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Università di Trento, I-38123 Povo,
Italy

(Dated: February 13, 2018)

Topological photonics is a rapidly-emerging field of research in which geometrical and
topological ideas are exploited to design and control the behavior of light. Drawing
inspiration from the discovery of the quantum Hall effects and topological insulators in
condensed matter, recent advances have shown how to engineer analogous effects also for
photons, leading to remarkable phenomena such as the robust unidirectional propagation
of light, which hold great promise for applications. Thanks to the flexibility and diversity
of photonics systems, this field is also opening up new opportunities to realise exotic
topological models and to probe and exploit topological effects in new ways. In this
article, we review experimental and theoretical developments in topological photonics
across a wide-range of experimental platforms, including photonic crystals, waveguides,
metamaterials, cavities, optomechanics, silicon photonics and circuit-QED. We discuss
how changing the dimensionality and symmetries of photonics systems has allowed for
the realization of different topological phases, and we review progress in understanding
the interplay of topology with non-Hermitian effects, such as dissipation. As an exciting
perspective, topological photonics can be combined with optical nonlinearities, leading
towards new collective phenomena and novel strongly-correlated states of light, such as
an analogue of the fractional quantum Hall effect.
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I. INTRODUCTION

Over the last decade, topological photonics appeared
as a rapidly growing field of study. This field aims to
explore the physics of topological phases of matter, origi-
nally discovered in solid-state electron systems, in a novel
optical context. In this review, we attempt to cover the
main achievements of topological photonics, beginning
from the basic concepts of topological phases of matter
and of photonics, so that readers can follow our discus-
sion independently of their background.

Topological photonics is rooted in ideas that were first
developed to understand topological phases of matter in
solid state physics. This field of research began with the
discovery of the integer quantum Hall effect in 1980 (Kl-
itzing et al., 1980; von Klitzing, 1986). In this effect, a
two-dimensional electron gas in the presence of a strong
perpendicular magnetic field was found to exhibit robust
plateaus in the Hall conductance as a function of the
magnetic field, at values equal to integer multiples of
the fundamental constant e2/h. The far-reaching con-
ceptual consequences of this integer quantum Hall effect
were soon highlighted in (Kohmoto, 1985; Thouless et al.,
1982). These works related the integer appearing in the
Hall conductance to a topological invariant of the sys-
tem, the Chern number, that is an integer-valued quan-
tity which describes the global structure of the wavefunc-
tion in momentum space over the Brillouin zone.

An important insight into the physical meaning of the
topological invariant is given by the bulk-edge correspon-
dence (Hatsugai, 1993a,b; Jackiw and Rebbi, 1976; Qi
et al., 2006): when two materials with different topolog-
ical invariants are put in contact, there must exist edge
states that are spatially localized at the interface at en-
ergies that lie within the energy gap of the surrounding
bulk materials.

The bulk-edge correspondence can be heuristically un-
derstood in the following way: an integer topological in-
variant of a gapped system cannot change its value under
perturbations or deformations of the system, unless the
energy gap to excited states is somewhere closed. This
implies that when two materials with different topolog-
ical invariants are put in contact, the energy gap must
close somewhere in the interface region, which leads to
the appearance in this region of localized states. In a
finite-size sample of a topologically non-trivial material,

the physical edge of the sample can be considered as an
interface between a region with a non-zero topological in-
variant and the topologically trivial vacuum, guarantee-
ing the existence of localized states at the system bound-
ary.

In the quantum Hall effect, these edge modes display
chiral properties, in the sense that they can only propa-
gate in one direction along the sample boundary but not
in the opposite direction. The number of such chiral edge
modes that are available at the Fermi energy for electric
conduction is proportional to the Hall conductance. Be-
cause of the unidirectional nature of the edge states, the
edge currents are immune to backscattering, resulting in
the precise and robust quantization of the measured Hall
conductance (Büttiker, 1988; Halperin, 1982; MacDonald
and Středa, 1984).

Interest in the topological physics of electronic sys-
tems surged further when a different class of topological
phases of matter, now known as the quantum spin-Hall
systems or Z2 topological insulators, was discovered in
2005 (Bernevig et al., 2006; Bernevig and Zhang, 2006;
Kane and Mele, 2005a,b; König et al., 2007). In these
systems, the Chern number is zero but the wavefunc-
tion is characterised by a binary (Z2) topological invari-
ant, that can be non-zero and robust in the presence
of time-reversal symmetry. Since then, there has been
intense investigation in condensed matter physics into
what different topological phases of matter are possi-
ble under various symmetries, and what are the physi-
cal consequences of this physics (Bernevig and Hughes,
2013; Chiu et al., 2016; Hasan and Kane, 2010; Qi and
Zhang, 2011). Besides electronic systems in solid-state
materials, topological phases of matter are also being
actively studied in other quantum many-body systems,
in particular liquid helium (Volovik, 2009) and ultracold
atomic gases (Cooper, 2008; Dalibard et al., 2011; Gold-
man et al., 2016a, 2014).

Parallel to the growth in the study of topological
phases of matter in condensed matter systems, Haldane
and Raghu made the crucial observation that topologi-
cal band structures are, in fact, a ubiquitous property of
waves inside a periodic medium, regardless of the clas-
sical or quantum nature of the waves. In their seminal
works (Haldane and Raghu, 2008; Raghu and Haldane,
2008), they considered electromagnetic waves in two-
dimensional spatially periodic devices embedding time-
reversal-breaking magneto-optical elements, and showed
that the resulting photonic bands would have nontrivial
topological invariants. Consequently, they predicted that
such photonic systems would support robust chiral states
propagating along the edge of the system at frequencies
inside the photonic band gap.

Shortly afterwards, such a proposal was experimen-
tally implemented using the two-dimensional magneto-
optical photonic crystal structure in the microwave do-
main sketched in Fig. 1(a1-a2) (Wang et al., 2009): a
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FIG. 1 (Color online) Panel (a1): sketch of the gyro-magnetic
photonic crystal slab used in the experiments of (Wang et al.,
2009). The blue dots indicate the ferrite rods which are orga-
nized in a two-dimensional square lattice along the xy plane
and are subject to a magnetic field of 0.2 T. The structure
is sandwiched between two parallel copper plates providing
confinement along z. The chiral edge state is located at the
boundary of the photonic crystal next to the metal wall. Two
dipole antennas A and B serve as feeds and/or probes. Back-
scattering is investigated by inserting a variable-length metal
obstacle between the antennas. Panel (a2) shows a top view
photograph of the actual waveguide with the top plate re-
moved. Panels (b): Theoretical calculation of light propaga-
tion on edge states: subpanels (b1,b3) show unidirectional,
non-reciprocal propagation from the antennas A and B, re-
spectively. Subpanel (b2) shows the immunity to backscat-
tering against a defect. Panel (c): reciprocal transmission
when the two antennas are located in the bulk. Panel (d):
non-reciprocal transmission via the chiral edge state. Blue
and red curves refer to transmission from antenna A to an-
tenna B and viceversa. Panel (e): projected dispersion of the
allowed photonic bands in the bulk (blue and gray) and of
the chiral edge state (red). The white numbers indicate the
Chern number of each band. All panels adapted from (Wang
et al., 2009).

clear signature of the non-trivial band topology was
indeed found in the unidirectionally propagating edge
states and in the corresponding non-reciprocal behaviour,
as illustrated in the simulations of Fig. 1(b) and in the
experimental data of Fig. 1(c,d). More details on this
and related following experiments are given in Sec.III.A.

Further progress towards the implementation of such a
model in the optical domain and the exploration of other
topological models remained however elusive. One ma-
jor challenge was the absence of large magneto-optical

response in the optical domain. One way to overcome
this difficulty is to consider internal degrees of freedom of
photons as pseudospins and look for an analogy of quan-
tum spin-Hall systems, namely the overall time-reversal
symmetry is not broken but each pseudo-spin feels an
artificial magnetic field (Hafezi et al., 2011; Khanikaev
et al., 2013; Umucalılar and Carusotto, 2011). A second
way is to use ideas from the Floquet topological insula-
tors (Kitagawa et al., 2010a; Lindner et al., 2011; Oka and
Aoki, 2009) known in condensed matter physics, which is
to apply temporal modulation to the system to simulate
an effective time-independent Hamiltonian which breaks
time-reversal symmetry (Fang et al., 2012b). A third way
is to employ time-dependent modulation to implement a
“topological pump” (Thouless, 1983); this last approach
was realized experimentally in photonics in 2012 (Kraus
et al., 2012), while the previous two ideas have been real-
ized in 2013 by two concurrent experiments (Hafezi et al.,
2013b; Rechtsman et al., 2013b).

Since then, there has been great activity in the
study of a variety of photonic systems realizing band
structures with non-trivial topological invariants, lead-
ing to the emerging research field of topological photon-
ics (Khanikaev and Shvets, 2017; Lu et al., 2014, 2016c;
Sun et al., 2017b). Along similar lines, intense theoretical
and experimental work has also been devoted to related
topological effects in other areas of classical physics, such
as in mechanical and acoustic systems. Reviews of the
advances of these other fields can be found in (Fleury
et al., 2015; Huber, 2016).

The present review is focused on the recent develop-
ments in the study of topological phases of matter in the
photonics context. As we shall see in the following, in
the last decade, topological ideas have successfully per-
meated the field of photonics, having been applied to
a wide range of different material platforms, arranged
in lattices of various dimensionalities, and operating in
different regions of the electromagnetic spectrum, from
radio- and micro-waves up to visible light. One long
term goal of topological photonics is to achieve and con-
trol strongly correlated states of photons with topological
features such as fractional quantum Hall states. In ad-
dition to opening up perspectives for exploring the fun-
damental physics of topological phases of matter beyond
solid-state systems, topological photonics also offers rich
potential applications of these concepts to a novel gener-
ation of optoelectronic devices, such as optical isolators
and topological lasers.

The structure of this review article is the following. In
Sec.II.A, we offer a general review of the main geomet-
rical and topological concepts that have been developed
in the study of solid-state electronic systems and that
are commonly used in topological photonics. The fol-
lowing Sec.II.B gives a general overview of the specific
features that characterize photonic systems in contrast
to electronic topological insulators. The readers famil-
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iar with basic concepts of topological physics can safely
skip Sec.II.A, and similarly those who are from photonic
backgrounds can safely skip Sec.II.B.

In Sec. III, we discuss two dimensional photonic sys-
tems which show topological features. This section is
divided into four subsections. In Sec. III.A, we dis-
cuss two dimensional photonic structures which break
time-reversal symmetry, and hence display physics anal-
ogous to integer quantum Hall systems. The following
Sec. III.B deals with two dimensional photonic systems
which do not break time-reversal symmetry, and hence
can be considered as analogs of the quantum spin-Hall
systems. In Sec. III.C, we review photonic realizations
of anomalous Floquet topological systems, namely tem-
porally modulated systems displaying topological fea-
tures that do not have an analog in static Hamiltonians.
Sec. III.D discusses two dimensional gapless systems such
as honeycomb lattices, whose features can also be under-
stood from topological considerations.

Sec. IV is devoted to photonic realizations of one-
dimensional topological systems. In the first subsection
Sec.IV.A we will concentrate on systems with chiral sym-
metry, such as the Su-Schrieffer-Heeger (SSH) model. In
Sec.IV.B we will review photonic realizations of the topo-
logical pumping. Systems of higher dimensionality will
then be considered in Sec. V. Three dimensional gapless
phases with features originating from topological charges
in momentum space, such as Weyl points, are discussed
in Sec.V.A. In Sec.V.B, we discuss gapped three dimen-
sional phases and their topological interface states. The
following Sec.V.C will present the concept of synthetic
dimension to realize models with dimensions higher than
three and explore its potential to study, e.g., four dimen-
sional quantum Hall effects.

In Sec. VI, we discuss photonic systems where gain and
loss play an essential role. Such systems are described
by non-Hermitian Hamiltonians and do not find a direct
counterpart in electronic topological insulators. The first
subsection Sec.VI.A will focus on the interplay of gain
and loss, while the following Sec.VI.B will review the
emergent topology of Bogoliubov modes that arises from
parametric down conversion processes.

Sec. VII is devoted to an overview of the interplay be-
tween topology and optical nonlinearities. Theoretical
work on nonlinear effects stemming from weak nonlinear-
ities will be reviewed in Sec.VII.A, while the following
Sec.VII.B will highlight the prospect of strong photon-
photon interactions mediated by strong nonlinearities to
realize topologically nontrivial strongly correlated states
of photons. Some of the future perspectives of the field of
topological photonics are finally illustrated in Sec. VIII.

Even though we are making our best effort to review
most of the works that have appeared in the last years
in relation to topological phases of matter in optical sys-
tems, we need to warn the readers that space restrictions
force us to leave out many other fields of the optical sci-

ences that relate to topological concepts, e.g. the rich
dynamics of optical vortices in singular optics (Dennis
et al., 2009; Gbur, 2016), the topology underlying knots
in complex electromagnetic fields (Arrayás et al., 2017),
the topological ideas underlying bound states in the con-
tinuum (Hsu et al., 2016). For all these advances, we refer
the readers to the rich specific literature that is available
on each of them.

II. BASIC CONCEPTS

In this section, we introduce general concepts of topo-
logical phases of matter and of optical and photonic sys-
tems that will be needed in the following sections. In
Sec. II.A, we briefly review the paradigm of topological
phases of matter, as it has been originally developed in
the context of electronic systems in solid state materials,
and illustrate the basic technical and mathematical tools
to describe them. Then, in Sec. II.B, we review the prin-
cipal features of photonic systems used for topological
photonics, with a special emphasis on their differences
and peculiarities as compared to electronic systems.

A. Topological phases of matter

According to Bloch’s theorem, the eigenstates of a
quantum particle in a periodic potential are organized
into energy bands separated by energy gaps. This band
structure determines the metallic/insulating nature of
different solid-state materials (Ashcroft and Mermin,
1976). Besides the energy dispersion of the bands, the
geometrical structure of the Bloch eigenstates in momen-
tum space can also have an impact on the electronic prop-
erties of materials, as first discovered by Karplus and Lut-
tinger, 1954 and Adams and Blount, 1959. This geomet-
rical structure is reflected also in integer-valued global
topological invariants associated to each band, as we see
below. In spite of their seemingly abstract nature (Si-
mon, 1983), nontrivial values of these topological invari-
ants have observable consequences such as the quantized
bulk conductance in the quantum Hall effect and in the
emergence of topologically protected edge states located
on the physical boundary of the system (Bernevig and
Hughes, 2013; Hasan and Kane, 2010; Qi and Zhang,
2011; Volovik, 2009).

This subsection is devoted to an introduction to the ba-
sic concepts of such topological phases of matter. Read-
ers familiar with (electronic) topological insulators and
related fields can skip this part and move on to Sec.II.B.

1. Integer quantum Hall effect

The quantum Hall effect is historically the first phe-
nomenon where momentum-space topology was recog-
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nized to lead to observable physical phenomena. The
integer quantum Hall effect was discovered in a two-
dimensional electron gas subject to a strong perpendic-
ular magnetic field by Klitzing et al., 1980, who ob-
served a robust quantization of the Hall conductance in
units of e2/h, where e is the charge of an electron and
h is Planck’s constant. Soon after, the extremely ro-
bust quantization of the Hall conductance was related to
the topology of bands in momentum space by Thouless,
Kohmoto, Nightingale, and den Nijs (TKNN) in (Thou-
less et al., 1982).

In order to review this landmark result, we first need
to introduce the basic geometrical and topological prop-
erties of eigenstates in momentum space, such as the
(local) Berry connection and Berry curvature and the
(global) Chern number, respectively. We consider a
single-particle Hamiltonian Ĥ(r̂, p̂) in generic dimension
d, where r̂ and p̂ are, respectively, the position and mo-
mentum operators. We assume that the Hamiltonian
obeys the spatial periodicity condition Ĥ(r̂ + ai, p̂) =
Ĥ(r̂, p̂), where {ai} are a set of d lattice vectors. Thanks
to the spatial periodicity, one can invoke Bloch’s theorem
to write the eigenstates as

ψn,k(r) = eik·run,k(r), (1)

where n is the band index and k is the crystal momen-
tum defined within the first Brillouin zone. The Bloch
state un,k(r) obeys the same periodicity as the original
Hamiltonian un,k(r + ai) = un,k(r) and is an eigenstate
of the Bloch Hamiltonian

Ĥk ≡ e−ik·r̂Ĥ(r̂, p̂)eik·r̂, (2)

namely

Ĥkun,k(r) = En(k)un,k(r), (3)

where En(k) is the energy dispersion of the n-th
band (Ashcroft and Mermin, 1976).

The physics of an energy band is captured in part
by its dispersion relation En(k), but also by the geo-
metrical properties of how its eigenstates un,k(r) vary
as a function of k (Adams and Blount, 1959; Karplus
and Luttinger, 1954; Nagaosa et al., 2010; Resta, 1994,
2011). This geometry of the eigenstates is encoded by
the Berry phase (Berry, 1984; Hannay, 1985; Pancharat-
nam, 1956), which is defined in the following. Whereas
the Berry phase can be defined for a very general pa-
rameter space, in our discussion of topological phases of
matter we restrict ourselves to the case where the param-
eters are the crystal momentum k = (kx, ky, kz) varying
over the first Brillouin zone. Then, if one prepares a
localized wavepacket from states in band n and makes
it adiabatically move along a closed path in momentum
space, it will acquire a dynamical phase, determined by
the time-integral of its k-dependent energy, but also a

Berry phase (Xiao et al., 2010)

γ =

∮
An(k) · dk, (4)

that is geometrically determined by an integral, over the
same momentum-space path, of the Berry connection,
defined as

An(k) ≡ i〈un,k|∇k|un,k〉. (5)

Note that the definition of the Bloch states via Eq. (3)
does not specify the overall phase of |un,k〉, so one
can freely choose the phase of the Bloch states. Un-
der a gauge transformation |un,k〉 → eiχ(k)|un,k〉, the
Berry connection is not gauge invariant and transforms
as An(k) → An(k) + ∇kχ(k). However, the single-
valuedness of eiχ(k) at the beginning and the end of the
path imposes that the Berry phase (4) for a given closed
path is gauge invariant modulo 2π. Additionally, from
the gauge-dependent Berry connection An(k) one can
construct a gauge invariant Berry curvature, which in
three dimensions takes the following form:

Ωn(k) = ∇k ×An(k), (6)

and which encodes the geometrical properties of the n-th
band. In two dimensions, the Berry curvature has only
one component:

Ωn(k) = i
(
〈∂kxun,k|∂kyun,k〉 − 〈∂kyun,k|∂kxun,k〉

)
. (7)

Importantly, although the Berry curvature is a gauge in-
variant quantity that is continuously defined over the
whole Brillouin zone, the phase of the Bloch states
themselves cannot always be chosen to be continuous.
Whether this is possible or not depends on the value of
a topological invariant of the band, the Chern number,
defined as the integral

Cn =
1

2π

∫
BZ

d2kΩn(kx, ky), (8)

over the whole first Brillouin zone. If one can define the
phase of the Bloch state, and hence the Berry connection
An(k), continuously over the whole Brillouin zone, a di-
rect consequence of the definition Ωn(k) = ∇k ×An(k)
and of Stokes’ theorem is that the Chern number must
necessarily be zero. Conversely, having a non-zero Chern
number, implies that the Bloch state and hence the Berry
connection An(k) cannot be continuously defined.

It is not difficult to see that the Chern number always
takes an integer value (Kohmoto, 1985). To this pur-
pose, we divide the integration domain of (8) into two
regions S and S′ as sketched in Fig. 2. Within S, we
choose a continuous gauge for the Bloch state, giving the
Berry connection An(k). Similarly, within S′, we choose
a continuous gauge, which yields the Berry connection
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FIG. 2 A schematic illustration of how the Brillouin zone is
divided into two parts, S and S′. Thanks to the periodicity
of the quasi-momentum, the two-dimensional Brillouin zone
has a torus-like structure, in which top-bottom and left-right
edges (purple and red) should be identified.

A′n(k). Keeping in mind that the first Brillouin zone
can be thought of as a torus, thanks to the periodicity of
the quasi-momentum, we can use Stokes’ theorem within
S and S′ and rewrite the Chern number in terms of the
line integral along the common boundary ∂S = −∂S′,

Cn =
1

2π

∫
S

d2kΩn(kx, ky) +
1

2π

∫
S′
d2kΩn(kx, ky)

=
1

2π

∮
∂S

dr ·An(k)− 1

2π

∮
∂S

dr ·A′n(k)

=
1

2π
(γ − γ′) , (9)

where γ and γ′ are the Berry phases along the contour
∂S calculated using An(k) and An(k)′, respectively. As
the Berry phases are calculated along the same path,
they must be equal up to multiples of 2π. This in turn
implies that the Chern number Cn must be an integer.
Importantly, this integer-valued quantity has a profound
topological origin (Avron et al., 1983; Niu et al., 1985;
Simon, 1983), which indicates that its value must remain
strictly constant under smooth perturbations that pre-
serve the band-gaps separating the band n to neighboring
bands (Avron et al., 1983). Fermionic systems in which
the fermions completely fill Bloch bands with non-zero
Chern numbers are generically termed Chern insulators.

Within linear response theory and ignoring inter-
particle interactions, one can show that the Hall con-
ductance σxy of a two-dimensional insulator is (Thouless
et al., 1982),

σxy = −e
2

h

∑
n

Cn, (10)

where the Chern numbers are summed over the n oc-
cupied bands. Since the Chern numbers can take only
integers, it follows that the Hall conductance is quan-
tized in units of e2/h. As we shall see shortly, in the
simplest case of a uniform two dimensional electron gas
under a strong magnetic field, the energy levels form flat
Landau levels, and all the Landau levels have the same
Chern number. Therefore the Hall conductance of the in-
teger quantum Hall effect is proportional to the number
of occupied Landau levels.

The quantization of the Hall conductance can also be
related to the number of modes that propagate unidi-
rectionally around the system, the so-called chiral edge
modes. Indeed, each of such edge modes contributes
−e2/h to the measured Hall conductance (Büttiker, 1988;
Halperin, 1982; MacDonald and Středa, 1984). The ex-
istence of such current-carrying edge modes is also con-
strained by topology, in the sense that the sum of the
Chern numbers associated with the occupied bulk bands
is equal to the number of edge modes contributing to the
edge current (Hatsugai, 1993a,b; Qi et al., 2006). This
relationship between a bulk topological invariant, such
as the Chern number, and the number of localized edge
modes is an example of the bulk-edge correspondence,
i.e., a matching between the topological properties de-
fined in the bulk of a material with its boundary phe-
nomena (Bernevig and Hughes, 2013).

While the discussions above are based on single-
particle energy bands in a perfect crystal, the definition
of the Chern number can also be generalised to include
the effects of interactions and disorder (Niu et al., 1985).
When the interparticle interactions become very strong,
the Hall conductance can become quantized at fractional
values of e2/h (Tsui et al., 1982). This is known as the
“fractional quantum Hall effect” in which the quantum
many-body ground state is strongly-correlated and topo-
logical. Remarkably, the excitations of such a fractional
quantum Hall state can have a fractional charge and
possibly even fractional statistics (Arovas et al., 1984;
Laughlin, 1983). Progress towards realizing analogue
fractional quantum Hall states of light will be reviewed
in Sec VII.B.

In the rest of this subsection, we proceed with a de-
tailed discussion of a few important models for integer
quantum Hall systems and Chern insulators. We shall
start by considering a two-dimensional electron gas un-
der a strong and uniform magnetic field, which gives rise
to Landau levels and to the integer quantum Hall ef-
fect (Prange et al., 1989; Yoshioka, 2002). The second
example is the Harper-Hofstadter model, that is a tight-
binding lattice model in a uniform magnetic field (Azbel,
1964; Harper, 1955b; Hofstadter, 1976). The third one is
the Haldane model (Haldane, 1988), which is the first ex-
ample of a Chern insulator model with alternating mag-
netic flux patterns. We will then conclude by illustrating
the bulk-edge correspondence on a simple Jackiw-Rabbi
model (Jackiw and Rebbi, 1976).

Landau levels: The quantum Hall effect was originally
found in a semiconductor hetero-junction where electrons
are confined to move in a two-dimensional plane (Kl-
itzing et al., 1980). This system can be modeled, to a
first approximation, as a two-dimensional electron gas in
free space under a constant magnetic field. The single-
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particle Hamiltonian is

Ĥ =
(p̂x − eAx(r̂))2 + (p̂y − eAy(r̂))2

2m
, (11)

where A(r) = (Ax(r), Ay(r), 0) is the magnetic vector
potential, associated with the magnetic field B = ∇r ×
A(r).

For a given magnetic field, different forms of the vec-
tor potential A(r) can be chosen. For our case of a con-
stant magnetic field along the z-direction, B = (0, 0, B),
the two most common choices are the Landau gauge,
which keeps translational symmetry along one direction
as A(r) = (−yB, 0, 0) or (0, xB, 0), and the symmetric
gauge, A(r) = (−yB/2, xB/2, 0), which keeps instead
rotational symmetry. Physical observables such as the
energy spectrum and the Hall conductance do not de-
pend on the choice of gauge.

The single-particle energy spectrum of this system con-
sists of equally spaced Landau levels of energy

En = ~ωc (n+ 1/2) , (12)

where ωc ≡ |e|B/m is the cyclotron frequency and the
integer n ≥ 0. For a large system, each Landau level is
highly degenerate with a degeneracy equal to the number
of unit magnetic fluxes φ0 = h/|e| piercing the system.

Regarding each Landau level as an energy band, the
system can be considered as a Chern insulator when the
Fermi energy lies within an energy gap. The Chern num-
ber is one for any Landau level. Then, from the TKNN
formula (10), the Hall conductance is thus proportional
to the number of occupied Landau levels, which explains
the basic phenomenology of the integer quantum Hall ef-
fect.

Harper-Hofstadter model: The next model we consider
is the discrete lattice version of the Landau level prob-
lem, the Harper-Hofstadter model (Azbel, 1964; Harper,
1955b; Hofstadter, 1976). In tight-binding models, the
magnetic vector potential A(r) enters as a non-trivial
phase of the hopping amplitude between neighboring
sites, called the Peierls phase. In the simplest cases, the
phase accumulated when hopping from a site at r1 to a
site at r2 can be written in terms of the vector potential
as

Φr1→r2 =
e

~

∫ r2

r1

A(r) · dr, (13)

where the integral is taken along a straight line connect-
ing the two points (Luttinger, 1951; Peierls, 1933).

Choosing for definiteness the Landau gauge along y-
direction, A(r) = (0, Bx, 0), the Hamiltonian of the
Harper-Hofstadter model on a square lattice is:

Ĥ = −J
∑
x,y

(
â†x+a,yâx,y + ei2παx/aâ†x,y+aâx,y + H.c.

)
,

(14)

FIG. 3 (Left) Energy spectrum of the Harper-Hofstadter
model, which is called the Hofstadter butterfly (Hofstadter,
1976). (Right) The colored Hofstadter butterfly in which the
color of each band-gap indicates the topological invariant of
the gap, given by the sum of the Chern numbers of all bands
below. Warm colors indicate a positive topological invariant,
whereas the cool colors indicate a negative topological invari-
ant. The horizontal axes are the energies and the vertical axes
are the flux α. Adapted from (Osadchy and Avron, 2001).

where âx,y is the annihilation operator of a particle at site
(x, y), J is the magnitude of the (isotropic) hopping am-
plitude and a is the lattice spacing. The intensity of the
magnetic field in the system is quantified by the parame-
ter α, obeying αφ0 = Ba2, which identifies the magnetic
flux per plaquette of the lattice in units of the magnetic
flux quantum φ0. The main distinction from the Landau
level case discussed above is that in the Hofstadter model
there are two competing lengthscales: the lattice spacing
and the magnetic length. As a result, the electrons paths
interfere to give the fractal energy spectrum as a function
of α, which is widely known as the Hofstadter butterfly
and which is plotted in the left panel of Fig. 3. The first
experimental demonstration of the Hofstadter butterfly
was performed in a microwave waveguide, exploiting the
analogy between the transfer matrix governing the trans-
mission of microwave and the eigenvalue equation of the
Harper-Hofstadter model (Kuhl and Stöckmann, 1998).

To get more insight into this spectrum, it is useful
to concentrate on cases where α is a rational number,
α = p/q with p and q being co-prime integers. Because
of the spatially-varying hopping phase, the Hamiltonian
breaks the basic periodicity of the square lattice. Peri-
odicity is, however, recovered if we consider a larger unit
cell of q × 1 plaquettes: this is called the magnetic unit
cell (Dana et al., 1985; Zak, 1964). As the number of
bands in lattice models is equal to the number of lat-
tice sites per (magnetic) unit cell, the Harper-Hofstadter
model with α = p/q has q bands.

To find the geometrical and topological properties of
the model, one can diagonalize the momentum-space
Hamiltonian (Azbel, 1964; Harper, 1955b; Hofstadter,
1976)

Ĥk = −J
q∑
i=0

(
cos (ky − 2πα) âi(k)†âi(k)

+e−ikx âi+1(k)†âi(k) + H.c.
)
, (15)

where i, defined mod q, indicates the site within a mag-
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netic unit cell, and the momentum k is chosen within
the magnetic Brillouin zone: −π/q ≤ kx ≤ π/q and
−π ≤ ky ≤ π. An explicit calculation shows that
the Chern numbers of all isolated bands of the Harper-
Hofstadter model are nonzero and can be found as solu-
tions of a simple Diophantine equation (Thouless et al.,
1982). As shown in the right panel of Fig. 3, this model
exhibits a very rich structure of positive and negative
Chern numbers depending on the magnetic flux.

Haldane model: The Haldane model (Haldane, 1988)
is the first model system that exhibits a non-zero quan-
tized Hall conductance in a non-uniform magnetic field
with a vanishing average flux per plaquette. This model
demonstrated that, to obtain the quantum Hall effect,
the essential feature required is, in fact, not a net mag-
netic field but the breaking of time-reversal symmetry.
As the Haldane model consists of a honeycomb lattice
with suitable hopping amplitudes, it is useful to start by
briefly reviewing the physics of a tight-binding model on
a honeycomb lattice, which is often used to describe elec-
trons in graphene (Castro Neto et al., 2009) and which
has recently been widely implemented in photonics, as
we will review in Sec. III.D.

The honeycomb lattice with nearest-neighbor hopping
is one of the simplest examples of a system which exhibits
Dirac cones in the band structure, namely linear cross-
ings of the energy dispersion of two neighboring bands.
A honeycomb lattice has two lattice sites per unit cell,
which gives two bands. These are degenerate at two
isolated and inequivalent points in the Brillouin zone,
called Dirac points. Around the Dirac points, the effec-
tive Hamiltonian of the two bands takes the following
form in the sublattice basis:

ĤD ≈ ~vD (qxσx + qyσy) , (16)

where vD ≡ 3t1/2 is called the Dirac velocity, with t1 be-
ing the nearest-neighbor hopping amplitude, and (qx, qy)
is the momentum measured from a Dirac point. As a
result, the dispersion around the Dirac point is linear,

E = ±~vD
√
q2
x + q2

y, and referred to as the Dirac cone. A

complete plot of the band dispersion is shown in Fig. 4(c).
In order to open an energy gap at Dirac points, one

needs to add a term proportional to σz in ĤD. This can
be achieved by either breaking time-reversal symmetry or
inversion symmetry, which implies that as long as both
time-reversal symmetry and inversion symmetry are pre-
served the gapless Dirac points are protected (Bernevig
and Hughes, 2013).

The key novelty of the Haldane model is to add two
more sets of terms to the nearest-neighbor honeycomb
lattice model, which open energy gaps at the Dirac cones
in complementary ways, by breaking inversion symmetry
or time-reversal symmetry. The first set of terms is a
constant energy difference 2M between two sublattices,
which break inversion symmetry. The second set of terms

(a) (b)

(c) (d)

(e) (f)

FIG. 4 (a) A plaquette of the Haldane model. In addition
to the usual nearest-neighbour hoppings, there are also com-
plex next-nearest-neighbour hoppings. For the latter, hopping
along the arrows carries a phase of φ, whereas the hopping op-
posite to the arrows carries the opposite phase of −φ. (b) The
phase diagram of the Haldane model as a function of the next-
nearest-neighbor hopping phase φ and the sublattice energy
difference 2M . (c) Bulk band structure of the honeycomb lat-
tice with nearest- neighbor hopping only. Conical touchings
of bands are Dirac points. (d) Typical bulk band structure of
the Haldane model in the presence of a band gap. (e) Typical
band structure with the zig-zag edge for gapless honeycomb
lattice. Flat-band localized edge states (indicated in purple)
connect between the Dirac cones, with one per edge. (f) Typ-
ical band structure with edges on both sides of the system
when a topological gap opens. Red and blue lines indicate
edge states on left and right edges, respectively.

are next-nearest-neighbor hoppings with magnitude t2
and complex hopping phases breaking time-reversal sym-
metry, i.e. hopping along the arrows in Fig. 4(a) carries
a phase of φ, whereas the hopping along the opposite di-
rection carries the opposite phase of −φ. While adding
the energy difference between sublattices opens a trivial
gap, in the sense that the resulting bands are topologi-
cally trivial, adding complex next-nearest-neighbor hop-
pings results in opening a gap with topologically nontriv-
ial bands. This different behavior is due to the break-
ing of time-reversal symmetry by the complex hopping
phases, a necessary condition to obtain a nonzero Chern
number (Bernevig and Hughes, 2013). The full topologi-
cal phase diagram of the Haldane model as a function of
the magnitude of the two gap-opening terms is summa-
rized in Fig. 4(b), while an example of the energy band
dispersion for a bulk system is shown in Fig. 4(d).
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FIG. 5 A schematic illustration of how the interface of two
regions with different topological numbers can host a localized
state. The spatial dependence of the mass term m(x) and the
wavefunction residing at the interface (x = 0) are schemat-
ically plotted. Sketched above are the schematic dispersion
for values of m at corresponding positions, showing that the
bulk band-gap closes when m(0) = 0.

The nontrivial topology of the Haldane model can also
be seen from the appearance of chiral propagating edge
states. The dispersion of a finite slab of Haldane model
is displayed in Fig. 4(e,f) for the gapless case and the
gapped case with a topologically nontrivial gap, respec-
tively. Along the y-direction the system is taken to be
periodic, so the momentum ky is a good quantum num-
ber. In the other x-direction, we have a large but finite
size system with a sharp edge. While the edge states of
the unperturbed honeycomb lattice are flat at the energy
of the Dirac points (Fig. 4(e)), when a bulk topological
gap opens, two new states appear, which traverse the en-
ergy gap in opposite directions along opposite edges of
the system. Propagation of each of these states is there-
fore unidirectional and is protected by the fact that these
edge states are spatially-separated, suppressing scatter-
ing processes from one edge state into the other.

The Haldane model, and its generalization, which is of-
ten termed the quantum anomalous Hall effect, has been
realized in solid-state system by Chang et al., 2013, as
well as in photonics (Rechtsman et al., 2013b) and ultra-
cold atomic gases (Jotzu et al., 2014).

Bulk-edge correspondence: The relationship between
a topologically nontrivial band structure and the pres-
ence of topologically protected edge states is a very
general phenomenon known as the bulk-edge correspon-
dence (Hatsugai, 1993a,b; Qi et al., 2006). We now il-
lustrate the bulk-edge correspondence through a simple
model. Note that a solid mathematical formulation of
this bulk-edge correspondence has been developed based
on the index theorem (Callias, 1978; Chiu et al., 2016).

As we have seen in the Haldane model, one can obtain
topological bands by adding proper gap-opening terms,
proportional to σz, to the gapless unperturbed Hamilto-

nian (16). Looking at the phase diagram of the Haldane
model, Fig. 4(b), a topological phase transition can be in-
duced by changing M/t2 or φ. In the Dirac Hamiltonian
description, this topological phase transition corresponds
to adding a σz term and changing the sign of its coeffi-
cient (Bernevig and Hughes, 2013; Haldane, 1988). We
can therefore model the interface of two Haldane models
with different Chern numbers by considering the follow-
ing Jackiw-Rebbi Hamiltonian (Jackiw and Rebbi, 1976):

Ĥ = ~vD (qxσx + qyσy) +m(x)σz, (17)

where the mass term m(x) varies along x direction, obey-
ing m(x) < 0 at x < 0, m(0) = 0, and m(x) > 0 at x > 0.
The gap closes at x = 0, and the system is divided into
two parts with m < 0 and m > 0, which are sketched
in Fig. 5 for illustration and which have different Chern
numbers. Writing the momentum operators in terms of
a spatial derivative (qx,y = −i∇x,y), it is straightforward
to see that the wavefunction of the form

ψ(x) ∝ eikyy exp

(
− 1

~vD

∫ x

0

m(x′)dx′
)(

1
i

)
(18)

is an eigenstate of the Hamiltonian with the energy
~vDky. This state ψ(x) is localized around x = 0, and
has a positive group velocity along the y-direction. As
there is no other (normalizable) state around x = 0 with
a negative group velocity, this state is chiral and robust
against back-scattering. Analogously, edge states around
a generic topologically nontrivial system can be under-
stood as interface states between the system and the
topologically trivial vacuum (Hasan and Kane, 2010).

2. Quantum spin-Hall system

In all the models that we have seen so far, time-reversal
symmetry was explicitly broken through either the ap-
plied magnetic field or the complex hopping phase. When
time-reversal symmetry is present, the Berry curvature
obeys Ωn(−k) = −Ωn(k) for non-degenerate bands, im-
plying that the Chern number, which is an integral of
the Berry curvature over the Brillouin zone, is necessarily
zero. A similar argument also holds for degenerate bands:
no Chern bands can be found in two-dimensional sys-
tems preserving time-reversal symmetry (Bernevig and
Hughes, 2013).

In 2005, new classes of two dimensional topological
phases were proposed (Bernevig et al., 2006; Bernevig
and Zhang, 2006; Kane and Mele, 2005a,b). These mod-
els consist of two copies of a Chern insulator, one for
each spin, where the magnetic field acting on two spins
are opposite and hence the Chern number for spin up
Cup is opposite to that for spin down Cdown = −Cup.
Since the magnetic fields for two spins are opposite, time-
reversal-symmetry is preserved, and the sum of the Chern
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numbers for the two spins is zero. In this model, as long
as there are no spin-flip processes, the two spin compo-
nents are uncoupled and independently behave as Chern
insulators with opposite Chern numbers Cup,down. As a
result, there are the same number of edge states in the
two spin states, but with opposite propagation direction;
instead of chiral, the edge states are then called helical.

Even when the spin is not conserved, at least one pair
of edge states survives and is topologically protected,
as long as time-reversal symmetry holds. This feature
is a consequence of Kramers’ theorem, which holds in
fermionic systems in the presence of time-reversal sym-
metry. The theorem tells us that if there is a state with
energy E and momentum k, there must exist another
distinct state with the same energy but with the op-
posite momentum −k. In particular, at time-reversal-
symmetric momenta such as k = 0, states should be
doubly degenerate. As a consequence, when there is a
pair of edge states with spin-up and spin-down crossing
at k = 0, the edge states cannot open a gap, and hence
there are topologically-protected helical edge states. This
is clearly different from a trivial insulator where there are
no robust edge states traversing the gap. Such topolog-
ical phases are called the quantum spin-Hall insulators
or the Z2 topological insulators, as their phases are char-
acterized by a topological invariant which can only take
two values, 0 (trivial) or 1 (non-trivial). The Z2 topolog-
ical insulator has been experimentally realized in HgTe
quantum wells (König et al., 2007) following the theoret-
ical proposal (Bernevig et al., 2006). Shortly afterwards,
Z2 topological insulators were found to exist also in three
dimensions (Fu et al., 2007; Moore and Balents, 2007; Qi
et al., 2008; Roy, 2009).

One may also envisage an analog of the quantum spin-
Hall insulators for photons by using, for example, the
polarization degree of freedom as pseudospins. However,
the bosonic nature of photons forbids the existence of
direct photonic analogs of the quantum spin-Hall insu-
lators. For Kramers’ theorem to hold, one needs that
the time reversal operator T be fermionic, which satis-
fies T 2 = −1, while the bosonic time-reversal operator
obeys T 2 = +1.

However, if there is no coupling between pseudospins,
i.e. if there is an extra symmetry in the system, then
each pseudospin component can independently behave as
a model with nonzero Chern number, and hence shows
topological edge states (Albert et al., 2015; Hafezi et al.,
2011). Note however that topological edge states of such
systems are not robust against terms coupling different
pseudospin states, which would be the photonic analog
of time-reversal-symmetry breaking magnetic impurities
for electronic Z2 topological insulators. Photonic models
showing analogs of quantum spin-Hall systems with no
(or little) couplings between different pseudospin states
will be reviewed in Sec.III.B.

3. Topological phases in other dimensions

We have so far reviewed the topological phases of mat-
ter in two dimensions with and without time-reversal
symmetries. Generally speaking, in the presence of a
given symmetry, one can consider topological phases
which are protected as long as the symmetry is preserved,
which lead to the concept of the symmetry protected
topological phases. A complete classification of non-
interacting fermionic topological phases in any dimension
based on the time-reversal, particle-hole, and chiral sym-
metries is known in the literature (Kitaev et al., 2009;
Ryu et al., 2010; Schnyder et al., 2009).

As the topological band structure is a single-particle
property and does not depend on the statistics of the par-
ticles, this classification, originally derived for fermionic
systems, directly applies to bosonic systems as well, pro-
vided the Hamiltonian conserves the number of parti-
cles. The situation is in fact different when the number
of particles are allowed to change, e.g. in Bogoliubov-
de Gennes Hamiltonians of superconductors; in this case
the bosonic and fermionic band structures are different.
The fermionic case is included in the above-mentioned
classification, while the bosonic case will be reviewed in
Sec. VI.B of this article. We now focus on two specific
examples of topological phases of matter in dimension
other than two: one-dimensional Hamiltonians with chi-
ral symmetry and four-dimensional quantum Hall sys-
tems.

One-dimensional chiral Hamiltonian: One dimensional
Hamiltonians with chiral symmetry can have topologi-
cally nontrivial phases characterized by an integer-valued
winding number. In non-interacting tight-binding mod-
els, chiral symmetry is equivalent to having a bipartite
lattice, i.e. a lattice that can be divided into two sub-
lattices with hopping occurring only between different
sublattices. When a discrete translational symmetry is
present, the Hamiltonian in momentum space can be
written in the following generic form (Ryu et al., 2010):

Ĥk =

(
0 Q(k)†

Q(k) 0

)
, (19)

where Q(k) is an n × n matrix satisfying Q(k) = Q(k +
2π/a), each unit cell consists of 2n sites, and a is again
the lattice spacing.

When there is a gap at zero energy, namely detQ(k) 6=
0 for any k, the topology of this Hamiltonian is character-
ized by the winding number defined through the phase
of detQ(k) ≡ | detQ(k)|eiθ(k) as (Kane and Lubensky,
2014; Zak, 1989)

W =
1

2π

∫ 2π/a

0

dk
dθ(k)

dk
. (20)

The winding number tells us the number of times
detQ(k) wraps around the origin when plotted in a com-
plex plane as one varies k along the Brillouin zone. The
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FIG. 6 Schematic illustration of the Su-Schrieffer-Heeger
model. Dashed squares indicate the unit cell of the lattice;
each unit cell contains two lattice sites, one belonging to the
A sublattice and other to the B sublattice. The lattice termi-
nates on the left-hand side with a complete unit cell.

bulk-boundary correspondence states that the number of
zero energy edge modes on one side of the one dimen-
sional chain is given by the absolute value of the winding
number |W| (Delplace et al., 2011; Ryu and Hatsugai,
2002). Such zero energy edge modes are topologically
protected in the sense that they remain locked at zero en-
ergy even in the presence of chiral-symmetry-preserving
perturbations provided the gap remains open.

The prototypical example of a one-dimensional chi-
ral Hamiltonian with non-trivial topology is the Su-
Schrieffer-Heeger (SSH) model (Su et al., 1979), which
is a chain with two alternating hopping strengths as
sketched in Fig. 6. The system can be divided into two
sublattices A and B, and the tight-binding Hamiltonian
can be written as

ĤSSH =
∑
x

(
tb̂†xâx + t′â†x+1b̂x + H.c.

)
, (21)

where ax and bx are annihilation operators for A and B
sublattice sites at position x. The intra- and inter-cell
hoppings are described by the (real) hopping amplitudes
t and t′, respectively. After a Fourier transformation,
one sees that the momentum-space Hamiltonian has the
form of Eq. (19) with n = 1 and Q(k) = t + t′eik. The
system is gapped as long as t 6= t′, and the corresponding
winding numbers are W = 0 for t > t′ and W = 1 for
t < t′. Therefore, when the chain is terminated at one
end with the final hopping of t, there exists a zero energy
topological edge state if t < t′ (Ryu and Hatsugai, 2002).

One dimensional photonic structures with nontrivial
topology will be discussed in Sec. IV.

Four-dimensional quantum Hall effect: An analogue
of the two-dimensional quantum Hall effect exists in any
even number of spatial dimensions (Meng, 2003). The
four-dimensional quantum Hall effect in particular was
first discussed by Fröhlich and Pedrini, 2000 and Zhang
and Hu, 2001, and later played an important role in un-
derstanding time-reversal invariant topological insulators
in two and three dimensions through a dimensional re-
duction procedure from four dimensions (Qi et al., 2008).
The four-dimensional quantum Hall effect consists of a
quantized current response in one direction, when per-
turbative electric and magnetic fields are applied.

Assuming for simplicity that only one non-degenerate
band is occupied and an electromagnetic gauge potential

A is applied as a perturbation, the current in response
to the applied electric field Eν ≡ ∂0Aν − ∂νA0 and the
applied magnetic field Bρσ ≡ ∂ρAσ − ∂σAρ is then given
by (Price et al., 2015)

jµ = −e
2

h
Eν

∫
BZ

Ωµν
d4k

(2π)3
+

e3

2h2
εµνρσEνBρσ C

(2),

(22)

where the Berry curvature along µ-ν plane is defined as
Ωµν = ∂kµAν − ∂kνAµ in terms of the usual Berry con-
nection Aµ = i〈uk|∂kµ |uk〉 and the integral is now over
the four-dimensional Brillouin zone. Here, εµνρσ is the
4D Levi-Civita symbol.

The second term in (22) vanishes in fewer than four
spatial dimensions, and so is a new quantum Hall effect
that can emerge in a 4D system. It depends also on a
four-dimensional topological invariant (Nakahara, 2003)

C(2) =
1

32π2

∫
BZ

εαβγδΩ
αβΩγδd4k, (23)

which is known as the second Chern number. (In
contrast, the Chern number appearing in the two-
dimensional quantum Hall effect is sometimes called the
first Chern number.) The first term in (22) is a con-
tribution to the current that is reminiscent of the two-
dimensional quantum Hall response, where only two di-
rections are involved, and is characterized by the first
Chern number in the µ-ν plane. Note that when the sys-
tem possesses time-reversal symmetry, the first term of
(22) vanishes and only the second term remains (Zhang
and Hu, 2001). Experimental observations of the four-
dimensional quantum Hall effect through topological
pumping are discussed in Sec.IV.B, and proposals for
directly observing the four-dimensional quantum Hall ef-
fect using synthetic dimensions are discussed in Sec.V.C.

4. Topological Pumping

Topological invariants, such as the first and sec-
ond Chern numbers defined above, can also lead to a
quantization of particle transport in systems which are
“pumped” periodically and adiabatically in time. In this
section, we introduce the concept of topological pump-
ing by reviewing connections between the Archimedes
screwpump and a topological pump in the semiclassical
limit. We then discuss how a 1D topological pump can
be related to the 2D quantum Hall effect, and how the
topological framework developed so far leads to a simple
lattice model for a topological pump.

Archimedes Screwpump: A pump is a device that
moves fluids by mechanical action, i.e., it consumes en-
ergy to perform mechanical work by moving the fluid.
One of the oldest pumps known to man is the so-called
Archimedes’ screwpump, which is still in use today. In
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FIG. 7 (a) Schematic of an Archimedes screwpump, which
mechanically transports fluid in the direction of the blue ar-
row as the helicoidal surface is rotated. In a quantum me-
chanical treatment, the screwpump can be approximated by a
series of parabolic potentials, as indicated by the blue dashed
lines. (b) Illustration of the quantum Hall effect for Landau
levels; the spectrum is sketched in the Landau gauge on a
cylinder, with open boundary conditions along x and peri-
odic boundary conditions along y. Each state in a given Lan-
dau level is indexed by the transverse momentum ky, setting
the center of the state along x. As magnetic flux is threaded
through the cylinder, an electric field is generated along y and
there is a spectral flow of states along x, corresponding to the
quantum Hall transport. At the system boundaries, the Lan-
dau levels bend up in energy, forming chiral-propagating edge
states, as expected from the bulk-boundary correspondence.
At the left-hand side, the threading of flux means empty states
will move down in energy and be filled up from an external
reservoir as they cross the Fermi level, µ. At the right-hand
side, states will flow up in energy and particles will be ejected
into a reservoir. Artefacts of these chiral edge states persist
in a 1D topological pump as edge modes that cross the bulk
energy-gap as the pump parameter is tuned.

this device, a fluid is pumped by turning a screw-shaped
surface inside a cylindrical shaft, see Fig. 7(a). As the
screw-shaped surface is made to rotate around its axis, a
volume of fluid is collected at one end of the device. It is
then pushed along the tube by the rotating helicoid until
it pours out at the other end of the device. Ideally, at
each full turn of the pump, the collected volume is identi-
cal and the fluid is homogeneously transported a unit of
distance along the device. Consequently, the screwpump
is used as a variable rate feeder to deliver a measured
rate or quantity of material in industrial processes.

Let us now adopt a quantum mechanical description of
the screwpump. At any given time, the fluid is approx-
imately confined within a series of parabolic potentials,
see Fig. 7(a). Assuming that the fluid is noninteracting,
it suffices to write the Hamiltonian for a single particle
of mass m in the resulting chain of parabolic potentials

Ĥ =
p̂2
x

2m
+ V

∑
j

(x̂− xj(t))2 θ [(xj−1(t) + xj(t)) /2]

θ [− (xj+1(t) + xj(t)) /2] , (24)

where x̂ and p̂x are the position operator and its con-
jugate, respectively. The parabolic potentials are char-

acterised by time-dependent minima located at points
xm(t), with a potential amplitude V , and equidistant sep-
aration ∆x = xm+1 − xm. The heavyside function θ[x]
cuts the influence of neighboring sites on one another.
Neglecting the coupling between neighboring wells, each
well hosts the standard harmonic oscillator states of a
single particle. Within a pump cycle, the minima can
be parameterised as xm(t) = xm,0 + U(ϕ(t))∆x, where
xm,0 are some initial positions, ϕ(t) = 2πt/Tp is the peri-
odic pumping parameter, and the displacement satisfies
U(ϕ + 2π) = U(ϕ) + 1. After a full period Tp of the
pumping, each minimum moves by one site, and thus the
Hamiltonian is invariant. Therefore, the eigenstates of
the Hamiltonian are periodic as ϕ→ ϕ+ 2π.

Turning on weak tunnel coupling between the localized
states leads to one-dimensional Bloch bands that span
the device, with time-dependent Bloch states un,kx,ϕ(x)
and Bloch energies ωn,kx,ϕ. In the semiclassical limit,
the transport of particles by pumping can generally be
captured using the semiclassical equations of motion for
a wavepacket that is prepared with a well-defined center-
of-mass position x and momentum kx in a given instan-
taneous Bloch band n. Under adiabatic modulation of
the pumping parameter, the wave packet remains in the
instantaneous band and evolves with a velocity

ẋn =
∂ωn,kx,ϕ
∂kx

+ Ωn∂tϕ (25)

resulting from the sum of the usual group veloc-
ity plus an anomalous velocity term. The latter
is determined by the Berry curvature Ωn(kx, ϕ) =
i (〈∂ϕun|∂kxun〉 − 〈∂kxun|∂ϕun〉) associated with the in-
stantaneous Bloch states (Karplus and Luttinger, 1954;
Xiao et al., 2010).

Hence, changing the pump parameter ϕ induces an ex-
tra motion of the particle which, depending on the sign of
Ωn, can be either in the same or in the opposite direction
as the motion of the lattice. The resulting displacement
of the wavepacket after one pump cycle is obtained by
integrating ẋn and can in principle be arbitrary. As this
anomalous particle transport depends on the geometri-
cal Berry curvature, it is often referred to as “geometri-
cal pumping”. Experiments along these lines have been
performed with cold atoms in (Lu et al., 2016a) and in
photonics in (Wimmer et al., 2017).

For a filled or homogeneously populated bulk band n,
however, the periodicity of the Bloch energy ωn,kx,ϕ in kx
around the Brillouin zone guarantees that the group ve-
locity contribution integrates to zero. The displacement
per cycle can then be related to the 2D topological first
Chern number C of the pumping process:

C =
1

2π

∫
BZ

∫ 2π

0

Ωn(kx, ϕ) dϕdkx (26)

whose expression closely resembles Eq. (8) for the Chern
number of a band. As the displacement is proportional
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to this topological invariant, it neither depends on the
pumping speed, provided adiabaticity still holds, nor on
the specific lattice parameters as long as band cross-
ings do not occur. Hence, the transport is highly robust
against perturbations such as interaction effects or disor-
der (Niu and Thouless, 1984). For the screwpump poten-
tial (24), one intuitively expects the fluid to move along
with the moving potential. This is in agreement with
our effective Bloch-bands description, where all lowest
bands of the system appear with C = 1 corresponding to
the displacement by ∆x per unit cycle. The situation is
of course much richer in the wave mechanics case where
the displacement can also be in the opposite direction
depending on the sign of C.

There is a deep connection between the screwpump
and the physics of the quantum Hall effect, as suggested
by the quantization of the pumped particles per cycle
in terms of the topological first Chern number. To ex-
plore this further, we start from the Landau level Hamil-
tonian introduced above in (11) in the Landau gauge,
A = (0, xB, 0). Then the transverse momentum ~ky is a
good quantum number, and, for a given state, the Hamil-
tonian reduces to that of a shifted 1D harmonic oscillator

ĤLL =
p̂2

x

2ma
+

1

2
mω2

c

(
x̂− ~ky

mωc

)2

(27)

where ωc is the cyclotron frequency introduced above,
and xc = ~ky/mωc is the shifted center of the harmonic
potential. Comparing this expression with Eq. (24), one
can see that a state in a given potential minimum j in
the 1D screwpump is analogous to a state with a given
ky in a 2D Landau level.

In the Landau gauge, we can imagine putting the
system on a cylinder, i.e., applying periodic boundary
conditions in the y-direction, and threading a magnetic
flux through the cylinder. (Note that applying periodic
boundary conditions puts ky on a lattice of discretely al-
lowed values given by the Born von-Karman boundary
conditions, analogously to Eq. (24).) This threading of
flux generates an electromotive electric field Ey in the
y-direction, leading to a Hall response in the x-direction.
In terms of Eq. (27), an adiabatic threading of flux will
generate a spectral flow of the eigenstates, such that the
central position xc of each eigenstate shifts to that as-
sociated with the next allowed value of ky, similar to
how minima move in the screwpump, in agreement with
Laughlin’s pumping argument (Laughlin, 1981). Indeed,
Landau levels have first Chern numbers |C| = 1 in agree-
ment with the intuition developed from the screwpump.

This analogy shows that the pump parameter ϕ of the
1D screwpump can be thought of as a threaded magnetic
flux and hence a momentum in a perpendicular fictitious
dimension; this correspondence can be exploited in a pro-
cedure called “dimensional extension” to derive the ap-
propriate higher-dimensional model beginning from the
lower-dimensional pump (Kraus et al., 2012, 2013; Kraus

and Zilberberg, 2012; Prodan and Schulz-Baldes, 2016;
Qi et al., 2008; Verbin et al., 2013, 2015). Finally, as
sketched in Fig. 7, the bulk-edge correspondence of the
quantum Hall effect can be used to explain how a topo-
logical pump functions with open boundary conditions
and couples to particle reservoirs.

Thouless Pump & the Hofstadter Model: Turning the
above analogy around, we can start with a 2D quan-
tum Hall system, such as the Hofstadter model Eq. (14),
and obtain the corresponding topological pump. For the
Hofstadter model in the Landau gauge, we proceed by
Fourier-transforming the model only in the y-direction
to obtain

Ĥ = −J
∑
x,ky

[
â†x,ky âx+a,ky + h.c.

+2 cos (2παx/a− kya) â†x,ky âx,ky

]
. (28)

Then applying the procedure of “dimensional reduction”,
the momentum along y is now considered as an external
parameter ϕ = ky; this reduces the dimensionality of the
Hamiltonian by one dimension by removing the sum over
ky and making the operators ky-independent (Thouless,
1983). This 1D model Eq. (28) is then commonly known
as the Harper model (Harper, 1955a) and will be dis-
cussed in detail in Sec.IVB. This system can be adiabati-
cally pumped by slowly changing the external parameter
ϕ, and hence modulating the onsite energy periodically
in time. For a filled band insulator, this is known as a
Thouless pump (Thouless, 1983), as there is a quantiza-
tion of particle transport over each pump cycle, as set by
the sum over the first Chern numbers of the filled bands.

The main distinction from the Landau level case dis-
cussed above is that in the Hofstadter model there are
two competing length scales: the lattice spacing and the
magnetic length. As a result, the electrons paths inter-
fere to give the fractal Hofstadter butterfly, with a result-
ing band structure composed of bands with positive and
negative Chern numbers. Similarly, in the 1D Thouless
pump, the on-site potential imposes a new length scale,
and in the resulting band structure, we encounter bands
that will pump against the direction in which the poten-
tial is moved. This is a purely wave-physics interference
effect in contrast to the classical particle picture used to
understand the screwpump.

In the lattice configuration realized in the ultracold
atomic experiment (Lohse et al., 2016; Nakajima et al.,
2016), the lowest energy band had a positive C > 0. Ob-
serving pumping in the opposite direction then required
working with higher bands, which was achieved using the
atomic gas in strongly non-equilibrium conditions. As we
shall review in Sec. IV.B, photonic systems proved to be
an ideal platform for realizing topological pumps in more
complex and also higher dimensional geometries.
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5. Floquet engineering: Topology through time-periodic
modulations

After having introduced in the previous section the
general concepts of topological bands, we now briefly re-
view the manner by which topological band properties
can be generated by subjecting a (static) system to an
external time-periodic drive, an approach which is gen-
erally referred to as Floquet engineering, due to its di-
rect relation to the Floquet theorem (Bukov et al., 2015;
Cayssol et al., 2013; Eckardt, 2016; Goldman and Dal-
ibard, 2014; Kitagawa et al., 2010a, 2011; Lindner et al.,
2011; Oka and Aoki, 2009). We will describe how topo-
logical properties emerge in this general context, and will
then briefly discuss how Floquet engineering can be ex-
ploited in photonics.

Let us first consider a generic quantum system de-
scribed by the static Hamiltonian Ĥ0. The aim of Flo-
quet engineering is to modify the band structure of
this Hamiltonian, effectively, by subjecting the system
to a time-periodic modulation V̂ (t + T ) = V̂ (t), where
T = 2π/Ω denotes the period of the drive. In the
non-trivial case where [Ĥ0, V̂ (t)] 6= 0, the time-evolution
operator Û(t, t0), which is associated with the total
time-dependent Hamiltonian Ĥ(t) = Ĥ0 + V̂ (t), forms
an intricate object that one can formally write as a

time-ordered integral, Û(t, t0) =T exp
(
− i

~
∫ t
t0

dt′Ĥ(t′)
)

.

However, due to the time-periodicity inherent to the sys-
tem, Ĥ(t+T )=Ĥ(t), this time-evolution operator can be
factorized, leading to the more suggestive form (Bukov
et al., 2015; Goldman and Dalibard, 2014; Kiss et al.,
1994; Rahav et al., 2003)

Û(t, t0) = e−iK̂kick(t)e−i(t−t0)Ĥeff/~eiK̂kick(t0), (29)

where the operator Ĥeff is time independent, and where
K̂kick(t+ T )=K̂kick(t) has zero average over a period of
the drive. The latter expression (29) indicates that the
dynamics of the periodically-driven system is essentially
ruled by an effective Hamiltonian, Ĥeff , whose proper-
ties are potentially distinct from those associated with
the initial static Hamiltonian Ĥ0. In addition, the final

“kick” e−iK̂kick(t) in Eq. (29) reflects the micro-motion,
namely, the dynamics taking place within each period of
the drive. Both the effective Hamiltonian Ĥeff and the
kick operator K̂kick(t) result from a rich interplay be-
tween the static Hamiltonian Ĥ0 and the drive operator
V̂ (t); these two operators, and hence the time-evolution
operator in Eq. (29), can be systematically computed us-
ing various perturbative treatments (Bukov et al., 2015;
Eckardt and Anisimovas, 2015; Goldman and Dalibard,
2014; Goldman et al., 2015; Mikami et al., 2016).

In traditional realizations, Floquet-engineering oper-
ates in the so-called “high-frequency” regime of the drive
(Ω→∞); physically, this corresponds to situations where
the period T sets the shortest time scale in the sys-

tem (Kitagawa et al., 2010a), and hence, where the
micro-motion is typically irrelevant. In this regime of
the drive, it is instructive to probe the dynamics stro-
boscopically, namely, by considering discrete observation
times tN = NT , where N is an arbitrary integer and
t0 =0; up to a unitary (gauge) transformation, the long-
time dynamics is then captured by the stroboscopic time-
evolution operator [Eq. (29)]

Û(tN )=e−itN Ĥeff/~ =
[
e−iT Ĥeff/~

]N
=
[
Û(T )

]N
. (30)

Hence, in this framework, the relevant dynamics is gov-
erned by the Floquet operator Û(T ), or equally, by the
effective Hamiltonian Ĥeff = (i~/T ) log Û(T ). As an im-
portant corollary, the topological properties of the sys-
tem are then entirely dictated by the band structure
of the effective Hamiltonian: for a proper choice of the
drive protocol [V̂ (t)], the effective Hamiltonian Ĥeff can
host topological properties, even when the underlying
static system [Ĥ0] is trivial. Consequently, in the “high-
frequency” regime (Ω → ∞), the topological classifica-
tion of periodically-driven systems is strictly equivalent
to that of static systems (Cayssol et al., 2013; Kitagawa
et al., 2010a; Lindner et al., 2011): topological band the-
ory (Hasan and Kane, 2010; Qi and Zhang, 2011) directly
applies to the Bloch bands associated with the effective
Hamiltonian Ĥeff , i.e. the so-called “Floquet spectrum”.

A simple but important example of such driven-
induced topological states is found when analyzing the
behavior of a particle hopping on a 2D honeycomb lat-
tice, whose positions are rapidly shaken in a circular man-
ner (Eckardt and Anisimovas, 2015; Jotzu et al., 2014;
Oka and Aoki, 2009; Rechtsman et al., 2013b; Zheng and
Zhai, 2014). In a frame moving with the shaken lat-
tice, the drive takes the form of a time-periodic inertial
force F(t), so that the time-dependent Hamiltonian can
be written in the form

Ĥ(t) = −J
∑
〈j,k〉

â†j âk −
∑
j

F(t) · rj â†j âj , (31)

where the first term describes hopping between nearest-
neighboring sites of the honeycomb lattice, with hopping
amplitude J , where F(t) =F [cos(Ωt)ex + sin(Ωt)ey] re-
flects the circular shaking, and where rj denotes the po-
sition of site j. Interestingly, we note that the time-
dependent Hamiltonian in Eq. (31) is equivalent to that
describing electrons in graphene when the latter is irradi-
ated by a circularly-polarized light (Cayssol et al., 2013;
Oka and Aoki, 2009); in that case, the force F(t) is then
directly related to the AC electric field of the radiation.
The effective Hamiltonian Ĥeff associated with the time-
dependent Hamiltonian in Eq. (31) can be evaluated us-
ing the 1/Ω-expansion (Bukov et al., 2015; Eckardt and
Anisimovas, 2015; Goldman and Dalibard, 2014; Gold-
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man et al., 2015; Mikami et al., 2016), which yields

Ĥeff ≈ −Jeff

∑
〈j,k〉

â†j âk − J
NNN
eff

∑
〈〈m,n〉〉

i�â†mân, (32)

where the first term describes the renormalization of the
nearest-neighbor hopping term in Eq. (31), with Jeff =
JJ0(Fd/Ω), and where the second term corresponds to a
next-nearest-neighbor hopping term, with effective hop-
ping matrix elements JNNN

eff i� =±i(
√

3J2/Ω)J 2
1 (Fd/Ω)

whose sign depends on the orientation of the hopping
event; here J0,1 denote Bessel functions of the first kind
and d is the lattice spacing. Importantly, the effective
Hamiltonian in Eq. (32) is equivalent to the Haldane
model (Haldane, 1988) introduced in Sec.II.A.1.

In direct analogy with this model, the spectrum dis-
plays two Bloch bands with non-zero Chern numbers
and chiral edge states. In condensed matter, a driven
system exhibiting effective Bloch bands with non-zero
Chern numbers is generally called a Floquet Chern in-
sulator. Such a strategy was considered in various phys-
ical contexts, ranging from irradiated materials (Cayssol
et al., 2013; Lindner et al., 2011; Oka and Aoki, 2009)
to ultracold atoms in shaken optical lattices (Eckardt,
2016; Fläschner et al., 2016; Jotzu et al., 2014), but
it was in fact pioneered in photonic experiments us-
ing femtosecond-laser-written lattices (Rechtsman et al.,
2013b) as reviewed in detail in Sec.III.A.2. This strat-
egy is of course not restricted to the Haldane model, but
can be extended to other topological models that can be
engineered by shaking suitably designed lattices, e.g. the
Harper-Hofstadter model (Hofstadter, 1976): theoretical
proposals in this direction can be found in (Bermudez
et al., 2011; Creffield et al., 2016; Kolovsky, 2011), while
cold-atom realizations using moving optical potentials
can be found in (Aidelsburger et al., 2013, 2014; Miyake
et al., 2013).

The simple topological characterization presented
above for the high-frequency regime (Ω → ∞) breaks
down when the period of the drive becomes comparable
to other times scales in the problem (e.g. when ~Ω be-
comes comparable to the bandwidth of the effective spec-
trum (Kitagawa et al., 2010a)). Indeed, in that situation,
the micro-motion becomes crucial and the topological
classification based on Ĥeff only must be revised (Car-
pentier et al., 2015; Kitagawa et al., 2010a; Nathan and
Rudner, 2015; Rudner et al., 2013). In particular, away
from the high-frequency regime, topologically-protected
edge modes are shown to exist even when the topologi-
cal invariants (e.g. Chern numbers) associated with Ĥeff

are all trivial (Kitagawa et al., 2010a; Rudner et al.,
2013). The discovery of such anomalous Floquet topo-
logical phases suggested that novel types of topological
invariants had to be introduced in order to accurately re-
cover the bulk-edge correspondence in this regime. Such
topological invariants (winding numbers) were identified
in Refs. (Asbóth, 2012; Bi et al., 2017b; Carpentier et al.,

2015; Kitagawa et al., 2010a; Nathan and Rudner, 2015;
Rudner et al., 2013; Yao et al., 2017), and were indeed
shown to depend on the complete time-evolution opera-
tor Û(t, t0); the crucial role played by the micro-motion
in this topological characterization (Nathan and Rudner,
2015) indicates a shift of paradigm with respect to the
standard topological classification of static systems.

As a final remark, we note that a fruitful approach to
Floquet topological physics is offered by so-called quan-
tum walks (Broome et al., 2010; Kitagawa et al., 2012,
2010b), where the time-evolution operator of a system
is digitally built, by repeatedly applying a series of uni-
tary operations Û(T ) = ÛM ÛM−1 . . . Û2Û1; due to the
T -periodicity of such quantum walks, their topological
classification is equivalent to that of Floquet-engineered
systems discussed above (Kitagawa et al., 2012, 2010b).

As we shall see at multiple places in the course of
this review, photonic systems have shown a great poten-
tial to implement Floquet techniques in different plat-
forms. This has led to the experimental realization of
intriguing Floquet phases (Bandres et al., 2016; Bel-
lec et al., 2017; Noh et al., 2017b; Rechtsman et al.,
2013b; Roushan et al., 2017), in particular anomalous
Floquet topological states (Gao et al., 2016a; Maczewsky
et al., 2017; Mukherjee et al., 2017b) and topologically-
protected states in quantum walks (Cardano et al., 2017;
Kitagawa et al., 2012).

B. Features of photonic systems

Historically, the study of topological effects in quan-
tum condensed matter systems originated from electric
conduction experiments measuring the current vs. volt-
age characteristics of two-dimensional electron gases. In
these systems, the basic constituents, the electrons, obey
Fermi statistics; the topologically non-trivial states arise
as the equilibrium state for sufficiently low temperature;
and the electric conductivity is measured under weak or
moderate external fields that do not dramatically affect
the underlying many-body state.

This equilibrium or quasi-equilibrium condition is
shared by almost all condensed matter experiments, with
a few remarkable exceptions such as Floquet topologi-
cal insulators (Cayssol et al., 2013; Inoue and Tanaka,
2010; Lindner et al., 2011; Oka and Aoki, 2009) and light-
induced superconductivity (Fausti et al., 2011). In these
systems, new phases of matter are induced by intention-
ally keeping the system far away from equilibrium by
means of some incident electromagnetic radiation.

The situation is fundamentally different in photonic
systems for at least two fundamental reasons: (i) the ba-
sic constituent – the photon, possibly dressed by some
matter excitation into a polariton – obeys bosonic statis-
tics; (ii) photons can reside in any realistic device only
for a finite time and some external driving is needed to
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inject them into the system. In the next two subsec-
tions we shall review the consequences of these remark-
able differences. In the last subsection we will review
some basic concepts of nonlinear optics and we illustrate
how a third-order χ(3) nonlinearity can be seen as an
effective binary interaction between photons, therefore
opening the way towards many-body physics using gases
of interacting photons (Carusotto and Ciuti, 2013).

1. Bosonic nature

As introduced above, the first key difference between
quantum condensed matter systems, based on electron
gases, and photonic systems is that the basic constituents
of the latter are bosonic. In the previous Sec.II.A.2, we
have seen how this difference can have an impact already
at the single particle level as Kramer’s theorem, which
underlies quantum spin-Hall physics, only holds in the
presence of fermionic time-reversal operators satisfying
T 2 = −1.

At the many-body level, the difference between bosons
and fermions is even more apparent as quantum statistics
impose a specific symmetry on the many-body wavefunc-
tion under particle exchange: because of the Pauli exclu-
sion principle, a non-interacting gas of fermions at low
temperatures fills all states below the Fermi level with
just one particle per state, while leaving all higher states
empty. In the particular case of insulators, where the
Fermi level lies within an energy gap, all valence (con-
duction) bands are filled (empty), so that integrals over
the Brillouin zone naturally appear in the calculations.
In contrast, a weakly interacting bosonic system at low
temperatures consists of a Bose-Einstein condensate with
a macroscopic population of particles accumulated in the
single lowest-energy state (Huang, 1987; Pitaevskii and
Stringari, 2016). As we shall see in the course of this
section, the picture is made different in optical systems
by the presence of losses and/or the propagating nature
of photons, so that the ground state of the system is typ-
ically a trivial vacuum state: generating and maintain-
ing the photon gas in a state with interesting topological
properties then requires injecting light from some exter-
nal source.

2. Non-equilibrium nature

Given the unavoidably finite lifetime of photons, some
external pumping mechanism is required to overcome the
various loss processes; these include absorptive losses in
the underlying medium, which make the photons simply
disappear, as well as radiative losses, which emit light in
the surrounding space as propagating radiation. Except
for very specific cases (Hafezi et al., 2015; Klaers et al.,
2010; Lebreuilly et al., 2017; Rasmussen et al., 2000; Sil-

berberg et al., 2009), the state of the light field result-
ing from the dynamical balance of pumping and losses is
quite distinct from a thermal equilibrium state.

As a result of pumping and losses, the ways in which
topological effects manifest, as well as the experimental
probes and diagnostics that are available, can be com-
pletely different in photonic systems compared to con-
densed matter set-ups. For example, the light emitted
by the device carries out detailed information on the field
distribution and the photon statistics inside the device;
depending on the specific set-up, this information can
be extracted by imaging the emission in free space, as is
typical for planar microcavities, and/or by collecting the
emission with local probes such as antennas or waveg-
uides. Different ways of injecting light into the system
have also been experimentally used to highlight different
properties of topological states. We shall now proceed to
review the main such pumping schemes, highlighting the
key features of each.

a. Coherent pumping In a typical coherent pumping
scheme, the system is illuminated with an externally in-
cident laser beam or by placing an antenna or an external
waveguide in the system’s vicinity, so as to inject coher-
ent light at specific spatial locations. Light propagation
through the system is then monitored by collecting trans-
mitted and/or scattered light with a second antenna or
a detector.

The conceptually simplest theoretical description of
such an approach consists, of course, in solving Maxwell’s
equations, including the specific geometrical arrangement
of dielectric and magnetic elements and suitable source
terms to describe the emitting antenna. Since a complete
analytical solution is typically beyond reach, a number
of numerical methods have been developed for this task,
ranging from the same plane wave expansions used to ex-
tract topological invariants from the band structure, to fi-
nite element methods for the time-evolution (Joannopou-
los et al., 2011). These kind of techniques were used, e.g.,
in the theoretical calculations in (Wang et al., 2009).

A different strategy consists of developing simplified
models that are able to capture the main physics, while,
at the same time, providing some analytical insight as
well as the possibility of extending to quantum optical
features. The most celebrated such model, most suitable
for discrete systems of coupled resonators, is inspired by
the tight-binding picture of solid-state physics (Ashcroft
and Mermin, 1976) and is naturally expressed in a quan-
tum language. In the classical optics and photonics lit-
erature, it often goes under the name of coupled mode
theory, as reviewed in (Haus and Huang, 1991).

The starting point is an expansion of the electromag-
netic field

E(r) =
∑
j

Ej(r) âj + E∗j (r) â†j (33)
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onto a basis of localized quantized modes labelled (in
the simplest case of single-mode resonators) by the site
index j. The (suitably normalized) mode profiles Ej(r)
are obtained as the eigenmodes of Maxwell’s equations of
eigenfrequency ωj , and the quantum âj and â†j operators
respectively destroy or create a photon in each resonator
j and satisfy Bose statistics, that is [âj , âj

′] = 0 and

[âj , â
†
j′ ] = δj, j′.

The corresponding Hamiltonian has the form of a col-
lection of independent harmonic oscillators in which tun-
neling between neighboring sites j′ −→ j can be straight-
forwardly included as hopping terms of amplitude Jj,j′ ,

Hres =
∑
j

~ωj
[
â†j âj +

1

2

]
−
∑
j,j′

Jj,j′ â
†
j âj′ . (34)

Pioneering examples of the application of this tight-
binding formalism are found in (Bayindir et al., 2000;
Yariv et al., 1999). If the hopping amplitudes Jj,j′ can
be made complex, photons behave as if they are experi-
encing a synthetic vector potential. The site-dependence
of the resonator frequency ωj can model an external po-
tential acting on photons.

The main difference between photonic systems and the
usual solid-state ones is that photons can radiate away
from the resonators into the surrounding empty space,
e.g. through the non-perfectly reflecting cavity mirrors.
At the level of the Hamiltonian Eq. (34), this requires the
inclusion of a continuum of radiative modes Âη, labelled
by the index η and satisfying Bose commutation rela-
tions. These modes are linearly coupled to the localized
resonator modes via terms of the form,

H = Hres +

∫
dη ~ωηÂ†η Âη+

−
∑
j

∫
dη
[
~gj,ηÂ†ηâj + h.c.

]
(35)

where ωη is the frequency of a given radiative mode η and
gj,η is the coupling between that radiative mode and the
resonator mode j. As is discussed in full detail in quan-
tum optics textbooks (Walls and Milburn, 2006), this
Hamiltonian is the starting point of the so-called input-
output formulation of the cavity field dynamics in terms
of a quantum Langevin equation (Gardiner and Collett,
1985). Under the simplifying assumptions that the dif-
ferent resonators are coupled to independent continua of
radiative modes with an approximately constant spec-
tral weigth within the frequency range of interest, one
can write

i
dâj
dt

= ωj âj −
∑
j′

Jj,j′ âj′ −
iγj
2
âj + Âin

j (t). (36)

where the radiative damping rate

γj = 2π |gj,η|2
∣∣∣∣dωηdη

∣∣∣∣−1

(37)

has to be evaluated for the resonant radiative mode such
that ωη = ωj and the (bosonic) input operators

Âin
j (t) = −

∫
dη g∗j,ηÂη (38)

include the zero-point quantum noise as well as the inci-
dent radiation.

The model can of course be straightforwardly ex-
tended, e.g. to account for loss channels of non-radiative
origin. More complex configurations may require in-
cluding more field components on each site to describe
multi-mode cavities; dissipative terms of different forms,
e.g. a non-diagonal damping matrix γj,j′ to describe si-
multaneous coupling of several sites to the same contin-
uum (Chen et al., 1990; Cohen-Tannoudji et al., 2008;
Ghulinyan et al., 2014; Harris, 1989); and/or light ampli-
fication processes by population-inverted emitters (Gar-
diner and Zoller, 2004; Walls and Milburn, 2006).

In the most relevant case of a coherent incident field
and a quadratic resonator Hamiltonian Hres, we can re-
place the operators with C-number-valued expectation
values αj that evolve according to the ordinary differen-
tial equations,

i
dαj
dt

= ωjαj −
∑
j′

Jj,j′αj′ −
iγj
2
αj + Fj(t). (39)

where the source term Fj(t) = 〈Âin
j (t)〉 corresponds to

the classical amplitude of the incident field. Techniques
to efficiently evaluate the tight-binding parameters from
classical transmission and reflection calculations are dis-
cussed, e.g., in (Hafezi et al., 2011) for coupled ring res-
onator arrays. More details on other specific systems
can be found, e.g. in (Bellec et al., 2013a) for microwave
resonators, in (Kruk et al., 2017) for dielectric nanopar-
ticles, in (Downing and Weick, 2017; Poddubny et al.,
2014) for plasmonic chains. Generalization to spatially
continuous systems such as planar microcavities is re-
viewed in (Carusotto and Ciuti, 2013).

Apart from the last two terms describing driving and
dissipation, this equation Eq. (39) has exactly the same
form as the Schrödinger equation for non-interacting
tight-binding electrons, where the field amplitude αj
plays the role of the (discrete) electron wavefunction.
This formal equivalence between equations allows one
to simulate the single-particle properties of tight-binding
models using photonics.

Depending on the specific spatio-temporal shape of the
coherent drive Fj(t), the motion equation Eq. (39) can
be used to describe various different phenomena such as
the time-dependent response to a pulsed excitation or the
non-equilibrium steady-state under a monochromatic ex-
citation. As a general rule, a coherent drive selectively
excites only those modes that are on or close to reso-
nance with the pump frequency spectrum and that have
a significant overlap with the pump profile.
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For instance, when a monochromatic pump is shone on
the bulk of the system, the injected light intensity dra-
matically depends on whether its frequency corresponds
to an allowed energy band or to a band gap. On res-
onance with a band, a spatially extended and periodic
pump can selectively excite Bloch states with specific
k (Bardyn et al., 2014), while a spatially localized pump
generates an outward propagating field up to distances
roughly proportional to the group velocity of the ex-
cited modes over the total photon decay rate (Ozawa and
Carusotto, 2014). Within a forbidden gap, no propagat-
ing state is instead available and the spatial light inten-
sity profile will show a sharp exponential decay, typically
determined by the distance to the nearest band edge.

When the pump is focused on a system edge, pumping
in an energy band will result in light penetrating into
the bulk, while pumping in a band gap will concentrate
the excitation on edge states, if available. Of course,
different modes can be selectively excited by playing with
the spatial and/or polarization shape and symmetry of
the pump spot.

In more complex geometries, the frequency selectivity
of a coherent pump has been used to selectively excite
specific localized modes, ranging from the Landau levels
in the non-planar ring cavity of (Schine et al., 2016) to
complex Penrose tiling geometries (Vignolo et al., 2016);
an approach which may be extended to explore a vari-
ety of other interesting cases, including e.g. the rela-
tivistic Landau levels of strained honeycomb lattices and
the momentum-space Landau levels that appear under a
harmonic confinement, as theoretically studied in respec-
tively (Salerno et al., 2015) and (Berceanu et al., 2016).

b. Incoherent pumping Photoluminescence experiments
using incoherent pumping are a straightforward but pow-
erful tool to visualize the energy distribution and the
structure of the eigenstates of a system. In particular,
this approach is routinely used in planar microcavity
devices. Using this technique, states in a specific en-
ergy range can be isolated by spectrally resolving the
emission, and then near- or far-field images recover the
spatial profile or the k-space momentum distribution of
modes. In the topological photonics context, this tech-
nique was used, e.g., to visualize the relativistic Dirac-like
dispersion in honeycomb lattices (Jacqmin et al., 2014)
and the corresponding edge states (Milićević et al., 2015;
Milićević et al., 2017).

Typical photoluminescence experiments are performed
in a low pump power regime where the emission oc-
curs spontaneously and is distributed fairly uniformly
across all modes. Ramping up the pump power, experi-
ments can enter a regime where bosonic stimulation and
then mode-competition effects conspire to concentrate
the emission into a reduced number of modes. For high
enough pump power, above the so-called lasing thresh-

old, stimulated emission exceed losses and a new kind of
steady-state is achieved: in this state, a strong and co-
herent light intensity is concentrated into a single mode,
which absorbs all pump power and which has an emis-
sion line-width that is dramatically reduced (Gardiner
and Zoller, 2004; Walls and Milburn, 2006).

As a rule of thumb, the lasing mode is typically selected
by a largest gain condition; attention must however be
paid to complex spatial mode deformation effects due to
interplay of gain with the nonlinearity and the gain sat-
uration (Türeci et al., 2007), such as ballistic outward
flows (Richard et al., 2005; Wertz et al., 2010; Wouters
et al., 2008) or solitonic-like self-bound modes (Jacqmin
et al., 2014; Tanese et al., 2013). In the topological pho-
tonics context, in spite of these complications, ramping
the pump power above lasing threshold has been instru-
mental in resolving tiny spin-orbit coupling effects in
hexagonal chains of micropillar resonators (Sala et al.,
2015). On-going advances in topological lasing will be
outlined in the concluding section Sec.VIII.

c. Propagating geometries While both previous schemes
are based on a driven-dissipative evolution of the light
field, the conservative dynamics of light flowing through
so-called ”propagating geometries” has been exploited in
a number of recent breakthrough experiments in topo-
logical photonics, starting from the realization of topo-
logical quantum walks in (Kitagawa et al., 2012) to Flo-
quet topological insulators in coupled waveguide systems
in (Rechtsman et al., 2013b) and Berry-phase-induced
anomalous transport in (Wimmer et al., 2017). Well be-
fore these advances, such propagating geometries had al-
ready been used to realize a variety of novel phenom-
ena, e.g. spatial lattice solitons (Christodoulides et al.,
2003; Efremidis et al., 2002; Fleischer et al., 2003), two-
dimensional Anderson localization (Lahini et al., 2008;
Schwartz et al., 2007) and wave dynamics in quasicrys-
tals (Freedman et al., 2006, 2007; Levi et al., 2011; Verbin
et al., 2013). All these experiments are based on purely
classical properties of light and do not involve any quan-
tum optical feature.

A convenient theoretical description of classical
monochromatic light in these systems is based on parax-
ial diffraction theory (Boyd, 2008; Rosanov, 2002; Yariv,
1976). We start from classical Maxwell’s wave equation
for light propagating in a source-free, non-magnetic ma-
terial of (spatially dependent) dielectric constant ε =
ε(x, y, z):

∇×∇×E = ε
(ω
c

)2

E, (40)

where E is the electric field; ω is the light frequency and c
is the speed of light in vacuum. Using a standard vector
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identity and the fact that ∇ · (εE) = 0, we arrive at:

−∇2E = ε
(ω
c

)2

E +∇
(

E · ∇ε
ε

)
. (41)

Assuming that the dielectric constant ε(x, y, z) = ε0 +
∆ε(x, y, z) displays relatively small variations from the
background value ε0 = n2

0 and that the length scale of
the spatial variation is large compared to the wavelength
λ0 = 2π/k0 = 2πc/(n0ω) in the medium, we can neglect
the last term coupling the polarization and the orbital
degrees of freedom and assume that the two polarizations
evolve independently according to a scalar equation. In
the experiment of (Rechtsman et al., 2013b), ε varies by
∆ε ∼ 10−3 on a length scale ∼ 10λ0.

We further assume that light is made to propagate
along paraxial directions close to the axis of the waveg-
uides (denoted as the positive z-direction). This guar-
antees that the wavevector component in the z-direction
must be much greater than those in the x and y directions
(k0 ' kz � kx,y). This suggests to write the electric field
in the carrier-envelope form

E(x, y, z) = ê Ẽ(x, y, z) exp [ik0z] (42)

where ê is the unit vector in the direction of polar-
ization and Ẽ is a slowly varying function satisfying
|∇Ẽ| � |k0Ẽ|. Plugging this expression into the propa-
gation equation Eq. (41), we find that:

− ∂2
z Ẽ − 2ik0∂zẼ −∇2

⊥Ẽ + k2
0Ẽ = ε

(ω
c

)2

Ẽ, (43)

where the ∇⊥ operator acts on the transverse (x, y)-
plane. We now use the fact that Ẽ varies slowly in the
z-direction to neglect the ∂2

z Ẽ term from Eq. (43). Using
for convenience the refractive index n =

√
ε = n0 +∆n '

n0 +∆ε/(2n0), we arrive at the paraxial equation for the
diffraction of light through the structure:

i∂zẼ = − 1

2k0
∇2
⊥Ẽ −

k0∆n

n0
Ẽ. (44)

For a strong enough confinement within the waveguides,
the usual tight-binding approximation (Ashcroft and
Mermin, 1976) can be performed on the paraxial equa-
tion Eq. (44), which leads to evolution equations for the
field amplitude αj in each waveguide of the form

i
dαj
dz

= kzjαj − Jj,j′αj′ , (45)

where the wavevector kzj of light propagating inside the
waveguide j is determined by the background index n0 as
well as by the lateral confinement length, while the tun-
neling matrix Jj,j′ depends on the overlap of the evanes-
cent tails of j, j′ modes.

The formal similarity of the paraxial propagation equa-
tion Eq. (44) with the Schrödinger equation of quantum

mechanics establishes a close analogy between the diffrac-
tion of classical light and the motion of a spinless mas-
sive quantum particle, where the diffraction along the xy
plane sets the particle mass and the refractive index mod-
ulation gives the external potential. Note, however, that
the role of the temporal coordinate is played here by the
propagation direction z, whose spatial derivative replaces
on the LHS of Eq. (44) the usual temporal t-derivative
of the Schrödinger equation. As a result, the Floquet
approach discussed in Sec.II.A.5 can be implemented in
propagating geometries by spatially modulating system
properties along the z direction, as experimentally pio-
neered in (Rechtsman et al., 2013b).

Going beyond the assumption of monochromaticity,
the propagating light can have non-trivial temporal dy-
namics, such that the physical time t becomes like a third
spatial coordinate, in addition to the x, y transverse co-
ordinates and the propagation equation for the slowly
varying field Ẽ(r, t; z) must include an additional kinetic
energy term with respect to the temporal direction,

i
∂Ẽ

∂z
= − 1

2k0
∇2
⊥Ẽ −

k0 ∆n

n0
Ẽ − 1

2mt

∂Ẽ

∂t2
(46)

whose mass-like coefficient m−1
t ≡ −d2k/dω2 (with

k(ω) = ω n(ω)/c) is proportional to the group velocity
dispersion in the medium of frequency-dependent refrac-
tive index n(ω) (Boyd, 2008).

In order to go beyond the classical light case consid-
ered in the above equations, theoretical works (Lai and
Haus, 1989a,b; Larré and Carusotto, 2015) have devel-
oped a full quantum theory to map the light propagation
of quasi-monochromatic quantum light onto a standard
many-body theory of interacting bosons. In the near fu-
ture, this reformulation may be useful in studying the
interplay of quantum fluctuations, strong nonlinearities,
and topological effects.

As a consequence of the exchanged roles of the z coor-
dinate and the physical time t, radiation that propagates
through such a device does not provide a real-time mon-
itoring of the field evolution, as is usual for the cavity
systems discussed above, but instead only offers access
to the field state at the endpoint z = zfin of the evo-
lution. Correspondingly, extracting spectral information
about eigenmodes requires the inclusion of additional el-
ements, such as an extra one-dimensional chain of waveg-
uides that can be used to selectively inject light at one
side of the system, according to a kz resonance condi-
tion (Noh et al., 2017a). Analogously, the role of the in-
cident field on the front interface of the device is only to
set the initial condition of the evolution at z = zin. The
counterpart of these limitations is that such propagating
geometries allow us to study time-dependent problems
with conservative dynamics, extending in the long run
even to quantum many-body physics (Larré and Caru-
sotto, 2016; Polkovnikov et al., 2011).
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From an experimental point of view, focusing on works
related to topological photonics, it is worth noting that a
discrete version of the position-to-time mapping was ex-
ploited at the classical level in (Schreiber et al., 2012)
to obtain a 2D analogue quantum walk by encoding
two extra spatial variables in the arrival time of opti-
cal pulses: hopping between different sites in the extra
dimensions was obtained by letting light pulses propa-
gate along paths of slightly different lengths and then
recombining the pulses with a suitable arrangement of
beam-splitters. A 1D version of this analogue quantum
walk, including also an additional temporal modulation,
was used in the experiment (Wimmer et al., 2017) to re-
construct the geometrical Berry curvature of a photonic
lattice model from anomalous transport features.

3. Basics of nonlinear optics

We conclude this section reviewing the main aspects of
photonic systems with a brief summary of the key con-
cepts of nonlinear optics. In view of the on-going de-
velopments towards the realization of strongly correlated
many-photon states in strongly nonlinear systems, as will
be reviewed in Sec.VII.B, we will pay special attention
to the reformulation of χ(3) Kerr nonlinearities in terms
of a binary interaction between photons.

The standard semi-classical description of nonlinear
optical processes is based on Maxwell’s equations, in-
cluding nonlinear terms resulting from the nonlinear de-
pendence of the dielectric polarization on the applied
field (Boyd, 2008; Butcher and Cotter, 2008). In the
most naive form, this reads

P = χ(1)E + χ(2)E2 + χ(3)E3 + . . . (47)

where the linear electric susceptibility χ(1) is respon-
sible for the usual refractive index; the second-order
susceptibility χ(2) gives rise, e.g., to second harmonic
generation, optical rectification, and parametric down-
conversion processes; and the third-order susceptibility
χ(3) leads to four-wave mixing processes as well as an
intensity-dependent refractive index. In the simplest
form, this last effect can be reformulated as

n(r) = n0 + nnl|E(r)|2, (48)

where n0 is refractive index in the linear regime, and
the nnl coefficient, proportional to the χ(3) susceptibility,
quantifies the refractive index dependence on the local
light intensity.

From the point of view of photons as quantum me-
chanical particles, such an intensity-dependent refractive
index can be reinterpreted in terms of binary interac-
tions between photons, which are mediated by the non-
linear polarization of the underlying medium. This pic-
ture of interacting photons was pioneered in the calcu-

FIG. 8 QED Feynman diagram contributing to photon-
photon scattering in vacuum via creation of a virtual electron-
positron pair. Wavy lines represent photons and directed ar-
rows represent electrons and positrons.

lation of the effective χ(3) third-order nonlinear polariz-
ability of the vacuum arising from the exchange of a vir-
tual electron-positron pair (Heisenberg and Euler, 1936;
Karplus and Neuman, 1951), as sketched in the Feynman
diagram for photon-photon scattering shown in Fig.8.
Given the large mass me of electrons and positrons as
compared to the optical energies, the low-energy cross-
section of such processes

σ ∝ α4

(
~
mec

)2 [ ~ω
mec2

]6

(49)

is very low in vacuo: in the σ ≈ 10−68 m2 range for
1 eV optical photons. This has made the experimental
observation of this physics in vacuo extremely challeng-
ing. Given the (~ω)6 dependence of the scattering cross
section, the most natural strategy is to use high energy
photons, e.g. in the γ-ray range. A first experimental
observation of photon-photon scattering using the elec-
tromagnetic fields surrounding ultra-relativistic colliding
ions has been recently reported in (Aaboud et al., 2017).

As compared to the vacuum, condensed-matter me-
dia offer the much more accessible option of replacing
electron-positron pairs of MeV-ranged mass me with
electron-hole pairs of eV-ranged rest mass (set by the
band gap of the material). According to (49) the cor-
responding reduction of the intermediate-state detuning
provides a dramatic reinforcement of the cross section
by ≈ 36 orders of magnitude. This corresponds to a
significant value of the nonlinear χ(3) polarizability in
Eq. (47), which leads to many nonlinear optical phenom-
ena, including the intensity-dependent refractive index of
Eq. (48), two-photon absorption and parametric amplifi-
cation/oscillation, etc. (Boyd, 2008; Butcher and Cotter,
2008).

Beyond the basic Feynman diagram sketched in Fig.8,
more complex configurations arising in specific materi-
als may offer interesting advantages to experiment, e.g.
when the collision process occurs via a long-lived biex-
citonic bound state (Carusotto et al., 2010; Takemura
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et al., 2014; Wouters, 2007), when photons are dressed
by excitons into polaritonic excitations (Ciuti et al.,
1998), or when the nonlinearity inherits the long-range
character of the interactions between Rydberg states in
solid-state (Kazimierczuk et al., 2014) or gaseous me-
dia (Chang et al., 2014; Saffman et al., 2010).

In most media, the third-order χ(3), introduced in
Eq. (47), can however be viewed in the many-body lan-
guage as the result of simple two-photon collisions. This
alternative perspective shines new light on basic nonlin-
ear optical phenomena from a novel angle and allows to
take advantage of the artillery of many-body techniques
originally developed in the context of condensed-matter
and nuclear physics to predict new optical effects. In
the last decade, the resulting concept of quantum fluids
of light (Carusotto and Ciuti, 2013) has led to the ex-
perimental observation of a remarkable number of many-
body effects in weakly interacting gases of photons, such
as Bose-Einstein condensation, superfluidity and quan-
tum hydrodynamics, etc.

Under the simplifying assumptions that the frequency-
dependence of χ(3) is negligible and that the rotating-
wave approximation can be performed, the real part of
χ(3) provides a interaction Hamiltonian

Ĥint =
g(3)

2

∫
d3r Ê†(r) Ê†(r) Ê(r) Ê(r), (50)

which is quartic in the electric field operators Ê(r) and
where the amplitude g(3) is proportional to the real part
of the χ(3) nonlinearity. The imaginary part gives in-
stead two-body losses from two-photon absorption. The
assumption of a spatially- and temporally-local polar-
ization response of the medium to the applied electric
field medium that underlies (50) is valid in most com-
mon silicon- or silica-based materials used for topolog-
ical photonics in the infrared and visible range (Hafezi
et al., 2013b; Rechtsman et al., 2013b). Nonetheless, one
must not forget that several other experiments make use
of thermal (Vocke et al., 2015), photorefractive (Fleis-
cher et al., 2003; Jia and Fleischer, 2009), or Rydberg-
mediated nonlinearities (Chang et al., 2014; Saffman
et al., 2010), whose response may be slow in time and/or
long-range in space due to heat and charge diffusion ef-
fects and to the inherently long-range nature of dipole
interactions.

From a quantitative point of view, it is crucial to keep
in mind that the optical nonlinearity of most commonly
used materials results in very weak interactions between
single photons, so that an accurate theoretical descrip-
tion is provided by a mean-field approach. Under this
approximation, high-order averages are split into prod-
ucts of the mean-field, e.g.

〈Ê†(r) Ê(r) Ê(r)〉 ' 〈Ê†(r)〉〈Ê(r)〉〈Ê(r)〉, (51)

and the Heisenberg equation of motion for the field ex-
pectation value E(r) = 〈Ê(r)〉 recovers the classical

Maxwell’s equations including a nonlinear polarization
term Eq. (47). Of course, the extremely small intensity
of single photon nonlinear effects does not preclude that
a huge number of photons can collectively have a dra-
matic impact on the macroscopic optical response to a
strong light beam.

Within the mean-field approximation Eq. (51), an
intensity-dependent refractive index can be included in
the classical equations of motion Eq. (39) of the tight-
binding formalism described in the previous subsection
Sec.II.B.2, by simply adding to the RHS of the motion
equation for αj an additional term of the form

+ ωnl |αj |2 αj , (52)

where the nonlinearity parameter ωnl is proportional
(with an opposite sign) to the real part of the χ(3) nonlin-
earity and, typically, inversely proportional to the spatial
volume of the optical mode under consideration (Caru-
sotto and Ciuti, 2013). In propagating geometries, in-
stead, an interaction term of the form

− k0nnl
n0
|Ẽ(r)|2Ẽ(r) (53)

has to be added to the right-hand side of the paraxial
propagation equation Eq. (44) for monochromatic light,
which then takes the form of a Gross-Pitaveskii equa-
tion of dilute Bose-Einstein condensates (Pitaevskii and
Stringari, 2016). In both cases, a non-vanishing imag-
inary part of χ(3) and nnl in (52-53) can be included
to model saturable absorption, two-photon absorption or
gain saturation effects.

Going beyond the mean-field regime and realizing
strongly correlated photon states requires very special
materials with extremely strong nonlinearities. Find-
ing such materials is one of the most active research
lines in modern nonlinear optics (Carusotto and Ciuti,
2013; Chang et al., 2014; Roy et al., 2017a). So far,
most exciting results have been obtained using polari-
tons in gases of coherently driven atoms in a Rydberg-
EIT configuration (Firstenberg et al., 2013; Gorshkov
et al., 2011; Peyronel et al., 2012) – the so-called Rydberg
polaritons– or circuit-QED devices, where microwave
cavity photons are strongly coupled to a superconduct-
ing qubit element (Houck et al., 2012; Schoelkopf and
Girvin, 2008; You and Nori, 2011). Even though a com-
plete and quantitative account of the complex features of
these optical nonlinearities calls for a more sophisticated
theoretical description of the interactions between Ryd-
berg polaritons (Bienias et al., 2014; Jachymski et al.,
2016) and of the Josephson dynamics in circuit-QED de-
vices (Bourassa et al., 2012), the simplest form (50) of the
interaction Hamiltonian is typically sufficient to capture
the main physics.

The quantum Langevin equation for the cavity field
dynamics Eq. (36) is also straightforwardly extended to
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interacting regimes by adding a two-photon interaction
term

Hnl =
∑
j

~ωnl
2

â†j â
†
j âj âj , (54)

to the resonator Hamiltonian Hres. Actual calculations
are often simpler to perform by recasting the input-
output formalism in terms of a master equation for the
density matrix ρ̂. For a coherent drive, the driving and
dissipation terms have the form

dρ̂

dt
= − i

~
[Ĥres +Hnl +

∑
j

Fj(t)â
†
j + F ∗j (t)âj , ρ̂]+

+
∑
j

γj
2

[2âj ρ̂â
†
j − â

†
j âj ρ̂− ρ̂â

†
j âj ]. (55)

Generalization of this approach to incoherent pumps, as
discussed in Sec.II.B.2, can be found in quantum optics
textbooks (Gardiner and Zoller, 2004; Walls and Mil-
burn, 2006).

As introduced in Sec.II.B.2, a quantum description of
light propagation in the propagating geometries crucially
requires going beyond the monochromatic light assump-
tion. Among many recent developments in this direc-
tion (Bienias et al., 2014; Gorshkov et al., 2011; Gullans
et al., 2016; Maghrebi et al., 2015a; Moos et al., 2015;
Petrosyan et al., 2011), a particularly promising theo-
retical approach is based on a quantum version of the
t− z mapping. As discussed in (Lai and Haus, 1989a,b;
Larré and Carusotto, 2015), this reformulation leads to
a model of interacting bosons, again with the physical
roles of time t and propagation coordinate z exchanged.

III. TOPOLOGICAL PHOTONICS IN TWO DIMENSIONS

Having reviewed basic ideas of topological physics and
of optical and photonic systems in the previous section,
we are now in the position to dive into the exciting re-
cent advances of topological photonics. Taking inspira-
tion from the well-known classification of electronic topo-
logical insulators (Ryu et al., 2010), the next sections will
be organized according to the dimensionality and to the
symmetry class to which each topological system belongs.

The present section will be focussed on two-
dimensional systems, starting from the analogue quan-
tum Hall systems that sparked the whole field of topolog-
ical photonics. In the following sub-sections we will then
move to quantum spin-Hall systems, anomalous Floquet
insulators and, finally, gapless systems such as honey-
comb lattices. For each class, we will present the princi-
pal material platforms that have been developed and the
main topological effects that each system has been able
to observe.
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FIG. 9 (Color online) Comparison of theoretical and exper-
imental results for the setup shown in Fig. 1(a) for varying
magnetic field. Panel (a): Theoretical topological gap map
as a function of the static magnetic field applied. Each band
gap is labeled by its gap Chern number, the sum of Chern
numbers of the bulk bands below the gap. Panel (b): Calcu-
lations of the edge state dispersion for a few different values of
the magnetic field. Panel (c): Experimental edge dispersions
obtained by Fourier-transforming the edge-mode profiles con-
taining both intensity and phase information. Panel (d): Ex-
perimental bulk transmission as a function of magnetic field
and frequency, in agreement with the gap map in (a). Figure
adapted from (Skirlo et al., 2015).

A. Analogue quantum Hall systems in photonics

In this first sub-section we will review two-dimensional
photonic systems in which time-reversal symmetry is ex-
plicitly broken, so that the topology can be classified in
terms of the integer-valued (first) Chern number. These
systems can be considered as direct photonic analogues
of integer quantum Hall states of a two dimensional elec-
tron gas in the presence of a strong out-of-plane magnetic
field.

Our attention will be focussed on those optical plat-
forms that have led to major experimental advances in
the field, namely gyromagnetic photonic crystals and ar-
rays of coupled waveguides, but we will briefly discuss
also other platforms that have been theoretically pro-
posed and are presently under experimental investiga-
tion. While most of the experiments focussed on the
chiral edge modes and the resulting topologically pro-
tected one-way propagation, we will conclude by briefly
reviewing theoretical work in the direction of measuring
geometrical and topological properties of the bulk.
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1. Gyro-magnetic photonic crystals

In a nutshell, photonic crystals (Joannopoulos et al.,
2011) consist of a spatially periodic arrangement of ma-
terial elements giving spatially periodic dielectric per-
mittivity εij(r) and magnetic permeability µij(r) ten-
sors. In such a geometry, one can apply to photons the
Bloch theorem originally developed in solid-state physics
for electrons in crystalline solids (Ashcroft and Mer-
min, 1976): photon states organize themselves in allowed
bands separated by forbidden gaps and are labelled by
their wavevector defined within the first Brillouin zone
of the periodic lattice.

Most of the early literature on photonic crystals fo-
cussed on the possibility of realizing a complete pho-
tonic band gap (John, 1987; Yablonovitch, 1987) that
could, e.g., suppress spontaneous emission on embedded
emitters and, in the presence of defects in the otherwise
crystalline order, create strongly localized states. The
study of such in-gap states gave rise to a number of
exciting developments in view of photonic applications
such as high-Q photonic crystal cavities (Noda, 2016),
high-performance, low-noise semiconductor lasers (Altug
et al., 2006; Painter et al., 1999), and low-loss-waveguides
insensitive to bends (Bayindir et al., 2000; Lin et al.,
1998; Mekis et al., 1996; Yariv et al., 1999). On the other
hand, propagating band states regained major attention
when it was realized that photonic bands are not com-
pletely characterized by their energy dispersion, but also
encode geometrical and topological features, which could
lead to photonic analogues of the electronic quantum Hall
effect (Haldane and Raghu, 2008).

The seminal proposal of Haldane and Raghu focussed
on the case of a gyroelectric photonic crystal where a pair
of Dirac cones are gapped under a static magnetic field
which breaks the time-reversal symmetry (Haldane and
Raghu, 2008; Raghu and Haldane, 2008), simultaneously
with the realistic design of a gyromagnetic photonic crys-
tal operating at microwave frequencies and displaying a
Chern number of one (Chong et al., 2008; Wang et al.,
2008).

Given a different form of the wave equation associated
to the Maxwell’s equations (Joannopoulos et al., 2011)
compared to the Schrödinger equation, calculation of the
topological invariants for photonic crystals requires some
specific work beyond the picture presented in Sec.II.A
for electronic systems. For non bi-anisotropic materials,
a solution of the Maxwell’s equation oscillating with the
frequency of ω satisfies (Joannopoulos et al., 2011; Wang
et al., 2008)

∇r ×
[
µ−1(r)∇r ×E(r)

]
= ω2ε(r)E(r). (56)

The operator acting on E(r) on the left hand side is a
Hermitian operator, and thus the problem is essentially
a Hermitian eigenvalue problem, with a caveat of the di-
electric permittivity εij multiplying on the right hand

side. The solution of this equation in a spatially peri-
odic εij(r) and µij(r) follows the Bloch theorem just like
electrons in a periodic medium and characterized by the
crystal momentum k and the band index n; the role of
the Bloch wavefunction is played here by the electric field
En,k(r). The Berry connection, similarly to Eq. (5), can
be defined as (Wang et al., 2008)

An(k) ≡ i
∫
d2r

∑
ij E

∗
n,k,i(r) εij(r)∇kEn,k,j(r)∫

d2r
∑
ij E

∗
n,k,i(r) εij(r)En,k,j(r)

(57)

which takes into account the extra factor of εij in the
right hand side of (56). (One can equivalently define
the Berry connection using the magnetic field.) Start-
ing from this expression for the Berry connection, the
geometrical and topological invariants such as the Berry
curvature, the Chern number and the bulk-boundary cor-
respondence display the usual features as reviewed in
Sec. II.A; in particular, as before, the Chern number can
become nonzero only when the time-reversal symmetry
is broken.

Experiments (Wang et al., 2009) were performed using
the material platform sketched in Fig.1(a), namely a peri-
odic array of ferrite rods of vanadium-doped calciumiron-
garnet (VCIG), a material that under a strong static
magnetic field shows strong gyro-magnetic properties en-
coded in the non-diagonal matrix elements of the mag-
netic tensor µij . The dispersion of photonic energy bands
for such a system is displayed in Fig.1(e), which in-
cludes labels indicating the Chern number of the different
bands.

In the experiment, the photonic crystal slab had of
course a finite spatial size and was bounded by a metal
wall on one side: since the reflecting gap of the surround-
ing metal has a topologically trivial nature, the bulk-
boundary correspondence predicts that a topologically
protected chiral edge mode appears within the bulk en-
ergy gaps of the photonic crystal, as indicated by the red
line in the dispersion plot in Fig.1(e). Since time-reversal
symmetry is broken by the external magnetic field, the
number of edge states in each gap and their direction
of propagation is determined by the sum of the Chern
numbers of all lower-lying bands.

The main phenomenological consequence of such chi-
ral edge states is that they support propagation in one
direction only, so that back-scattering from defects and
scatterers is completely suppressed independently of their
nature and strength. Since no state is available at the
same energy that propagates in the opposite direction,
any wave incident on the defect can only circumnavigate
it and then recover its original path along the edge of the
system, at most accumulating some phase shift. This re-
markable feature is apparent in the numerical simulation
shown in Fig.1(b) and is in stark contrast with standard
waveguides where generic defects are responsible for a
strong back-scattering of light and, therefore, a signifi-
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cantly suppressed transmission.
In contrast to the reciprocal behaviour of the bulk vis-

ible in Fig.1(c), the huge non-reciprocity of the trans-
mission between a pair of antennas located on the edge
shown in Fig.1(d), as well as its insensitivity to the pres-
ence of a metallic scatterer located in between them was
the smoking gun of the non-trivial topology.

Very similar experiments were soon performed by other
groups (Fu et al., 2011a,b, 2010a,b; Li et al., 2014a,c; Lian
et al., 2012a,b; Poo et al., 2016, 2011, 2012; Yang et al.,
2013). The huge possibilities of these systems to engineer
a variety of different band topologies were then explored.
For instance, photonic bands with large Chern numbers
bands were theoretically identified in (Skirlo et al., 2014)
by simultaneously gapping multiple pairs of Dirac cones.
This prediction was confirmed by the experiment (Skirlo
et al., 2015), where the edge mode profiles were directly
scanned and Fourier-transformed, so to observe chiral
dispersions of Chern number ranging from 1 to 4, as il-
lustrated in Fig. 9.

As further features of topological edge states, it was
later shown that they can self-guide in air (Ao et al.,
2009; Li et al., 2015c, 2014b; Liu et al., 2012; Lu et al.,
2013a; Poo et al., 2011), appear in coupled defect cav-
ities (Fang et al., 2011), have robust local density of
states (Asatryan et al., 2013, 2014), be modeled in
time domain (Li et al., 2013), self-collimate unidirection-
ally (Li et al., 2015a), be realized in materials of Telle-
gen magnetoelectric couplings (He et al., 2016b; Jacobs
et al., 2015; Ochiai, 2015b; Sun et al., 2017b), form bulk
flat bands (Yang et al., 2017b,c), and immune to dis-
order in the bulk (Mansha and Chong, 2017; Xiao and
Fan, 2017a). Remarkably, while it was previously known
that one-way modes can exist on the surfaces of contin-
uous magnetic media (Deng et al., 2015; Gangaraj and
Hanson, 2017; Hartstein et al., 1973; Ochiai, 2015a; Shen
et al., 2015; Yu et al., 2014, 2008; Zhang et al., 2012),
the topological origin of these modes was only recently
unveiled (Silveirinha, 2015, 2016a,b).

From the application point of view, these one-way edge
waveguides inspired novel device designs for tunable de-
lays and phase shifts with unity transmission (Wang
et al., 2008), reflectionless waveguide bends and split-
ters (He et al., 2010a,b; Liu et al., 2010; Wang et al.,
2013), signal switches (Zang and Jiang, 2011), directional
filters (Fu et al., 2010b) and coupler (Wang et al., 2011;
Zhu and Jiang, 2011), broadband circulators (Qiu et al.,
2011; Zhang et al., 2013), slow-light waveguides (Yang
et al., 2013), terahertz circuit (Bahari et al., 2016), pho-
tonic pulling force (Wang et al., 2015a), and other func-
tions (Wu et al., 2017b).

Whereas all these experiments were carried out using
magneto-optic photonic crystals in the microwave do-
main, there is a strong push towards extending these
ideas towards optical frequencies. In this domain, the
magneto-optical effects are typically weaker by at least

two to three orders of magnitude, but the material is
continuously being improved (Onbasli et al., 2016) and
enhanced (Luo et al., 2016). Even though the resulting
topological band gap is correspondingly smaller than that
in the microwave range, such a small bandwidth is still
enough to provide topological features in narrow-band
phenomena such as topological laser operation (Bahari
et al., 2017). More details on these very recent develop-
ments are given in the outlook sectionVIII.

2. Propagating geometries

Most of the experiments presented in Sec.III.A were
in the microwave domain. The greatest challenge in re-
alizing the original design for a photonic topological in-
sulator of Haldane and Raghu in the optical frequency
range is strongly breaking Lorenz reciprocity (i.e., time-
reversal symmetry in Hermitian systems). The seminal
design of Wang et al. (Wang et al., 2008, 2009) experi-
mentally implemented the Haldane-Raghu mechanism in
the microwave frequency range (albeit with important
modifications to the crystal structure) - on the frequency
scale of GHz. They used the fact that magneto-optical
response can be extremely strong in this frequency range
- with off-diagonal elements of the permeability tensor
on the order of the diagonal components (i.e., near-
unity). Thus, realizing topological protection of chiral
edge states in the optical range would require an entirely
different mechanism. A number of theoretical works pro-
posed designs that could realize topological protection
either by breaking reciprocity via direct modulation of
coupled resonators (Fang et al., 2012b) or by preserving
reciprocity and forbidding backscattering provided dis-
order present in the system respected particular symme-
tries (Hafezi et al., 2011; Khanikaev et al., 2013; Umu-
calılar and Carusotto, 2011). In this section, we will dis-
cuss an alternative approach: by using three-dimensional
systems (in particular, arrays of optical waveguides (Sza-
meit and Nolte, 2010)), it is possible use one of the dimen-
sions as a temporal coordinate and thus observe topologi-
cal protection in the orthogonal plane (Rechtsman et al.,
2013b). For waveguide arrays, this means breaking in-
version symmetry along the direction of propagation (z)
in order to observe chiral edge states in the (x, y)-plane.
This is akin to substituting optical activity (i.e., circu-
lar birefringence) for the Faraday effect required for the
Haldane-Raghu mechanism. In this section, we start by
introducing the fundamentals of waveguide arrays and
how they may be described as a 2+1-dimensional sys-
tem (two spatial dimensions, and one temporal) in which
diffraction of optical wavepackets substitutes for tempo-
ral evolution of quantum mechanical particles. We then
describe how such arrays may break z-reversal symmetry
and realize topological protection. The waveguide array
geometry (they are also called ‘photonic lattices’) have
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FIG. 10 (a) Schematic diagram of honeycomb lattice waveg-
uide array, with straight waveguides. Adapted from (Rechts-
man et al., 2013c). (b) Microscope image of input facet of a
honeycomb lattice waveguide array. Adapted from (Rechts-
man et al., 2013a). (c) Schematic of an array of helical
waveguides; each waveguide helix has the same radius, pe-
riod, and phase (i.e., they are all moving in concert). Adapted
from (Rechtsman et al., 2013b).

been previously used across different physical systems to
realize novel phenomena such as spatial lattice solitons
(Christodoulides et al., 2003; Efremidis et al., 2002; Fleis-
cher et al., 2003), two-dimensional Anderson localization
(Lahini et al., 2008; Schwartz et al., 2007), wave dynam-
ics in quasicrystals (Freedman et al., 2006, 2007; Levi
et al., 2011; Verbin et al., 2013), among many others.

A typical waveguide array geometry is depicted
schematically in Fig. 10(a). The waveguides are fabri-
cated using the direct laser writing method, and their
properties are highly dependent on the host material
(Fig. 10(b) shows a microscope image of a transverse
cross-section of the structure). Below, we will be describ-
ing experiments performed in fused silica glass (refractive

index n = 1.46 at wavelength λ = 633nm). The specifics
of the fabrication procedure are described in detail else-
where (Szameit et al., 2007; Szameit and Nolte, 2010).
Typical parameters that describe waveguide properties
are: refractive index increase from the background, ∆n ∼
1.0× 10−3; waveguide radii in the x and y directions are
approximately rx = 2µm and ry = 5µm, and their shapes
may be described with a hypergaussian functional form:
∆n(x, y) = ∆n0 exp

(
−
[
(x/rx)2 + (y/ry)2

]α)
, with the

exponent α = 3 in fused silica glass. In a typical waveg-
uide array experiment, a beam of light is injected at the
input facet of the array (z=0) and allowed to propagate
through until it exits the array, at which point it is im-
aged onto a CCD camera. As discussed in Sec. III.A.2,
it is described by the paraxial equation for the diffraction
of light:

i∂zẼ = − 1

2k0
∇2
⊥Ẽ −

k0∆n

n1
Ẽ, (58)

where Ẽ represents the envelope function of the elec-
tric field. Note that the paraxial equation takes the
form of a Schrödinger equation, even though it describes
the diffraction of classical light rather than the motion
of a massive quantum particle. However, in the usual
Schrödinger equation of quantum mechanics, the left side
of the equation has a time derivative; here it is a deriva-
tive in z, the spatial coordinate in the propagation direc-
tion. Therefore, z takes the role of a temporal coordinate
and the transverse (x, y) plane takes the role of an arti-
ficial two-dimensional material. The diffraction of static
(CW) light therefore emulates the evolution of the wave-
function of a single quantum mechanical particle.

The structure shown schematically in Fig. 10(a) and
in an experimental image in Fig. 10(b) is a honeycomb
lattice of waveguides. Each waveguide is single-mode,
meaning it can be thought of as a potential well with
a single bound state. The waveguides are placed at a
distance from one another such that the modes of neigh-
boring waveguides can evanescently couple (i.e., ‘tunnel’)
between neighbors (typical spacing d = 15µm). This re-
sults in a typical hopping parameter (a.k.a., coupling con-
stant) between waveguides of J ∼ 1cm−1, but this can
be tuned by changing the wavelength, waveguide refrac-
tive index, and/or spacing between the waveguides. The
length of the sample (which corresponds to the amount
of ‘time’ - i..e, propagation distance - that the optical
wavefunction can propagate) is typically taken to be on
the order Z ∼ 10cm. Given that this particular array is
a honeycomb lattice, the diffraction of photons therefore
has a perfect correspondence with the motion of non-
interacting electrons in graphene. Honeycomb waveg-
uide arrays were first used to demonstrate optical Dirac
physics via the observation of conical diffraction (Peleg
et al., 2007).

Since each waveguide acts as an ‘artifical atom’ in the
analogy between waveguide arrays and two-dimensional
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materials, it is possible to employ the tight-binding ap-
proximation to Eq. (58), as described in Sec. III.A.2. In
this approximation, the wavefunction Ẽ is expanded in a
subspace composed of bound modes of each waveguide.
Thus, we may write the paraxial equation as:

i∂zαm = −
∑
〈m,n〉

Jmnαn, (59)

where αm is the amplitude of the mode in waveguide m,
Jmn is the hopping strength between waveguides m and
n, and the summation is taken over neighboring waveg-
uides (nearest, next-nearest, and so on, as necessary).
Here we henceforth assume the tight-binding description
due to its ubiquity across other experimental platforms
(condensed matter, ultracold atoms, coupled resonators,
among others). The bulk and edge band structures of the
honeycomb lattice of Fig. 10(a) are shown in Fig. 4(c,d),
assuming nearest-neighbor hopping only. For a discus-
sion of edge band structure, see Sec. III.D. This is exactly
the band structure of graphene (Neto et al., 2009; Wal-
lace, 1947) exhibiting Dirac cones - conical touchings be-
tween bands at the Brillouin zone corners. We note here
this system may be explored beyond the tight-binding
limit by performing photonic ‘ab-initio’ simulations by
diagonalizing the full continuum Schrödinger equation
(Eq. (58)). Most often, continuum simulations yield
only minor quantitative corrections to tight-binding, but
in special cases can reveal profound qualitative differ-
ences, including the presence of edge states in regions
of the edge Brillouin zone where tight-binding predicts
none (Plotnik et al., 2014). A rigorous description of
continuous topological systems can be found a series of
works by M. Weinstein and collaborators (Fefferman and
Weinstein, 2012; Fefferman et al., 2014; Fefferman and
Weinstein, 2014; Lee-Thorp et al., 2016).

A key requirement of realizing topologically protected
chiral edge states is breaking time-reversal symmetry,
as described above. Since z acts as a temporal coor-
dinate in waveguide arrays, breaking z-reversal symme-
try can allow for topologically-protected edge states in
the transverse (x, y) plane. This is accomplished by us-
ing helical, instead of straight, waveguides in a honey-
comb waveguide array, as depicted in Fig. 10(c). Sim-
ilar helical waveguide arrays have been used to demon-
strate dynamical localization (Crespi et al., 2013). To
describe the diffraction of light through the helical array,
we move into a coordinate frame co-moving with the he-
lices: x → x + RcosΩz, y → y + RsinΩz, z → z. In
the new coordinate system, the Laplacian remains un-
changed, but the z-derivative transforms as:

∂z → RΩ (− sin (Ωz) ∂x + cos (Ωz) ∂y) + ∂z (60)

We now rewrite the z-derivative of Eq. (58) in this
new coordinate system and find:

i∂zẼ = (i∇⊥ −A(z))
2
Ẽ − k0∆n

n1
Ẽ +

k0

2
R2Ω2Ẽ, (61)

where A(z) = k0RΩ(− sin Ωz, cos Ωz) is the vector po-
tential induced by the helical rotation, and the final term
in Eq. (61) can be ignored because it is simply propor-
tional to the identity. This vector potential A corre-
sponds to a circularly rotating electric field (note that it
is curl-free, so the corresponding magnetic field is zero).
It can be incorporated into Eq. (59) simply by includ-
ing the appropriate Peierls phase factors in the hopping,
namely Jmn → Jmn exp [−iA(z) · rmn], where rmn is the
vector that connects site m to site n. Therefore, the
Schrödinger equation of Eq. (59) is time-dependent, and
must be solved using the machinery of Floquet maps
(Kitagawa et al., 2010a; Lindner et al., 2011; Oka and
Aoki, 2009). This equation is perfectly analogous to the
Schrödinger equation that describes the motion of elec-
trons in graphene under the influence of circularly polar-
ized classical light. The rotating field acts to break time-
reversal symmetry (actually z-reversal symmetry, z being
the temporal coordinate), without requiring the presence
of a magnetic field (even a fictitious one). This Floquet
system precisely maps to the Haldane model (Haldane,
1988) in the high-frequency driving limit. The bulk and
edge band structures for the Haldane model are shown
in Fig. 11(b) and (c), respectively; these are qualita-
tively akin to those of the waveguide array described here.
Comparing Fig. 4(c,e) with (d,f), it can be seen that the
helicity acts to break the degeneracy at the Dirac points
and open a bulk band gap. In the edge band structure
(Fig. 4(f)), edge states are present (these are the two
bands crossing the gap), with one localized to the top of
the structure and the other localized to the bottom. They
are part of a single chiral edge state that flows around
the edges.

It is indeed known that graphene irradiated with a
circularly polarized field is equivalent to the Haldane
model in the high-frequency limit (Gu et al., 2011; Kita-
gawa et al., 2010a; Lindner et al., 2011; Oka and Aoki,
2009) (i.e., where the frequency of the drive is much
greater than the hopping). In order to derive this fact,
one employs the Magnus expansion (Bukov et al., 2015),
which uses 1/Ω (namely the drive period - i.e., the he-
lix pitch) as a small parameter to yield an effective
static Hamiltonian (also called the ‘stroboscopic’ or ‘Flo-
quet’ Hamiltonian). At first order in the expansion, the
nearest-neighbor hoppings are renormalized and imag-
inary second-neighbor hoppings are introduced (which
break time-reversal symmetry).

The topologically-protected chiral edge states can be
directly observed experimentally. A series of such experi-
ments were performed in Ref. (Rechtsman et al., 2013b),
observing perfect transmission around corners and past
defects; we highlight one of these in Fig. 11. Here,
light is injected in the top-left corner of a honeycomb
lattice arranged in an equilateral triangle geometry, for
a series of samples of increasing helix radius. The opti-
cal wavefunction travels clockwise around the structure,
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FIG. 11 (a) Microscope image of input facet of waveguide
array (Rechtsman et al., 2013b). The yellow circle indicates
the point of injection of input light. (b-f) Output facet of
waveguide array after 10cm of propagation, for different de-
vices with increasing helix radius. The edge states do not
backscatter as they turn around the top-right corner, i.e., in
(d). Their group velocity increases and then decreases with R,
as predicted from the Floquet lattice model. Significant bend-
ing loss can be observed in the background for R = 16µm.
Helix period is 1cm in all cases.

with increasing group velocity as a function of helix ra-
dius (i.e., gauge field strength) until about R ∼ 8µm,
whereupon the group velocity decreases and goes to zero
at R ∼ 16µm. This is quantitatively consistent with the
lattice model, which predicts that the band gap opens,
and then closes, as a function of increased helix radius
(Rechtsman et al., 2013b). The high background signal
that is clearly observable at R = 16µm arises from bend-
ing loss associated with the helicity of the waveguides
(this corresponds to the phenomenon of ‘heating’ in con-
densed matter Floquet systems). Note that each case,
some bulk modes are excited (i.e., not all light is local-
ized to the edge of the structure). This is attributable to
the fact that the bulk modes have some support at the
corner of the structure and are therefore excited along
with the edge states when light is injected at the corner
waveguide.

Since the advent of topological phenomena in a the
paraxial geometry described above, there has been sig-
nificant progress in this direction. To highlight a few
examples, waveguide array geometries have been used
to either theoretically or experimentally to demonstrate
the optical Rashba effect (Plotnik et al., 2016), the
photonic anomalous Floquet topological insulator state
(Bellec et al., 2017; Maczewsky et al., 2017; Mukherjee
et al., 2017b; Rudner et al., 2013), topological transi-

tions (Guglielmon et al., 2017; Leykam et al., 2016), chi-
ral edge states in quasicrystals (in particular, Penrose
tilings) (Bandres et al., 2016), protected zero-dimensional
cavity modes in two-dimensional lattices (Noh et al.,
2016) (protected modes two dimensions lower than host
lattice), and type-II Weyl points in three dimensions
(Noh et al., 2017b). Furthermore, Floquet topological
insulators were realized in waveguide arrays fabricated
with two-photon polymerization in photoresist materi-
als; these were used to demonstrate protection against
time-dependent defects (Jörg et al., 2017). Due to the
difficulty of breaking time-reversal symmetry in a planar
geometry, the paraxial platform described here provides
a rich methodology for photonic topological phenomena,
including those that incorporate non-Hermiticity, non-
linearity and other effects that go beyond solid-state
physics. Recently, a state-recycling technique has been
developed to significantly enhance the effective timescales
over which dynamics take place within arrays of cou-
pled optical waveguides (Mukherjee et al., 2017a). This
scheme consists in placing the photonic lattice into a cav-
ity, which allows the optical state to be re-injected many
times into the lattice. This approach also allows one
to image real-time (stroboscopic) evolution in photonic
lattices, by recording the state of the system after each
round trip.

3. Optomechanics

There have been also interesting developments in
breaking time-reversal-symmetry and implementing syn-
thetic gauge fields in optomechanical systems. In general,
the field of optomechanics deals with the coherent inter-
action between photons and acoustic phonons confined
in a cavity or an array, which can be controlled at the
single phonon level (Aspelmeyer et al., 2014). This field
has generated a lot of excitement due to its potential ap-
plications, ranging from sensing to quantum information
processing.

In 2012, it was proposed that time-reversal symmetry
could be broken in optomechanical resonators, and there-
fore, one could use them as an optical isolator and non-
reciprocal phase shifter (Hafezi and Rabl, 2012). Specif-
ically, a directional laser pump was used to select one
circulation direction, such that, consequently, the mani-
festation of time-reversal breaking could be observed in
the non-reciprocal optical response(Ruesink et al., 2016;
Shen et al., 2016). One can also switch the role of
phonon and photons and study non-reciprocal transport
of phonons (Fleury et al., 2014; Habraken et al., 2012;
Kim et al., 2017; Stannigel et al., 2012).

More recently, there has been an intriguing proposal
for the implementation of synthetic gauge fields in op-
tomechanical crystals (Schmidt et al., 2015). Thanks to
the uniformity in their fabrication, optomechanical crys-
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tals can form a 1D or 2D array of resonators, with a
significant degree of controllability. Initial experimental
demonstration of such an approach for a few sites has
been recently reported in Ref. (Fang et al., 2017). These
advances could lead to the realization of various topolog-
ical phases in optomechanical crystals (Schmidt et al.,
2015) and non-reciprocal baths and amplifiers (Metel-
mann and Clerk, 2015). Other optomechanical systems
to implement synthetic gauge fields include quantum
wells (Poshakinskiy and Poddubny, 2017), and super-
conducting circuits(Chu et al., 2017; Clark et al., 2017;
Gustafsson et al., 2014; O’Connell et al., 2010).

4. Cavity- and Circuit-QED systems

Arrays of cavity- and circuit-QED devices can offer
several advantages for exploring topological states of
light, including highly controllable geometry and connec-
tivity, as well as the possibility of reaching the regime of
strong effective photon-photon interactions. Depending
on the material platform and the frequency domain con-
sidered, these interactions can be obtained by coupling
photons to a variety of emitters, e.g. atoms, chemical im-
purities in a solid-state material, artificial atoms such as
quantum dots, or even superconducting circuits. While
progress in interacting topological photonics will be dis-
cussed in Sec. VII, we here introduce experimental and
theoretical advances towards realizing non-interacting
analogue quantum Hall states in cavity- and circuit-QED
related systems.

One approach in this direction relies upon engineer-
ing arrays of tunnel-coupled re-entrant coaxial microwave
cavities, as outlined theoretically in (Anderson et al.,
2016) and demonstrated experimentally in (Owens et al.,
2018). In this set-up, time-reversal symmetry is broken
through the chiral on-site spatial wave-function of ev-
ery fourth resonator, as depicted in Fig. 12. This chiral
on-site wave-function is engineered through the coupling
of a ferrimagnetic Yttrium-Iron-Garnet (YIG) crystal in
a magnetic field to the near-degenerate P-modes of a
triple-coax cavity. The resulting model corresponds to a
Harper-Hofstadter model (Eq. 14) with an effective mag-
netic flux per plaquette of α = 1/4. By using a real
magnetic field to break time-reversal symmetry, this ap-
proach is akin to earlier work (Wang et al., 2009) at room
temperature, but allows to substantially suppress losses
by focussing on those topological bands that are dark to
the YIG crystals. Measuring and compensating disorder
in this system relies upon Hamiltonian tomography tech-
niques based upon 1- and 2- point network analysis of the
lattice (Ma et al., 2017). Forthcoming challenges include
extensions of these ideas to higher dimensional topologi-
cal circuits (Lee and Thomale, 2017), such as Weyl semi-
metals, and then to strongly interacting systems. For the
latter, quality factors will need to be significantly higher

FIG. 12 (a) Connectivity of a microwave cavity model engi-
neered to realise a Harper-Hofstadter model (Eq. 14).Open
circles are fundamental-mode resonators exhibiting an s-like
onsite orbital. Blue→orange circles are chiral resonators with
a single isolated px + ipy orbital, employed to induce an effec-
tive magnetic flux per plaquette of α = 1/4. (b) A photograph
of the lattice from overhead, with a single four-site magnetic
unit cell highlighted in green. Fundamental-mode resonators
consist of a single-post coaxial cavity; chiral resonators consist
of a three-post cavity where time-reversal symmetry is bro-
ken using a Yttrium-Iron-Garnet sphere in a magnetic field.
Tunneling between cavities is achieved via a slot cut between
them. (c) A cut-out side-view of the same structure: now
evident are aluminum screws threaded into the center-post
of the fundamental-mode resonators, used to tune their fre-
quencies to degeneracy. (d) Site-resolved measurement of the
band-structure and edge-dispersion of the lattice. Frequencies
on the vertical axis are in GHz. Figures taken from (Owens
et al., 2018).

as could likely be realised using superconducting cavities,
and the system will need to be operated in a cryogenic
environment where ~ω0 � kBT . Specific issues related
to the population of strongly correlated states will be
addressed in Sec.VII.B.

A different strategy to induce an artificial gauge field
in a coupled cavity array was proposed in (Cho et al.,
2008), which considered trapping and optically-dressing
a single three-level atom in each cavity. By modelling
the two ground states of each atom as a spin-1/2 de-
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gree of freedom, the coupled cavity array can be mapped
onto a lattice of impenetrable bosons, where the inter-
site coupling is mediated by the inter-cavity hopping
of virtually-excited photons and an artificial magnetic
field is imposed by making the optical-dressing spatially-
dependent. While this first proposal focused on the
fractional quantum Hall regime, similar ideas have since
been applied to non-interacting polaritons in a hybrid
circuit QED system (Yang et al., 2012), where a super-
conducting resonator at each lattice site is coupled to a
nitrogen-vacancy center ensemble, whose internal states
are dressed by spatially-dependent microwave sources.

Another proposal to realise a synthetic magnetic field
in a circuit-QED architecture by means of passive circu-
lator elements was put forward in (Koch et al., 2010):
the circulators mediating the tunnel-coupling between
resonators are designed to break time-reversal symme-
try and can be implemented with simple superconduct-
ing circuits, such as three-junction Josephson rings. Ex-
tended to a lattice of resonators, this approach could
be used to realise a Chern insulator, for example, in a
Kagome geometry as also further studied in (Petrescu
et al., 2012). Along these lines, a general strategy to
break time-reversal symmetry in a resonator lattice by
exploiting the magneto-optical effect in the waveguide
or resonator elements mediating inter-site coupling was
discussed for photonic crystal resonator lattices in (Fang
and Fan, 2013b)

5. Other theoretical proposals

Beyond current experiments, there have been many
theoretical proposals for alternative routes to breaking
time-reversal symmetry in photonics by exploiting light-
matter coupling, dynamical modulation and/or novel lat-
tice elements. As we now briefly review, these develop-
ments may lead to analogue quantum Hall effects in a
variety of new systems, including microcavity polaritons
and different realizations of resonator lattices.

a. Topolaritons Microcavity polaritons provide a partic-
ularly suitable photonic platform to address the physics
of lattices with broken time-reversal symmetry. Polari-
tons are mixed light-matter quasiparticles arising from
the strong coupling between photons and excitons –
electron-hole bound pairs– confined in a semiconductor
microcavity (Carusotto and Ciuti, 2013). While they
are neutral particles, excitons posses a non-negligible
magnetic moment arising from the spin of the electron
and hole in the pair. Thus, polaritons, via their ex-
citonic component, show significant Zeeman splittings
(∆Z) when subject to an external magnetic field (Mirek
et al., 2017). In this situation, the lowest energy mode of
polaritons confined in a single resonator splits into two

states of different emission energy characterized by op-
posite circular polarizations.

This feature has been exploited in a number of the-
oretical works to propose a Chern insulator based on a
polariton lattice in an external magnetic field (Bardyn
et al., 2015; Karzig et al., 2015; Nalitov et al., 2015; Yi
and Karzig, 2016). The combination of the polariton
Zeeman splitting and the TE-TM splitting (∆TE−TM )
characteristic of the photonic part of polaritons (Kavokin
et al., 2005) results in the opening of a topological gap
whenever band crossings are present in the spectrum of
the lattice. Simultaneously, in finite size samples, pro-
tected chiral edge states emerge at the boundaries, with
a chiral direction determined by the sign of the external
magnetic field. A prominent example of these topolari-
tons is a honeycomb lattice of semiconductor micropil-
lars in a presence of an external magnetic field (Nalitov
et al., 2015). In this case, the external magnetic field is
expected to open a gap at the Dirac cones with a magni-
tude given by ∆Z and ∆TE−TM ; the resulting bands ac-
quire a Chern number of ∓2 or ±1 depending on the ratio
of these splittings to the nearest-neighbor hopping (Bleu
et al., 2016a,b). One of the most attractive features of
polaritons is the possibility of combining these topolog-
ical properties with significant Kerr nonlinearities; more
discussion on interacting topological systems is given in
Sec. VII

Besides exciton-polaritons in suitable semiconductor
devices, it was recognized in (Jin et al., 2016) that
magneto-plasmons arising from the coupling of the elec-
tromagnetic field with electron-hole excitations in elec-
tronic quantum Hall systems also have nontrivial topo-
logical properties. In particular, since magneto-plasmons
possess a particle-hole symmetry while breaking time-
reversal symmetry, they are a unique example of class D
2D topological systems (Ryu et al., 2010).

b. Dynamical modulation A flexible and powerful way
to break time-reversal symmetry in both the microwave
and optical domain is offered by the dynamical modu-
lation of the properties of a resonator array. Closely
related to the geometry of the experiment (Rechtsman
et al., 2013b) reviewed in Sec. III.A.2, one of the sim-
plest such schemes consists of dynamically tuning the
resonance frequencies of different cavities, as proposed
for two-dimensional topological lattice models in (Hay-
ward et al., 2012; Minkov and Savona, 2016). A related
idea was proposed in a classical mechanical framework
in (Salerno et al., 2016).

Another important class of dynamical resonator lat-
tices, proposed in (Fang et al., 2012b), instead can be un-
derstood through the principle of resonant “modulation-
assisted tunnelling”, first introduced by (Jaksch and
Zoller, 2003) for ultracold gases and experimentally im-
plemented in (Aidelsburger et al., 2013; Miyake et al.,
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2013). In this approach, a large difference, ∆ω, in the on-
site resonance frequencies between neighbouring tight-
binding lattice sites effectively suppresses particle tun-
nelling. This tunnelling can be restored by applying
a suitable resonant time-dependent modulation at fre-
quency ∆ω. The phase of the external modulation then
appears in the phase of the tunnelling amplitudes, simu-
lating the effects of a gauge field on a charged particle.

For the spatial-dependence of phases and the square
geometry considered in (Fang et al., 2012b), the dy-
namical resonator array maps directly onto the Harper-
Hofstadter model (Eq. 14). Although this mapping re-
lies on the RWA, non-trivial topological features persist
even if the inter-resonator coupling is ultra-strong and
the RWA breaks down (Yuan and Fan, 2015b). Other
choices of the modulation phases can be used to engi-
neer spatially-inhomogeneous effective gauge fields (Fang
and Fan, 2013a; Lin and Fan, 2014) or effective electric
fields (Yuan and Fan, 2015a; Yuan et al., 2016b) that
may also be useful in controlling light. The central chal-
lenge here is that the rate at which photonic structures
can be modulated by standard methods (e.g., carrier in-
jection or optomechanics) is significantly lower than the
optical frequency itself (GHz vs 100THz). Therefore, a
coupled resonator lattice with hoppings on the order of
the modulation frequency (or lower) is required, which
imposes stringent bounds on the quality factor of the
resonators. Going up in geometrical complexity, non-
reciprocal propagation based on interband photonic tran-
sitions induced in a waveguide by means of a running-
wave-shaped, electrically-driven modulation of the re-
fractive index was experimentally demonstrated in (Lira
et al., 2012). In general, note that dynamical modula-
tion as well as magneto-optical effects could also be ex-
ploited to imprint a synthetic magnetic field for photons
in a resonator-free implementation, based on a waveguide
network (Lin and Fan, 2015).

The actual implementation of the general temporal
modulation idea depends on the specific photonic sys-
tem under consideration. In addition to the silicon-based
photonic device discussed above, in circuit-QED architec-
tures, schemes to dynamically-modulate certain super-
conducting circuit elements, such as SQUIDs to couple
the lattice of resonators together, were proposed in (Per-
opadre et al., 2013; Wang et al., 2015b, 2016d). As
we shall see in more detail in Sec.VII.B, this strategy
was employed for a pioneering demonstration of the in-
terplay of magnetic and interaction effects in (Roushan
et al., 2017). In propagating geometries based on waveg-
uide arrays, the role of time and the propagation direc-
tion are exchanged (see Sec. III.A.2), and so a suitable
“time-dependent” modulation may be realized by spa-
tially varying the refractive index of the medium (Dubček
et al., 2015b; Longhi, 2013; Mukherjee et al., 2015;
Rechtsman et al., 2013b).

B. Analogue quantum spin Hall systems in photonics

The second main class of topological photonics sys-
tems in 2D are those which preserve time-reversal sym-
metry for photons and which are analogous to quantum
spin Hall systems in condensed matter. In this class of
systems, the one-way edge modes are only topologically
protected if spin-changing scattering processes can be ne-
glected. In the first six subsections we will provide an
in-depth discussion of key systems that have been exper-
imentally realised. The last subsection will briefly review
some promising theoretical proposals.

1. Silicon ring resonator arrays

This first subsection is devoted to a review of the ex-
periments in (Hafezi et al., 2013b; Mittal et al., 2014,
2016a) using arrays of silicon-based ring resonators. In
these systems, a synthetic magnetic field for photons can
be engineered by controlling the differential optical paths
followed by photons while hopping between neighboring
sites in the two directions. A pseudospin-1/2 degree of
freedom naturally arises as ring resonators support a pair
of degenerate whispering gallery-like modes propagating
in opposite clock-wise and counter-clock-wise directions.
As the device does not contain any real magnetic ele-
ment, time-reversal symmetry imposes that the two spin
states experience opposite synthetic magnetic field and
the corresponding edge states have opposite chiralities,
as usual in quantum spin Hall systems.

The synthetic magnetic field. As a first step, we show
a non-zero hopping phase can be obtained for photons
hopping back and forth between a pair of coupled site
resonators. As first proposed in (Hafezi et al., 2011),
this can be obtained when two neighboring resonators
are coupled through an off-resonant link ring, as sketched
in Fig. 13(a). To show this, we assume the length of
resonators is 2mλ, where 2m is an even integer and λ is
the resonant wavelength (except for the sign of tunneling,
the physics would be analogous for an odd integer). The
length of the off-resonance link ring is set to 2mλ+ 3λ/2
to guarantee that its mode remains anti-resonant.

This hopping phase was evaluated in the supplemental
material of (Hafezi et al., 2011) using an input-output
formalism (Gardiner and Collett, 1985), which, as dis-
cussed in Sec.II.B.2, is equivalent to coupled mode-theory
in the non-interacting case. In our specific case, the dy-
namics of each j = R,L optical resonator is given by
dâj/dt = −κâj −

√
2κÊin

j , where κ is the coupling effi-
ciency. The output field past the resonator is then given
by Êout

j = Êin
j +

√
2κâj . The input of each resonator is

related to the output of the other resonator by a propa-
gation phase which depends on the optical length of the
optical path followed during the hopping process through
the link ring. As it is shown in Fig. 13(a), for counter-
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FIG. 13 Panel (a) Schematic sketch of the coupling mecha-
nism between two site resonators via an off-resonant link ring.
Panel (b) After integrating out the off-resonant link, its asym-
metric location leads a non-zero hopping phase φ between site
resonators. (c) A two-dimensional array of rings realizing the
Harper-Hofstadter model for photons. Figure from (Hafezi
et al., 2011).

clockwise modes of the resonators, this follows the lower
(upper) part of the link ring for left (right)-ward hopping
(and viceversa for clockwise modes). For an asymmetri-
cally positioned link ring this leads to opposite values of
the hopping phase.

The conservative part of the photon dynamics is thus
given by ˙̂aR(L) = iκ exp(∓2πiφ)âL(R), which is equiva-
lent to a complex hopping Hamiltonian of the form

H = −κâ†RâL exp(−2πiφ) + h.c., (62)

as summarized in Fig. 13(b). In the general case of
an arbitrary off-resonant link ring, the non-zero hopping
phases in the forward and backward directions remain op-
posite in sign to guarantee the hermiticity of the Hamilto-
nian, but they are supplemented by a shift of the resonant
frequency of the resonators.

An effective magnetic field can then be implemented
by arranging the site resonators in a square lattice struc-
ture as sketched in Fig.13(c). In what follows, we focus
on the case of a uniform magnetic field in which the same
phase α is accumulated while hopping around each pla-
quette of the lattice. This realizes a photonic example
of the Harper-Hofstadter model reviewed in Sec.II.A.1:
For each value of the phase α, any finite lattice displays
bulk and edge bands, the former being organized in the
celebrated Hofstadter butterfly, the latter being located
in the gaps of the bulk dispersion.

Experimental setup. The above model was imple-
mented in (Hafezi et al., 2013b) using standard silicon-
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FIG. 14 Upper row (a): sketch of the experimental setup.
Second row (b): spatial intensity profile showing light prop-
agation along the edge of the system. Third row (c): spatial
intensity profile showing routing of light along the edge and
around a missing resonator on the edge. (d) SEM image of
the system with a missing resonator, intentionally removed in
the design. Adapted from Ref. (Hafezi et al., 2013b)

on-insulator (SOI) technology working in the telecom
range at λ ' 1.55µm. As it is illustrated in Fig. 14,
high-quality silicon ring resonators with a Q factor ex-
ceeding 104 were fabricated on top of an oxide substrate
using deep-UV projection photolithography. The cross-
section of the waveguides, which form the site resonators
and off-resonant link rings, was designed to ensure single-
mode propagation of the transverse electric (TE) mode.
The evanescent coupling between the site resonators and
the link rings was controlled by the thickness of the air
gaps separating the elements. Due to surface roughness
of waveguides, a fraction of the light in the resonators
scatters orthogonally to the plane and can be captured
by a microscope. In addition to transmission measure-
ment through the input and output waveguides coupled
to specific site resonators, imaging this scattered light
on a CCD camera gives direct information on the spa-
tial profile of the photonic modes. The good quality of



33

−40
−20

0
T

 (
d
B

)

193.74 193.78 193.82 193.86

0

200

 (THz)

 (
p
s)

Short EdgeLong Edge(a)

(b)

Bulk

0 20 40 60

−60

−50

−40

−30

−20

−10

0

No. of Resonators

T
 (

d
B

)

 

 

 (
p
s)

2D Long Edge
1D

No disorder

(c)

FIG. 15 (a) Measured transmission and (b) delay-time spec-
tra for eight different 8×8 lattice devices. Two regions with
reduced variance in both the transmission and the delay-time
are indicated by the red and green shading. A noisy region
of propagation thorugh bulk states is indicated by the blue
shading. Lower panel: scaling of the transmission as a func-
tion of system size for 2D and 1D devices. Solid markers with
error bars are the measured average and standard deviation
(65% confidence band) values. Solid lines with shaded areas
are the simulated average and standard deviation. Adapted
from Ref.(Mittal et al., 2014)

the resonators guarantees that the spin-flip-like coupling
between clock-wise and counter-clock-wise propagating
modes are effectively negligible.

Topologically protected edge states When the system
is excited via the input waveguide with a laser field at
a frequency resonant with one of the edge modes, the
photons are guided through the edge and exit the sys-
tem from the output waveguide. Fig. 14(b) shows the
light propagation clockwise along the edge of the system.
The transverse width of the edge state was about one
to two resonators, as observed both in experiment and
simulation. As a direct manifestation of the topological
protection of edge states, when a resonator is removed
from the path of an edge state, the photons route around
the missing resonator and then continue their path to the
output coupler without being back-reflected [Fig. 14(c)].

Beside the spatial imaging the edge states and the
qualitative study of their robustness, a more quantita-
tive experimental demonstration of their robustness was
reported in (Mittal et al., 2014) using the structure de-
scribed above and sketched in Fig. 14(a). Fig. 15 shows

the transmission and delay spectra interferometrically
measured at the output port for eight different 8× 8 lat-
tice devices. Overall, the transmission spectra of the dif-
ferent devices show significant fluctuations because of in-
trinsic fabrication variations in the dimensions of the site
resonators and link rings. On closer inspection, one can
see that the fluctuations in both the transmission and the
delay-time are suppressed in the two regions indicated by
the red and green shading in Fig. 15(a,b) corresponding
to propagation via edge states in the counter-clock-wise
and clock-wise direction along the short and long edges,
respectively.

More insight on this physics can be seen in Fig. 15(c),
which shows the measured average transmission and its
standard deviation for a sample of 95 devices. The trans-
mission through the topological edge states of a 2D lat-
tice and the one through the (non-topological) band of
an analogous 1D array (a so-called CROW) are plotted
as a function of system size, i.e. the number of resonators
travelled from input to output. In both cases, the trans-
mission decays exponentially with system size. However,
the decay rate is slower for the topological 2D system
compared to the 1D system. The shaded regions are sim-
ulation results, using the experimentally estimated pa-
rameters, which agree with the experimental observation.
In order to differentiate the decay of transmission stem-
ming from resonator losses from the one due to disorder –
both resulting in exponential attenuation– the simulated
result in the absence of disorder is presented as a dashed
line: while losses affect both 2D and 1D systems in the
same way, transport through topological edge states of a
2D system appears to be much less disturbed by disorder
than the 1D counterpart.

As a further feature of topologically protected edge
states, the work (Mittal et al., 2014) experimentally
demonstrated how transport in lossy edge states was un-
ambiguously distinguished from tunneling through local-
ized bulk states by considering the statistical distribu-
tion of the delay time during propagation. Specifically,
the delay distribution for edge states is approximately
Gaussian with a Gaussian width independent of system
size, as typical of diffusive transport in one-dimensional
systems (Cooper et al., 2010). On the other hand, the
distribution for bulk states is asymmetric with the most
probable value being less than the average, as typical of
transport governed by localization and earlier observed in
one-dimensional systems in the microwave domain (Cha-
banov and Genack, 2001).

Invariant measurement The hallmark feature of topo-
logical physics is the presence of one-way propagating
modes at the system boundary, whose chirality is a con-
sequence of topological character of the bulk. Specif-
ically, the bulk-boundary correspondence dictates that
the number of chiral edge modes is completely deter-
mined by the bulk topological invariant, the Chern num-
ber. Following a proposal in Ref.(Hafezi, 2014), the wind-
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FIG. 16 Panel (a): sketch of the experimental device (left).
The edge states considered in the experiment lie on the outer
edge. The tunable gauge field coupled only to the edge states
is introduced by fabricating heaters on link resonators situ-
ated on the lattice edges. SEM image showing heaters fab-
ricated on top of link resonators (top-right) and schematic
of the waveguide cross section showing the ring resonators,
the metal heaters and the metal routing layer (bottom-right).
Panel (b): measured transmission as a function of the coupled
flux θ and the incident laser frequency ω. Insets: zoom-in of
the edge state bands. Adapted from Ref. (Mittal et al., 2016a)

ing number associated to a spectral flow of edge states
was experimentally studied in (Mittal et al., 2016a).

While the transverse conductance experiment usu-
ally performed in electronic systems is not applicable
to photonic systems, the general spectral flow argu-
ment (Halperin, 1982; Laughlin, 1981) is in fact appli-
cable also to this case. To model the spectral flow of a
quantum Hall edge of winding number k = 1, one can
consider a linear edge dispersion Ep = vp where Ep is
the energy, v is the group velocity, and p is the momen-
tum along the edge. When a gauge flux (θ) is coupled
to the edge, the momentum is replaced by the covariant
momentum, i.e., Ep = v

(
p− q θL

)
, where L is the length

of the edge and q is the charge of the edge excitations.
For non-interacting photons, the (synthetic) charge can
be set to q = 1 so that the corresponding vector poten-
tial is simply θ/L. For a finite system, quantization of

momentum on the edge results in

En =
2πv

L

(
n− θ

2π

)
, (63)

where n is an integer. Therefore, the insertion of θ = 2π
flux shifts En → En−1, resulting in a spectral flow.

To experimentally observe and measure this spectral
flow, the synthetic gauge field system described above
should be supplemented with an extra tunable gauge
flux (Mittal et al., 2016a). To couple a tunable gauge
field to the edges, metallic heaters were fabricated above
the link ring waveguides on the lattice edge, as shown
in Fig. 16(a). These heaters use the thermo-optic effect
to modify the accumulated phase of light propagating
through the waveguides and hence result in a gauge flux.

Fig. 16(b) shows the measured transmission spectrum
as a function of the coupled flux θ. Edge states of the
outer edge and the bulk states are easily identifiable, as
bright and dark regions, respectively. As the coupled
flux θ increases, the energy of the clockwise edge states
decreases, whereas the energy of counter-clockwise edge
states increases. For a 2π increase in flux, the edge state
resonances move by one resonance to replace the posi-
tion once held by its neighbor. This flow indicates that
the measured winding number is k = +1.0(1) for the
clockwise circulating edge states, and k = −1.0(2) for
the counter-clockwise circulating edge states.

Specific theoretical proposals to directly detect the
bulk topological invariants without using the edge
physics have been put forward by many authors. A short
review of the main ones can be found in Sec.VIII.C.

2. Topological RF Circuits

RF circuits are an excellent substrate for the study of
topological band structures, and eventually strongly in-
teracting topological phases of matter. Their connectiv-
ity can literally be wired in an arbitrary manner, with ar-
bitrary numbers of connections per node and long-range
connections, allowing a wide range of exotic band struc-
tures to be realized. Furthermore, the physical size of the
components is macroscopically large compared to atoms,
phonons, and optical photons, enabling easy access for
site- and time-resolved measurements. Moreover, topo-
logical properties in linear lattice models can be observed
at room temperature and in the presence of significant
dissipation, despite the fact that there are many ther-
mal photons present. This is a vivid demonstration that
topological band structures are property of waves rather
than of quantum mechanical interactions.

Two types of RF topological circuits have been exper-
imentally demonstrated so far; the first type was dis-
cussed in Sec.III.A.4 and was used to realise a topo-
logical model with time-reversal symmetry breaking and
non-zero Chern numbers. The second type of circuit,
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FIG. 17 (a) Schematic of the experimental circuit used to re-
alize a time-reversal-invariant quantum spin Hall system. In
this set-up, the periodic structure is composed of inductors
and coupling capacitors (black) that are connected by wires
(light and dark blue lines). Each lattice site consists of two
inductors, labeled “A” and “B”, corresponding to right and
left circularly polarized spins. As a photon hops around a
single plaquette (indicated in orange) it accumulates a Berry
phase of π/2; this is engineered by braiding the capacitive
couplings, as detailed in (b) and indicated here in green. (b)
The synthetic spin-orbit coupling is engineered through the
structure of the coupling elements between lattice sites. Each
of the four tunneling phases implemented (indicated by the
left column of each set of figures) is induced by a particular
coupling between inductors (middle column), as described in
the corresponding rotation matrix (right column); the signs
of the couplings are controlled by whether the ’+’ end of one
inductor is coupled to the ’+’ or ’-’ end of the adjacent in-
ductor. (c) Photograph of the experimental circuit, in which
the inductors (black cylinders) are coupled via the capacitors
(blue). Inset: Zoom-in on a single plaquette that consists
of four adjacent lattice sites. Figure taken from (Ningyuan
et al., 2015).

which will be the focus of this subsection, employed
kHz frequency lumped element inductors and capacitors
to implement a time-reversal invariant topological sys-
tem (Ningyuan et al., 2015). In this system, it was pos-
sible to observe many signature effects of a topological
insulator, as well as several features that would be diffi-
cult or impossible to find in a solid-state material system.

In what follows, we briefly describe the experimental
realization of a quantum spin-Hall version of the Harper-
Hofstadter model (Goldman et al., 2010) with a quarter
flux per plaquette, that uses only inductors and capaci-
tors; it was subsequently pointed out (Albert et al., 2015)

that a minimal circuit model could be realized at a flux
per plaquette of 1

3 . As shown in Fig. 17, each lattice site
in the experimental circuit consisted of two inductors (la-
beled ‘A” and “B”,), allowing for the representation of
two pseudo-spin states. Tunneling between lattice sites
was achieved by capacitive coupling, with the sign of the
coupling reflected in which ends of the inductors are cou-
pled to one-another. Finally, the spin-orbit coupling was
implemented by changing, on a site-by-site basis, whether
A was coupled to A, −A, B, or −B.

In more detail, a localized excitation on a single lattice
site was represented by RF fields in a 1√

2
(A± iB) super-

position of the two inductors on the lattice site, where
+(−) corresponded to spin up (down). Under these
conditions, for a spin-up excitation, coupling (A,B) →
(A,B) between adjacent lattice sites corresponded to im-
plementing a tunneling phase of 0◦, while connecting
(A,B) → (−A,−B) corresponded to a tunneling phase
of 180◦, and (A,B)→ ±(B,−A) to a tunneling phase of
±90◦. Repeating (0◦, 90◦, 180◦,−90◦) horizontal tunnel-
couplers every four lattice sites, with all vertical tun-
nel couplers having a phase of 0◦, resulted in a Harper-
Hofstadter model with a quarter flux per plaquette. Spin-
down excitations experienced the opposite Peierls phase,
and hence the opposite effective flux per plaquette.

It is important to note that this approach transcends
the tight-binding regime: instead of a full LC resonator
on each A- and B- site, only an inductor was included.
When combined with coupling capacitors, this resulted in
a Harper-Hofstadter spin-band-structure exhibiting non-
zero spin Chern numbers identical to those observed in
the analogous tight-binding model; the lack of on-site in-
ductors changes the band widths and gaps, but, perhaps
surprisingly, does not change the topology of the spin-
bands. An equivalent construction swaps inductors and

capacitors, sending ω → ω2
0

ω (with ω0 ≡ 1√
LC

), in much

the same way that swapping inductors and capacitors in
the (topologically trivial) 1D lumped-element transmis-
sion line converts the transmission line between left- and
right-handed.

By forgoing on-site resonators and using onsite induc-
tors with coupling capacitors, this circuit operates in
what can be referred to as a “massless, left-handed” con-
figuration. This requires fewer inductors, which are the
primary source of loss and disorder, and provides band
gaps of order ω0, making the system less susceptible to
disorder than tight-binding approaches with an onsite
resonator, where the band-gaps are all reduced by the
ratio of the on-site capacitance to the coupling capaci-
tance.

Because this approach exhibits tunneling energies com-
parable to the photon energy ω0, it can be operated
with effective quality factors (resulting from inductor loss
R) of order ∼ 100 (characteristic of off-the-shelf room-
temperature electronic components), with tunneling still
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observed over ∼ 30 lattice sites within the photon 1
e life-

time; furthermore, a few percent disorder in the com-
ponents, typical of off-the-shelf electronics, do not in-
duce noticeable backscattering within the photon life-
time. Fig. 18a-b shows the dynamical evolution of a
spin-mixed pulse injected on the edge, as it splits into
spin-components which move with opposite chiralities.
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FIG. 18 Time-Resolved transport dynamics of the edge
modes in the topological circuit (Ningyuan et al., 2015),
shown in Fig. 17. (a)&(b) The spin-resolved time-evolution of
sites around the edge of system, following the initial excitation
of an A inductor at the edge. This corresponds, in the pseudo-
spin basis, to an initial localized excitation of (↑ + ↓)/

√
2 at

a single lattice site. (a) When exciting a topological edge
state (at 145 kHz), the ↑ (red) and ↓ (blue) signals propa-
gate around the edge in opposite directions, demonstrating
the expected spin-momentum locking. Despite the presence
of disorder, two round-trips are visible (as sites 0 and 42 are
equivalent). (b) When exciting a non-topological edge state
(at 225 kHz), disorder immediately leads to backscattering.
Inset: The grey arrow indicates the initially-excited lattice
site, with the edge site numbering convention indicated by
the red and blue arrows. (c) Illustration of quantum spin Hall
edge states on a Möbius strip (Top Panel), with arrows indi-
cating the edge propagation direction, and colors representing
the spin states. Experimentally, this was realized by impos-
ing the connectivity of a Möbius strip on the circuit (Bottom
Panel), with the printed circuit board shown in orange and
the additional external connections colored according to the
spin. (d) Spin-resolved detection of edge-transport after the
excitation of ↑; the ↑ (red) and ↓ (blue) signals show the con-
version from ↑ to ↓ as the excitation moves from one edge to
the other, with three round-trips being visible. Figure taken
from (Ningyuan et al., 2015).

Because this system is a circuit, its global connectiv-
ity is easily modified. Previous work has seen the ex-
ploration of Möbius topologies (Fig. 18 c-d), with only
a single edge (Ningyuan et al., 2015), with prospects
for creating conical defects where it is possible to ex-
plore inter-Landau-level states (Biswas and Son, 2016).
A topological circuit displaying zero-dimensional topo-
logical corner midgap states, protected by the bulk spec-
tral gap, reflection symmetries, and a spectral symmetry
has also experimentally been realized in (Imhof et al.,
2017), while a microwave network was used in (Hu et al.,
2015) to measure a topological edge invariant. Finally, by
trapping anyons at dislocations in the presence of strong
interactions, it may be possible to use such set-ups to ex-
plore topological quantum computation (Barkeshli and
Qi, 2012).

3. Twisted Optical Resonators

Exploring Landau level physics with charge-neutral
particles is a persistent goal of the synthetic matter
and meta-material communities, both because learning
to create “effective magnetic fields” for charge-neutral
particles illuminates the meaning of a magnetic field,
and because interacting topological matter in the con-
tinuum (fractional quantum Hall phases, for example)
admits simpler theoretical description than lattice ana-
logues (fractional Chern insulators).

Proposals to explore Landau-level physics with light
rely upon coupling an optical field to a rotating atomic
medium (Otterbach et al., 2010) or phase plate (Longhi,
2015), to inject angular momentum. The connection to
synthetic magnetic fields may be understood by realizing
that sending light through a rotating medium induces an
image rotation (Franke-Arnold et al., 2011), thus turning
the laboratory frame into a rotating frame. When viewed
in a (constantly) rotating frame, massive particles expe-

rience fictitious Coriolis and centrifugal forces 2m~Ω× ~v,
and m~Ω × ~Ω × ~r = m|Ω|2~r⊥, respectively, where ~r and

~v are the particle position and velocity, ~Ω is the angular
velocity of the rotating frame, and m is the particle mass.
The Coriolis force has the same form as the Lorentz force
q~v× ~B, with the identification q ~B ≡ m~Ω. Thus, to inves-
tigate Landau level physics of light in the lab frame, it is
only necessary to induce a continuous image rotation on
the light, and to somehow compensate for the centrifugal
force that this rotation applies to the light.

The combination of image rotation and centrifugal
force cancellation was first realized in (Schine et al.,
2016), using techniques proposed in (Sommer and Si-
mon, 2016) and depicted in Fig. 19. The image rota-
tion is achieved by directing the light repeatedly through
a non-planar path using a four-mirror optical resonator:
akin to a pair of back-to-back dove prisms, this extremely
low-loss construction is able to send the light through the
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FIG. 19 Engineering Landau Levels for optical photons.
Light in an optical resonator behaves as 2D particles in a
harmonic trap. (a) When the ray trajectory is followed over
many round-trips through a two-mirror resonator, its “hit-
pattern” in the central plane of the resonator corresponds to
the stroboscopic evolution of a classical massive trapped par-
ticle. The projection of the eigenmodes of the resonator onto
the central plane of the resonator are Hermite-Gauss, akin to
a quantum harmonic oscillator. (b) When a four-mirror res-
onator is twisted out of the plane, the ray trajectories undergo
a round-trip rotation about the resonator axis, equivalent to
Lorentz (Coriolis) and centrifugal forces; when the centrifu-
gal force precisely cancels the harmonic confinement induced
by the mirror curvature, the resulting Lorentz force produces
Landau levels. (c) A realistic rendering of the four-mirror
resonators employed in (Schine et al., 2016), from where this
figure is taken.

non-planar path thousands of times, inducing an image
rotation on each round-trip set by the non-planarity of
the resonator.

To achieve the centrifugal-force cancellation, the mir-
rors that produce the image rotation are curved to re-
peatedly focus the light towards the resonator axis. The
interplay of wave propagation, reflection off of curved
surfaces, and image rotation results in a complex mode-
structure for such a resonator. Qualitatively, wave-
propagation in the paraxial limit is equivalent to evo-
lution of a free massive particle, and thus imbues the
photon with mass; reflection off of the curved mirror sur-
face provides a radial impulse which is proportional to
the distance from the resonator axis, providing harmonic
trapping, while the resonator twist (non-planarity) in-
duces the Lorentz and centrifugal forces.

This analogy may be sharpened through 2D ABCD
matrices (Siegman, 1986), or more intuitively, by treat-
ing the repeated passage of the optical field through the
resonator as a periodically driven system (Sommer and
Simon, 2016), resulting in an effective “Floquet” Hamil-
tonian for the optical field in a particular plane of the
resonator. The final result is manifolds of degenerate
resonator eigen-modes with energies

Enpq
~ = ωnpq =

n 2πc
L + pωcyc, where c is the speed of light in vacuum,

L is the resonator round-trip length, and ωcyc is the ef-
fective cyclotron frequency which determines the energy-
gap between Landau levels. The n quantum number de-
termines how many wavelengths fit within the resonator
longitudinally, or equivalently which “Floquet” copy we
are referring to. Then p is the Landau-level index, and q
is the angular momentum index of the eigenstate within

the Landau-level.

Stabilizing the Landau Levels against Astigmatism In
practice, such resonators are sensitive to mirror astig-
matism (due to off-axis incidence of the optical field on
the mirrors), which results in different harmonic confine-
ment along x- and y- axes, and a consequent destabi-
lization of the Landau level. This destabilization may
be understood in various ways: (1) astigmatism means
that centrifugal force cannot be simultaneously canceled
along both x- and y- axes, and because particles in
magnetic fields move along equi-potentials, the residual
confinement along a single axis guides the particles off
to infinity; (2) when the astigmatism is optimally can-
celed, the residual confining potential takes the form
(x2 − y2) = r2

(
ei2θ + e−i2θ

)
– a potential that drives

∆l = ±2 transitions within the (degenerate) manifold of
states comprising the Landau level. This affect has also
been observed in rotating atomic gases (Cooper, 2008).

To realize a degenerate Landau level, this astigmatism
issue must be addressed. One approach is to engineer a
Landau-level-like scenario which does not exhibit states
whose angular momenta are separated by 2~; this is pos-
sible by further twisting the resonator, resulting in a sit-
uation where the new “lowest” manifold of degenerate
states exhibits only every third unit of angular momen-
tum q = 0, 3, 6.... This new, demonstrably stable system
corresponds to a Landau level on a cone with opening an-
gle α = arcsin( 1

3 ), which may be understood by realizing
that the allowed values of q only support three-fold sym-
metric light-patterns; when a photon leaves a particular
third, it re-enters that third from the opposite edge, but
the dynamics are otherwise that of a planar Landau level.
This is precisely how a charged particle behaves when
constrained to the surface of a cone, in a B-field nor-
mal to the cone’s surface. This platform has enabled the
first direct measurement of the mean orbital spin (of the
LLL, see Fig 20), a topological quantum number which
quantifies the coupling of density to manifold curvature
through the Wen-Zee action (Wen and Zee, 1992).

Time-reversal symmetry breaking is particularly im-
portant in interacting systems, as collisions between
particles in a quantum spin-Hall system can induce
back-scattering which would otherwise be symmetry-
protected. The twisted optical resonator does not break
time-reversal symmetry, and so it must have a hidden
spin degree of freedom which when flipped induces the
photons to experience the opposite magnetic field. This
turns out to arise from the order in which the photon
traverses the mirrors of the running-wave twisted res-
onator. Forward- and backward- modes exhibit opposite
synthetic magnetic fields. To break the degeneracy be-
tween them, it is sufficient to differentially couple to the
polarization of the modes, which are opposite relative to
a fixed axis (though they are the same relative to the di-
rection of propagation). This Faraday-type coupling was
recently demonstrated with an optically pumped ensem-
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FIG. 20 Translational Invariance of Landau Levels, and
Topological Dynamics on a Conical Manifold. The
astigmatism-robust Landau levels exhibit a three-fold sym-
metry, manifest in their spectrum by only every third an-
gular momentum state being degenerate q = 0, 3, 6, ..., or
q = 1, 4, 7... or q = 2, 5, 8.... Panels in the top, central, bot-
tom row correspond to starting with q = 0, 1, 2, respectively.
Away from the cone tip, the system supports translational in-
variance, as well as the possibility of generating states with ar-
bitrary angular momentum. Left column: Injection of the two
lowest Landau levels centered away from the cone tip: within
each group of images, the lower subpanels are for the lowest
Landau level, while the upper ones are for the first excited
one. In each case, the resonator responds with three copies of
the Landau level under consideration: far enough away from
the cone tip (left subpanels) the copies are independent of one
another. When they are closer (right subpanels), the form of
the interference of the copies near the cone tip is sensitive to
the initial q = 0, 1, 2, corresponding to flux-threading the tip
itself. Right panels: The breaking of translational invariance
near the cone-tip reflects the Wen-Zee coupling of the low-
est Landau level to the geometric curvature of the cone tip;
the excess density for the unthreaded cone reflects the mean-
orbital spin of the integer quantum Hall state. Figure taken
from (Schine et al., 2016).

ble in a weak magnetic field (Ningyuan et al., 2017).

4. Intrinsic spin-orbit interactions for light

The fundamental properties of Maxwell’s equations
lead to an “intrinsic” spin-orbit coupling for light, in con-
trast to “extrinsic” spin-orbit effects, engineered by the
design of photonic materials as discussed in the previous
sections. Intrinsic spin-orbit coupling plays an impor-
tant role on length-scales comparable to the wavelength
of light, and so has attracted attention across photonics,
nano-optics and plasmonics (Bliokh et al., 2015b). It can
also lead to an analogue of the quantum spin Hall effect
for light (Bliokh et al., 2015a), as we briefly introduce.

In free space, a propagating plane-wave has two spin
states, given by the left and right-handed circular po-
larizations, which have opposite helicities σ = ±1. The
corresponding spin vector is S = σk/|k| in units of ~, and
so is aligned with the propagation vector k. This is an
intrinsic coupling between the orbital and spin degrees
of freedom for light, underlying a wide-range of phenom-
ena (Bliokh et al., 2015b).

When light is strongly-confined transverse to its prop-
agation direction, intrinsic spin-orbit coupling can lead
to behaviour reminiscent of the electronic quantum spin
Hall effect (Bliokh et al., 2015a; Kavokin et al., 2005;
Leyder et al., 2007; Mechelen and Jacob, 2016). In a nut-
shell, the idea is the following. As a general consequence
of Gauss’ law in free space, ∇ ·E = 0, the transversality
condition (k · E = 0) implies that the electric field po-
larization depends directly on the wavevector k. Since
the wavevector k in the evanescent tail of a confined op-
tical mode has an imaginary component orthogonal to
the surface, the polarization acquires a circular compo-
nent corresponding to a non-vanishing transverse spin
component, whose sign changes with the propagation di-
rection (Bliokh et al., 2014; Bliokh and Nori, 2012).

An analogy can thus be drawn between this so-called
“spin-direction” (or “spin-momentum”) locking of con-
fined optical modes and the spin-momentum locked edge
states of a 2D quantum spin Hall system or surface
states of a 3D topological insulator. However, a key
difference is that the optical modes are bosonic and
so not topologically-protected by time-reversal symme-
try (Bliokh et al., 2015a).

Previous experiments had observed how spin-polarized
emitters give rise to a spin-controlled unidirectional ex-
citation of surface or guided modes in a wide-range
of systems, including metal surfaces (Lee et al., 2012;
O’Connor et al., 2014; Rodŕıguez-Fortuño et al., 2013),
optical nano-fibers (Mitsch et al., 2014; Petersen et al.,
2014; Sayrin et al., 2015) and waveguides (Le Feber
et al., 2015; Söllner et al., 2015). These experiments
also show that, despite the lack of topological protec-
tion, the spin-direction locking and this optical analogue
of the quantum spin Hall effect is very robust to system
details (Bliokh et al., 2015b).
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5. Bianisotropic Metamaterials

In this section, we review how a quantum spin Hall
effect for photons can be realised in electromagnetic
metamaterials, namely artificial composite materials con-
taining sub-wavelength dielectric and/or metallic struc-
tures (Liu and Zhang, 2011). The key advantage of such
materials is the great flexibility that they offer for engi-
neering the effective dielectric permittivity ε, magnetic
permeability µ, and bianisotropy or magneto-electric
coupling χ that appear in the electric and magnetic re-
sponse to long-wavelength fields,(

D
B

)
=

(
ε iχ
−iχT µ

)(
E
H

)
. (64)

As first proposed in (Khanikaev et al., 2013), a properly
designed metamaterial structure can exhibit a quantum
spin Hall effect for light, as experimentally evidenced by
the presence of topologically robust spin-dependent edge
states, analogous to the helical edge states of an elec-
tronic topological insulator.

Following the initial theoretical proposal, the first step
in this direction is to construct photonic modes which
mimic the electron spin-1/2 eigenstates. This can be
achieved, for example, through an enforced matching
of ε = µ in a metamaterial, ensuring that, in the ab-
sence of bianisotropy, the TE- and TM-polarized modes
propagate along a 2D metamaterial slab with the same
wavenumbers, restoring the (E,H) → (−H,E) duality
of the electromagnetic field in free space. For a given
wavevector k, linear combinations ψ±k of these degenerate
TE/TM modes can be constructed with the special prop-
erty that ψ+

k can be transformed into ψ−−k by a suitable

symmetry operation D̂, similarly to how an electron’s
spin is flipped by time-reversal symmetry. Since the
square of the transformation satisfies the usual D̂2 = −1
condition of electronic time-reversal, these states can be
identified as a pair of photonic pseudo-spin-1/2 states and
show symmetry-protected Kramers doublets for time-
reversal symmetric momenta.

The second step required is then to engineer an
appropriate bianisotropy or magneto-electric coupling
χ (Serdyukov et al., 2001) that generates a strong spin-
orbit coupling between the pseudo-spin states, mimick-
ing that found in a topological insulator. To first order,
the effect of a finite χ can in fact be recast in reciprocal
space as an explicit coupling between photon momen-
tum and polarization, D = εE + (ic/ω)χµ−1k × E and
B = µH + (ic/ω)χT ε−1k×H. While the bianisotropy χ
of materials found in Nature, such as optically-active me-
dia containing chiral molecules, is typically small, a very
large value can be obtained in metamaterial structures
containing, for example, split-ring resonators (Li et al.,
2009; Marqués et al., 2002; Pendry et al., 1999; Shelby
et al., 2001).

This approach was exploited in (Khanikaev et al.,
2013) in the design of ε = µ-matched metamaterial rods
arranged into a “meta-crystal” in the form of a hexagonal
lattice, which had a significant value of the bianisotropy
χxy = −χyx terms. In such a hexagonal geometry,
the photonic bands host doubly-degenerate Dirac points,
which are gapped out by the bianisotropy χ. Around the
gapped Dirac points, the effective low-energy model can
then be mapped to the Kane-Mele model for the quantum
spin Hall effect (see Section II.A.2), where the topolog-
ical states are protected by the engineered symmetry D̂
of the electromagnetic field in the metamaterial.

Experimentally, the key signature of this photonic
quantum spin Hall effect is the appearance of ro-
bust polarisation-dependent edge states. Such “spin”-
polarized transport has been observed for microwave
photons in (Chen et al., 2014) for a uniaxial hexago-
nal meta-crystal of non-resonant meta-atoms sandwiched
between two metallic plates, where the effective bian-
isotropy arises from field inhomogenities. The topological
robustness of such edge modes was also further demon-
strated in (Slobozhanyuk et al., 2016b), who used near-
field imaging in a square lattice of bianisotropic meta-
molecules to directly show the lack of backscattering
around sharp corners.

Following works have shown that topological photonic
states displaying the photonic analog of the quantum spin
Hall effect can also be realised in a even more simple
structure, as recently proposed (Ma et al., 2015) and ex-
perimentally realized (Cheng et al., 2016; Lai et al., 2016;
Xiao et al., 2016a). In this “meta-waveguide” set-up, a
parallel-plate metal waveguide is filled with a hexagonal
or triangular lattice of metallic cylinders, which are con-
nected at the top and bottom to the metal plates (see
Figure 21 (a)). The geometry of the cylinders and plates
is carefully optimized such that the spectrum contains
an overlapping degenerate pair of Dirac cones for the TE
and TM modes, allowing for the introduction of photonic
pseudo-spin states. The bianisotropy is then introduced
by either allowing a finite air gap between a cylinder and
one of the metal plates or by adding an asymmetrically-
placed collar to the cylinder (Ma et al., 2015). Moving
such a metallic collar relative to the metal plates can
be understood as changing the sign of the “mass” term
that opens up the gaps at the Dirac cones (see Eq. 17 in
Sec. II.A.1) allowing for the straightforward and reconfig-
urable engineering of arbitrary topological domain walls.
As proposed in (Cheng et al., 2016), this could form the
basis of a topological switch, in which the movement of
metallic collars is used to switch the propagation path
from one port to another port (see Figure 21 (b)-(d)).

Very recently, these ideas have also been extended to
all-dielectric bianisotropic metamaterials (Slobozhanyuk
et al., 2016a, 2017), which may offer advantages for re-
ducing (Ohmic) losses, scaling up to optical frequen-
cies, and increasing compatibility with on-chip integra-
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FIG. 21 (a) (Top) Displacing a metallic collar relative to
the two metal plates of a waveguide introduces an effective
bianisotropy, coupling the electric and magnetic fields. Shift-
ing a collar from the “down” to “up” position reverses the
sign of this term, and so changes the sign of the “mass”
term m that opens a gap at the Dirac cone, once these rods
are arranged into a hexagonal or triangular lattice. (Middle
and Bottom) Photograph of the experiment in (Cheng et al.,
2016), in which collars in a triangular array can be moved
up and down to create arbitrary and reconfigurable topologi-
cal domain walls. (b) Configuration of the topological switch
where in the red (blue) regions, the metallic collars are always
up (down), and where in the green region, the collars are dy-
namically moved from down to up to change the location of
the domain wall. (c) and (d) The time-resolved switching of
transmission via the edge states through (c) Port 2 and (d)
Port 3, with insets illustrating the power flow. All figures
adapted from (Cheng et al., 2016).

tion. In these systems, arrays of dielectric disks are
carefully designed such that the electric and magnetic
dipole modes are degenerate and electromagnetic dual-
ity is restored (Slobozhanyuk et al., 2016a). The bian-
isotropy term is then introduced by adding a raised cir-
cular notch on one of the flat faces of the disk; when the
disks are arranged into a hexagonal or triangular meta-
crystal, this gaps out the Dirac points, leading to a pho-
tonic topological insulator. This has been experimentally
realised in the microwave regime for a 2D array of ceramic
disks (Slobozhanyuk et al., 2017). Such arrays could also
be layered to make a 3D system, analogous to a “weak”
3D topological insulator (Slobozhanyuk et al., 2017), as
discussed further in Sec. V.B.

6. Photonic structures with crystalline symmetries

As we have just seen, the coupling of electric and mag-
netic fields in bianisotropic materials requires subwave-
length structures that are asymmetric in the direction
perpendicular to the plane of the topological metacrys-

(a) (b) (c)

(d) (e) (f)

��

FIG. 22 (a)-(c) Scheme of the lattice of hexagonal clus-
ters of rods with dielectric constant εd. (d)-(f) Energy-
momentum dispersion corresponding to expanded (d),
centered-honeycomb (e), and contracted (f) clusters, show-
ing in the latter case the opening of a topological gap. Panels
(b), (d)-(f) from Wu and Hu, 2015.

tal. Due to the small size of the features required for
their fabrication, their implementation remains challeng-
ing for visible and near-infrared wavelengths. A different
method to implement an analogue of the quantum spin
Hall effect for photons in two-dimensions was proposed
by L.-H. Wu and X. Hu (Wu and Hu, 2015). The con-
figuration is based on subwavelength dielectric structures
with inversion symmetry with respect to the 2D plane,
which is in principle easier to implement experimentally.

The idea is to consider the lowest TM mode of a slab
of cylindrical sub-wavelength dielectric rods surrounded
by air and confined between two metallic plates (see
Fig. 22(b)). The rods are arranged in a honeycomb geom-
etry resulting in a photonic Dirac dispersion at K and K ′

points. If instead of taking the usual two-sites unit cell
of the honeycomb lattice, we consider a hexagonal clus-
ter of rods as the unit cell, the additional band folding
translates the Dirac points to the center of the Brillouin
zone, resulting in a doubly degenerate Dirac crossing at
the Γ point (see Fig. 22(e)). Solving Maxwell’s equa-
tions for the lowest TM mode of the slab shows that
the in-plane magnetic field distributions of the doubly
degenerate lower Dirac bands present a px, py charac-
ter, while the upper Dirac bands contain states with dxy,
dx2−y2 symmetry. Their symmetric and antisymmetric
combinations, p± and d±, constitute a pseudospin basis
(Fig. 22(e), red and blue lines, respectively).

When shifting the rods towards the center of the hexag-
onal clusters, the dispersion shows the opening of a trivial
gap at the Dirac point, with the upper and lower bands
preserving their symmetry (Fig. 22(a),(d)). When the
rods are pushed away from the center of each cluster a
gap opens again, but this time it is the result of a band in-
version at the Dirac point, with the new states having d/p
character for the lower/upper bands (Fig. 22(c),(f)) (Wu
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and Hu, 2015; Xu et al., 2016). The bands posses now
nonzero pseudospin Chern numbers, analogue to the case
of an electronic Z2 topological insulator. If we now con-
sider a ribbon of the topologically nontrivial photonic
crystal, on a given edge, two bands of edge states with
opposite group velocities traverse the gap around the Γ
point. The wavefunctions of each band are associated to
a specific pseudospin.

We can relate these topological features to a pho-
tonic pseudo quantum spin Hall effect. Indeed, while
Maxwell’s equation respect bosonic time reversal sym-
metry operations (T 2 = +1), in the presence of the
C6ν symmetry, we can construct an antiunitary opera-
tor T̃ 2 = (KT )2 = −1 in which K respects the parity
of p and d eigenstates with respect to π/2 and π/4 ro-
tations, respectively (Wu and Hu, 2015). This pseudo
time-reversal symmetry provides a Kramers doublet at
the expense of keeping the C6ν geometry of the lattice.
In particular, the breaking of the crystalline order at the
edge of the ribbon couples the two pseudospins and re-
sults in the opening of a very small gap at the crossing
of the edge state bands at the time-reversal symmetric
point at the Γ point.

The simplicity of this proposal has triggered its im-
plementation in a wide variety of systems, ranging from
acoustics (Yves et al., 2017b) to phononics (Brendel
et al., 2017; He et al., 2016a; Xia et al., 2017). In optics
it has been implemented for microwaves in a lattice of
metalized rods (Yves et al., 2017a), and for near infrared
photons in a photonic crystal slab (Barik et al., 2018,
2016). In the latter experiments it was shown that the
two pseudospins characterizing each edge state band cor-
respond to opposite circular polarizations of the confined
photons. Using coupled waveguides, it has been shown
that the lattice configuration with the non-trivial gap can
hold localised zero-dimensional defect states (Noh et al.,
2016). All these features open interesting perspectives in
views of engineering novel whispering gallering mode ge-
ometries (Siroki et al., 2017) or exploring quantum chiral
optics (Lodahl et al., 2017).

7. Other theoretical proposals

Two alternative routes to simulating an artificial gauge
field for a coupled optical cavity array have been pro-
posed in (Umucalılar and Carusotto, 2011), by harness-
ing the polarization degree of freedom for light. In the
first scheme, a nontrivial tunneling phase between lattice
sites is generated by coupling together the orbital and
polarization degrees of freedom, through, for example, a
suitable embedding of either birefrigent slabs or optically-
active layers within an array of distributed Bragg reflec-
tor microcavities. In the second scheme, photons move
in a single planar microcavity, where a suitable periodic
lateral patterning of the cavity generates both a confining

lattice potential but also a position-dependent polarisa-
tion mixing. As a result, the polarization of a photon
then traces a closed loop in polarization-space when it
evanescently tunnels between lattice wells, and so gains
a geometrical Berry phase; this effect corresponds to a
generalization for evanescent waves of how propagating
photons can be imprinted with geometrical Pancharat-
nam (Pancharatnam, 1956) or Berry phases (Chiao et al.,
1988; Tomita and Chiao, 1986). This second scheme,
in particular, offers potential for reaching the strongly-
interacting photon regime (see Sec. VII.B), if the lat-
eral patterning is scaled down to the micrometer scale,
where the tighter confinement of light within the lattice
wells will lead to greatly enhanced photon-photon inter-
actions.

C. Anomalous Floquet topological insulators

The third main class of 2D topological photonic sys-
tems are the so-called anomalous Floquet topological
insulators, where unusual topological properties can
emerge due to periodically driving the system in time.
In this subsection, we will set the focus on the two recent
experiments of Refs. (Maczewsky et al., 2017; Mukherjee
et al., 2017b), which realized such topological properties
experimentally by designing suitable propagating waveg-
uide arrays for photons.

As already discussed in Section II.A.5, topological
band structures can be engineered through Floquet en-
gineering, namely, by subjecting a system to a time-
periodic modulation. In two dimensions, an emblem-
atic example is provided by the “Floquet Chern insu-
lator”, which can be realized by subjecting a honeycomb
(graphene-like) lattice to a circular shaking (either pro-
duced by a mechanical modulation of the lattice (Jotzu
et al., 2014; Rechtsman et al., 2013b), or by irradia-
tion (Lindner et al., 2011; Oka and Aoki, 2009)). In
the high-frequency regime of the drive, i.e. when ~Ω is
much larger than any other energy scale in the system,
the dynamics is well captured by an effective Hamilto-
nian, whose band structure (the “Floquet” spectrum)
exhibits Bloch bands with non-zero Chern numbers [Sec-
tion II.A.5]. In this high-frequency regime, the topo-
logical characterization of the driven system reduces to
applying the standard topological band theory to the
effective Hamiltonian (i.e. to the Floquet band struc-
ture); in particular, the usual bulk-edge correspondence
guarantees that a Floquet Chern insulator exhibits chi-
ral edge modes at its boundaries. This approach was
pioneered in photonics (Rechtsman et al., 2013b), where
a 2D honeycomb-shaped array of optical waveguides was
circularly modulated along a third spatial direction play-
ing the role of “time”.

This simple topological characterization breaks down
when the bandwidth of a Floquet Chern insulator ap-
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FIG. 23 (a) Sketch of the Rudner et al. toy model for anomalous Floquet topological phases (Rudner et al., 2013), where
hopping on a square lattice is activated in a cyclic and time-periodic manner. (b) Energy bands and sketch of the corresponding
states, in the ideal case where the activated-hopping amplitude J is exactly set on resonance, J = ~Ω, where Ω is the drive
frequency. The dispersionless bulk band (blue) corresponds to cyclotron-localized states and is associated with a zero Chern
number; dispersive branches (green and red) correspond to propagating edge states (skipped-cyclotron orbits). These edge
states are topologically protected by a winding number that takes the full-time-evolution (including the micro-motion) into
account (Nathan and Rudner, 2015). (c) The optical waveguide implementation of Ref. (Mukherjee et al., 2017b), where the
sequential activation of neighboring coupling was finely engineered. (d) Experimental evidence for the simultaneous existence
of robust propagating edge states and (quasi) localized bulk states. Panels (a,b) adapted from Ref. (Rudner et al., 2013) and
(c,d) from Ref. (Mukherjee et al., 2017b).

proaches ~Ω (i.e. when the system no longer operates in
the high-frequency regime Ω→∞). This can be under-
stood in two ways. First, let us recall that the Floquet
spectrum, which is associated with the Floquet opera-

tor Û(T ) = e−(i/~)TĤeff , is only uniquely defined within
a Floquet-Brillouin zone [−~Ω/2; ~Ω/2]; consequently,
when the effective bandwidth approaches ~Ω, gap-closing
events are possible at the Floquet-Brillouin zone’s bound-
aries (Kitagawa et al., 2010a). This can produce a can-
cellation of the Chern numbers associated with the Flo-
quet bands, however, and this is a crucial observation,
topological chiral edge states can still be present in the
inner part of the spectrum. Such a co-existence of chiral
edge modes with seemingly trivial Bloch bands, which is
in apparent contradiction with the bulk-edge correspon-
dence, is referred to as “anomalous Floquet topological
phases” (Rudner et al., 2013), as opposed to the stan-
dard Floquet Chern insulators discussed above. A sec-
ond, and more fundamental, reason for this breakdown

of the usual topological characterization stems from the
fact that the micro-motion plays a crucial role as soon as
the period of the drive T no longer sets the shortest time
scale in the problem: in the “low-frequency” regime, the
dynamics (including the topological nature of the system)
cannot possibly be ruled by Ĥeff only; see Section II.A.5.
All together, this indicates that the “anomalous Floquet
topological phase” cannot be accurately characterized by
the Chern number related to the effective Hamiltonian,
but rather, by a distinct topological invariant: a “wind-
ing number”, which fully takes the micro-motion into ac-
count (Carpentier et al., 2015; Kitagawa et al., 2010a;
Nathan and Rudner, 2015; Rudner et al., 2013).

An instructive toy model leading to a dramatic in-
stance of an anomalous Floquet topological phase was
introduced in (Rudner et al., 2013). in a certain pa-
rameters regime, the system simultaneously exhibits a
single completely flat Bloch band (with a trivial Chern
number) together with a topologically-protected chiral
edge mode. As represented in Fig. 23(a), the driven sys-
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tem consists in a 2D square lattice, whose allowed hop-
ping events are activated in a sequential and T -periodic
manner: the time-evolution operator describes a four-step
quantum walk. One should note that the circular nature
of the sequence imprints a chirality to the system, sim-
ilarly to the circular shaking leading to Floquet Chern
insulators in graphene-like lattices (Jotzu et al., 2014;
Lindner et al., 2011; Oka and Aoki, 2009; Rechtsman
et al., 2013b); such a chirality is crucial for the emergence
of chiral edge modes in the system. The effective (Flo-
quet) band structure of this model is shown in Fig. 23(b),
for the extreme case where the activated-hopping ampli-
tude J is exactly set on resonance, J = ~Ω. The result-
ing unique (two-degenerate) Bloch band is completely
flat, which reflects the fact that the stroboscopic motion,
i.e. the motion over each period of the drive T , is nec-
essarily restricted to closed loops in any region of the
bulk; however, as in the quantum Hall effect, such “or-
bits” reduce to skipped-orbits at the boundaries, hence
resulting in a chiral edge mode [see Fig. 23(b)]. This sim-
ple picture is confirmed by the topological analysis of the
model, which associates a non-trivial winding number to
the Floquet Bloch band (Rudner et al., 2013).

Recently, two independent experimental
teams (Maczewsky et al., 2017; Mukherjee et al.,
2017b) reported on the realization of this intriguing
“Rudner-toy” model, using an array of laser-inscribed
coupled waveguides using the technique described
in (Szameit and Nolte, 2010). Both teams considered
a 2D array of optical waveguides, defined in the x − y
plane, with a propagation direction z playing the role of
time. As illustrated in Fig. 23(a), the model relies on
a sequential activation of neighboring coupling within
this 2D square lattice; in Refs. (Maczewsky et al., 2017;
Mukherjee et al., 2017b), the experimentalists achieved
this goal by spatially modulating the waveguides along
the z direction, in such a way that different pairs of
waveguides are locally moved together (to activate the
coupling) and then apart (to switch it off); see Fig. 23(c)
for a sketch of this protocol. These independent
teams implemented two distinct configurations of the
model, the activated couplings being homogeneous in
Ref. (Maczewsky et al., 2017), while these were chosen
to be inhomogeneous in Ref. (Mukherjee et al., 2017b);
however, both experiments reached the aforementioned
“anomalous” regime of the topological phase diagram,
where chiral edge modes are uniquely determined by
the non-trivial winding number of Refs. (Kitagawa
et al., 2010a; Nathan and Rudner, 2015; Rudner et al.,
2013). In Ref. (Mukherjee et al., 2017b), the real-
ization of the anomalous Floquet topological phase
was demonstrated through a thoughtful study of the
activated-coupling strength (which uniquely identified
the realized “anomalous” phase within the topological
phase diagram) combined with direct observations of the
chiral edge states propagation and bulk localization [see

Fig. 23(d)]; this analysis was further validated through
numerical simulations based on the theoretical model.
In Ref. (Maczewsky et al., 2017), the “anomalous” phase
was also signaled by demonstrating the dispersionless
nature of the bulk (i.e. the existence of a flat band)
and the chiral nature of the edge mode; this latter
work also analyzed a topological transition from the
“anomalous” topological phase to a trivial phase (char-
acterized by the absence of edge mode) by designing
lattices with decreasing coupling strengths. These two
experiments demonstrated the high tunability offered
by laser-inscribed photonic crystals, in view of designing
intriguing toy models and simulating exotic phases of
matter.

Various other schemes have been proposed to reach the
anomalous regime of Floquet topological systems, which
can be applied to a variety of physical platforms (Kita-
gawa et al., 2010a,b; Leykam et al., 2016; Quelle et al.,
2017; Reichl and Mueller, 2014). In this broader con-
text, robust localized states, associated with non-trivial
winding numbers (Kitagawa et al., 2010b), were first
demonstrated in a photonic setup realizing a 1D quantum
walk (Kitagawa et al., 2012); a similar setup was recently
explored in view of directly extracting winding num-
bers through Zak-phase measurements performed in the
bulk (Cardano et al., 2017). Besides, the winding number
of 2D anomalous Floquet topological insulators was also
measured in a microwave network, using a dimensional-
reduction (topological pump) approach (Hu et al., 2015).
Finally, the existence of anomalous Floquet edge modes
was also shown in a designer surface plasmon structure
operating in the microwave regime (Gao et al., 2016a).

D. Topology in gapless photonic systems

Another important class of topological systems are
gapless photonic lattices with Dirac points. The pri-
mary example of this kind is the honeycomb lattice of
coupled photonic resonators or waveguides. The Hamil-
tonian describing the dynamics of photons in these lat-
tices is equivalent to that of pz electrons in graphene,
giving rise to two bands with linear crossings, at the
Dirac points, as illustrated in Fig. 24(d) for a lattice of
polariton resonators. In the absence of external fields,
spin-orbit coupling or temporal modulation the system
remains ungapped. Nevertheless, this type of lattice
presents features that are topological in the sense that
they can be related to certain topological invariants or
geometrical properties of the system. These features in-
clude topological edge states, topological phase transi-
tions, and the emergence of synthetic gauge fields when
suitably deforming the lattice.

To analyze these topological properties, let us consider
the hopping of the lowest photonic mode of each indi-
vidual resonator to its nearest neighbor. In the tight-
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binding approximation with nearest neighbour hoppings,
the Hamiltonian in momentum space is chiral and takes
the form of Eq. 19 in the A, B sublattice basis depicted in
Fig. 25(h) by green and blue dots. In this case, Q(k) in
Eq. 19 takes the form Q(k) = −t1eik·R1 − t2e

ik·R2 −
t3e

ik·R3 ≡ |Q(k)| e−iθ(k), where t1,2,3 are the nearest
neighbor hopping amplitudes and R1,2,3 are the vec-
tors connecting a site to its three nearest neighbors (see
Fig. 25(h)). For equal hoppings (t1 = t2 = t3 ≡ t) the
two bands of eigenvalues of the honeycomb Hamiltonian
are ε(k) = ±t |Q(k)| (Wallace, 1947), resulting in Dirac-
like crossings at the K, K’ points in the first Brilloin zone.

The eigenfunctions are |uk,±〉 =
(
1/
√

2
) (
e−iθ(k),±1

)†
.

The honeycomb Hamiltonian has been implemented in
a number of photonic systems including microwave res-
onators (Bellec et al., 2013a; Bittner et al., 2010), photo-
refractive crystals (Peleg et al., 2007; Song et al., 2015),
coupled microlasers (Nixon et al., 2013), polariton lat-
tices (Jacqmin et al., 2014; Kusudo et al., 2013) and
propagating waveguides (Plotnik et al., 2014; Rechtsman
et al., 2013c). Some examples are shown in Fig. 24.

The first noticeable feature of the eigenstates is their
pseudospin structure, with two components that reflect
the underlying A, B interlaced triangular sublattices.
The pseudospin structure results in particular scatter-
ing properties close to the Dirac cones: using a honey-
comb lattice imprinted in a photo-refractive medium it
has been shown that the conical diffraction characteristic
of Dirac crossings (Peleg et al., 2007) presents an orbital
angular momentum l = ±1, depending on whether sub-
lattice A or B is excited (Song et al., 2015).

A second relevant feature of the eigenfunctions is their
nontrivial Berry phase: if the eigenfunctions are trans-
ported adiabatically on a close loop in momentum space
around one of the Dirac points, the eigenfunctions change
sign (Castro Neto et al., 2009). In other words, they get
a Berry phase of ±π, the sign being opposite for the K
and K’ points. This effect is present even when a gap
is opened at the Dirac cones, which can be induced by
introducing an on-site energy difference ∆ between the
A and B sublattices. In this case, a non-zero Berry cur-
vature extends around the Dirac points. Therefore, if a
wave packet is created close to one of the Dirac points
and subject to acceleration, the Berry curvature results in
an anomalous velocity whose sign depends on the Dirac
point around which the wavepacket is created (Ozawa
and Carusotto, 2014). An efficient way of accelerating
the photon wavepacket is to design a lattice whose res-
onators continuously increase in size from one lattice site
to the next: the decreasing photon confinement results in
an on-site energy gradient. If the photon lifetime is long
enough, the force can induce magnetic Bloch oscillations
with a displacement perpendicular to the gradient and
a direction determined by the Dirac point around which
oscillations take place (Cominotti and Carusotto, 2013).

Photonic simulators can also be used to explore other
properties of propagating wavepackets in a honeycomb
lattice. For instance, the chiral symmetry of the hon-
eycomb Hamiltonian is preserved in the presence of
a potential step, resulting in phenomena like Vese-
lago lensing (Cheianov et al., 2007), Goos-Hänchen ef-
fect (Grosche et al., 2016) or Klein tunneling (Dreisow
et al., 2012; Solnyshkov et al., 2016b). Dissipation,
present for example in polariton lattices, does not sig-
nificantly affect these phenomena (Ozawa et al., 2017).
Dirac cones can also be used to tailor the dispersion of
photonic structures, even producing “epsilon-near-zero”
materials (Huang et al., 2011; Moitra et al., 2013).
Edge states in Dirac systems - One of the characteris-
tics of the honeycomb lattice is the existence of zero-
energy edge states in finite size ribbons (Klein, 1994;
Nakada et al., 1996). These edge states are topological
in the sense that they are related to the winding proper-
ties of the bulk Hamiltonian (Ryu and Hatsugai, 2002).
To understand this bulk-edge relation, let us consider a
graphene ribbon of finite size in the direction perpendic-
ular to the edge (⊥), and infinite in the parallel direction
(‖). By Fourier transforming the real-space Hamiltonian
along this axis, we can reduce it to an effective 1D Hamil-
tonian for each value of k‖ (Castro Neto et al., 2009;
Delplace et al., 2011). This effective 1D chiral Hamil-
tonian has the same form as the SSH Hamiltonian dis-
cussed in Sec. II.A.3, characterized by the complex func-

tion Q(k⊥, k‖) =
∣∣Q (k⊥, k‖)∣∣ eiθ(k⊥,k‖). We can then

apply the topological arguments discussed in Sec. II.A.3.
The number of pairs of zero-energy edge states, appear-
ing at the two edges of the ribbon, is thus determined by
the winding of θ

(
k⊥, k‖

)
, Eq. 20, along the k⊥ direction

over the first Brillouin zone (Delplace et al., 2011; Mong
and Shivamoggi, 2011; Ryu and Hatsugai, 2002):

W(k‖) =
1

2π

∫
BZ

dk⊥
dθ
(
k⊥, k‖

)
dk⊥

. (65)

The information about the specific type of edge is con-
tained in the choice of unit cell dimer and unit vectors
when writing down the honeycomb Hamiltonian, such
that they allow for the full reconstruction of the lattice
(including the edges). Therefore, the information on the
edges is reflected in the specific form of θ

(
k⊥, k‖

)
when

writing down Eq. 19 (Delplace et al., 2011). Figure 25(b)
and (e) show θ

(
k⊥, k‖

)
for zigzag and bearded edges, re-

spectively. The colored areas indicate the values of k‖ for
which W = 1, predicting the existence of edge states.

The direct access to the wavefunctions in photonic lat-
tices has been employed to study the local properties of
these edge states. Their existence has been evidenced
experimentally in lattices of coupled waveguides (Plot-
nik et al., 2014), microwave resonators (Bellec et al.,
2014; Bittner et al., 2012) and polaritons (Milićević et al.,
2015), showing that edge states for zigzag and bearded
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FIG. 24 (a) Image of a honeycomb lattice of microwave resonators with armchair, bearded and zigzag edges. (b) Measured
density of states as a function of microwave frequency ν. The peak at the Dirac energy νd indicates the presence of zero
energy states. From Bellec et al., 2014. (c) Scanning electron microscope image of a honeycomb lattice of coupled polariton
micropillars. (d) Photoluminescence spectrum measured at the center of the lattice showing Dirac crossings (left), and at the
zigzag edge (right), showing a flat band of edge states (pointed by the arrow). From Milićević et al., 2015. (e) Representation
of a lattice of coupled waveguides and (f) measured momentum space distribution of the transmission through the zigzag and
bearded edges. Red lines show the position of the Dirac points. From Plotnik et al., 2014.

terminations connect Dirac cones in complementary re-
gions in momentum space (Fig. 25(b) and (e)), while
armchair terminations do not posses any edge state (W =
0 for any k‖).

The topological arguments used to predict the exis-
tence of edge states in a honeycomb lattice can be ex-
tended to other Hamiltonians, for instance, when more
than one mode per site is involved. As long as the system
possesses the chiral symmetry, they can be written in the
form of Hamiltonian 19. With more than one mode per
site, Q(k) takes the form of a n × n matrix whose de-
terminant can be written as detQ(k) ≡ |detQ(k)|eiθ(k).
The existence of pairs of zero energy edge states is again
given by the winding of θ(k) along the momentum di-
rection perpendicular to the edge (Kane and Lubensky,
2014). An example of this kind of chiral Hamiltonians is
the p-orbital version of graphene, in which orbitals with
px, py geometry are considered at each lattice site (Wu
et al., 2007). This 4 × 4 orbital Hamiltonian has been
implemented in a polariton honeycomb lattice when con-
sidering the doubly degenerate first excited states of each
coupled micropillar. The spectrum consists of four bands
with Dirac crossings, and the presence of zero-energy
edge states for different kinds of terminations is well ac-
counted for by the analysis of the winding of θ(k) we
have just presented (Milićević et al., 2017).

Similar arguments can be applied to Dirac Hamil-
tonians without chiral symmetry, for instance with
next-nearest neighbor hopping or with a staggered po-
tential in the A, B sublattices, both effects giving rise to

non-zero diagonal terms in Eq. 19. The presence of edge
states can also be determined via winding arguments,
but their energy is not necessarily zero (Mong and
Shivamoggi, 2011).

Valley Hall edge states - Propagating edge states with
weak topological protection can be engineered in lattices
with appropriate staggered potentials. The staggered po-
tential between the A, B sublattices ∆ breaks the inver-
sion symmetry and opens a gap at the Dirac points. By
integrating the Berry curvature around each Dirac point,
we can define a valley Chern number whose sign is op-
posite for K and K’ points (the total Chern number of
the band still being zero). If the staggered potential is
changed to (−∆), the gap is still open but the signs of the
valley Chern numbers switch between K and K’ points.
When joining two honeycomb semi-infinite ribbons sub-
ject to opposite staggered potentials ∆ and −∆, it has
been shown that interface states appear in two bands
that traverse the gap (Chen and Dong, 2016; Goldman
et al., 2016b; Ma and Shvets, 2016; Weinstein et al., 2016;
Zhang et al., 2011). Indeed, if the K and K’ valleys of
the two lattices have opposite valley Chern numbers, the
gap needs to close locally at those points at the interface
between the two lattices (Ma and Shvets, 2016). This
situation is restricted to very specific conditions, for in-
stance, it applies to zigzag interfaces. For this configu-
ration, the propagation of a wavepacket in an interface
state with a given valley polarization is protected against
any perturbation that does not mix the two valleys, i.e.,
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FIG. 25 Stream plots of θ
(
k⊥, k‖

)
in momentum space for

zigzag, bearded and armchair edges, and for different values
of the homogeneous strain t1/t2 (t2 = t3). The colored ar-
eas show the regions of k‖ in which W = 1, corresponding
to the presence of edge states. Black solid and dashed lines
represent the 1D Brilliuoin zones in k‖ and k⊥, respectively.
From Bellec et al., 2014. Red points show the position of
the Dirac points. (h) Scheme of the honeycomb lattice and
nearest neighbor hoppings.

bends of the interface of 120◦, which preserve the zigzag
character of the interface (Chen and Dong, 2016; Ma and
Shvets, 2016; Wu et al., 2017a).

For armchair interfaces, the breaking of translational
symmetry in the direction perpendicular to the interface
mixes the K and K’ points of each lattice, and the valley
Chern number is not well defined. Similarly, if the gap
becomes too large (|∆| & t) in zigzag interfaces, the Berry
curvatures associated to both valleys overlap. The valley
Chern numbers are not well defined anymore and a gap
opens in the edge state bands (Noh et al., 2017a).

Despite the fact that valley Hall edge states are not
robust against arbitrary spatial disorder at the interface,
they can be used to route photons in photonic struc-
tures (Noh et al., 2017a; Wu et al., 2017a), and to de-
sign delay cavities in Si photonics technologies (Ma and
Shvets, 2016).

Effect of strain - The application of strain to an un-
gapped honeycomb lattice (∆ = 0) strongly modifies its
spectrum and eigenfunctions and, consequently, its topo-
logical properties. We can consider two main classes of
strain: (i) homogeneous strain, in which hopping is dif-
ferent along different spatial directions (t1 6= t2 6= t3),
and (ii) inhomogeneous strain, in which hopping takes

different values at different positions (ti(r)). The first
case was theoretically studied by Montambaux and co-
workers (Montambaux et al., 2009). They predicted a
topological phase transition occurring when one of the
three nearest neighbor hopping amplitudes (t1) is twice
as large as the other two (t2 = t3). At the transition
point (t1 = 2t2), the two non-equivalent Dirac cones
merge and disappear resulting in the opening of a full
gap. This transition was first experimentally observed in
cold atoms (Tarruell et al., 2012), but it is in photonic
lattices where its effect on the existence of edge states has
been studied (see Fig. 25). Experiments in lattices of mi-
crowave resonators and coupled waveguides (Bellec et al.,
2014; Rechtsman et al., 2013a), have shown that above
the transition point (t1 > 2t2), ribbons with zigzag termi-
nations contain a flat energy band of edge states covering
the whole momentum space, while for bearded bound-
aries, edge states disappear. For armchair terminations,
edge states appear for any value of the unidirectional
strain as long as the anisotropy axis is not parallel to
the edge, as in Fig. 25(g),(i) (Bellec et al., 2013b, 2014).
The existence of edge states in homogeneously strained
honeycomb lattices can also be predicted from topolog-
ical arguments. The Hamiltonian including this kind of
strain still possesses the chiral symmetry, and the num-
ber of zero energy edge states is governed by the winding
of θ(k).

The second kind of strain concerns the continuous vari-
ation of the hopping over the lattice. Originally studied
in the context of electronic graphene, this kind of in-
homogeneous strain has been shown to induce a gauge
field (Kane and Mele, 1997). If the strain takes the spe-
cific trigonal shape (ur, uθ) = βr2(sin 3θ, cos 3θ), where
ur, uθ are the real space displacements of the positions
of the carbon atoms in polar coordinates, the modified
hopping induces a gauge field for electrons at the Dirac

FIG. 26 Tight binding calculation of the level structure of
a photonic graphene ribbon as a function of ky, perpendicu-
lar to the strain direction. The hopping strength along the
narrow dimension of the ribbon increases linearly from one
edge to the other, resulting in a gauge field for photons. The
Dirac points, located at ky = 1.2/a with a being the nearest-
neighbor distance, split into Landau levels (red lines). The
lowest one, nL = 0 at E = 0, is flat, while the others have a
non-zero group velocity. From Salerno et al., 2015.
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cones corresponding to a homogeneous pseudo-magnetic
field perpendicular to the graphene sheet (Guinea et al.,
2010). In other words, the Hamiltonian describing the
time evolution of electrons in the strained lattice can be
cast in the form of an unstrained honeycomb Hamiltonian
subject to a homogeneous pseudo-magnetic field perpen-
dicular to the graphene plane. Note, however, that this
field does not break time-reversal symmetry: it has oppo-
site signs at the two Dirac points. Therefore, edge states
appearing in the gaps between consecutive Landau levels
are associated to propagation on both directions along
the edge (Gopalakrishnan et al., 2012; Salerno et al.,
2017) and backscattering-protected transport is not ex-
pected.

Translated to the photonic realm, this configuration
provides a very efficient way of inducing a pseudo-
magnetic field acting on photons as if they were charged
particles. This precise idea was implemented by Rechts-
man et al., 2013c in a lattice of coupled waveguides by
varying continuously their separation (i.e., the nearest-
neighbor photon hopping) following the above mentioned
strain configuration. The value of the valley dependent
pseudo-magnetic field acting on the propagating photons
can take effective values of several thousands Tesla, much
higher than strengths of real magnetic field currently re-
alizable in the laboratory. The main consequence is the
emergence of Landau levels in the vicinity of the Dirac
points (Castro Neto et al., 2009). Analogously to the
effect of a real magnetic field in graphene, the energy
of the photonic Landau levels nL scales as ±√nL. This
was observed in numerical tight-binding calculations and
experimentally via the localization of a wavepacket on
the edge of a strained lattice (Rechtsman et al., 2013c),
attesting both the presence of flat Landau bands and of
states localized at the edge, emerging from the gauge
field.

The trigonal strain discussed so far is not the only
way of inducing a homogeneous magnetic field. Salerno
et al., 2015 showed that linear uniaxial strain along one of
the crystallographic directions results in a homogeneous
pseudomagnetic field similar to that emerging from trig-
onal strain. Figure 26 shows the emergence of Landau
levels associated to pseudo-magnetic fields of opposite
sign at the K, K’ points. The most noticeable feature in
this tight-binding calculation is that, except for nL = 0,
the Landau levels are not completely flat. The reason
is that the position dependent hopping results in a lo-
cal Dirac velocity that varies along the lattice (de Juan
et al., 2012).

The engineering of Landau levels in photonic struc-
tures is particularly interesting in the quest for confined
lasing geometries. The possibility of introducing flat
gapped bands in the bulk of a photonic lattice, with a
high density of states, could be used to fabricate low
threshold on-chip lasers. Moreover, the combination of
gauge fields with gain and losses provides exciting per-

spectives on the study of the parity anomaly and sub-
lattice selective lasing (Schomerus and Halpern, 2013).

IV. TOPOLOGICAL PHOTONICS IN ONE DIMENSION

The previous section was devoted to a review of two-
dimensional photonics systems where topological con-
cepts were first investigated. In the present section,
we now turn our attention to one-dimensional models
in Sec. IV.A and then, in Sec. IV.B, to the topologi-
cal pumping effects that such systems have been used to
study.

A. Topology in 1D chiral systems

In one dimension, topological phases of matter cannot
exist without imposing symmetries on the system (Kitaev
et al., 2009; Schnyder et al., 2009). An important sym-
metry in one dimension, which can lead to topological
phases, is chiral symmetry, for which the representative
one-dimensional topological model is the Su-Schrieffer-
Heeger (SSH) model as introduced in Sec. II.A.3.

The first experimental realization of the SSH model
and its associated topological edge state in a photonics
context was in a photonic superlattice (Malkova et al.,
2009). Since then, the SSH model or related models have
been discussed and realized in photonic crystals (Keil
et al., 2013; Xiao et al., 2014), electromagnetic meta-
materials (Tan et al., 2014; Yannopapas, 2014), plas-
monic and dielectric nanoparticles (Kruk et al., 2017;
Ling et al., 2015; Poddubny et al., 2014; Sinev et al.,
2015; Slobozhanyuk et al., 2015, 2016c), polariton mi-
cropillars (Solnyshkov et al., 2016a), and coupled optical
waveguides (Naz et al., 2017). Lasing in the edge state
of the SSH model has recently been experimentally ob-
served in Parto et al., 2017; St-Jean et al., 2017; and Zhao
et al., 2017; these experiments constitute the first realiza-
tions of topological lasers, i.e. lasers which make use of
topological edge states as we discuss more in Sec. VIII.B.
The interplay between the SSH model and the radiative
loss of photons have also been discussed in photonic crys-
tals (Poshakinskiy et al., 2014; Schomerus, 2013), mi-
crowave cavity arrays (Poli et al., 2015), and coupled
waveguide arrays (Zeuner et al., 2015). By properly
adding loss, the PT symmetric version of the SSH model
was reaized in (Weimann et al., 2017); more details on
non-Hermitian topological models are given in Sec. VI.A.
There is also a proposal to realize the one-dimensional
Jackiw-Rebbi model, introduced in Sec.II.A.1, in a driven
slow-light setup (Angelakis et al., 2014), where the zero-
energy bound mode can be probed through the transmis-
sion spectrum.

Another strategy to realize 1D chiral Hamiltonians
with non-trivial topology involves discrete-time quantum
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walks (Kitagawa, 2012; Kitagawa et al., 2010b). As it
was discussed in Sec. II.A.5, a discrete-time quantum
walk consists of a repeated application of a set of op-
erations represented by a unitary matrix Û . Topological
properties of such unitary evolution can be understood
analogously to Floquet topological phases by defining an

effective Hamiltonian Ĥeff through Û = e−iĤeffT/~. If
Ĥeff has non-trivial topology, its effect can be detected
through the discrete-time quantum walk. The great flex-
ibility in choosing a set of operations to realize Û and
hence Ĥeff makes the discrete-time quantum walk a pow-
erful platform to explore topological phases of matter.

A topologically-nontrivial discrete-time quantum walk
was first experimentally realized by Kitagawa et al.,
2012 using single photons going through a series of
polarization rotations. In the experiment, a topologi-
cal bound state between the interface of regions with
different winding numbers has been observed. Subse-
quently, Cardano et al., 2017, 2016, 2015 have studied
the topological invariant of a quantum walk in the or-
bital angular momentum space and detected the topo-
logical transition between different phases. Following the
proposal (Tarasinski et al., 2014), the topological invari-
ant of a one-dimensional quantum walk was measured
and its robustness to disorder was assessed, using a fibre
loop architecture based on the time-multiplexing tech-
nique (Barkhofen et al., 2016)

B. Topological pumps

Electric currents are usually generated by applying a
voltage across a material, inducing longitudinal charge
transport. Using Faraday’s induction law, we can simi-
larly generate electric currents via a time-dependent vari-
ation of a magnetic flux. In both cases, the longitudinal
conductivity is determined by the microscopic details of
the material and can take arbitrary values. As we have
seen in Sec. II, the situation is completely different in
topological systems, where currents can show quantiza-
tion effects.

In particular in topological charge pumps (Thou-
less, 1983), Faraday’s induction law is encoded in an
adiabatic cyclic variation of a Hamiltonian potential
that mimics the magnetic-flux threading in a higher-
dimensional topological Chern insulator. Consequently,
the charge transport across the system per unit cycle
of the pump parameter turns out to be quantized in
much the same way that quantized Hall conductance ap-
pears in the higher-dimensional static Chern insulator.
This feature has drawn much attention for controlled
low-current nanoscale device applications (Kouwenhoven
et al., 1991).

The first experiments towards the implementation of
a topological charge pump were conducted in solid state
systems with demonstrations of quantized charge trans-

(b)

(c)

z

(a)

FIG. 27 Experimental observation of adiabatic pumping via
topologically protected boundary states in a photonic waveg-
uide array. (a) An illustration of the adiabatically modulated
photonic waveguide array, constructed by slowly varying the
spacing between the waveguides along the propagation axis z.
Consequently, the injected light experiences an adiabatically
modulated Hamiltonian, Hoff(φ(z)), as it propagates and is
pumped across the sample. (b) The spectrum of the model
Eq. (66) as a function of the phase φ for t = 40/75, 2txy = 0.6,
b =

(
1 +
√

5
)
/2. In the experiment, a 21 sites lattice was

used and φ was scanned between 0.35π and 1.75π, marked
by arrows (and red dots). The insets depict the spatial den-
sity of a boundary eigenstate as a function of the position
at three different stages of the evolution: At φ = 0.35π, the
eigenstate is localized on the right boundary. At φ = π, it is
delocalized across the system, while at φ = 1.75π the state is
again localized, but on the left boundary. (c) Experimental
results: Light was injected into the rightmost waveguide at
z = 0 with φ = 0.35π. (c) The measured intensity distribu-
tions as a function of the position are presented at different
stages of the adiabatic evolution, i.e., different propagation
distances. It is evident that during the adiabatic evolution,
the light crosses the lattice from right to left and is finally con-
centrated on the left-most waveguides. All panels are taken
from Ref. (Kraus et al., 2012).

port using single electron pumps (Geerligs et al., 1990;
Kouwenhoven et al., 1991; Pothier et al., 1991, 1992).
The quantization, however, of the pumped charge in
these devices relied on simple Coulomb blockade rather
than on topological concepts. Later attempts using
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open mesoscopic systems incorporated geometrical ideas
to generate a quasi-adiabatic, non-quantized current
that is proportional to the area enclosed in parame-
ter space (Brouwer, 1998; Möttönen et al., 2008; Spivak
et al., 1995; Switkes et al., 1999; Zhou et al., 1999). The
challenge of realizing quantized topological pumping was
only recently accomplished using cold atoms in optical
superlattices (Lohse et al., 2016; Nakajima et al., 2016).

In this Section, we introduce realizations of topological
pumps in photonic systems. Unitary photonic topolog-
ical pumps have been realized using coupled waveguide
arrays (Kraus et al., 2012; Verbin et al., 2015), whereas
non-Hermitian pumps with exceptional points were real-
ized using microwave cavities (Hu et al., 2015). In both
realizations, the experiments focussed on states localized
at the system’s boundary which were directly excited by
the incident light. Similarly to the aforementioned cold-
atom experiments (Lohse et al., 2016; Nakajima et al.,
2016). theoretical proposals have addressed the possi-
bility of studying quantized bulk pumping in photonic
systems (Ke et al., 2016; Mei et al., 2015). Geometric
pumping has been experimentally realized using a fiber
loop architecture (Wimmer et al., 2017).

In the following, we shall focus on the first photonic
realizations of topological pumps using waveguide ar-
rays (Kraus et al., 2012). While it is technologically
challenging to modulate the waveguide profile in a way
to precisely realize the on-site modulation involved in
Thouless’ original topological pump model (28), the ex-
cellent control in the waveguide spacing achievable with
femtosecond laser microfabrication technology (Szameit
et al., 2007; Szameit and Nolte, 2010) allowed for the em-
ulation of an off-diagonal pump model where the inter-
waveguide hopping amplitudes are slowly modified along
the propagation axis z and the light evolves according to
the Hamiltonian

Ĥoff = −J
∑
x

[(
1 +

2Jxy
J

cos (2παx/a+ φ(z))

)
â†xâx+a+

+h.c.] . (66)

where J is the bare hopping amplitude from waveg-
uide n to waveguide n − 1, 2Jxy is the amplitude of
its z-dependent modulation (which is equivalent to time-
dependent modulation in propagating geometries, cf. Sec-
tion III.A.2), and α is a spatial modulation frequency, see
Fig. 27(a) for an illustration.

The mapping between the 2D quantum Hall effect on
a lattice and the 1D pump discussed in Sec II.A.4 and
Eqs. (14) and (28) can be extended beyond the Harper-
Hofstadter model (Kraus and Zilberberg, 2012). Per-
forming dimensional extension on (66), we obtain a 2D
tight-binding model where motion along x occurs via a
standard nearest neighbor hopping in the x direction and
motion along y only occurs via diagonal hoppings to next-

nearest-neighbors (Hatsugai and Kohmoto, 1990)

Ĥ = −J
∑
x,y

(
â†x+a,yâx,y +

Jxy
J
ei2παx/aâ†x+a,y+aâx,y+

+H.c.) , (67)

Each plaquette in the model is threaded by 2πα flux as
in the Harper-Hofstadter model, cf. Eq. (14).

The model (66) is commonly known as the off-diagonal
Harper model (Jitomirskaya and Marx, 2012; Ketoja and
Satija, 1997). Figure 27(b) depicts its spectrum as a func-
tion of φ. We observe a characteristic gapped structure
with topological modes crossing the gaps as a function of
φ. These modes are localized at the system’s boundary
when they are well within the energy gap, while they be-
come spatially extended when they spectrally approach
the bulk modes, see insets of Fig. 27(b).

In the experiment [Fig. 27(c)], light is injected via fiber
coupling directly into the left end. The initial φ is chosen
in a way to support a localized state on this boundary,
so that the injected light can directly excite this state.
The value of φ is then scanned along the propagation
axis by correspondingly varying the inter-waveguide dis-
tances. Depending on the final value of φ, the spatial
intensity distribution at the output will recover the spa-
tial shape of the wavefunction of the topological state in
different regimes, e.g. either extended over the bulk or
even completely localized at the other boundary of the
system. Such pumping through the boundary states of
the pump highlights the existence of localized states on
both ends of the system for suitable values of φ, in agree-
ment with the pump’s bulk-edge correspondence.

Moreover, it also illustrates the fact that the topologi-
cal boundary mode on one end of the system can be con-
nected to the state localized on the other end through
semiadiabatic scanning of φ in sufficiently short systems.
The latter is an interesting effect that is not implied by
the bulk topology of the system: the bulk topology im-
plies in fact that a quantized number of boundary states
will cross the gap on each side of the sample as a func-
tion of φ, but does not necessarily imply that these states
have to be directly connected.

Using the same technology and extending this idea fur-
ther, a topological pump was realized for an off-diagonal
Fibonacci chain. This realization relied on a mapping be-
tween quasiperiodic chains and topological pumps (Kraus
et al., 2012; Kraus and Zilberberg, 2012; Verbin et al.,
2015). Thus, using a two-parameter pumping, the Fi-
bonacci chain was deformed into an off-diagonal Harper
model, pumped as above, and deformed back into a Fi-
bonacci chain (Verbin et al., 2015). Furthermore, topo-
logical phase transitions between quasiperiodic chains
with smooth boundaries were studied using photonic
waveguide arrays (Verbin et al., 2013). A study of
the spectral flow of edge states across the energy gaps
of a Fibonacci quasicrystal was reported in (Baboux
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et al., 2017) by scanning a suitable structural parame-
ter through many copies of a polariton lattice device.

Interestingly, simultaneous realizations of atomic and
photonic 2D topological pumps were recently reported.
Such pumps were shown to be directly mappable to a
4D quantum Hall system (Kraus et al., 2013). While the
atomic experiment (Lohse et al., 2018) performed a direct
mapping of the Berry curvature by looking at anomalous
transport in the bulk of the system, the photonic ex-
periment (Zilberberg et al., 2018) studied the boundary
states associated with a second Chern number response
using similar methods to those discussed above.

V. TOPOLOGICAL PHOTONICS IN HIGHER
DIMENSIONS

Having reviewed the photonic realizations of two-
and one-dimensional topological models, we now briefly
highlight very recent and on-going works in higher-
dimensional topological systems. In Secs. V.A and V.B,
we focus on the study of three-dimensional topologi-
cal photonics, for which macroscopic photonic crystals
and metamaterials operating in the microwave domain
have provided the main experimental platform. Then,
in Sec. V.C, we will discuss topological physics in even
higher spatial dimensions, including perspectives in this
direction opened up through the concept of “synthetic
dimensions”.

A. Three-dimensional gapless phases

1. Weyl points and helicoid surface states

As briefly reviewed in Sec. III.D, two-dimensional
band-structures can host Dirac cones, corresponding to
gapless points around which bands disperse linearly with
respect to the two quasi-momenta. In three dimensions,
the analog of a Dirac point is a Weyl point (Armitage
et al., 2017; Lu et al., 2013b; Wan et al., 2011): a point
degeneracy between two bands which display a linear dis-
persion in all three directions in momentum space at low
energy, as described by the Weyl Hamiltonian:

HW = ~v(qxσx + qyσy + qzσz), (68)

where q = (qx, qy, qz) is the momentum measured rela-
tive to the degenerate point.

Close to a Weyl point, the resulting Berry curvature (6)
is reminiscent of the magnetic field around a magnetic
monopole, where the field can either point outward or in-
ward towards the Weyl point. In analogy with magnetic
monopoles, we can associate a quantized “charge” with
a Weyl point; this is nothing other than a Chern num-
ber calculated by integrating the Berry curvature over a
two-dimensional surface enclosing the Weyl point, gener-
alising Eq. (8). It can be shown that Weyl points have
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FIG. 28 (Color online) (a) Illustrations of Weyl points of op-
posite Chern numbers (C). (b) Surface dispersion near the
projections of a pair of Weyl points with opposite Chern num-
bers, where the red and blue cones represent the bulk states
projection at k+ and k−. The surface state is plotted using the
Riemann sheet of Im(log[(k − k+)/(k − k−)]) in the complex
plane of k. The green surface arc is an iso-frequency contour.
(c), (d), (e) are double-Weyl points of two bands, three bands
and four bands. (f) A Dirac point consists of two Weyl points
of opposite Chern numbers. Panel (b) taken from (Fang et al.,
2016a), and other panels adapted from (Zhang et al., 2018).

Chern numbers of ±1 [Fig. 28(a)], and can only generate
non-zero Berry curvature when either P (parity) and/or
T (time-reversal symmetry) is broken. Consequently, to
get Weyl points in a bandstructure, one can break P, T
or both symmetries. If T is broken, the minimum num-
ber of Weyl points in the bandstructure is two, whereas,
if only P is broken, as is typically much easier to imple-
ment in experiments, then the minimum number of Weyl
points is four. For a strong enough tilting of the Weyl
cone, the group velocities of the two crossing bands can
have the same sign along one direction, in which case one
speaks of a Type-II Weyl point (Soluyanov et al., 2015).

The topological character of Weyl points is reflected in
the appearance of topologically-protected states on the
surface of the three-dimensional system. These surface
states are topologically equivalent to helicoid Riemann
surfaces (Fang et al., 2016a; Zhang et al., 2018) defined
with the two-dimensional surface Brillouin zone as the
complex plane, shown in Fig. 28(b). A helicoid surface is
a non-compact Riemann surface, which is unbounded in
the frequency axis, corresponding to the gapless nature of
the Weyl surface state. Locally around each Weyl cone,
the surface states can be expressed as ω ∝ Im[log(kC)],
where C is the Chern number of the Weyl point. The
bulk Weyl points project onto the surface Brillouin zone
as poles (C > 0) and zeros (C < 0) of the multivalued
helicoid surface sheets winding around these singulari-
ties. Their winding direction is determined by the sign
of C, while the order of the pole or zero is given by |C|.
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As shown in Fig. 28(b), the isofrequency contours of the
helicoid surface are always open arcs connecting the sur-
face projections of the positive and negative bulk Weyl
points. These open surface arcs are known as “Fermi
arcs” in Weyl semimetals.

Theoretically, Weyl points were first proposed to ap-
pear in double-gyroid photonic crystals, with a breaking
of P or T (Lu et al., 2013b). Since then, theoretical
studies have shown that Weyl points could be realised in
optical lattices (Dubček et al., 2015a; Roy et al., 2017b),
photonic superlattices (Bravo-Abad et al., 2015), mag-
netized plasmas (Gao et al., 2016b), chiral metamateri-
als (Gao et al., 2015; Liu et al., 2017; Xiao et al., 2016b),
Floquet networks (Ochiai, 2016; Wang et al., 2016a), chi-
ral woodpile crystals (Chang et al., 2017), and magnetic
tetrahedral crystals (Yang et al., 2017d). In an ideal Weyl
system, all Weyl points would be frequency isolated and
symmetry-related at the exact same frequency (Wang
et al., 2016c). We also note that ideal Weyl points move
the classical free-space scattering laws from DC to the
Weyl frequency by design (Zhou et al., 2017a), and that,
after including losses, Weyl points evolve into exceptional
lines (Xu et al., 2017).

Experimentally, Weyl points were demonstrated at mi-
crowave frequencies in a double-gyroid photonic crys-
tal (Lu et al., 2015), metallic photonic crystals with
multi-Weyl points and surface transport (Chen et al.,
2016), photonic metamaterials with Type-II Weyl points
and surface arcs (Yang et al., 2017a), and at optical fre-
quencies in coupled waveguides with Type-II Weyl points
and surface states (Noh et al., 2017b). Synthetic Weyl
points in the parameter space of 1D dielectric stacks were
also observed in Wang et al., 2017b, and ideal Weyl points
have been found in a metallic design (Yang et al., 2018).
In this latter platform, the helicoid surface states of the
four Weyl points were experimentally mapped out and
were topologically equivalent to a Riemann sheet defined
by the Jacobi elliptical function, analytical in the whole
double-periodic surface Brillouin zone.

2. Multi-Weyl and Dirac points

A Weyl point, of non-zero Chern number, does not
require any symmetry for protection, other than transla-
tions. With an increase of symmetry, multi-Weyl points
can stabilize at high-symmetry momenta (Chang et al.,
2017; Chen et al., 2016; Fang et al., 2012a; Xu et al.,
2011). For example, double Weyl points (Zhang et al.,
2018) of Chern number of ±2 can form between two
bands as a quadratic Weyl point, between three bands as
a spin-1 Weyl point, or between four bands as a charge-2
Dirac point, as shown in Fig. 28(c), (d) and (e). In the
latter case, charge-2 refers to the Berry charge (Chern
number) of 2, corresponding to the overlapping of Weyl
points of the same Chern number. The double-Weyl sur-

face states can be mapped, in the entire Brillouin zone,
to the double-periodic Weierstrass elliptic functions: a
type of Riemann surface with second-order poles and ze-
ros (Zhang et al., 2018).

More generally, a Dirac point in 3D refers to the over-
lapping of any two Weyl points of opposite Chern num-
bers, as shown, for example, in Fig. 28(f). Such 3D Dirac
points were discussed in Lu et al., 2016b, Slobozhanyuk
et al., 2016a, Wang et al., 2017a, 2016b and Guo et al.,
2017. Since a 3D Dirac point has zero Chern number, it
does not require the breaking of either P or T .

3. Nodal lines and surface

As well as the above point degeneracies (nodal points),
line degeneracies are also important in 3D. Such nodal
lines (Fang et al., 2016b) can be protected by PT sym-
metry with π Berry phase, same as the 2D Dirac cones.
The nodal lines known so far can be classified into several
families, namely nodal rings (Burkov et al., 2011), nodal
chains (Bzdusek et al., 2016), nodal links (Yan et al.,
2017b) and nodal knots (Bi et al., 2017a). In photon-
ics, a nodal ring was proposed in gyroid photonic crys-
tals (Lu et al., 2013b) and nodal chains were proposed
in a FCC lattice (Kawakami and Hu, 2016) and discov-
ered experimentally in a simple-cubic metallic photonic
crystal (Yan et al., 2017a). Nodal lines can also exist in
two-dimensional photonic crystals (Lin et al., 2017), such
as at the zone boundary of two dimensional lattices with
glide reflection symmetry and T . Nodal lines can also
carry a Z2 charge (Fang et al., 2015).

Nodal surfaces can be protected by screw rotations and
T . It can even carry non-zero Chern numbers (Xiao and
Fan, 2017b).

B. Three-dimensional gapped phases

Gapping topological degeneracies such as Weyl and
Dirac points is the most effective way to obtain 3D band
gaps supporting various topological interfacial states.

1. 3D Chern insulators

The 3D Chern insulator, the simplest model with a
3D topological bandgap, can be understood by stacking
2D Chern crystals along the third direction while main-
taining the bandgap and Chern number. This is anal-
ogous to the 3D QHE in electronic systems (Halperin,
1987; Störmer et al., 1986) with T -breaking. In this case,

three first Chern numbers [C(1) ≡ (C
(1)
x , C

(1)
y , C

(1)
z )] can

be defined independently in any 2D momentum planes
along each orthogonal direction, as illustrated in Fig.
29(a). The gapless surface states are unidirectional
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sheets, whose number and directionality equals the mag-
nitude and sign of the Chern numbers for that surface.
The elementary case of C(1) = (0, 0, 1) was proposed by
annihilating a single pair of Weyl points (a Dirac point),
by supercell coupling, in the magnetic gyroid photonic
crystals (Lu and Wang, 2016).

2. One-way fibers

One-way fiber modes can form along topological line-
defects in 3D magnetic photonic crystals, illustrated in
Fig. 29(b). This was proposed by Bi and Wang, 2015
by Dirac mass engineering and designed in the gyroid
photonic crystal by Lu and Wang, 2016. The coupling of
two Weyl points of opposite Chern numbers makes a 3D
Dirac point, as introduced above. The resulting Dirac
Hamiltonian

HD = ~v(qxσx + qyσy + qzσzτz) +mτ+ +m∗τ−, (69)

has a complex mass term m, where τz and τ± ≡ (τx ±
iτy)/2 are Pauli matrices acting on the valley degrees of
freedom. In-plane winding of its argument Arg[m] gen-
erates a vortex line in 3D supporting a zero mode at the
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FIG. 29 (Color online) List of 3D gapped phases in photon-
ics, in which (a), (b), (c) require T -breaking while (d) and (e)
do not. (a) Analogue of the 3D Chern insulator labeled by
three first Chern numbers. (b) One-way fiber of second Chern
number. (c) Single-Dirac cone surface state with a Z2 invari-
ant. (d) Two surface Dirac cones similar to those of weak 3D
topological insulators. (e) Spatial-symmetry protected gap-
less quadratic touchings with a Z2 invariant.

vortex core, topologically protected by the second Chern
number C(2) in the 4D parameter space (kx, ky, kz, θ),
where θ is the winding angle of m.

In the photonic context, such a topological defect line
inside an otherwise fully gapped gyroid photonic crys-
tal can be obtained by means of a helical winding of the
super-cell modulation coupling the two Weyl points. De-
pending on the spatial pitch and the handedness of the
helical winding, one-way fiber modes of arbitrary C(2)

can then be readily designed with arbitrary number of
one-way modes.

This is in direct contrast with the one-way edge mode
in 2D Chern crystals where high Chern numbers are dif-
ficult to obtain (Skirlo et al., 2015, 2014). Another ad-
vantage of the one-way fiber design is that all one-way
modes have almost identical group and phase velocities,
due to the absence of sharp boundaries.

3. Single surface Dirac cone

A single-Dirac-cone surface state, the hallmark of 3D
topological insulators (Fu et al., 2007), can also be re-
alized on the surface of magnetic photonic crystals, as
shown by Lu et al., 2016b and illustrated in Fig. 29(c).
Instead of the Kramers’ degeneracy of electrons due to T ,
the double-degeneracy in photonics can be replaced by a
crystalline symmetry — glide reflection. On the other
hand, T has to be broken to split the dispersions in all
surface directions away from degeneracy.

The starting point to construct this phase is a pair
of 3D Dirac points pinned at the high-symmetry points
of the bulk Brillouin zone. By breaking T using mag-
netic materials, the authors gapped the 3D Dirac points
and obtained the gapless single-Dirac cone surface states.
The topological invariant is Z2 (Fu et al., 2007; Moore
and Balents, 2007; Roy, 2009). When the glide reflection
symmetry is broken uniformly on the surface, the single
Dirac cone opens a frequency gap. Other than that, the
surface state is robust against arbitrary random disorder,
i.e., when the glide symmetry is preserved on average on
the surface (Lu et al., 2016c).

4. Non-magnetic designs

The above topological phases of 3D bulk gaps require
T -breaking for highly-robust interfacial states. However,
magnetic response is extremely weak towards optical fre-
quencies, which has motivated the search for T -invariant
designs. As reviewed in Sec. III.B.5, all-dielectric bian-
isotropic metamaterials can provide a suitable platform
for mimicking weak 3D topological insulators. As pro-
posed in Slobozhanyuk et al., 2016a, such metamaterials
can be designed so that a pair of bulk Dirac points in
3D are gapped out by inversion breaking, similar to in
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the 2D case (Cheng et al., 2016; Khanikaev et al., 2013).
Then two surface Dirac cones form in the bulk gap mim-
icking the weak 3D topological insulators with an even
number of surface Dirac cones, as shown in Fig. 29(d).
Robust surface transport was then found when the right
domain walls were chosen.

The first proposal of a topological crystalline insula-
tor (Fu, 2011) (see Sec. III.B.6 for the discussion of such
states in two dimensions) utilized C4 rotation symmetry
and exhibited double degeneracies at two surface momen-
tum points. This defined a Z2 invariant for its surface
states to connect gaplessly. At the degenerate point,
the dispersion was quadratic due to the C4 symmetry
and T . As illustrated in Fig. 29(e), this phase is realiz-
able in photonic crystals (Alexandradinata et al., 2014;
Yannopapas, 2011). A concrete design for a tetragonal
photonic crystal was also proposed in Ochiai, 2017.

C. Towards even higher dimensions

Topological phases of matter with spatial dimensions
of four or higher can also be of experimental relevance
in photonics. As already introduced in Sec. IV.B, a re-
cent experiment has used topological pumping to probe a
four-dimensional quantum Hall system (Zilberberg et al.,
2018); in this approach, some of the dimensions are re-
placed by externally tuned parameters, effectively freez-
ing out the dynamics along these directions. An alterna-
tive approach, which could also offer access to the dynam-
ics of particles moving in effectively spatial four dimen-
sions, is based on so-called synthetic dimensions. In this,
the key concept is to reinterpret internal degrees of free-
dom as spanning additional spatial dimensions, so that
higher dimensional lattice models are simulated in lower
dimensional systems. In this section, we first review the
development of synthetic dimensions in general, before
discussing progress in the exploration of four-dimensional
topological systems with photons.

1. Synthetic dimensions

There are several different ways to make the effective
spatial dimensionality of a lattice system larger than the
physical dimensionality of the real space in which the
lattice is located. One natural idea for this purpose is
to increase the connectivity of the lattice, as proposed
by Tsomokos et al., 2010 for superconducting qubit cir-
cuits, by Jukić and Buljan, 2013 for photonic lattices,
by Schwartz and Fischer, 2013 for multi-dimensional
laser-mode lattices, and by Graß et al., 2015 for trapped
ions. Another strategy that can allow for even greater
flexibility is to use the internal degrees of freedom, rein-
terpreting these as if they label different sites along an
additional synthetic dimension in the system, as origi-

nally proposed by Boada et al., 2012 in the context of
ultracold atomic gases, and later extended by Celi et al.,
2014 to allow for complex hoppings along the synthetic
direction, and so to realise quantum Hall systems. Meth-
ods to create lattice structures more complex than just a
square lattice were proposed in Anisimovas et al., 2016;
Boada et al., 2015; and Suszalski and Zakrzewski, 2016.

The idea of synthetic dimensions was soon experi-
mentally realized in the context of cold atoms by two
groups (Mancini et al., 2015; Stuhl et al., 2015), in which
a two dimensional ladder with a magnetic field was sim-
ulated using a one dimensional chain of atoms. Follow-
ing experiments have then extended the synthetic di-
mension idea by using the different electronic states of
atoms (Kolkowitz et al., 2017; Livi et al., 2016), and dis-
crete states in momentum space (An et al., 2017). Fur-
thermore, there are theoretical proposals to use harmonic
oscillator eigenstates (Price et al., 2017) and orbital an-
gular momentum states (Pelegŕı et al., 2017) as syn-
thetic dimensions. Typically, the inter-particle interac-
tion along the synthetic direction is very long ranged, re-
sulting in a variety of interesting phenomena (Barbarino
et al., 2016; Bilitewski and Cooper, 2016; Calvanese Stri-
nati et al., 2017; Graß et al., 2014; Jünemann et al., 2017;
 La̧cki et al., 2016; Taddia et al., 2017; Zeng et al., 2015).

In photonics the first proposal for how to implement
a synthetic dimension was made in Luo et al., 2015, and
extended later in Luo et al., 2017 and Zhou et al., 2017b,
in which different orbital angular momentum states of
light, coupled via spatial light modulators, were regarded
as the synthetic dimension. This was followed by a pro-
posal in optomechanics (Schmidt et al., 2015), in which
photon and phonon degrees of freedom were considered as
two lattice sites along the synthetic dimension. Ozawa
et al., 2016b and Yuan et al., 2016a have proposed to
use different frequency modes of a multi-mode ring res-
onator, coupled via external modulation of refractive in-
dex, as a synthetic dimension. By modulating a resonator
with multiple frequencies, models with any dimensions
can also be simulated (Yuan et al., 2017b). A synthetic
frequency dimension could also be realized in a Raman
medium, where the synthetic magnetic field is controlled
by the alignment of the two Raman beams (Yuan et al.,
2017a). Instead of different frequency modes, the angular
coordinate within a ring-resonator may be used as a syn-
thetic dimension (Ozawa and Carusotto, 2017), in which
the inter-photon interaction is local along the synthetic
direction, in contrast to extremely long-ranged interac-
tions in other proposals.

There have also been many proposals for the differ-
ent physics that could be accessed with synthetic di-
mensions. In a single resonator with a synthetic dimen-
sion, it may be possible to study the edge state of the
SSH model (Zhou et al., 2017b) and Bloch oscillations
along the synthetic direction (Yuan and Fan, 2016). In
a one-dimensional array of optical cavities with one syn-
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thetic dimension, the effect of topological edge states of
two-dimensional Chern insulators may be observed (Luo
et al., 2015). Such a topological edge mode can be use-
ful for high-efficiency frequency conversion if there is an
edge along the synthetic direction made of frequency
modes (Ozawa et al., 2016b; Yuan et al., 2016a) and
for realizing an optical isolator if an edge is along the
spatial direction (Ozawa et al., 2016b). With a two-
dimensional array of resonators augmented by one fre-
quency dimension, photonic Weyl points could be real-
ized (Lin et al., 2016; Sun et al., 2017a). In the long
run, one may expect that the idea of synthetic dimen-
sions could find applications in increasing the complexity
of optical networks in photonic devices, also in connec-
tion with frequency-multiplexing (Saleh and Teich, 2007)
and optical comb (Cai et al., 2017; Schwartz and Fischer,
2013) techniques.

2. Four-dimensional quantum Hall effect

As mentioned in Sec. IV.B, a recent photonic exper-
iment has used topological pumping to probe the edge
states of a four-dimensional quantum Hall system (Zil-
berberg et al., 2018), based on the proposal of Kraus
et al., 2013. Concurrently with this experiment, the hall-
marks of the quantized bulk response of the 4D quan-
tum Hall effect (22), including the second Chern num-
ber, were measured through the topological pumping of
a two-dimensional ultracold atomic system (Lohse et al.,
2018). By defining the second Chern number in a gen-
eral parameter space, this topological invariant has also
been shown to be experimentally relevant in helically
modulated fibers (Lu and Wang, 2016), as discussed in
Sec. V.B, where the angular coordinate in the cross sec-
tion of a fiber acts as the fourth parameter, and in ul-
tracold gases, where it was measured over a parameter
space spanned by properties of two Raman lasers applied
to the system (Sugawa et al., 2016).

The first proposal for observing the full dynamics of
a four-dimensional system was presented in Jukić and
Buljan, 2013, based on using photonic lattices with high
connectivity to study four-dimensional solitons. Us-
ing synthetic dimension to directly observe the four-
dimensional quantum Hall was then originally proposed
in ultracold atomic gases (Price et al., 2015) and soon
after extended to photonics Ozawa et al., 2016b. These
proposals focused on the four-dimensional tight-binding
model (Kraus et al., 2013):

Ĥ = −J
∑
r

(
â†r+aêx

âr + â†r+aêy
âr

+ei2πΦ1x/aâ†r+aêz
âr + ei2πΦ2y/aâ†r+aêw

âr + H.c.
)
,

(70)

where ar is the annihilation operator of a particle at posi-

tion specified by a four-dimensional vector r = (x, y, z, w)
with w being the synthetic direction, and a being the lat-
tice spacing. The fluxes Φ1 and Φ2 pierce the x-z plane
and y-w plane, respectively. This is a generalization of
the two-dimensional Harper-Hofstadter Hamiltonian to
a 4D model with magnetic fields applied in two orthog-
onal planes. This tight-binding model can have energy
bands with topologically-non-trivial second Chern num-
bers; under the addition of weak electromagnetic pertur-
bations, filling some of these energy bands would lead to
a quantized nonlinear Hall current (22). However, in con-
trast to the atomic case, in photonic systems with loss,
this current jµ is not a direct observable. Instead, it
has been proposed to extract this topological response
from the shift of the center of mass of the photonic
steady-state intensity distribution under a monochro-
matic pump (Ozawa and Carusotto, 2014; Ozawa et al.,
2016b).

VI. GAIN AND LOSS IN TOPOLOGICAL PHOTONICS

In this section, we discuss the interplay of gain and
loss with topology in photonics. We divide this subsec-
tion into two main parts; in the first, we discuss non-
Hermitian topological models with gain and loss, while
in the second, we focus on recent works concerning topol-
ogy in Bogoliubov systems.

A. Non-Hermitian topological photonics

The study of topological physics with photons allows
for the exploration of phenomena inaccessible in the
context of condensed matter. A case in point is non-
Hermiticity in the form of optical gain and loss. In pho-
tonics, gain and loss is much more common than in elec-
trons in solids: gain media are the basis for lasers, and
loss of photons is ubiquitous in every photonic device
(loss is associated with absorption and surface roughness
of a waveguide, for example).

There have thus far been a series of works delving
into the interplay of non-Hermiticity and topology with a
number of disparate aims. Inspired by a model proposed
by Rudner and Levitov (Rudner and Levitov, 2009) Ze-
uner et al. (Zeuner et al., 2015) used an optical waveg-
uide array to demonstrate that the winding number of
a one-dimensional topological system could be extracted
from a non-Hermitian quantum walk. In that work, it
was precisely the finite lifetime (induced by optical loss)
of the ‘quantum walker’ that allowed for the observation
of a topological transition. However, this amounts to the
extraction of a topological number of a Hermitian system
using non-Hermiticity, rather than exploring the topolog-
ical invariants and edge states of non-Hermitian systems
per se.
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Another direction of non-Hermitian topological pho-
tonics is parity-time (PT ) symmetric (Feng et al., 2017;
Makris et al., 2008; Rüter et al., 2010) topological sys-
tems. These are systems with balanced gain and loss
such that the Hamiltonian commutes with the PT oper-
ator (where P represents parity and T represents time re-
versal). It has been shown (Bender and Boettcher, 1998)
that such systems may exhibit real eigenvalue spectra de-
spite their non-Hermiticity; they have been the basis of a
major research effort in photonics due to the possibility
of overcoming parasitic loss and absporption in optical
devices using gain. Thus, PT -symmetric systems allow
for the possibility of well-defined bands and gaps and are
thus a natural place to start in studying non-Hermitian
topological effects. That said, it was shown(Esaki et al.,
2011; Hu and Hughes, 2011) that a large class of systems
that are PT -symmetric in the bulk must have edge states
that ‘break’ PT ; namely, they have complex eigenvalues.
Fortunately, under certain conditions, topological edge
states with real eigenvalues can be found and have been
demonstrated (Weimann et al., 2017). Topological edge
states in PT -symmetric quantum walks have also been
experimentally observed (Xiao et al., 2017).

A number of other unconventional phenomena arise
when non-Hermiticity and topology are combined. Ex-
amples include photonic ‘tachyon-like’ dispersions (Sza-
meit et al., 2011) that were demonstrated in the form of
exceptional rings in photonic crystals (Zhen et al., 2015)
as well as ”Fermi arc” states that connect between ex-
ceptional points (Zhou et al., 2018), with related phe-
nomena arising in three-dimensional topological systems
exhibiting Weyl points (Xu et al., 2017). The enhance-
ment of topological interface states in one-dimensional
systems was proposed (Schomerus, 2013) and demon-
strated in the microwave regime (Poli et al., 2015); fur-
thermore, it was shown that topological states absent
when the system is Hermitian can be induced by adding
losses (Malzard et al., 2015). The interplay of non-
Hermiticity and flat bands has been shown to result in
a photonic analogue of Aharonov-Bohm caging (Leykam
et al., 2017b). Beyond photonic systems, the interplay
between non-Hermiticity/dissipation and topology has
been explored in a number of theoretical works in vary-
ing contexts(Bardyn et al., 2013, 2012; Budich and Diehl,
2015; Budich et al., 2015; Diehl et al., 2011).

Despite this progress, the major challenge of non-
Hermitian topological photonics remains the formulation
of a general framework akin to that which exists for Her-
mitian systems. In particular, open questions include:
what is the meaning of the bulk-edge correspondence in
non-Hermitian systems? What is the right topological
invariant to consider for a given non-Hermitian Hamilto-
nian, and what is its relevance to bulk-edge correspon-
dence (though some progress has been made in this di-
rection (Esaki et al., 2011; Leykam et al., 2017a; Shen
et al., 2017))? Is there a classification similar to that in

the Hermitian case (Schnyder et al., 2008)?

B. Emergent topology of Bogoliubov modes

Photons under a parametric driving can be described
by a Hamiltonian with terms that do not conserve the
number of photons. Such number non-conserving bosonic
systems can have topological features which are qual-
itatively different from fermionic topological systems.
To understand the origin of the number non-conserving
terms, let us consider a photonic cavity whose resonant
frequency is ω, and assume that the cavity is made of op-
tically nonlinear material with a second-order nonlinear
susceptibility χ(2). When one pumps the system with fre-
quency 2ω, the nonlinearity converts the pumped photon
into two photons with frequency ω in the cavity. Assum-
ing that the pump beam is sufficiently strong and can be
treated classically, the effective Hamiltonian describing
the cavity takes the following form (Gerry and Knight,
2005):

Ĥcavity = i~χ(2)
(
β∗â2 − βâ†2

)
, (71)

which does not conserve the number of photons, where
â is the annihilation operator of a photon in the cavity
and a C-number β characterizes the pumping field. Such
a cavity can be aligned to form a periodic lattice. The
second-quantized momentum-space Hamiltonian of the
lattice system can be written in the following form:

Ĥlattice =
1

2

∑
k

(
Ψ̂†k Ψ̂−k

)
Hk

(
Ψ̂k

Ψ̂†−k

)
,

Hk =

(
A(k) B(k)
B(−k)∗ A(−k)t

)
, (72)

where Ψ̂k is an N -component vector of annihilation op-
erators with crystal momentum k, and N is the number
of lattice sites per unit cell. The N -by-N matrix A(k)
is Hermitian and B(k)t = B(−k). The terms due to
B(k) do not conserve the number of photons. At first
glance, the Hamiltonian (72) is similar to the Bogoliubov-
de Gennes Hamiltonian of superconducting electronic
systems. In fact, the Hamiltonian (72) has particle-
hole symmetry as in the fermionic Bogoliubov-de Gennes
Hamiltonian, and the spectrum is symmetric with re-
spect to the zero of the energy. However, the transforma-
tion needed to diagonalize the Hamiltonian is drastically
different between bosons and fermions. The fermionic
counterpart of Hk for the Bogoliubov-de Gennes Hamil-
tonian can be diagonalized by a unitary matrix to obtain
eigenenergies of the systems which are guaranteed to be
all real. On the other hand, in order to preserve the
bosonic commutation relations, the bosonic Bogoliubov
Hamiltonian Hk should be diagonalized by Bogoliubov
transformations which are not a unitary matrix but a pa-
raunitary matrix Û obeying Û† (σz ⊗ IN ) Û = σz ⊗ IN .
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The associated eigenenergies can be complex. These dif-
ferences imply that the standard wisdom on topological
phases of matter known for fermions may not hold for
bosonic Bogoliubov Hamiltonians. Because of the possi-
bility of having complex eigenvalues, we also need to pay
attention to the possibility of instability.

Bosonic Bogoliubov Hamiltonians appear not only in
photonic systems. In fact, the topological properties of
such Hamiltonians were first discussed in the context of
magnons in ferromagnetic crystals (Shindou et al., 2013a;
Shindou and Ohe, 2014; Shindou et al., 2013b), where
analogs of the Chern insulators in bosonic Bogoliubov
Hamiltonians were discussed. It was found that the rele-
vant Berry connection of the n-th band of the Bogoliubov
Hamiltonian is

An(k) = i〈un,k|σz∇k|un,k〉, (73)

where |un,k〉 is the Bloch state of the n-th band. Note the
additional σz in the definition of the Berry connection.
The Berry curvature is then defined as Ωn = ∇k×An(k).
The Chern number calculated by integrating this Berry
curvature over the Brillouin zone is guaranteed to be in-
teger, and is related to the number of chiral edge modes.

Bogoliubov excitations are typically gapless at zero en-
ergy, but there can be gaps between higher energy bands.
In exciton-polaritons, Bardyn et al., 2016 and Bleu et al.,
2016b have analyzed the Bogoliubov modes of exciton-
polariton condensates and proposed models which have
topological edge states at the gaps with nonzero excita-
tion energy. The topological edge states at higher en-
ergy gaps of Bogoliubov excitations were also discussed
in ultracold atomic gases (Di Liberto et al., 2016a; En-
gelhardt and Brandes, 2015; Furukawa and Ueda, 2015;
Li et al., 2015b). In a lattice of photonic cavities under
parametric driving, Peano et al., 2016a proposed a model
which has a nonzero gap at zero energy. In order to have
a stable system, the gap at zero energy cannot have an
edge state, so the sum of the Chern numbers of bands
at the negative energy is zero, but gaps between higher
energy bands can have topological edge states.

A distinctive feature of the bosonic Bogoliubov Hamil-
tonian (72) is that the eigenenergies can become com-
plex, hence triggering parametric instabilities (Shi et al.,
2017). Peano et al., 2016b proposed a model where the
topological edge states become unstable, even though all
the bulk modes are stable. Such an unstable edge mode
could be used as a traveling wave parametric amplifier.
Instability caused by the topological edge modes was also
analyzed in the context of ultracold atomic gases (Bar-
nett, 2013; Engelhardt et al., 2016; Galilo et al., 2015).
The interplay between the topology and the parametric
instability has also been discussed in classical harmonic
oscillators under periodic driving (Salerno et al., 2016).

Finally, combined with strong optical nonlinearities
(see Sec. VII.B), a p-wave version of parametric driving
underlies the proposal in Bardyn and İmamoǧlu, 2012 to

obtain Majorana modes in a one-dimensional system of
strongly interacting, fermionized photons.

VII. TOPOLOGICAL EFFECTS FOR INTERACTING
PHOTONS

Most of the discussion of the previous sections con-
cerned linear optical systems whose physics can be ac-
curately described in terms of the standard Maxwell’s
equations including suitable linear dielectric and mag-
netic susceptibilities. In this regime, photons behave as
independent particles. In this last section of the Review,
we focus our attention on the novel features that orig-
inate from the interplay of the topology with nonlinear
optical effects.

Basing ourselves on the general introduction to the
basic nonlinear optics concepts of Sec.II.B.3, the next
two subsections Secs.VII.A and VII.B will summarize the
main effects of an intensity-dependent refractive index in,
respectively, the cases of weak and strong nonlinearity;
in the former, a classical mean-field description based on
Maxwell’s equations with a nonlinear polarization term
is accurate, while, in the latter, the physics is dominated
by quantum optical effects due to the discreteness of the
photon. We also note that Sec.VI.B provides a brief re-
view of how parametric processes generated by a χ(2)

optical nonlinearity can give rise to a rich emergent topo-
logical structure for linear Bogoliubov modes.

A. Weak nonlinearities

For sufficiently weak values of the optical nonlineari-
ties, one can legitimately perform the mean-field approx-
imation of Eq. (51), in which the photons lose their par-
ticle character and collectively behave as a macroscopic
wave, experiencing effective material properties that de-
pend on the local amplitude of the light field according
to the model of classical nonlinear polarization Eq. (47).
While some parametric processes generated by a χ(2)

optical nonlinearity in the topological photoncis context
were reviewed in Sec.VI.B, in this subsection we shall fo-
cus on the case of an intensity-dependent refractive index
Eq. (48): As we shall review in the following, theoreti-
cal works have anticipated that the modification of the
refractive index induced by the nonlinearity may have
dramatic observable consequences such as modifying the
effective topology experienced by the wave.

A first and most natural question of nonlinear topo-
logical physics was to understand how solitons (Eisen-
berg et al., 1998; Fleischer et al., 2003; Segev et al.,
1992) or vortices (Kivshar and Agrawal, 2003) are af-
fected by the underlying geometry and topology of the
band. This physics has attracted great interest in many
fields such as ultracold atomic gases, where relativistic
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solitons and vortices in honeycomb geometries have been
studied in (Haddad and Carr, 2011, 2015; Haddad et al.,
2015).

Focussing on optical systems, intense research has been
devoted to solitons in either the bulk or the edges of the
Floquet photonic topological insulators of (Rechtsman
et al., 2013b), that were introduced in Sec. III.A.2. The
first work in this direction (Lumer et al., 2013b) high-
lighted different families of long-lived, self-localized wave
packets residing in the bulk of the system. Depending
on their size, the wavepackets may rotate in opposite
directions, either following or opposite to the global Flo-
quet modulation of the lattice. Most interestingly, the
current profile of a rotationally-symmetric six-site wide
wavepacket can be understood as an edge state residing
on the inner boundary of a self-induced effective hole due
to the nonlinearity.

The study of the effect of nonlinearity on topological
edge states has been pioneered by (Ablowitz et al., 2014,
2015, 2013), where the linear edge states of the Floquet
bands of the experiment (Rechtsman et al., 2013b) were
classified as a function of the Floquet modulation pa-
rameters and their nonlinear evolution recast in terms
of an effective one-dimensional nonlinear Schrödinger-
like equation, possibly including higher-order derivative
terms. Based on this equation, unidirectionally propa-
gating edge soliton states have been identified: the topo-
logical robustness of linear edge states to backscatter-
ing translates into an enhanced robustness of edge soli-
tons against higher-order terms. Following works have
then analyzed the topological robustness of edge solitons
traveling around sharp corners (Ablowitz and Ma, 2015)
and developed a general methodology to understand the
tight-binding approximation in the context of nonlinear
Floquet systems (Ablowitz and Cole, 2017).

Dynamical modulational instabilities of edge states un-
der the effect of nonlinearity and their eventual break-
up into a train of solitons has been explored by several
authors. In (Lumer et al., 2016), nonlinear extended
edge states of the Floquet system of (Rechtsman et al.,
2013b) have been shown to be always unstable indepen-
dently of the sign of their linear dispersion and the actual
strength of the nonlinearity. This modulational instabil-
ity eventually leads to the break up of the extended wave
into soliton-like localized wavepackets. Depending on the
strength of the nonlinearity, such solitons can extend over
many sites along the edge or localize to a single site. For
polariton honeycomb lattices, the modulational instabil-
ity of edge states and the consequent appearance of long-
lived quasi-soliton edge states was studied in (Kartashov
and Skryabin, 2016), while, for kagome-shaped polariton
lattices, topological edge solitons were studied in (Gule-
vich et al., 2017). This latter work also highlighted the
wide tunability of the edge soliton group velocity from
positive to negative values as well as the robustness of
topological edge solitons upon inter-soliton collisions.

The idea of nonlinear effects inducing transitions be-
tween states with different symmetries was pioneered
in (Lumer et al., 2013a) with a theoretical study of
nonlinearity-induced transitions between PT -broken and
PT -symmetric states in a non-Hermitian system and,
then, in (Katan et al., 2016) with a theoretical study
of the effect of long-range nonlinearities on topological
transport. Along these lines, a novel kind of topological
solitons were investigated in (Leykam and Chong, 2016):
nonlinear effects locally induce a topological transition
in an otherwise topologically trivial lattice and solitons
naturally arise as the edge states at the topological in-
terface. Possible applications of such nonlinearly-induced
topological transition to optical isolation were explored
in different geometries in (Zhou et al., 2017c). A related
study in a nonlinear but conservative one-dimensional
SSH model was reported in (Hadad et al., 2016).

B. Strong nonlinearities

When nonlinearities are large, the discrete nature of
the photons constituting the field starts being important
and one has to resort to a fully quantum description.
Correspondingly, the physics of these systems is qualita-
tively different, as they are expected to support strongly
correlated states of light that closely resemble their elec-
tronic counterparts, e.g. fractional quantum Hall liq-
uids (Carusotto and Ciuti, 2013).

The simplest example of a quantum nonlinear effect
is the so-called photon blockade phenomenon (Imamoglu
et al., 1997), that occurs in single-mode nonlinear cavi-
ties when the single photon nonlinearity ωnl (i.e. the fre-
quency shift experienced by the mode for a single photon
occupation, as introduced in Eq. (54)) exceeds the damp-
ing rate γ of the cavity mode. For an incident beam on
resonance with the empty cavity mode, a first photon
can freely enter the cavity, but a second one will find the
effective resonance shifted by ωnl and can not enter until
the first has left. In analogy with the Coulomb blockade
of electronics, one can think of the first photon block-
ing the entrance of the second: hence the term photon
blockade.

In the last decade or so, photon blockade has been ob-
served in a variety of cavity configurations using different
optically nonlinear elements in (Birnbaum et al., 2005;
Faraon et al., 2008; Lang et al., 2011; Reinhard et al.,
2012). In relation to topological photonics, the most
promising platforms to combine photon blockade with
synthetic gauge fields and/or non-trivial band topolo-
gies are the non-planar cavities containing coherently
dressed atomic gases in a Rydberg-EIT configuration and
circuit-QED devices embedding strongly nonlinear super-
conducting elements, as recently pioneered in (Jia et al.,
2017) and (Roushan et al., 2017), respectively.

The extension of photon blockade to many-cavity con-
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figurations so as to obtain complex strongly correlated
many-photon states started attracting the interest of re-
searchers in the mid-2000’s with several proposals for how
to realize Mott-insulator states of light (Angelakis et al.,
2007; Greentree et al., 2006; Hartmann et al., 2006).
Along these lines, the first proposal of a quantum Hall
effect for light appeared in (Cho et al., 2008). While all
these pioneering works made the quite strong assump-
tion of a quasi-equilibrium photon gas, which is able to
equilibrate and/or be adiabatically manipulated before
disappearing due to losses, specific studies of the conse-
quences of the intrinsically driven-dissipative nature of
photon systems appeared just a few years later (Caru-
sotto et al., 2009; Gerace et al., 2009).

A first theoretical study of the interplay of strong inter-
actions with a synthetic gauge field in a driven-dissipative
context appeared in (Nunnenkamp et al., 2011), where
strongly-correlated states of photons in few-sites lattices
were highlighted, together with the signatures of such
states in the transmission properties of a device. Soon af-
ter, a proposal to generate fractional quantum Hall states
of light as a driven-dissipative steady state of a lossy
Bose-Hubbard model with non-trivial hopping phases un-
der a coherent pump was reported in (Umucalılar and
Carusotto, 2012). The selective excitation of the desired
many-body state can be obtained via the same multi-
photon frequency selection mechanism first introduced
in (Carusotto et al., 2009) for Tonks-Girardeau gases
of light. Signatures of the strongly-correlated nature
of quantum Hall states are then anticipated to trans-
fer to the quantum statistical properties of the emit-
ted light. While the coherent pumping scheme consid-
ered in Carusotto et al., 2009 and further investigated
in Hafezi et al., 2013a is promising for the generation
of few-photon quantum Hall states, its performance does
not scale up favourably to larger numbers of photons: the
frequency selection mechanism loses efficiency as many-
photon peaks get spectrally closer, and the effective ma-
trix element of the many-photon transition to the quan-
tum Hall state may be quickly decreasing.

Soon afterwards, the coherent pumping scheme was ex-
tended to single cylindrical cavity geometries in (Umu-
calılar and Carusotto, 2013). In analogy with related re-
search in rotating atomic gases (Cooper, 2008), one can
take advantage of the formal similarity between the mag-
netic Lorentz force and the Coriolis one to study quan-
tum Hall physics in the rotating fluids of light that are
generated by a Laguerre-Gauss shaped coherent drive.
Serious difficulties of this scheme were quickly pointed
out (Grusdt et al., 2013): any deviation from the per-
fect rotational symmetry of the cavity would result in
a quick spin-down of the rotating photon gas, while the
spectral detuning between Landau levels prevents the use
of narrow-band nonlinear elements such as Rydberg-EIT
atoms.

These difficulties have been solved by the twisted op-

tical resonators used in the experiments of (Schine et al.,
2016) reviewed in Sec.III.B.3. Replacing the mechanical
rotation of the fluid of light with a synthetic magnetic
field recovers the degeneracy between states in the low-
est Landau level and, at the same time, introduces a
sizable detuning between states of opposite angular mo-
mentum, which prevents the cloud from spinning-down.
First experimental steps towards embedding the ultra-
strong photon-photon interactions of Rydberg EIT into
twisted optical resonators consisted of the observation of
Rydberg cavity-polaritons in (Ningyuan et al., 2016) and
of the observation of photon blockade in the Gaussian-
shaped fundamental mode of the cavity in (Jia et al.,
2017).

In the meantime, further theoretical work has an-
ticipated an exotic phase diagram resulting from the
short-distance saturation of the Rydberg-Rydberg inter-
action (Grusdt and Fleischhauer, 2013). On the other
hand, since these experiments are exploring quantum
Hall physics on the surface of a cone, direct measurement
of the properties of anyonic excitations appears to be pos-
sible through the density distribution in the vicinity of
the cone tip, which will reflect the central charge of the
topological fluid (Can et al., 2016). Additional theoreti-
cal work on the many-body aspects of this challenge was
presented in (Dutta and Mueller, 2017; Sommer et al.,
2015).

Along a slightly different direction, the possibility of
realizing topological models based on the spin dynamics
of Rydberg polaritons confined in a widely-spaced mi-
crocavity array was theoretically explored in (Maghrebi
et al., 2015b); in contrast to most other works, hopping
between sites does not occur by photon tunneling be-
tween neighboring cavities, but rather by dipolar inter-
actions which exchange the spin state of neighboring dark
polaritons.

In parallel to these advances with macroscopic optical
cavities embedding atoms, the first experimental studies
of magnetic effects in a strongly interacting gas of pho-
tons have been reported in (Roushan et al., 2017) using a
circuit-QED architecture with a closed loop three-site ge-
ometry. The synthetic magnetic fields is obtained follow-
ing the theoretical proposal in (Fang et al., 2012b), where
the hopping phase is determined by the oscillation phase
of the temporal modulation needed to compensate the
frequency mismatch of neighboring sites. This technique
falls within the class of Floquet techniques discussed in
Sec.II.A.5 and was pioneered in the cold atom context
in (Aidelsburger et al., 2013; Miyake et al., 2013).

As is illustrated in Fig.30, a directional circulation of
photons is the signature of broken time-reversal symme-
try. Whereas non-interacting photons would indepen-
dently rotate as single photons in a direction fixed by
the synthetic magnetic field, the effect of strong interac-
tions is manifested in the opposite circulation direction of
photon vacancies. A similar inversion of the rotation di-
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FIG. 30 Upper right panel: sketch of the circulation dynamics
of a single- (left) and two-photon (right) state superimposed
on the circuit-QED system under consideration. Upper left
(a) panel: time-evolution of the excitation probability in the
three Q1,2,3 qubits for a single-photon state at magnetic flux
ΦB = −π/2. Lower (b) panel: the same for a two-photon
case. Figure from (Roushan et al., 2017)

rection as a consequence of strong interactions was very
recently reported also in the cold-atom context in (Tai
et al., 2017).

Thanks to the relatively long lifetime of photons, the
experiment (Roushan et al., 2017) could be performed by
initializing the system in a suitable one- or two-photon
Fock state and then following its dynamics in the absence
of any pump during the evolution: such an approach is
able to directly probe the coherent quantum dynamics,
but it is strongly limited by the decay rate of the full
many-photon state, that typically scales proportionally
to the photon number (Milman et al., 2000). As a further
important result of (Roushan et al., 2017), the adiabatic
generation of a few-body interacting ground state for ar-
bitrary synthetic magnetic flux ΦB was also reported by
slowly ramping up ΦB to the desired final value.

This experimental result is all the more promising as
several adiabatic protocols to create strongly correlated
macroscopic topological states have been theoretically in-
vestigated, based on either the melting of Mott-insulator
states (Cho et al., 2008) or by a sequence of flux-insertion
and then quasi-hole refilling processes (Grusdt et al.,
2014; Letscher et al., 2015). An interesting proposal to
manipulate quantum states of light by means of a gen-
eralized Thouless pumping in strongly nonlinear arrays
was put forward in (Tangpanitanon et al., 2016). One has
however to keep in mind that all these adiabatic schemes
typically require that the process must be completed in
a time-scale shorter than the lifetime of the quantum
many-body state of interest, a condition that may be-
come extremely demanding for macroscopic photon flu-
ids.

An alternative approach to dynamically stabilize topo-
logical many-body states of light against losses with-

out any active intervention from external observers was
started in (Kapit et al., 2014). In a circuit-QED context,
this can be achieved using, e.g., the frequency-selective
parametric emission from a shadow lattice: refilling of
holes occurs at a fast rate as long as it spectrally coin-
cides with the emission bandwidth, while the injection
of extra photons on top of the topological state is sup-
pressed via a generalized blockade phenomenon due to
the many-body energy gap. In a related proposal (Hafezi
et al., 2015), parametric coupling to a thermal bath
was proposed to generate a tunable chemical potential
for effectively thermalized light. A conceptually simi-
lar idea based on population-inverted two-level systems
as frequency-dependent light emitters was investigated
in (Biella et al., 2017; Lebreuilly et al., 2016) in the con-
text of Mott insulator states of light. The significant ad-
vantages of replacing the Lorentzian emission spectrum
with a more sophisticated square spectrum were pointed
out in (Lebreuilly et al., 2017). The study of frequency-
dependent incoherent pumping schemes applied to the
generation of quantum Hall states in the twisted optical
resonators of (Schine et al., 2016) was discussed in (Umu-
calilar and Carusotto, 2017).

In the long run, the application of photonic systems
as useful platforms for topological quantum computa-
tion crucially requires strongly correlated topological
states that support excitations with non-Abelian braid-
ing statistics (Nayak et al., 2008). A promising candidate
for this purpose are the so-called Pfaffian states. Origi-
nally predicted in the context of the quantum Hall effect
of electrons (Moore and Read, 1991), they can be ob-
tained as the ground state in the presence of suitably
engineered three-body interactions. A proposal to put
this strategy into practice in a circuit-QED context is
presented in (Hafezi et al., 2014).

Before concluding, it is worth mentioning a completely
different approach to the quantum dynamics of systems
of few interacting particles. This approach was originally
proposed in (Krimer and Khomeriki, 2011; Longhi, 2011)
and has recently seen first experimental implementations
in the simplest case of two particles moving in one dimen-
sion (Mukherjee et al., 2016; Schreiber et al., 2012). The
key idea consists of mapping the x1,2 spatial coordinates
of the two quantum particles onto the x, y spatial coordi-
nates of a single particle moving in two dimensions and
then modeling the two-body interactions by letting the
x1 = x2 line of sites have slightly different linear optical
properties.

As the dynamics remains at a fully single-particle level,
it can be simulated in any of linear optical devices dis-
cussed in the first sections of this review: physical ar-
rays of waveguides were used in (Mukherjee et al., 2016)
to show evidence of tunneling processes for two-particle
bound states in regimes where single-particle tunneling is
instead strongly suppressed, while the spatial coordinates
were encoded in the arrival time of an optical pulse in the
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two-dimensional quantum walk experiment of (Schreiber
et al., 2012).

Very recently, the application of this idea to study the
interplay of interactions and topology in the two-particle
dynamics of a one-dimensional SSH model was simulta-
neously proposed in the theoretical works (Di Liberto
et al., 2016b) and (Gorlach and Poddubny, 2017).

VIII. CONCLUSION AND PERSPECTIVES

In the previous sections we have seen how topologi-
cal photonics has grown from its first proposal (Haldane
and Raghu, 2008; Raghu and Haldane, 2008) into a wide
and mature field of research with a number of active ex-
citing directions. In this final section of the review, we
aim at summarizing those future developments that are
promising for the next future.

A. Optical isolation and robust transport

Topological photonics may have short- and mid-term
technological impact. The most straightforward appli-
cations involves the use of topologically protected unidi-
rectional edge states as robust optical delay lines or opti-
cally isolating elements, as originally discussed in (Hafezi
et al., 2011). While a firm experimental evidence of ro-
bust unidirectional propagation is nowadays available in
a number of systems, practical application of these ideas
into actual devices is still a subject of active investiga-
tion.

In particular, the stringent conditions that an opti-
cal isolator device must fulfill to be of practical utility
were discussed in (Jalas et al., 2013). Different strate-
gies to match the requirements are presently being ac-
tively explored using either magnetic elements (Bahari
et al., 2017; Solnyshkov et al., 2018), optical nonlinear-
ities (Khanikaev and Alù, 2015; Shi et al., 2015), or
externally-modulated elements (Fang et al., 2017; Hua
et al., 2016; Yu and Fan, 2009).

Another exciting direction in view of applications in
quantum information processing is to extend these results
from classical light fields to quantum optical ones, e.g. by
demonstrating that the dynamics of externally-generated
entangled photon pairs inherits the topological protection
of single-photon states (Mittal et al., 2016b; Rechtsman
et al., 2016).

B. Quantum emitters and topological laser

One of the most active directions of development to
date is the study of the interplay of topology with light
emitters and with optical gain, which is expected to of-
fer novel features to be exploited in light sources, ampli-
fiers and laser devices. Strong motivations supported this

study in view of optoelectronic and photonics applica-
tions, to improve the performance of topological devices
compared to their trivial counterparts.

A detailed study of parametric amplification on the
chiral edge states of a two-dimensional Harper-Hofstadter
model in the presence of parametric downconversion or
spontaneous four-wave mixing emission processes was re-
ported in (Peano et al., 2016b). With a suitably chosen
pump frequency, amplification can be restricted to the
edge states, while bulk modes remain quickly damped
as in the passive system. The unidirectional nature of
the edge state guarantees that amplification is not only
quantum-noise-limited as in standard parametric ampli-
fiers, but also non-reciprocal and almost perfectly insen-
sitive to disorder. Interesting consequences of the topol-
ogy on the zero-point quantum fluctuations and on the
emission of entangled photon pairs are also pointed out.

The robustness of the generated entangled photon
pairs against disorder was specifically studied in (Mit-
tal and Hafezi, 2017). In particular, it was shown how
the generation of entangled photons using spontaneous
four-wave mixing into topological states can outperform
their topologically-trivial counterparts.

1. Topological lasers: theory

A strong activity is presently being devoted to the the-
oretical and experimental study of laser oscillation in
topological systems, the so-called topological lasers. A
theoretical study of laser operation in the topological
edge states of a one-dimensional Aubry-André-Harper
bichromatic photonic crystal appeared in (Pilozzi and
Conti, 2016).

Even more significant novelties appear in two dimen-
sions (Harari et al., 2018), in which topological lasing
leads to a highly efficient laser operation that remains
monomode even well above the threshold and is robust
against disorder. Simulations of the nonlinear wave equa-
tion with on-site saturable gain terms of the form

i

2

Pj
1 + |αj |2/nsat

αj (74)

included into the lattice model of Eq. (39) without co-
herent pumping term (Fj = 0) were performed for both
trivial and topological lattice models with a pump pro-
file Pj concentrated on the edge. Gain saturation at high
power is modeled by the saturation density nsat. In the
topologically trivial case, laser operation is not able to
exhaust all available gain, because many other modes
can easily go above threshold for increasing power, lead-
ing to a complex multimode operation. This problem
is particularly serious in the presence of disorder, which
further suppress the mode competition effect by spatially
localizing modes.
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As it was shown in (Harari et al., 2018), all these
problems turn out to be no longer relevant in topolog-
ical lattices: the single lasing mode is extended around
the whole system perimeter, maintaining a unidirectional
flow and a spatially very uniform intensity profile even in
the presence of disorder and for high pumping levels well
above the threshold. In laser terms, this means a robust
monomode operation with a high slope efficiency.

Further theoretical work (Secĺı, 2017) has shown a
strong dependence of the laser threshold on the topology
of the amplifying region: as a consequence of the distinc-
tion between the convective and absolute instabilities, a
higher lasing threshold was found when the amplifying
region does not surround the whole system.

2. Topological lasers: experiments

From the experimental point of view, the study of the
interplay of lasing with geometrical and topological fea-
tures was initiated in (Sala et al., 2015). In this experi-
ment, the linewidth narrowing effect associated to laser
operation was exploited to spectrally resolve the effect of
the spin-orbit coupling terms in a hexagonal chain of pil-
lar microcavities. The first examples of lasing operation
in a topological non-trivial system were reported in one-
dimensional chains of pillar microcavities (St-Jean et al.,
2017) or ring resonators (Parto et al., 2017; Zhao et al.,
2017). In both cases, for suitable pump geometries, a
single-mode laser emission occurred into the edge states
of the chain.

Very recently, lasing in the topological edge states of a
time-reversal-breaking two dimensional photonic crystal
embedding magnetic YIG elements was reported in (Ba-
hari et al., 2017). This work made use of a photonic
crystal structure where gain is provided by quantum well
emitters and time-reversal symmetry is broken by bond-
ing the photonic crystal to a magnetic YIG material. In
spite of the small width of the magneto-optically induced
band gap, topological lasing could be observed as a coher-
ent light emission into a unidirectional edge mode, with
a significant isolation ratio from the oppositely propagat-
ing mode.

Soon after, another experiment (Bandres et al., 2018)
reported topological laser operation in a topological ring-
resonator array (as discussed in Sec.III.B.1) embedding,
in addition, quantum well emitters that provide optical
gain. This setup does not require magnetic elements.
By selectively pumping the edge resonators, a highly ef-
ficient single-mode emission into the topologically pro-
tected edge state was obtained even for gain values high
above threshold. The performances of the novel device
and the robustness against disorder were benchmarked
with an extensive comparison to a topologically trivial
laser device. A technique to break the spin-like symme-
try between the clock- and counter-clockwise modes of

the rings by adding S-bend elements into the resonators
was also demonstrated, further reinforcing the unidirec-
tional properties of the emission.

C. Measurement of bulk topological and geometrical
properties

Topological photonics are also opening new perspec-
tives in the study of topological effects of wide interest
for quantum condensed-matter physics. As we have re-
viewed along this review, a variety of new, possibly high-
dimensional lattice configurations are becoming available
thanks to the advances in photonic fabrication and ma-
nipulation. Furthermore, thanks to the high flexibility of
the optical excitation and diagnostic schemes, an intense
study is being devoted to the observable consequences of
the geometrical and topological concepts: while the topo-
logically protected chiral edge states have been the smok-
ing gun of a non-trivial topology starting from the pio-
neering work (Wang et al., 2009), the geometrical quanti-
ties characterizing the bulk bands are nowadays the sub-
ject of active study.

From early studies of transport in electronic sys-
tems (Xiao et al., 2010), it is well known that the Berry
curvature enters the semiclassical equations of motion for
electrons as a sort of momentum space magnetic field.
The corresponding Lorentz-like force in reciprocal space
provides an anomalous velocity term which is responsible,
e.g., for the anomalous and integer (Thouless et al., 1982)
quantum Hall effects. In the topological photonics con-
text, this idea underlies the experimental reconstruction
in (Wimmer et al., 2017) of the k-space distribution of
the bulk Berry curvature from the anomalous velocity of
a wavepacket performing Bloch oscillations under an ex-
ternal force as theoretically proposed in (Cominotti and
Carusotto, 2013; Dudarev et al., 2004; Price and Cooper,
2012).

Application of the anomalous velocity idea to the co-
herently pumped systems discussed in Sec.II.B.2 was the-
oretically proposed in (Ozawa and Carusotto, 2014). In
addition to putting forward driven-dissipative versions
of the anomalous Hall effects, specific pumping schemes
able to equally distribute photons among the different
momentum states were identified. In analogy to the clas-
sical theory of the integer quantum Hall effect in elec-
tronic systems (Thouless et al., 1982; Xiao et al., 2010)
and to recent experiments with ultracold atoms (Aidels-
burger et al., 2014), the spatial displacement of the cen-
ter of mass of the light intensity distribution then pro-
vides an information on the Chern number of the band.
Later works (Ozawa et al., 2016b; Price et al., 2015, 2016)
have generalized this idea to the second Chern number of
four-dimensional lattice models and to the measurement
of other geometrical quantities such as the Fubini-Study
metric tensor (Ozawa, 2018). On a similar basis, the con-
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cept of mean chiral displacement has been introduced to
measure the winding of a chiral hamiltonian from real
space measurements (Cardano et al., 2016; Maffei et al.,
2018; Mondragon-Shem et al., 2014). One of the most
attractive aspects of this proposal is the possibility of
measuring topological invariants in the presence of disor-
der, which breaks translational symmetry. An alternative
scheme to extract the Chern number from the steady-
state field amplitude of a small photonic lattice with
twisted boundary conditions was discussed in (Bardyn
et al., 2014). Furthermore, dissipation has been used in
the context of non-Hermitian systems to probe topologi-
cal invariants in 1D photonic systems (Rudner and Levi-
tov, 2009; Zeuner et al., 2015), as discussed in Sec. VI.A.

Building on top of the anomalous velocity concept, re-
cent works (Bliokh and Bliokh, 2005; Price et al., 2014)
have undertook the challenge of upgrading the semiclas-
sical equations of motion to a full quantum mechanical
theory of quantum particles in the presence of a non-
vanishing momentum-space Berry curvature. As an ex-
ample of application of this theory, the eigenstates of a
topologically non-trivial lattice model subject to an addi-
tional external harmonic potential can be physically un-
derstood as momentum-space Landau levels on the torus-
shaped first Brillouin zone, with a degeneracy set by the
Chern number of the band (Price et al., 2014). A pro-
posal to investigate this physics in a driven-dissipative
array of optical cavities with site-dependent resonance
frequencies appeared in (Berceanu et al., 2016).

Further on-going work in this direction is investigat-
ing how the momentum-space magnetic field may lead
to momentum-space analogs of the quantum Hall ef-
fects (Claassen et al., 2015; Ozawa et al., 2015, 2016a).
In these last works, the minima of the k-space dispersion
play the role of lattice sites, the harmonic trapping pro-
vides the momentum space analog of the kinetic energy,
and the Berry curvature of the band plays the role of the
magnetic field. Periodic boundary conditions are auto-
matically inherited from the topology of the first Bril-
louin zone and the phase twist can be adjusted via the
position of the harmonic trap minimum within the unit
cell.

D. Topological quantum computing

A most exciting long term perspective is to use topo-
logical photonics devices as a platform for novel quan-
tum information storage and processing tasks that ex-
ploit topological effects to protect their operation from
external disturbances. A crucial requirement for such
topological quantum computing with light appears to be
the availability of strongly nonlinear elements to generate
and manipulate strongly correlated states of light. The
key experimental issues that researchers are facing along
this route have been discussed in Sec.VII, together with

the promising results that were reported in the last few
years. In the following of this section, we wish to high-
light a possibile strategy along which this research may
develop in the next future.

In the presence of suitably tailored optical nonlinear-
ities, the fluid of light can form quantum states, e.g.
Pfaffian ones (Hafezi et al., 2014), that are anticipated
to display a manifold of topologically degenerate ground
states protected by a finite energy gap and elementary
excitations with non-Abelian anyonic statistics. In sys-
tems with such properties (Nayak et al., 2008), quantum
information can be encoded in the ground state man-
ifold of states and the unitary transforms correspond-
ing to quantum logical operations can be performed by
braiding quasi-holes around each other. With respect to
standard quantum information protocols, quantum com-
puting based on these topological states of matter has
the advantage that the states within the topologically
degenerate manifold can not be coupled nor mixed with
each other by local disturbances, at least as long as their
amplitude is not able to cross the energy gap.

To date, several condensed matter systems such as
quantum Hall states of two-dimensional electrons under
strong magnetic fields (Tong, 2016) or Majorana fermions
in suitable superconductor-based solid-state nanostruc-
tures(Elliott and Franz, 2015) are being seriously con-
sidered to this purpose, but to the best of our knowl-
edge no experimental evidence is yet available of anyonic
braiding statistics. First proposals taking advantage of
the peculiarities of the optical systems to observe any-
onic statistics have been recently put forward (Dutta and
Mueller, 2017; Umucalılar and Carusotto, 2013), but a
key question that remains open is the degree of robust-
ness of the topologically encoded quantum information
against the typical dissipative processes of optical sys-
tems. On the other hand, using an all-optical platform
will be extremely favourable in view of integration of the
quantum processing unit into an optical communication
network.
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ropéenne de Lille.

N.G. was supported by the FRS-FNRS (Belgium) and
by the ERC Starting Grant TopoCold.

M.H. acknowledges Sunil Mittal, and was supported
by AFOSR MURI Grant No. FA95501610323, the Sloan
Foundation, and the Physics Frontier Center at the Joint
Quantum Institute.

L.L. was supported by the National key R&D Pro-
gram of China under Grant No. 2017YFA0303800,
2016YFA0302400 and supported by NSFC under Project
No.11721404.

M.C.R. acknowledges the National Science Foundation
under award numbers ECCS-1509546 and DMS-1620422,
the David and Lucile Packard Foundation, the Charles E.
Kaufman Foundation, a supporting organization of the
Pittsburgh Foundation, and the Alfred P. Sloan Founda-
tion under fellowship number FG-2016-6418.

D.S. and J.S. were supported by the University of
Chicago Materials Research Science and Engineering
Center, which is funded by the National Science Foun-
dation under Award No. DMR-1420709. This work was
supported by ARO Grant No. W911NF-15-1-0397. D.S.
acknowledges support from the David and Lucile Packard
Foundation. This work was supported by DOE grant
DE-SC0010267 and AFOSR grant FA9550-16-1-0323.

O.Z. was supported by the Swiss National Science
Foundation (SNSF).

I.C. acknowledges funding from Provincia Autonoma
di Trento, partly through the SiQuro project (“On Sili-
con Chip Quantum Optics for Quantum Computing and
Secure Communications”), from ERC through the QGBE
grant and from the EU-FET Proactive grant AQuS,
Project No.640800 and EU-FET-Open grant MIR-BOSE
Project No.737017.

REFERENCES

Aaboud, Morad, et al. (ATLAS) (2017), “Evidence for light-
by-light scattering in heavy-ion collisions with the ATLAS
detector at the LHC,” Nature Phys. 13 (9), 852–858.

Ablowitz, Mark J, and Justin T. Cole (2017), “Tight-binding
methods for general longitudinally driven photonic lattices:
Edge states and solitons,” Phys. Rev. A 96, 043868.

Ablowitz, Mark J, Christopher W. Curtis, and Yi-Ping Ma
(2014), “Linear and nonlinear traveling edge waves in op-
tical honeycomb lattices,” Phys. Rev. A 90, 023813.

Ablowitz, Mark J, Christopher W Curtis, and Yi-Ping Ma
(2015), “Adiabatic dynamics of edge waves in photonic
graphene,” 2D Materials 2 (2), 024003.

Ablowitz, Mark J, Christopher W. Curtis, and Yi Zhu (2013),
“Localized nonlinear edge states in honeycomb lattices,”
Phys. Rev. A 88, 013850.

Ablowitz, Mark J, and Yi-Ping Ma (2015), “Strong trans-
mission and reflection of edge modes in bounded photonic
graphene,” Opt. Lett. 40 (20), 4635–4638.

Adams, EN, and E.I. Blount (1959), “Energy bands in the
presence of an external force fieldii: Anomalous velocities,”

Journal of Physics and Chemistry of Solids 10 (4), 286 –
303.

Aidelsburger, M, M. Atala, M. Lohse, J. T. Barreiro, B. Pare-
des, and I. Bloch (2013), “Realization of the hofstadter
hamiltonian with ultracold atoms in optical lattices,” Phys.
Rev. Lett. 111, 185301.

Aidelsburger, M, M. Lohse, C. Schweizer, M. Atala, J. T. Bar-
reiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N. Gold-
man (2014), “Measuring the chern number of hofstadter
bands with ultracold bosonic atoms,” Nat. Phys. 11, 3171.

Albert, Victor V, Leonid I Glazman, and Liang Jiang (2015),
“Topological properties of linear circuit lattices,” Physical
review letters 114 (17), 173902.

Alexandradinata, A, Chen Fang, Matthew J Gilbert, and
B Andrei Bernevig (2014), “Spin-orbit-free topological in-
sulators without time-reversal symmetry,” Physical review
letters 113 (11), 116403.

Altug, Hatice, Dirk Englund, and Jelena Vučković (2006),
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Gómez, Elisabeth Galopin, Luc Le Gratiet, Isabelle Sagnes,
Alberto Amo, Jacqueline Bloch, and Eric Akkermans
(2017), “Measuring topological invariants from generalized
edge states in polaritonic quasicrystals,” Phys. Rev. B 95,
161114.

Bahari, Babak, Abdoulaye Ndao, Felipe Vallini, Abdelkrim
El Amili, Yeshaiahu Fainman, and Boubacar Kanté (2017),
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Larré, Pierre-Élie, and Iacopo Carusotto (2015), “Propaga-
tion of a quantum fluid of light in a cavityless nonlinear
optical medium: General theory and response to quantum
quenches,” Physical Review A 92 (4), 043802.
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