tests we want the transmon to be off resonant to the lattice, so that

it is not a lattice site but is just imparting its nonlinearity to a lattice site. Thus we set

the qubit frequency at ∼8 GHz and the readout resonator frequency to 10 GHz so that both

the transmon and the readout resonator are detuned by 1 GHz, which keeps the Purcell loss

from the low quality factor readout resonator low but keeps the detuning low enough that

the transmon can interact with the lattice modes.

With the frequency set, the next parameters to decide are the EJ , EC , gr,and gl. The

ratio of EJ to EC sets the lifetime limit caused by the charge noise [10] and needs to be

greater than ∼75 in order to keep this loss channel lifetimes above 100µs. With that ratio
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combined with the frequency formula for the qubit, we settle on a EC of ∼300 MHz and EJ

of 24.7GHz. This gives a qubit frequency of 8 Ghz and EJ
EC

of 82. Next, to get the Ec to the

right value we change the pad sizes of the transmon. However, the couplings to each of the

3D cavities is also determined by the pad geometry. Using a finite element solver (ANSYS’

HFSS), we can adjust the position of the qubit and the shape of the pads until EC , gr, and gl

are the correct value. Making the pads of the qubit align more with the cavity fields increases

the couplings and decreases the EC (increasing capacitance lowers EC), while increasing the

pad size of the qubit in a direction that does not align with the electric field of the cavities

largely just decreases EC . Thus by shaping the pads all of the parameters can be tuned

to desired values. Having a large gr and gl is useful since these determine many important

factors in the 3D qubit, such as the Self-Kerr shift of the lattice mode and the photon swap

rate between the qubit and the lattice, but there are also drawbacks to making them too

large. Since the readout resonator is lossy, having a large gr can Purcell limit the lifetime of

the transmon. The Purcell limited lifetime from the readout resonator can be calculated as

following:

tP =
∆2
r

g2
r
∗ Qr

2πcωr
(5.1)

We do not want to be limited by Purcell loss, so we set a gr of ∼75 MHz to keep the Purcell

limit t1 at 100µs. For gl, Purcell loss is also a factor, though it is less important since the

lattice mode has a high quality factor. For the first iteration of experiments we used a gl of

125 Mhz since this allows swap times between the transmon and lattice site of 100 ns (much

lower than particle lifetimes), while still minimizing Purcell loss and keeping the system well

into the dispersive limit which is better understood. This coupling size could be increased

for better performances.

One last factor that is important is the coupling of the measurement antenna to the cavity

75



modes. For the readout cavity, a Qc of ∼20000 is desirable since it gives fast readout times

while not Purcell limiting other modes in the system. However, coupling this strongly to

the mode can be difficult for different cavity geometries. For this system, the antenna is

inserted through the bottom of the readout cavity as shown in Figure 4.6. In order to couple

strongly to the mode, the antenna needs to be close to the post, as that is where the electric

field is the strongest. However, if an antenna is too long, then it will support modes near

the resonance frequencies of the system. These modes will naturally have an extremely low

quality factor (∼10) and will drastically limit the lifetimes of the system. By inserting the

antenna through the bottom of the cavity rather than mounting it on a lid on the top of

the cavity, we can get the desired Qc while not generating any antenna modes near the

frequencies of our system.

5.2 Fabrication of the Transmon

The transmon is made by depositing aluminum onto a sapphire wafer using a procedure

that involves only a single pattern and deposition step. The junctions are Manhattan-style

junctions. The specific recipes can be found in Appendix A.

5.3 Cavity QED with a Single Transmon Dispersively Coupled

to a Single Decoupled Lattice Site

The first experiment was to couple a transmon to a single site of the lattice while the rest of

the lattice was detuned. Effectively, this is a system with only one lattice mode. As stated

in section 5.1, we couple the qubit to both a readout resonator and storage resonator. The

transmon chip is clamped in a copper holder that is then mounted on the side of the niobium

lattice. There is one measurement port strongly coupled to the readout cavity which means
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all of the measurements performed will be reflection measurements. The sample is then

cooled in a dilution refrigerator to 20 mK. The Hamiltonian for the system in the dispersive

limit (∆ >> g) is given by [10]:

H

~
= (ωr +

g2
r

∆r
σ̂z)â

†
râr + (ωl +

g2
l

∆l
σ̂z)â

†
l âl +

1

2
(ωq +

g2
r

∆r
+
g2
l

∆l
)σ̂z (5.2)

This Hamiltonian illustrates why this design is a convenient system in which to study a

qubit. Grouping the â†â terms, we can then read off the frequency of the mode that is

mostly readout cavity.

ωdressed = ωr +
g2
r

∆r
σ̂z

This frequency of the cavity that is now modified because it is coupled to the transmon is

known as the dressed state of the cavity. The frequency shift of g2

∆ is dependent on how

many photons are trapped in the transmon, because the frequency of the transmon changes

with photon number, which changes ∆. This allows us to measure the state of the qubit

by observing the frequency of the readout cavity. However, the transmon is not just a two

level system, and the higher levels both influence the dressed frequencies of the resonators as

well as play a part in photon swaps between cavities. Intuitively, a transmon is in the first

excited state now has access to both the ge transition and the ef transition, so that now

both transitions Stark shift the cavity mode. If a single extra level is taken into account, the

number frequency shift changes to [66]:

χ = χge −
χef
2
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χ =
g2

∆r
− (

√
2 ∗ g)2

2 ∗ (∆r + α)

χ =
g2

∆r

α

∆r + α
(5.3)

As for the transmon mode, it also has a dressed state in this system:

ωge = ωq + 2
g2
r

∆r
(â
†
râr +

1

2
) + 2

g2
l

∆l
(â
†
l âl +

1

2
) (5.4)

The qubit frequency is also sensitive to the number of photons in both the readout cavity

and the lattice. This is useful to measure the number of photons in the lattice modes.

For the first set of measurements, a qubit is coupled to a single lattice site, but there are no

magnets in the lattice during these measurements. Later in this section we compare these

results to measurements with the exact same setup except magnets are put in the lattice

in the location they are required to be in order to tune all the lattice sites to the same

frequency. To reiterate, these measurements still have a qubit coupled to a single lattice site

only (all others are detuned).

The first measurement that is done is single tone CW (continuous wave) spectroscopy by a

PNAX network analyzer. The network analyzer tones are constant tones that are easily swept

in power and frequency which makes preliminary measurements to map out the frequencies

of the modes quick and easy. A single tone is sweeped in both frequency and power near the

frequency of the readout resonator. The results are shown in Figure 5.3 (This is a separate

sample then the rest of the data taken. Single tone was only done with the pulse setup

for the qubit that we ended up coupling to the lattice). At low powers, the linewidth of

the resonator is measured to be 0.5 MHz, and Qc is measured to be 20, 000. The readout
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Figure 5.3: Single tone spectroscopy of a resonator coupled to a qubit. This is a different
sample than will be used later. No magnet is in this particular sample, and there is only
one cavity mode which has a low coupling quality factor. The frequency of the resonator
is broad and lower frequency at low powers, but at high enough powers it snaps into the
saturated high power peak.

resonator is nonlinear as expected, with three separate regimes. At the lowest powers, the

readout resonator is linear. At higher powers, the resonator becomes nonlinear until it

eventually snaps into the bare cavity frequency of 8.884 GHz. The shift between low power

and high power is
g2r
∆r

. Here we measure a shift of 11 MHz, which when combined with the

measurement of ∆r in the next plot, yields a gr of 118 MHz. The added magnetic field has

no noticeable effect on the readout spectroscopy.

Next, we use two tone spectroscopy to measure the frequency of the qubit. This is done by

inputting a constant tone at the readout cavity frequency in the low power regimes (still 18

million photons at the cavity), then sweeping a tone near the qubit frequency. The response

at the frequency of the readout cavity is measured. If the transmon mode is excited, then the

readout cavity frequency will change, which will change the response at the orignal readout

frequency. This allows us to map out the transmon modes of the system. Plots of a two tone

spectroscopy measurement are shown in Figure 5.4. At low power, we can see the transmon

transitions. The highest frequency transition is the ge transition at 7.814 GHz. The next
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highest frequency is ef transition. The separation between the two modes is measured at

352 MHz. This is α, the anharmonicity of the qubit. We can also switch the two tone

spectroscopy around and put a constant tone on the qubit frequency and then sweep the

second tone and measurement port near the readout cavity. This allows us to see what the

frequency shift of the resonator is when the qubit is excited. This frequency is the χ shift

which can be used to back out gr. We measure a χ shift of 225 MHz and a gr of 75.

The next stage of measurement involves setting up a pulse sequences. To do this we use a

PXI Chassis. The setup generates pulse trains at up to four different frequencies. For the

first few measurements, we just use a tone at the readout cavity frequency and a tone at

the qubit frequency. In order to test the setup, we first use a sweep a single tone near the

readout cavity frequency. The response is shown in Figure 5.5. The two curves are the I

and Q quadratures from the mixers. From the readout spectroscopy we get a frequency of

10.5835 GHz to monitor during the next qubit measurements.

After the readout resonator is located, we then look for the qubit by first sweeping a pulse

near the qubit frequency and measure if there is a change in transmission of the readout

cavity. The results of this measurement with different pulse powers are shown in Figure 5.6

for both with a magnet and without a magnet. With the pulse setup, we measure a qubit

frequency of 7.814 GHz. The response in the I quadrature is much stronger than the Q

response, since the response of the I quadrature in the readout cavity measurement has it

falling on the slope of the peak rather than the minimum. This means the χ shift changes the

response more since it is small compared to the linewidth of the readout resonator. From here

forward we will plot only the response in the I quadrature. To measure the χ shift, we also

can pulse the qubit and then do a frequency sweep measurement near the readout resonator.

This is shown in Figure 5.5b. The amount the peak shifts compared to the measurement in

Figure 5.5 is a direct measurement of the χ shift. For this setup we measured a shift of 450

kHz or χ = 225 kHz.
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Figure 5.4: Top. Two tone spectroscopy of the qubit coupled to the readout resonator.
A constant tone is input into the readout cavity at 10.5835 GHz and the response at this
frequency is measured. A second tone is swept near the qubit frequency. When the qubit
is excited, it shifts the frequency of the readout resonator and the measured response at
the readout frequency. The power of the qubit probe is then swept to see high power two
photon transistions. Bottom. A single slice of the previous measurement at a power of
1010 photons.
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Figure 5.5: Top. Pulsed resonator spectroscopy of the readout cavity. The resonator fre-
quency is at 10.5835 GHz. Bottom. Pulsed resonator spectroscopy preempted by a π-pulse
at the qubit frequency. The shift is 450 kHz and equal to 2χ. Using equation 5.3, we calculate
a gr of 75 MHz.
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Figure 5.6: In the plot we show the response of the system to sweeping a pulsed tone near the
qubit frequency we measured in Figure 5.4 (∼7.815 GHz) and then immediately measuring
the transmission through the readout resonator. The two curves shown are from the I and
Q ports of a mixer, since the response is mixed down to DC in order to be measured by the
PXI setup. We measure a qubit frequency of 7.81536 GHz from this measurement.

Once this frequency is found, we can try a Rabi measurement. For this measurement we

pulse the cavity at the qubit frequency and measure out on the readout cavity as a function

of the length of the pulse. The results are shown in Figure 5.7. The qubit Rabi flops between

the g and e state at a frequency that is dependent on the power applied. The Rabi frequency

is useful because now we know what time and power to pulse for to efficiently switch the

qubit from the g to the e state. with these parameters we can then try a t1 measurement

and a Ramsey experiment. The t1 measurement involves π pulsing the qubit to the e state,

then measuring how long it takes the qubit to decay by measuring the readout resonator as

a function of time. The t1 plots of the qubit for both lattices with a magnet and without a

magnet are shown in Figure 5.8. The t1 of the lattice without the magnet is 9 µs, while the

t1 with the magnet decreased to 3 µs. This t1 is lower than state of the art substantially (in

our lab we have routinely made qubits > 100µs t1), but still substantially longer than swap

times (see later in the section) and lattice tunneling times (∼ 50 ns without a topological

band structure, ∼ 7 ns in the chiral edge modes).
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Figure 5.7: Rabi oscillations of the transmon g −→ e transition. The transition frequency
is pulsed for a swept time and then the transmission through the readout cavity is measured
immediately afterward. From top to bottom show increasing the power of the drive on
the transition. Stronger drives result in faster oscillations. Top. power and pulse times
(Middle) power Bottom. power
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Figure 5.8: t1 measurements of the transmon mode. The qubit is π-pulsed to the e state,
then the transmission through the readout cavity is measured after a varied time. The qubit
decays exponentially as a function of time, and this can be fit to extract the t1. Top. t1
measurements with no magnet in the lattice. t1 is 9µs. Bottom. t1 measurements with a
magnet in the lattice. The t1 drops to 3µs.
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Next, we measure the t2 of the qubit using a Ramsey measurement. This involves first π
2

pulsing the qubit to the g + e state, then waiting for a variable amount of time, and then π
2

pulsing the qubit once again. This measures the dephasing rate of the qubit. We measure

a dephasing rate in the sample without a magnet of 7µs, which is lower than the t1. This

means our limiting source of loss in this sample comes from dephasing, not decay from e to

g. For the sample without the magnet, the t2 is measured to be 4µs, which is higher than

the t1 in this sample. Also, the frequency of the fringes are set by the difference between

the qubit frequency and the drive frequency, so the Ramsey measurement is an accurate

measurement of the qubit frequency. The qubit frequency without a magnet is 7.815, GHz

while the qubit frequency with the magnet was 7.814 GHz.

After characterizing the g −→ e transition, we then turn to characterizing the e −→ f

transition, because this information will be used to measure the qubit temperature and the

higher levels will be used in qubit gates and swaps. First we go through similar measurements

so that we know if any of these states could be dominant loss sources. Figure 5.9 has these

measurements and shows that these modes and transitions have similar lossiness. First we

find the higher frequency transitions with an experiment identical to the experiment we used

to find the g −→ e transition. This transition has a much weaker signal since the qubit is

naturally in the g state most of the time since the qubit is cold. Next, we did two Rabi

experiments: the first one is done immediately after the qubit is π-pulsed to the e state,

and the second one is done without any pi pulse. We can compare the amplitudes of the

Rabi oscillations to get a measurement of the qubit temperature. Essentially, this is the

measurement of the probability of the qubit being in the g state vs the e state.

After these measurements were taken, we pushed on further only with the sample that had

a magnet. We then wanted to demonstrate a swap between excitations in the qubit and the

lattice site, so that we could potentially load or unload single qubits into the edge states

of the lattice. Before performing this swap, we needed to find the frequency of the lattice
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Figure 5.9: Ramsey measurements of the transmon mode. These measurements yield values
for the t2 of the qubit, as well as accurate measurements of the qubit frequency. Top.
Ramsey measurement in the sample with no magnet. The t2 is 7µs and the measured qubit
frequency is 7.815 GHz. Bottom. Ramsey measurement in the sample with a magnet. The
t2 is 4µs and the measured qubit frequency is 7.814 GHz.
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Figure 5.10: Qubit ef transition frequency measurements, performed exactly like the ge
transistion measurements. Top. ef transition with no magnet. The transition is at 7.463
GHz. Bottom. ef transition with the magnet. The broadening peak is because more power
was used in this measurement. The transition is at 7.469 GHz.
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Figure 5.11: Measurement of the qubit temperature. This is done by comparing the Rabi
oscillation amplitude of the ef transition when either a π-pulse to the e state is done before
the measurement or not. The ratio of the amplitudes is a probability of being in the e state
vs. the g state. Top. Qubit temperature with no magnet. The temperature is measured at
100 mK, though these temperatures are very rough since the Rabi oscillations not pi-pulsed
are hard to fit since they are so small. Bottom. Qubit temperature with a magnet. The
temperature is measured at 200 mK, though the signal to noise on the Rabi oscillations not
pi-pulsed is very low.
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mode and measure the chi shift between the qubit and this mode, denoted as χL. In order

to do this, we first ran an experiment where we swept a tone near where we expected the

lattice mode to be at (8.9 GHz), then pulsed at the qubit frequency, and finally measured

transmission through the readout resonator. If we hit the lattice mode frequency, then the

qubit mode frequency will shift, so that the readout resonator will not be shifted by the pulse

on the qubit since that pulse will now be off-resonant. The results are shown in Figure 5.12.

The lattice mode frequency is measured at 8.9009 GHz. Next, to measure χl, we switch the

constant tone to 8.9009 GHz and then do the sweep near the qubit frequency. After lowering

the power so that on average approximately one photon is in the lattice mode, we see the

plot showing in Figure 5.12. The two peaks are the frequencies of the qubit when the lattice

has either 0 or 1 photon. The splitting between the modes is measured at 10.6 MHz, which

makes χl = 5.3 MHz. We can use χl to determine gl as well using equation 5.3, obtaining a

gl of 155 MHz.

Next we wanted to determine the loss for the ef and gf transitions, since these will be

used in the swap and will dominate the loss. Fig. 5.13 shows these measurements and the

measured t2s of 2.0 seconds and 1.6 seconds respectively.

In order to perform a swap between the qubit mode and the lattice mode, we look at the

Hamiltonian of a strongly driven system in order to see at the available schemes to transfer an

excitation. Driving the Hamiltonion can make many terms that were previously negligible in

the rotating wave approximation large (dependent on the drive strength). By adding a drive

term ωd = 2ωq + α− ωl with drive strength Ωd, we can get a swap term in the Hamiltonian

like this:

Hswap
~

= −2
√
χrχl[Ωd(â

†
q)

2âl + Ω∗d(âq)
2â
†
l ] (5.5)

This specific term converts two excitations in the qubit to an excitation in the lattice cavity
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Figure 5.12: Measurements done to ascertain the frequency of the lattice cavity mode and
the χ shift between the lattice mode and the qubit (χl). Top. In this measurement we first
sweep a drive near the lattice mode frequency, then π-pulse the qubit and perform readout.
If the drive excites the cavity, then the qubit frequency will shift and the π-pulse will be
off-resonant to the qubit. This changes the readout transmission signal and allows us to find
ωl = 8.9009 GHz. Bottom. We then drive the lattice frequency very weakly and sweep a
tone near the qubit frequency. This allows us to see the number splitting of the qubit when
photons are in the lattice cavity, and measure χl = 5.3 MHz.
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Figure 5.13: Ramsey measurements for the ef and gf transition in the sample with a
magnet. The t2 measurements are 2.0 seconds and 1.6 seconds respectively. The gf t2 is
what dominates the loss of the photon swap procedure.
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via a drive photon. There are many types of transitions available in this system, but the rule

of thumb for which transitions are possible is that four photons are required with a drive

photon that is at a frequency of the difference between the qubit photons and the lattice

photons. For example, another possible transition would be to go from one excitation in

the qubit to two photons in the storage cavity, but this time the drive would need to be at

ωd = 2ωl − ωq. For this system, that would be at a frequency of 10 GHz, which is hard to

amplify to the high powers required to get fasts swaps. Fast swaps are required since we

want the swap time to be negligible compared to photon lifetimes.

In order to perform these swaps, we add another input drive that consists of an I and Q

channel from the PXI mixed with a signal generator. We first π-pulse the transmon to

the e state, then π-pulse the qubit up another level to the f state. Similarly to how we

found the cavity transition, we then sweep the new drive near f0 to g1 transition energy,

or ωd = (2ωq + α) − ωl, which is ∼6.83 GHz. After each point on the sweep, the qubit is

then π-pulsed back to the e state, so that we can do readout on the calibrated e state. If

the swept drive is on resonance with the transition, then less population will be in the f

state after the drive pulse, so the qubit will have smaller population in the e state and a

change in transmission through the readout cavity will occur. After this frequency is found,

we can then do a Rabi experiment as shown in Figure 5.14 to calibrate the time needed to

pi pulse the f0g1 transition. Higher rates are desirable since the lifetime of many of these

transitions is comparable to the gate times, so photons will start decaying before experiments

are finished. In Figure 5.14b, we show the fastest swap to the g1 state of ∼100 ns that we

could achieve for the coupling rates of our system.

With all of these procedures working in the model with a single site, we then turned our

attention to coupling transmons to delocalized edge modes of the lattice.
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Figure 5.14: Rabi swap between the f0 state and the g1 state plotted for two different
powers. The qubit is first excited to the f state, then a drive pulse is input at 6.832 GHz,
which is equal to ωd = (2ωq + α)− ωl. The population in the f state of the qubit is plotted
as a function of time. When the population of the f0 state goes to 0, all of the population
is in the g1 state. The bottom plot is at twice the power of the top plot, and therefore the
flopping rate is twice as fast.
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5.4 Single Qubit Coupled to the Chern Insulator

First we removed the transmon from the lattice and followed the procedure discussed in

Chapter 4 in tuning the rest of the lattice modes to the 8.9009 GHz, which was the frequency

of the lattice mode with the qubit inside the cavity. We mounted two qubits onto the lattice

so that they coupled to site (1,1) and (5,1). One of the qubits was the original qubit used in

section 5.3, and the other was from the same fabrication batch but with an EJ = 27 GHz,

higher than the original qubit which was 24 GHz. We had three output lines, so we connected

two to the two different qubits, and then connected the third to the 10-way Radiall switches

in order to be able to measure outputs on 10 of the lattice sites. We used a circulator on the

1-way side of the switch so that we could do reflection or readout measurements on these 10

lattice sites. Another Radiall switch was added so that we could at least connect input lines

to all of the cavities. This setup is currently ongoing testing.
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CHAPTER 6

OUTLOOK

This work has pioneered several paths toward making quantum topological materials out

of microwave light a reality. We have developed and tested a method to combine strong

nonlinearities with time reversal symmetry breaking topology in a low-disorder system where

dynamics and eigenmodes are easily measured. This work is easily translatable to Bose-

Hubbard model physics as well - combined with the dissapitive stabilizer [67] developed

alongside the Chern insulator we can explore physics with large interactions and arbitrary

filling factors (Chapter 6). Finally, this system already has the qualities to explore new

physics in chiral quantum optics [14], since we have already coupled single photon emitters

to chiral edge channels. Superconducting circuits and cavities are quickly becoming one of

the most powerful tools not only to perform universal quantum computation, but also to

study quantum materials, condensed matter physics, and quantum optics.

6.1 Fractional Quantum Hall Effect Physics

Our original goal for this project was to develop the technology to simulate fractional quan-

tum Hall effect physics in our material. While we have demonstrated this scheme is simulta-

neously compatible with both requisite interactions, two main technical challenges remain in

order to achieve this goal. First, we would need to resolve a way to increase the anharmonic-

ities of the lattice modes. This is an interesting problem because the only way to do this is

to make the many-body modes more “qubit-like”. For small increases in the anharmonicity,

we could simply hybridize the modes stronger by increasing gl and/or decreasing ∆l. Our

current qubit-cavity system had a χl of ∼5 MHz, which means that the self-Kerr shift of the

lattice mode would be 74 kHz:
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Kl =
χ2
l

α
=

g4
l α

∆2
l (∆l + α)2

(6.1)

This self-Kerr shift is essentially the interaction energy between particles, and at these values

is much smaller than the tunneling constant, which means that the lattice would be nowhere

near the strong interacting/Mott insulator limit where Kl >> t. We would need to multiply

our current self-Kerr shift by ∼300 to just match the tunneling ratio. In order to achieve

values that high while leaving α at 350 MHz (α is hard to increase without EC
EJ

becoming

too large), ∆l has to become very close to g, which puts the system out of the dispersive

regime. This could be a particularly difficult regime in which to work if you are trying to

build the simplest fractional quantum Hall material possible since now there would be two

modes on every lattice site interacting with all of their neighbors.

Perhaps a cleaner solution would be to effectively invert the lattice, making the sites the

transmons and the lattice a dispersive element the transmons use to virtually couple to each

other. I have performed some simulations of this to measure what the effective coupling

between two qubits in a detuned lattice is and I have achieved similar results to what we

currently use (t = 30 MHz). Since the transmon is where the particles live, the interaction

energy would effectively be the α of the transmon. On the other hand, the particles would

be much more sensitive to the lifetime of the transmon, and care would have to be taken

to make the transmon’s lifetime longer than the current lifetimes I achieved in this work

(this is possible- see section 4.5). Another challenge of this approach would be managing

the disorder of the transmons. As of the time of this writing, there are not strong methods

to either tune single junction qubits or to couple tunable flux qubits to 3D cavities, so one

would have to rely on either making many large batches of single junction qubits and post-

selecting, or using lattice modes to dispersively shift the qubit into the right frequency. One

could imagine adding an extra mode off resonant to the other modes into each lattice site

that does not couple to neighbors but does strongly couple to the qubit. Tuning this mode
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would allow you shift the qubit frequency since the qubit frequency is (from equation 5.4)

dependent on any coupled cavity:

ωge = ωq + 2
g2
r

∆r
(â
†
râr +

1

2
) + 2

g2
l

∆l
(â
†
l âl +

1

2
)

If an extra cavity was added, another g2

∆ term would appear in the qubit frequency. By

adjusting this detuning we could shift the qubit frequency. Although this scheme does

not scale well to a large number of sites since each cavity-qubit system would have to be

individually controlled and tuned, it would allow for large α, low disorder, and long particle

lifetimes.

In order to add transmons to each site, I investigated the design shown in Fig. 6.1. Every

site would now be composed of the original lattice site, a readout resonator, and a transmon

qubit coupled to both resonators. On the flip side of the lattice, we would machine another

lattice made out of readout resonators, but these would be uncoupled to each other. This

is possible because the readout cavities are narrower than the lattice cavities. Next, a

qubit is coupled to the resonators by mounting it in a hole between both resonators. This

configuration was able to achieve couplings between the qubit and each resonator of 100

MHz while maintaining EJ
EC

ratios of 300.

6.2 Bose-Hubbard Simulations

An extension of these ideas could be applied towards making a 2D Bose-Hubbard simulator.

The advantage here is that we would not need a magnetic field so all of those restrictions

and loss channels are discarded. To create a quantum material that can probe interesting

physics in the regions of the Bose-Hubbard model space where other materials struggle to

reach, we would need to find a way to tune the filling factor of the number of interacting
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Figure 6.1: Pictured is a single composite site of a possible way to implement a lattice
with a qubit and readout resonator for every site. Underneath each lattice site is a readout
resonator upside down. This would allow for easy machining and access. The qubit is then
placed in a channel between the readout resonator and lattice site in order to couple strongly
to both.
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photons compared to the number of lattice sites. Fortunately, we have designed a photonic

autonomous stabilizer [67] that can pump a chain of interacting sites full of photons. This

work was done in 2D but could easily be done with 3D cavities as well. However, pumping

the lattice completely full of photons would simply put the material in the Mott insulator

regime, which is a well understood regime and not where I would want to work. Instead, if we

block off and stabilize a fraction of the available sites, then immediately after stabilization we

could possibly unblock the sites and allow the photons to then thermalize on a larger lattice.

Of course this would require developing a way to detune/tune lattice sites quickly (< 100ns

preferably) and while in the cryostat. There are several ways this could be implemented.

First, designing flux-tunable qubits that work in 3D cavities would easily open this door,

since they could simply be moved off resonant to the lattice. Without using flux-tunable

qubits we would just need a way to detune certain qubits in the lattice to create the wall. The

qubits could be excited to the h-state so that they are off resonant, but then the qubits would

need a long lifetime while the blocked up lattice fills up to the e state. The blocking qubits

could be driven hard slightly off-resonant to AC stark shift the qubit mode off resonance.

The AC stark shift is proportional to the
Ω2
R

∆AC
, where ΩR is the Rabi rate and ∆AC is the

detuning between the applied tone and qubit transition. A fast Rabi rate of 50 ns and a

reasonable detuning of 10 MHz could potentially get frequency shifts of ∼40 MHz, which

could be enough of a shift depending on the tunneling rates used. The flexibility of this

system to modularly add different components to achieve different Hamiltonians allows it to

study many different interesting quantum systems on lattices.

6.3 Exotic Boundary Conditions

In some of our work on circuits [1], we exploited the ability to connect the boundaries of

the sample to other edges of the sample to make toroidal boundary conditions and then to

braid those boundary connections in to a Möbius strip. Coupling arbitrary lattice sites to
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other sites not only offers exciting possibilities in studying exotic topology and curvature,

but also can be used to eliminate the edge of the lattice entirely. The edge of materials, while

interesting in its own right, complicates the models we are trying to understand. As seen

even in the non-interacting case, the edge adds different type of states to the system and just

understanding bulk states unaffected by an edge is difficult. If we could eliminate the edge

and apply periodic boundary conditions we could use our system to study Hamiltonians that

theory is closer to explaining.

We lose a lot of the flexibility that we had working with circuits since (1) we are working with

microwaves with wavelengths ∼1 cm so connecting edges of a 10 cm lattice with anything

trivial would introduce new modes and (2) we have to preserve both power and phase (for

the magnetic field) in these long range couplings. There are, however, still possible methods

to couple cavities at long range to each other without loss or extra phase accumulation.

One idea on which we have done some preliminary testing is using a ladder of off-resonant,

higher frequency cavities to create a coupler that has modes with a concentration of the

wavefunction living on the edge of the cavity chain. Some of our early simulations have

coupled lattice site with a g of ∼10 MHz over a distance greater than the entire length of the

lattice (∼20 cm). Another way to do this is to change the geometry of the piece on which

the lattice is machined. It would be feasible to make a lattice actually on a large cylinder

or a sphere, though the machining would be technically difficult. In the same vein, a lattice

could be machined on both sides of a block of metal, and then coupled through the piece of

metal. In effect there would be two sublattices but how these sublattices are connected to

each other could be controlled. If only two opposite edges of a sublattice were coupled to the

same mirrored edges of the other sublattice, then the resultant topology would be a cylinder,

and only two edges would be left. Unfortunately, if you then connect the remaining edges in

a similar fashion, then the corners of the lattice would be topological defects since they only

have three connections while every other site has four. A final idea is to actually just use

a very short microwave cable. If the length is chosen correctly then the cable could have a
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sparse enough density of states that you could have all of the cable modes off resonant. When

the cable is then coupled to the cavities, the population of the excitations living in the cable

would be suppressed at the lattice frequency, similar to the results found by transporting

quantum states through a cable [68]. There are many possible ways to couple cavities at

longer distances to each other, and achieving this goal would add another powerful tool to

this toolbox of this approach to quantum simulation.

6.4 Other Lattice Geometries

The square lattice was one of the most efficient ways to minimize the number of YIG cavities

while still achieving a flux that results in band structures with flat bands and large band gaps.

In the current scheme the YIG cavities are sites that shift the phase of the photon by the

angle between the couplers. In fig.6.2 we show several other lattices that could be used that

have different flux per plaquette. The hexagonal lattice would require next nearest neighbor

coupling which has not been done yet. Another way to make more arbitrary magnetic fields

would be to use the YIG cavities as couplers between sites. In this configuration, the coupler

can be bent in such a way that the phase acquired tunneling through it would be tunable

depending on the angle the coupler is bent. This method would require large amounts of

YIG cavities but could be employed to explore different flux per plaquette.

6.5 Low Loss, Low Profile Tunable Circulators

Another use for the YIG cavities is to make microwave circulators out of them. The YIG

cavities can be made quite small and chained together to make extremely high nonreciprocity

in a device. In order to achieve chiral transport, the two chiral modes have to interfere with

each other in such a way to destructively interfere at one port and constructively interfere
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a. b. c.

p/ 2 p/ 3

Figure 6.2: Three different type of lattices that could be made using the components we
already have to achieve different magnetic fluxes in the lattice. a. Current Lattice arrange-
ment that has a flux per plaquette of π

2 . b. Triangular lattice that would have π
3 flux per

plaquette. c. The Haldane model realized with YIG cavities. A hexagonal lattice with
Yig cavities on every site, but their chiralities are staggered. When next nearest neighbor
tunneling is added, the net flux through the lattice is 0, but the flux in each sub lattice is
±π3 . This figure is from our theory paper [3].

at another. To do this, we make the coupling quality factor of the modes low enough so the

linewidth of the modes is equal to the splitting between the chiral modes. In the frequency

region between the two mode frequencies, we get nonreciprocity. In Figure 6.3, we plot

both theoretical curves and some preliminary data showing difference in transport between

two ports on the cavity 120 degrees apart. In order to get the nonreciprical transport,

the linewidth of the modes has to be carefully matched to the splitting between the cavity

modes. For the preliminary data it was only approximately matched so there is a lot of loss

in the through direction. The bandwidth of the circulator is limited by the splitting between

the chiral modes, which maxes out in cavity designs I have tried at 500 MHz. Making the

circulators tunable would also be possible, since any type of screw or dielectric could tune

the resonator.

6.6 Chiral Quantum Optics

Currently we are exploring chiral quantum optics with the lattice coupled to two qubits.

Our lattice already supports chiral modes with time reversal symmetry broken, and we have
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Figure 6.3: Left. Picture of a YIG cavity circulator setup. The three ports are 120 degrees
apart and strongly coupled to the cavity. A 2mm YIG sphere is in the center of the cavity
and a magnetic is on a micrometer below the cavity to tune the chiral mode splitting. Right.
Theory and data for transmission between two ports of the cavity. One color is one direction
while the other is the opposite. In the theory there should be a region with near perfect
transmission one direction but large suppression the other direction (40 dBm). The data is
not near as clean, due to couplings in the antenna not being balanced and the presence of
the higher order YIG modes coupling to the cavity as well.
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already coupled the lattice to single photon emitters and detectors (qubits). We are currently

trying experiments where we emit photons from one emitter and try to catch it at a different

emitter coupled to the edge mode. Refering back to Section 3.8, we could make effectively

two topological lattices, coupled by a single nonlinear site (coupled to a transmon). If we

pulse the edge mode of one of the lattices, the pulse will eventually reach the nonlinear

site and excite it. When it is excited, it becomes detuned and therefore a barrier for the

rest of the pulse. Eventually the qubit will reemit the photon, into one of the two lattices.

This could be an interesting single photon source, or used to put the emitted photon into

a superposition of being in the left or right lattice. We could also use the single site to

entangle photons in the different sublattices. As we increase our ability to add and control

qubits, many interesting quantum systems coupled by chiral modes will become available for

exploration.

Several proposals have shown that exciting physics occur when emitters are coupled to the

edge state of a Chern insulator. First, we can trap chiral photonic bound states which

can lead to directional, long-range interactions and many-body phases [69]. Second, we

can have parity-dependent scattering and antibunching of photons, caused by the emitters

contributing an effective interaction in the edge mdoe [70]. In many proposals, the topological

system does not break time reversal symmetry, so the emitter is restricted to couple to only

one of the chiral modes. In our system, the chiral modes are split in energy so that happens

easily. With two emitters, one can form a steady state which is a pure entangled many-atom

state by exciting both emitters [14]. In general, having chiral channels to connect quantum

networks could be intriguing for implementing different types of quantum simulators.
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CHAPTER 7

CONCLUSIONS

The result of this work was the development of new and exciting tools to build quantum

topological materials out of microwave light. We first engineered microwave cavity lattice

that could serve as a tight-binding Hamiltonian for photons. We then designed a time-

reversal symmetry breaking magnetic field for microwave photons using onsite wave functions

to generate a Peierl’s phase for photons that tunnel through certain lattice sites. Time

reversal symmetry was broken by coupling a YIG sphere biased with a DC magnetic field to

chiral cavity modes. All of these innovations were designed to be compatible with low-loss

superconducting cavities to increase particle lifetimes and transmon qubits to add inter-

particle interactions.

We then implemented the magnetic field in a superconducting niobium lattice, developing

methods to minimize resonator disorder to < 1 MHz and time reversal symmetry breaking

frequencies of 180 MHz, while achieving chiral resonator quality factors of 200000. We

measured superconducting topologically protected edge modes of a Chern insulator with

lifetimes greater than 3 µs compared to lattice hopping rates of 6 ns. Finally, we coupled

the lattice to qubit while maintaining qubit lifetimes great than 2 µs. We then performed

quantum swaps of qubit states into a single lattice in the presence of the biasing field required

to tune the YIG sphere. Currently we are exploring the system of a single qubit coupled to

the edge of our topological insulator.

With these advancements, we have opened many doors of possible quantum simulation.

This is the first photonic, time-reversal symmetry breaking topological lattice platform that

is compatible with strong interactions. We have a lot of ideas on what type of physics

would be exciting to do next, and cannot wait to see the future of quantum simulation with

microwave photons.
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APPENDIX A

TRANSMON FABRICATION RECIPE

There were two general recipes followed for making qubits, depending on whether we were

making qubits in one layer drawn completely in the e-beam or using both an optical and

e-beam layer. Written below is the recipe for the optical plus e-beam layer. If only an e-beam

layer is used, we follow the cleaning steps and then proceed directly to the PPMA/MMA

coating steps and continue on exactly like the optical plus e-beam.

Qubit Fabrication on Sapphire Wafer:

1. Start with a blank annealed Sapphire wafer

2. TAMI Clean the wafer

(a) 3min - sonicate Toluene

(b) 3min - sonicate Acetone

(c) 3min - sonicate Methanol

(d) 3min - sonicate IPA

(e) 3min Rinse under running DI water

(f) Spin dry and blow dry with N2 gun

3. Evaporate Base Layer

(a) Load into Plassys with wafer flat aligned with rotation arm

(b) Run the heater code to evaporate any remaining water

(c) Pump down and cool overnight

(d) Evaporate 75 nm Nb
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(e) Remove from Plassys

4. Spin Photoresist immediate after evaporation:

(a) Use AX 703, Speed 3500 rpm, ramp 1000 rpm, time 45 seconds

(b) Place wafer on spinner and turn on vacuum

(c) Run recipe

(d) Immediately bake the wafer

i. 1 min

ii. 95 C

(e) Cool wafer on the bench for 10 seconds

5. Optical Patterning on Heidelberg

(a) Prepare File and convert the design

(b) Check in viewer- black parts are exposed

(c) Load the file, load laser (405 nm is best with AZ 703)

(d) Load wafer

(e) Dose- For feature sizes bigger than 7µm use dose of 120 with 405 laser, otherwise

switch to 375 laser and use dose of 132.

(f) use focus written on the side of the machine- This is updated daily

(g) Start exposure

6. Developing the Optical Resist

(a) Bake for 1 minute at 95C, then rest the wafer for 3 minutes

(b) Develop the wafer in AZ MIF 300 for 1 minute, gently agitating the solution while

it develops
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(c) Quench in DI water for 10 seconds

(d) Rinse under DI water for 3 minutes

(e) Spin Dry

(f) Verify that the patterns are correct under microscope

7. Descuming- optional, I did not use it for my qubits

8. Etch the base layer

(a) Flourine etch for 75 nm base layer

(b) Test first with dummy wafer

(c) Use the niobium recipe, run it for twice as long as it normally works

(d) For the actual wafer watch the wafer as it etches and abort the process when it

is finished- should take 3 minutes

(e) Vent and retrieve wafer

9. Strip Photoresist

(a) Run recipe 7 on Asher

(b) 15 minute or longer in 80C NMP or PG Remover

(c) sonicate in 80C NMP for 5 minutes

(d) Move to IPA while mechanically rinsing with IPA while transferring

(e) Sonicate in IPA for 3 minutes

(f) Rinse with DI water for 3 minutes

(g) Spin Dry

10. Vacuum Bake- Run Recipe 4

11. Spin Bi-Layer E-beam resist
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(a) First layer- MMA EL11, 4000 rpm, ramp 500 rpm/second, time 45 seconds

(b) Bake 180 C for 5 minutes

(c) Second layer- Spin PPMA 950 A7, 4000 rpm, ramp 500 rpm/second, time 45

seconds

(d) Bake 180 C for 5 minutes

12. Evaporate a Gold conduction layer

(a) Vent the thermal evaporator

(b) Place gold pellet holder in clamp, make good electrical contact

(c) Mount and load wafer

(d) Pump down

(e) Run S3 Gold recipe, Max current should be 40%, use 10 nm of gold

(f) Vent, unload, and demount wafer

13. E-beam resist

(a) Prep the E-beam resist developer

i. 6C cold plate

ii. 3:1 IPA:water

iii. Mix well and close lid, let sit at least 1 hr for proper thermalization

(b) Prepare patter with Beamer, export to Raith computer

(c) Vent raith, unload sample holder

(d) Clamp wafer down and screw electrical contact pads down

(e) Record location of alignment marks (if doing more than 1 layer) at microscope

(f) Load sample into Raith and pump down

(g) Find alignment markers and record their positions
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(h) Add alignment marker position to cjob file

(i) Run cjob file

14. Etch gold

(a) Submerge wafer in iodine for 45 seconds

(b) Quench in water

(c) Mechanical rinse with water for at least 3 minutes

(d) Dry very well using spinner or N2 gun

15. Develop E-beam resist

(a) Place wafer in develoer

(b) Wait 1:30 minutes, use a timer

(c) Immediately rinse with DI water

(d) Dry with N2 gun as quickly as possible to make sure all the developer is removed

(e) Check pattern under optical microscope

16. Evaporate junctions

(a) Load wafer into Plassys with appropriate orientation relative to the rotation arm

(b) Pump down overnight

(c) Run junction evaporation recipe

i. For single layer: Ar/O2 gentle descum to clean up any developed photoresist,

deposit 20nm thickness of aluminum at evaporation angle of 40◦, 20 mbar

oxygen for 10 minutes, rotate stage 90◦ and then deposit 45 nm of aluminum

at an evaporation angle of 40◦

ii. For double layer: Ar/O2 gentle descum to clean up any developed photoresist,

deposit 80nm thickness of aluminum at evaporation angle of 40◦, 20 mbar
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oxygen for 10 minutes, Ion gun (use standard recipe) for 10 seconds at +45◦,

0◦, and −45◦, rotate stage 90◦ and then deposit 45 nm of aluminum at an

evaporation angle of 40◦

17. Dicing the qubits

(a) First coat qubit with AX1518- 2500 rpm, 45 seconds

(b) bake for 5 minutes at 70C

(c) Mount onto tape

(d) Dice qubits in dicing machine

18. Liftoff

(a) PG remover at 80C for 3 hours for diced qubits, longer for wafers

(b) IPA rinse and bath

(c) DI rinse

(d) N2 dry

Figure A.1: Left. SEM images of one of the first junctions I made following this recipe
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APPENDIX B

MATHEMATICA CODE

Included are the Mathematica codes used to calculate the lattice band structure and trans-

mission through the lattice:

freqoffset = 6.37 ∗ 2Pi;freqoffset = 6.37 ∗ 2Pi;freqoffset = 6.37 ∗ 2Pi;

Clear[Hmat]Clear[Hmat]Clear[Hmat]

Clear[ii]Clear[ii]Clear[ii]

Clear[jj]Clear[jj]Clear[jj]

Size = 21;Size = 21;Size = 21;

FundamentalOnOutside = True;FundamentalOnOutside = True;FundamentalOnOutside = True;

siteindices = Flatten[Table[{ii, jj}, {ii, 1, 2}, {jj, 1, Size}], 1];siteindices = Flatten[Table[{ii, jj}, {ii, 1, 2}, {jj, 1, Size}], 1];siteindices = Flatten[Table[{ii, jj}, {ii, 1, 2}, {jj, 1, Size}], 1];

J = 32.5;J = 32.5;J = 32.5;

φ = 1/4 ∗ 2Pi;κ = 0. 3;φ = 1/4 ∗ 2Pi;κ = 0. 3;φ = 1/4 ∗ 2Pi;κ = 0. 3;

ω0 = 9600− freqoffset;ω0 = 9600− freqoffset;ω0 = 9600− freqoffset;

(*getsiteindex[ii , jj ]:=1 + If[Length[#] > 0,#[[1, 1]], 0]&[Position[siteindices, {ii, jj}]]; *)(*getsiteindex[ii , jj ]:=1 + If[Length[#] > 0,#[[1, 1]], 0]&[Position[siteindices, {ii, jj}]]; *)(*getsiteindex[ii , jj ]:=1 + If[Length[#] > 0,#[[1, 1]], 0]&[Position[siteindices, {ii, jj}]]; *)

(* dumps all out of bound states into index 1*)(* dumps all out of bound states into index 1*)(* dumps all out of bound states into index 1*)

nInd = Length[siteindices];nInd = Length[siteindices];nInd = Length[siteindices];

(*Hmat = Table[0, {nInd}, {nInd}];(*Hmat = Table[0, {nInd}, {nInd}];(*Hmat = Table[0, {nInd}, {nInd}];

Hmat+=Table[If[ll == qq, ω0, 0], {ll, 1, nInd}, {qq, 1, nInd}]; *)Hmat+=Table[If[ll == qq, ω0, 0], {ll, 1, nInd}, {qq, 1, nInd}]; *)Hmat+=Table[If[ll == qq, ω0, 0], {ll, 1, nInd}, {qq, 1, nInd}]; *)

Hmat = Table[0, {nInd}, {nInd}];Hmat = Table[0, {nInd}, {nInd}];Hmat = Table[0, {nInd}, {nInd}];

For[ii = 1, ii ≤ 2, ii++,For[ii = 1, ii ≤ 2, ii++,For[ii = 1, ii ≤ 2, ii++,

For[jj = 1, jj ≤ Size, jj++,For[jj = 1, jj ≤ Size, jj++,For[jj = 1, jj ≤ Size, jj++,

curind = getsiteindex[ii, jj];curind = getsiteindex[ii, jj];curind = getsiteindex[ii, jj];
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Hmat[[curind, curind]]+=ω0(* + RandomReal[{−5, 5}]/(2Pi)*) + I κ2 ;
]]

Hmat[[curind, curind]]+=ω0(* + RandomReal[{−5, 5}]/(2Pi)*) + I κ2 ;
]]

Hmat[[curind, curind]]+=ω0(* + RandomReal[{−5, 5}]/(2Pi)*) + I κ2 ;
]]

For[jj = 1, jj ≤ Size− 1, jj++,For[jj = 1, jj ≤ Size− 1, jj++,For[jj = 1, jj ≤ Size− 1, jj++,

ii = 1;ii = 1;ii = 1;

Hmat[[getsiteindex[ii, jj], getsiteindex[ii, jj + 1]]]+=− JExp[−I φ];Hmat[[getsiteindex[ii, jj], getsiteindex[ii, jj + 1]]]+=− JExp[−I φ];Hmat[[getsiteindex[ii, jj], getsiteindex[ii, jj + 1]]]+=− JExp[−I φ];

Hmat[[getsiteindex[ii, jj + 1], getsiteindex[ii, jj]]]+=− JExp[I φ];Hmat[[getsiteindex[ii, jj + 1], getsiteindex[ii, jj]]]+=− JExp[I φ];Hmat[[getsiteindex[ii, jj + 1], getsiteindex[ii, jj]]]+=− JExp[I φ];

ii = 2;ii = 2;ii = 2;

Hmat[[getsiteindex[ii, jj], getsiteindex[ii, jj + 1]]]+=− J ;Hmat[[getsiteindex[ii, jj], getsiteindex[ii, jj + 1]]]+=− J ;Hmat[[getsiteindex[ii, jj], getsiteindex[ii, jj + 1]]]+=− J ;

Hmat[[getsiteindex[ii, jj + 1], getsiteindex[ii, jj]]]+=− J ;Hmat[[getsiteindex[ii, jj + 1], getsiteindex[ii, jj]]]+=− J ;Hmat[[getsiteindex[ii, jj + 1], getsiteindex[ii, jj]]]+=− J ;

]]]

If[FundamentalOnOutside==True,If[FundamentalOnOutside==True,If[FundamentalOnOutside==True,

For[jj = 1, jj ≤ (Size + 1)/2, jj++,For[jj = 1, jj ≤ (Size + 1)/2, jj++,For[jj = 1, jj ≤ (Size + 1)/2, jj++,

ii = 1;ii = 1;ii = 1;

Hmat[[getsiteindex[ii, 2jj− 1], getsiteindex[ii + 1, 2jj− 1]]]+=− J − JExp[2Iq];Hmat[[getsiteindex[ii, 2jj− 1], getsiteindex[ii + 1, 2jj− 1]]]+=− J − JExp[2Iq];Hmat[[getsiteindex[ii, 2jj− 1], getsiteindex[ii + 1, 2jj− 1]]]+=− J − JExp[2Iq];

Hmat[[getsiteindex[ii + 1, 2jj− 1], getsiteindex[ii, 2jj− 1]]]+=− J − JExp[−2Iq];Hmat[[getsiteindex[ii + 1, 2jj− 1], getsiteindex[ii, 2jj− 1]]]+=− J − JExp[−2Iq];Hmat[[getsiteindex[ii + 1, 2jj− 1], getsiteindex[ii, 2jj− 1]]]+=− J − JExp[−2Iq];

]]]

For[jj = 1, jj ≤ (Size− 1)/2, jj++,For[jj = 1, jj ≤ (Size− 1)/2, jj++,For[jj = 1, jj ≤ (Size− 1)/2, jj++,

ii = 1;ii = 1;ii = 1;

Hmat[[getsiteindex[ii, 2jj], getsiteindex[ii + 1, 2jj]]]+=J − JExp[2Iq];Hmat[[getsiteindex[ii, 2jj], getsiteindex[ii + 1, 2jj]]]+=J − JExp[2Iq];Hmat[[getsiteindex[ii, 2jj], getsiteindex[ii + 1, 2jj]]]+=J − JExp[2Iq];

Hmat[[getsiteindex[ii + 1, 2jj], getsiteindex[ii, 2jj]]]+=J − JExp[−2Iq];Hmat[[getsiteindex[ii + 1, 2jj], getsiteindex[ii, 2jj]]]+=J − JExp[−2Iq];Hmat[[getsiteindex[ii + 1, 2jj], getsiteindex[ii, 2jj]]]+=J − JExp[−2Iq];

],],],

For[jj = 1, jj ≤ (Size− 1)/2, jj++,For[jj = 1, jj ≤ (Size− 1)/2, jj++,For[jj = 1, jj ≤ (Size− 1)/2, jj++,
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ii = 1;ii = 1;ii = 1;

Hmat[[getsiteindex[ii, 2jj], getsiteindex[ii + 1, 2jj]]]+=− J − JExp[2Iq];Hmat[[getsiteindex[ii, 2jj], getsiteindex[ii + 1, 2jj]]]+=− J − JExp[2Iq];Hmat[[getsiteindex[ii, 2jj], getsiteindex[ii + 1, 2jj]]]+=− J − JExp[2Iq];

Hmat[[getsiteindex[ii + 1, 2jj], getsiteindex[ii, 2jj]]]+=− J − JExp[−2Iq];Hmat[[getsiteindex[ii + 1, 2jj], getsiteindex[ii, 2jj]]]+=− J − JExp[−2Iq];Hmat[[getsiteindex[ii + 1, 2jj], getsiteindex[ii, 2jj]]]+=− J − JExp[−2Iq];

]]]

For[jj = 1, jj ≤ (Size + 1)/2, jj++,For[jj = 1, jj ≤ (Size + 1)/2, jj++,For[jj = 1, jj ≤ (Size + 1)/2, jj++,

ii = 1;ii = 1;ii = 1;

Hmat[[getsiteindex[ii, 2jj− 1], getsiteindex[ii + 1, 2jj− 1]]]+=J − JExp[2Iq];Hmat[[getsiteindex[ii, 2jj− 1], getsiteindex[ii + 1, 2jj− 1]]]+=J − JExp[2Iq];Hmat[[getsiteindex[ii, 2jj− 1], getsiteindex[ii + 1, 2jj− 1]]]+=J − JExp[2Iq];

Hmat[[getsiteindex[ii + 1, 2jj− 1], getsiteindex[ii, 2jj− 1]]]+=J − JExp[−2Iq];Hmat[[getsiteindex[ii + 1, 2jj− 1], getsiteindex[ii, 2jj− 1]]]+=J − JExp[−2Iq];Hmat[[getsiteindex[ii + 1, 2jj− 1], getsiteindex[ii, 2jj− 1]]]+=J − JExp[−2Iq];

]]]

]]]

evs = Table[Eigenvalues[Hmat], {q,−Pi/2,Pi/2, .01}];evs = Table[Eigenvalues[Hmat], {q,−Pi/2,Pi/2, .01}];evs = Table[Eigenvalues[Hmat], {q,−Pi/2,Pi/2, .01}];

qs = Table[q, {q,−Pi/2,Pi/2, .01}];qs = Table[q, {q,−Pi/2,Pi/2, .01}];qs = Table[q, {q,−Pi/2,Pi/2, .01}];

tt = Table[Transpose[{qs, evs[[;;, q]]}], {q, 1,Length[evs[[1]]]}];tt = Table[Transpose[{qs, evs[[;;, q]]}], {q, 1,Length[evs[[1]]]}];tt = Table[Transpose[{qs, evs[[;;, q]]}], {q, 1,Length[evs[[1]]]}];

ListLinePlot[Sort[tt[[;;]]],PlotRange→ All]ListLinePlot[Sort[tt[[;;]]],PlotRange→ All]ListLinePlot[Sort[tt[[;;]]],PlotRange→ All]
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And for calculating transmission:

getsiteindex[ii , jj ]:=If[Length[#] > 0,#[[1, 1]], 0]&[Position[siteindices, {ii, jj}]];getsiteindex[ii , jj ]:=If[Length[#] > 0,#[[1, 1]], 0]&[Position[siteindices, {ii, jj}]];getsiteindex[ii , jj ]:=If[Length[#] > 0,#[[1, 1]], 0]&[Position[siteindices, {ii, jj}]];

Clear[Hmat]Clear[Hmat]Clear[Hmat]

Clear[ii]Clear[ii]Clear[ii]

Clear[jj]Clear[jj]Clear[jj]

Size = 11;Size = 11;Size = 11;

FundamentalOnOutside = True;FundamentalOnOutside = True;FundamentalOnOutside = True;

siteindices = Flatten[Table[{ii, jj}, {ii, 1, Size}, {jj, 1, Size}], 1];siteindices = Flatten[Table[{ii, jj}, {ii, 1, Size}, {jj, 1, Size}], 1];siteindices = Flatten[Table[{ii, jj}, {ii, 1, Size}, {jj, 1, Size}], 1];

J = .032;J = .032;J = .032;

φ = 1/4 ∗ 2Pi;κ = .003;φ = 1/4 ∗ 2Pi;κ = .003;φ = 1/4 ∗ 2Pi;κ = .003;

ω0 = 9.600;ω0 = 9.600;ω0 = 9.600;

(*getsiteindex[ii , jj ]:=1 + If[Length[#] > 0,#[[1, 1]], 0]&[Position[siteindices, {ii, jj}]]; *)(*getsiteindex[ii , jj ]:=1 + If[Length[#] > 0,#[[1, 1]], 0]&[Position[siteindices, {ii, jj}]]; *)(*getsiteindex[ii , jj ]:=1 + If[Length[#] > 0,#[[1, 1]], 0]&[Position[siteindices, {ii, jj}]]; *)

(* dumps all out of bound states into index 1*)(* dumps all out of bound states into index 1*)(* dumps all out of bound states into index 1*)
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nInd = Length[siteindices];nInd = Length[siteindices];nInd = Length[siteindices];

(*Hmat = Table[0, {nInd}, {nInd}];(*Hmat = Table[0, {nInd}, {nInd}];(*Hmat = Table[0, {nInd}, {nInd}];

Hmat+=Table[If[ll == qq, ω0, 0], {ll, 1, nInd}, {qq, 1, nInd}]; *)Hmat+=Table[If[ll == qq, ω0, 0], {ll, 1, nInd}, {qq, 1, nInd}]; *)Hmat+=Table[If[ll == qq, ω0, 0], {ll, 1, nInd}, {qq, 1, nInd}]; *)

Hmat = Table[0, {nInd}, {nInd}];Hmat = Table[0, {nInd}, {nInd}];Hmat = Table[0, {nInd}, {nInd}];

For[ii = 1, ii ≤ Size, ii++,For[ii = 1, ii ≤ Size, ii++,For[ii = 1, ii ≤ Size, ii++,

For[jj = 1, jj ≤ Size, jj++,For[jj = 1, jj ≤ Size, jj++,For[jj = 1, jj ≤ Size, jj++,

curind = getsiteindex[ii, jj];curind = getsiteindex[ii, jj];curind = getsiteindex[ii, jj];

Hmat[[curind, curind]]+=ω0(* + RandomReal[{−5, 5}]/(2Pi)*) + I κ2 ;
]]

Hmat[[curind, curind]]+=ω0(* + RandomReal[{−5, 5}]/(2Pi)*) + I κ2 ;
]]

Hmat[[curind, curind]]+=ω0(* + RandomReal[{−5, 5}]/(2Pi)*) + I κ2 ;
]]

For[jj = 1, jj ≤ Size− 1, jj++,For[jj = 1, jj ≤ Size− 1, jj++,For[jj = 1, jj ≤ Size− 1, jj++,

For[ii = 1, ii ≤ (Size + 1)/2, ii++,For[ii = 1, ii ≤ (Size + 1)/2, ii++,For[ii = 1, ii ≤ (Size + 1)/2, ii++,

Hmat[[getsiteindex[2ii− 1, jj], getsiteindex[2ii− 1, jj + 1]]]+=− JExp[−I φ];Hmat[[getsiteindex[2ii− 1, jj], getsiteindex[2ii− 1, jj + 1]]]+=− JExp[−I φ];Hmat[[getsiteindex[2ii− 1, jj], getsiteindex[2ii− 1, jj + 1]]]+=− JExp[−I φ];

Hmat[[getsiteindex[2ii− 1, jj + 1], getsiteindex[2ii− 1, jj]]]+=− JExp[I φ];Hmat[[getsiteindex[2ii− 1, jj + 1], getsiteindex[2ii− 1, jj]]]+=− JExp[I φ];Hmat[[getsiteindex[2ii− 1, jj + 1], getsiteindex[2ii− 1, jj]]]+=− JExp[I φ];

]]]

For[ii = 1, ii ≤ (Size− 1)/2, ii++,For[ii = 1, ii ≤ (Size− 1)/2, ii++,For[ii = 1, ii ≤ (Size− 1)/2, ii++,

Hmat[[getsiteindex[2ii, jj], getsiteindex[2ii, jj + 1]]]+=− J ;Hmat[[getsiteindex[2ii, jj], getsiteindex[2ii, jj + 1]]]+=− J ;Hmat[[getsiteindex[2ii, jj], getsiteindex[2ii, jj + 1]]]+=− J ;

Hmat[[getsiteindex[2ii, jj + 1], getsiteindex[2ii, jj]]]+=− J ;Hmat[[getsiteindex[2ii, jj + 1], getsiteindex[2ii, jj]]]+=− J ;Hmat[[getsiteindex[2ii, jj + 1], getsiteindex[2ii, jj]]]+=− J ;

]]]

]]]

If[FundamentalOnOutside==True,If[FundamentalOnOutside==True,If[FundamentalOnOutside==True,

For[jj = 1, jj ≤ (Size + 1)/2, jj++,For[jj = 1, jj ≤ (Size + 1)/2, jj++,For[jj = 1, jj ≤ (Size + 1)/2, jj++,

For[ii = 1, ii ≤ Size− 1, ii++,For[ii = 1, ii ≤ Size− 1, ii++,For[ii = 1, ii ≤ Size− 1, ii++,

Hmat[[getsiteindex[ii, 2jj− 1], getsiteindex[ii + 1, 2jj− 1]]]+=− J ;Hmat[[getsiteindex[ii, 2jj− 1], getsiteindex[ii + 1, 2jj− 1]]]+=− J ;Hmat[[getsiteindex[ii, 2jj− 1], getsiteindex[ii + 1, 2jj− 1]]]+=− J ;

Hmat[[getsiteindex[ii + 1, 2jj− 1], getsiteindex[ii, 2jj− 1]]]+=− J ;Hmat[[getsiteindex[ii + 1, 2jj− 1], getsiteindex[ii, 2jj− 1]]]+=− J ;Hmat[[getsiteindex[ii + 1, 2jj− 1], getsiteindex[ii, 2jj− 1]]]+=− J ;
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]]]

]]]

For[jj = 1, jj ≤ (Size− 1)/2, jj++,For[jj = 1, jj ≤ (Size− 1)/2, jj++,For[jj = 1, jj ≤ (Size− 1)/2, jj++,

For[ii = 1, ii ≤ (Size− 1)/2, ii++,For[ii = 1, ii ≤ (Size− 1)/2, ii++,For[ii = 1, ii ≤ (Size− 1)/2, ii++,

Hmat[[getsiteindex[2ii− 1, 2jj], getsiteindex[2ii, 2jj]]]+=− J ;Hmat[[getsiteindex[2ii− 1, 2jj], getsiteindex[2ii, 2jj]]]+=− J ;Hmat[[getsiteindex[2ii− 1, 2jj], getsiteindex[2ii, 2jj]]]+=− J ;

Hmat[[getsiteindex[2ii, 2jj], getsiteindex[2ii− 1, 2jj]]]+=− J ;Hmat[[getsiteindex[2ii, 2jj], getsiteindex[2ii− 1, 2jj]]]+=− J ;Hmat[[getsiteindex[2ii, 2jj], getsiteindex[2ii− 1, 2jj]]]+=− J ;

]]]

For[ii = 1, ii ≤ (Size− 1)/2, ii++,For[ii = 1, ii ≤ (Size− 1)/2, ii++,For[ii = 1, ii ≤ (Size− 1)/2, ii++,

Hmat[[getsiteindex[2ii, 2jj], getsiteindex[2ii + 1, 2jj]]]+=J ;Hmat[[getsiteindex[2ii, 2jj], getsiteindex[2ii + 1, 2jj]]]+=J ;Hmat[[getsiteindex[2ii, 2jj], getsiteindex[2ii + 1, 2jj]]]+=J ;

Hmat[[getsiteindex[2ii + 1, 2jj], getsiteindex[2ii, 2jj]]]+=J ;Hmat[[getsiteindex[2ii + 1, 2jj], getsiteindex[2ii, 2jj]]]+=J ;Hmat[[getsiteindex[2ii + 1, 2jj], getsiteindex[2ii, 2jj]]]+=J ;

]]]

]]]

(*,(*,(*,

For[jj = 1, jj ≤ (Size− 1)/2, jj++,For[jj = 1, jj ≤ (Size− 1)/2, jj++,For[jj = 1, jj ≤ (Size− 1)/2, jj++,

ii = 1;ii = 1;ii = 1;

Hmat[[getsiteindex[ii, 2jj], getsiteindex[ii + 1, 2jj]]]+=− J − JExp[2Iq];Hmat[[getsiteindex[ii, 2jj], getsiteindex[ii + 1, 2jj]]]+=− J − JExp[2Iq];Hmat[[getsiteindex[ii, 2jj], getsiteindex[ii + 1, 2jj]]]+=− J − JExp[2Iq];

Hmat[[getsiteindex[ii + 1, 2jj], getsiteindex[ii, 2jj]]]+=− J − JExp[−2Iq];Hmat[[getsiteindex[ii + 1, 2jj], getsiteindex[ii, 2jj]]]+=− J − JExp[−2Iq];Hmat[[getsiteindex[ii + 1, 2jj], getsiteindex[ii, 2jj]]]+=− J − JExp[−2Iq];

]]]

For[jj = 1, jj ≤ (Size + 1)/2, jj++,For[jj = 1, jj ≤ (Size + 1)/2, jj++,For[jj = 1, jj ≤ (Size + 1)/2, jj++,

ii = 1;ii = 1;ii = 1;

Hmat[[getsiteindex[ii, 2jj− 1], getsiteindex[ii + 1, 2jj− 1]]]+=J − JExp[2Iq];Hmat[[getsiteindex[ii, 2jj− 1], getsiteindex[ii + 1, 2jj− 1]]]+=J − JExp[2Iq];Hmat[[getsiteindex[ii, 2jj− 1], getsiteindex[ii + 1, 2jj− 1]]]+=J − JExp[2Iq];

Hmat[[getsiteindex[ii + 1, 2jj− 1], getsiteindex[ii, 2jj− 1]]]+=J − JExp[−2Iq];Hmat[[getsiteindex[ii + 1, 2jj− 1], getsiteindex[ii, 2jj− 1]]]+=J − JExp[−2Iq];Hmat[[getsiteindex[ii + 1, 2jj− 1], getsiteindex[ii, 2jj− 1]]]+=J − JExp[−2Iq];

118



]*)]*)]*)

]]]

nSys = Length[Hmat];nSys = Length[Hmat];nSys = Length[Hmat];

Imat = IdentityMatrix[Length[Hmat]];Imat = IdentityMatrix[Length[Hmat]];Imat = IdentityMatrix[Length[Hmat]];

{es, vs} = Eigensystem[Re[Hmat//N ]];{es, vs} = Eigensystem[Re[Hmat//N ]];{es, vs} = Eigensystem[Re[Hmat//N ]];

xin = 1;xin = 1;xin = 1;

yin = 1;yin = 1;yin = 1;

inIndex = getsiteindex[xin, yin]; (*− 1isthefix*)inIndex = getsiteindex[xin, yin]; (*− 1isthefix*)inIndex = getsiteindex[xin, yin]; (*− 1isthefix*)

ψin = Table[If[kk == inIndex, 1, 0], {kk, 1, nSys}];ψin = Table[If[kk == inIndex, 1, 0], {kk, 1, nSys}];ψin = Table[If[kk == inIndex, 1, 0], {kk, 1, nSys}];

GetPlot[dat ]:=Table[dat[[getsiteindex[ii, jj]]], {ii, 1, Size}, {jj, 1, Size}];GetPlot[dat ]:=Table[dat[[getsiteindex[ii, jj]]], {ii, 1, Size}, {jj, 1, Size}];GetPlot[dat ]:=Table[dat[[getsiteindex[ii, jj]]], {ii, 1, Size}, {jj, 1, Size}];

(*Manipulate
[
ArrayPlot

[
Abs[GetPlot[Inverse[Hmat− Imat ∗ δδ ∗ J ].ψin]]2

]
, {{δδ, 1.9},−4, 4}

]
*)(*Manipulate

[
ArrayPlot

[
Abs[GetPlot[Inverse[Hmat− Imat ∗ δδ ∗ J ].ψin]]2

]
, {{δδ, 1.9},−4, 4}

]
*)(*Manipulate

[
ArrayPlot

[
Abs[GetPlot[Inverse[Hmat− Imat ∗ δδ ∗ J ].ψin]]2

]
, {{δδ, 1.9},−4, 4}

]
*)

Catch[Catch[Catch[

Quiet[Quiet[Quiet[

Grid[{{Grid[{{Grid[{{

Show[ListPlot[Sort[es],PlotRange→ {9.500, 9.700},AspectRatio→ 1, ImageSize→ 300,Show[ListPlot[Sort[es],PlotRange→ {9.500, 9.700},AspectRatio→ 1, ImageSize→ 300,Show[ListPlot[Sort[es],PlotRange→ {9.500, 9.700},AspectRatio→ 1, ImageSize→ 300,

Frame→ True,FrameLabel→ {“Eigenmodes”, “Frequency [GHz]”},FrameStyle→ Directive[Black, 20]],Frame→ True,FrameLabel→ {“Eigenmodes”, “Frequency [GHz]”},FrameStyle→ Directive[Black, 20]],Frame→ True,FrameLabel→ {“Eigenmodes”, “Frequency [GHz]”},FrameStyle→ Directive[Black, 20]],

(*Graphics[{Thick,Red,Line[{{0, 9.555}, {Length[es], 9.555}}]}]*)],(*Graphics[{Thick,Red,Line[{{0, 9.555}, {Length[es], 9.555}}]}]*)],(*Graphics[{Thick,Red,Line[{{0, 9.555}, {Length[es], 9.555}}]}]*)],

ArrayPlot
[
Abs[GetPlot[Inverse[Hmat− Imat ∗ 9.555].ψin]]2, ImageSize→ 300

]
(*,ArrayPlot

[
Abs[GetPlot[Inverse[Hmat− Imat ∗ 9.555].ψin]]2, ImageSize→ 300

]
(*,ArrayPlot

[
Abs[GetPlot[Inverse[Hmat− Imat ∗ 9.555].ψin]]2, ImageSize→ 300

]
(*,

Graphics[Raster[(spindensityEdge[[i, ;;, ;;, 1]]− spindensityEdge[[i, ;;, ;;, 2]])/Graphics[Raster[(spindensityEdge[[i, ;;, ;;, 1]]− spindensityEdge[[i, ;;, ;;, 2]])/Graphics[Raster[(spindensityEdge[[i, ;;, ;;, 1]]− spindensityEdge[[i, ;;, ;;, 2]])/

maxdensityEdge[[i]]]]*)maxdensityEdge[[i]]]]*)maxdensityEdge[[i]]]]*)

}},Frame→ All]}},Frame→ All]}},Frame→ All]

]]]

]]]
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Show[,Null]

FrequencyDrive =FrequencyDrive =FrequencyDrive =

Show[ListPlot[Sort[es],PlotRange→ {9.500, 9.700},AspectRatio→ 1, ImageSize→ 300,Frame→ True,Show[ListPlot[Sort[es],PlotRange→ {9.500, 9.700},AspectRatio→ 1, ImageSize→ 300,Frame→ True,Show[ListPlot[Sort[es],PlotRange→ {9.500, 9.700},AspectRatio→ 1, ImageSize→ 300,Frame→ True,

FrameTicks→ {None,True},FrameLabel→ {“Eigenvalue Number”, “Frequency [GHz]”},FrameTicks→ {None,True},FrameLabel→ {“Eigenvalue Number”, “Frequency [GHz]”},FrameTicks→ {None,True},FrameLabel→ {“Eigenvalue Number”, “Frequency [GHz]”},

FrameStyle→ Directive[Black, 18]](*Graphics[{Thick,Red,Line[{{0, 9.65}, {Length[es], 9.65}}]}]*)]FrameStyle→ Directive[Black, 18]](*Graphics[{Thick,Red,Line[{{0, 9.65}, {Length[es], 9.65}}]}]*)]FrameStyle→ Directive[Black, 18]](*Graphics[{Thick,Red,Line[{{0, 9.65}, {Length[es], 9.65}}]}]*)]

Response = ArrayPlot
[
Abs[GetPlot[Inverse[Hmat− Imat ∗ 9.650].ψin]]2, ImageSize→ 300,Frame→ True,Response = ArrayPlot
[
Abs[GetPlot[Inverse[Hmat− Imat ∗ 9.650].ψin]]2, ImageSize→ 300,Frame→ True,Response = ArrayPlot
[
Abs[GetPlot[Inverse[Hmat− Imat ∗ 9.650].ψin]]2, ImageSize→ 300,Frame→ True,

FrameLabel→ {“Cavity Number (x)”, “Cavity Number (y)”},FrameStyle→ Directive[Black, 20],FrameLabel→ {“Cavity Number (x)”, “Cavity Number (y)”},FrameStyle→ Directive[Black, 20],FrameLabel→ {“Cavity Number (x)”, “Cavity Number (y)”},FrameStyle→ Directive[Black, 20],

FrameTicks→ {{True,False}, {True,False}}]FrameTicks→ {{True,False}, {True,False}}]FrameTicks→ {{True,False}, {True,False}}]
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Export[“frequencydrivehigh.pdf”,FrequencyDrive]Export[“frequencydrivehigh.pdf”,FrequencyDrive]Export[“frequencydrivehigh.pdf”,FrequencyDrive]

frequencydrivehigh.pdf

Export[“ResponseAtFreqhigh.pdf”,Response]Export[“ResponseAtFreqhigh.pdf”,Response]Export[“ResponseAtFreqhigh.pdf”,Response]

ResponseAtFreqhigh.pdf

Clear[pout]Clear[pout]Clear[pout]

xin = 1;xin = 1;xin = 1;

yin = 1;yin = 1;yin = 1;

xout = 10;xout = 10;xout = 10;

yout = 1;yout = 1;yout = 1;

outIndex = getsiteindex[xout, yout];outIndex = getsiteindex[xout, yout];outIndex = getsiteindex[xout, yout];

inIndex = getsiteindex[xin, yin];inIndex = getsiteindex[xin, yin];inIndex = getsiteindex[xin, yin];

pin = Table[If[kk == inIndex, 1, 0], {kk, 1, nSys}];pin = Table[If[kk == inIndex, 1, 0], {kk, 1, nSys}];pin = Table[If[kk == inIndex, 1, 0], {kk, 1, nSys}];

pout = Table[If[kk == outIndex, 1, 0], {kk, 1, nSys}];pout = Table[If[kk == outIndex, 1, 0], {kk, 1, nSys}];pout = Table[If[kk == outIndex, 1, 0], {kk, 1, nSys}];

xin = 5;xin = 5;xin = 5;
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yin = 5;yin = 5;yin = 5;

xout = 5;xout = 5;xout = 5;

yout = 5;yout = 5;yout = 5;

outIndex = getsiteindex[xout, yout];outIndex = getsiteindex[xout, yout];outIndex = getsiteindex[xout, yout];

inIndex = getsiteindex[xin, yin];inIndex = getsiteindex[xin, yin];inIndex = getsiteindex[xin, yin];

pin2 = Table[If[kk == inIndex, 1, 0], {kk, 1, nSys}];pin2 = Table[If[kk == inIndex, 1, 0], {kk, 1, nSys}];pin2 = Table[If[kk == inIndex, 1, 0], {kk, 1, nSys}];

pout2 = Table[If[kk == outIndex, 1, 0], {kk, 1, nSys}];pout2 = Table[If[kk == outIndex, 1, 0], {kk, 1, nSys}];pout2 = Table[If[kk == outIndex, 1, 0], {kk, 1, nSys}];

PlotT =PlotT =PlotT =

Plot[{.0006(Abs[pout.Inverse[Hmat− Imat ∗ δ].pin]∧2) + .00,Plot[{.0006(Abs[pout.Inverse[Hmat− Imat ∗ δ].pin]∧2) + .00,Plot[{.0006(Abs[pout.Inverse[Hmat− Imat ∗ δ].pin]∧2) + .00,

.0001Abs[pout2.Inverse[Hmat− Imat ∗ δ].pin2]∧2}, {δ, 9.500, 9.700},PlotRange→ All,.0001Abs[pout2.Inverse[Hmat− Imat ∗ δ].pin2]∧2}, {δ, 9.500, 9.700},PlotRange→ All,.0001Abs[pout2.Inverse[Hmat− Imat ∗ δ].pin2]∧2}, {δ, 9.500, 9.700},PlotRange→ All,

Frame→ True,FrameLabel→ {“Frequency [GHz]”, “Power Reflected [Arb]”},Frame→ True,FrameLabel→ {“Frequency [GHz]”, “Power Reflected [Arb]”},Frame→ True,FrameLabel→ {“Frequency [GHz]”, “Power Reflected [Arb]”},

FrameStyle→ Directive[Black, 20],PlotStyle→ Bold, ImageSize→ 500]FrameStyle→ Directive[Black, 20],PlotStyle→ Bold, ImageSize→ 500]FrameStyle→ Directive[Black, 20],PlotStyle→ Bold, ImageSize→ 500]
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