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We introduce a simple, widely applicable formalism for designing “error-divisible” two qubit gates:
a quantum gate set where fractional rotations have proportionally reduced error compared to the
full entangling gate. In current noisy intermediate-scale quantum (NISQ) algorithms, performance
is largely constrained by error proliferation at high circuit depths, of which two-qubit gate error is
generally the dominant contribution. Further, in many hardware implementations, arbitrary two
qubit rotations must be composed from multiple two-qubit stock gates, further increasing error.
This work introduces a set of criteria, and example waveforms and protocols to satisfy them, using
superconducting qubits with tunable couplers for constructing continuous gate sets with significantly
reduced error for small-angle rotations. If implemented at scale, NISQ algorithm performance would
be significantly improved by our error-divisible gate protocols.

I. INTRODUCTION

Many advances in quantum hardware have focused on
working towards fault-tolerant, universal quantum compu-
tation [1–3]. However, the challenge of engineering a fully,
error-correcting logical qubit is a formidable one, and
advances in state coherence and gate errors need signifi-
cant improvement before quantum computation reaches
fault-tolerance. Nevertheless, current qubit implementa-
tions have reached coherence and control levels such that
they can perform NISQ algorithms [4], and may even be
able to run tasks which surpass classical computers [5].
NISQ variational algorithms, such as VQE and QAOA
[6–9], have proven particularly useful in approximating
the ground state energy of difficult Hamiltonians. How-
ever, the performance of these algorithms depends on the
circuit depth that can be achieved, which in turn depends
on qubit coherence and gate error.

The inaccuracy of modern quantum algorithm imple-
mentations is dominated by two-qubit gate errors, as
single-qubit gate errors are typically an order of magni-
tude smaller [10–15]. This is compounded by the tra-
ditional approach of implementing arbitrary two-qubit
gates using a stock gate set, in which the large numbers of
two-qubit rotations that may be required by a variational
algorithm could be decomposed into at most three CZ
gates and additional single-qubit gates [16]. While this
gate decomposition is crucial for digital error correcting
codes [1], it proliferates gate error for NISQ algorithms
needing a more diverse two-qubit gate set. To address
this, research in implementing continuous sets of gates
that perform arbitrary two-qubit rotations [17, 18] has
shown up to a 30% reduction in gate depth [19].

This work presents error-divisible gates, which realizes
smaller angle, two-qubit rotations that are prevalent in
variational algorithms. The realization of smaller-angle
rotations is done so at a corresponding smaller gate time—
e.g. for full θ rotations at gate time tq, θ/2 rotations are

∗ drodriguezperez@mines.edu

done at tg/2 time. This can provide an opportunity to
execute even deeper circuits given the further reduction
in energy loss by virtue of having shorter gates.

A. Error divisibility

The basic idea for error divisibility is to implement
a small two-qubit gate rotation without using multiple
larger-rotation gates by instead proposing waveforms that
are pulse-shaped to perform fractional rotations at a
corresponding fractional gate time. This is illustrated in
Fig. 1(a), where a full two-qubit rotation θ0 is achieved a
gate time tg, and fractional rotations θ0/n are run with
corresponding gate times tg/n. The full gate time tg
is chosen as small as possible so that the rotation θ0 is
executed at a chosen, acceptable intrinsic error rate (not
considering qubit decoherence). The fractional two-qubit
gates implemented with the proposed protocol do not
increase intrinsic qubit error significantly.

To address the difficulty in pulse-shaping gates of vari-
able length for different target rotations, this work bor-
rows ideas from [20] and [21], in which off-resonant ener-
getics are used to suppress dispersive shift effects. We pro-
pose simple waveforms that are superimposed Gaussian-
like wave envelopes with fast-oscillating counterterms, as
shown in Fig. 1(b). These waveforms do not require a
high level of fine-tuning, and significant errors are not in-
troduced from small variations in the final waveform. The
fast-oscillating counterterm serves to suppress intrinsic
gate error throughout the duration of the gate. Namely,
the ones this work focuses on are leakage into higher-
energy excited states, and dynamic stray ZZ interactions
that can create an effective partial CPHASE. These pro-
cesses are the result of off-resonant mixing throughout the
gate, which can be mitigated by additional off-resonant
processes—realized as the fast-oscillating counterterms.
This is illustrated in Fig. 1(c), where suppression of the
gate error through the duration of the gate can be seen
as a result of the oscillating waveform. The dashed red
line indicates the maximum gate error, which can be
reduced through minimal fine tuning of the waveform’s
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Error-divisible Gate Protocol

FIG. 1. Illustration of our proposed error divisibility proto-
col. (a) Two-qubit rotation θ0 at gate time tg, along with
fractional rotations θ0/n at corresponding gate times tg/n.
Note that these waveforms are only meant to demonstrate
the idea of error-divisible fractional rotations at fractional
gate times, and do not represent actual waveforms (ampli-
tudes and frequencies—shown in (b)—can be different for
each partial gate). (b) Example gate strength waveform
for achieving error divisibility using a Gaussian gate enve-
lope superimposed with a fast-oscillating counterterm. (c)
Corresponding probability of gate U(t) inducing transitions
outside of |11〉 throughout the gate evolution in (b), where

U(t) = T exp
(
−2πi

∫ tg
0

Ω(t) (|01〉〈10|+ |10〉〈01|) dt
)

with cou-

pling strength Ω(t) like in (b). An ideal exchange operation
would preserve unity throughout the gate, but accounting for
nonlinear leakage states, we see off-resonant transitions outside
of |11〉, creating these dips in (c), the maximum indicated by
the red-dashed. In typical operating regimes, the coupling
strength in (b) is on the order of tens of MHz, tg ≈ 30 ns,
and the maximum dip from unity—which varies by the target
rotation—can be < 10−2 for appropriate parameter choices.

small parameter space.
While the work presented here completely ignores ran-

dom qubit error like amplitude dampening and dephasing,
these are automatically addressed by the fact that this
protocol shortens the gate time for each smaller rotation
angle, allowing less time for decoherence. This provides
an even bigger reduction in the error per gate than other
continuous gate implementations [17, 18], allowing for
a greater circuit depth for NISQ algorithms without a
significant increase in gate complexity.

II. PRINCIPLES OF IMPLEMENTATION

Consider two transmons with energies ω1 and
ω2 with nonlinearity −δ, coupled by the term

g(t)
(
a1 + a†1

)(
a2 + a†2

)
. With appropriate choices of

g(t), we can resonantly drive a photon exchange between
the two qubits. Choosing g(t) = g0Ω(t) cos[2π(ω1 − ω2)]

gives us the rotating frame Hamiltonian (Appendix A)

H =
δ

2

(
a†1a
†
1a1a1 + a†2a

†
2a2a2

)
− Ω(t)g0

(
a†1a2 + a1a

†
2

)
.

(1)

By going to second order in perturbation theory and elim-
inating the second excited energy state of the transmons,
the qubit Hamiltonian becomes

H ' −Ω(t)g0
(
σ+
1 σ
−
2 + σ−1 σ

+
2

)
+

Ω(t)2g20
δ

(1 + σz1)(1 + σz2),
(2)

where we can see an effective dispersive shift term that
applies a σz1σ

z
2 term concurrently with the exchange Hamil-

tonian, H = Hex + HZZ . To eliminate this dispersive
shift, we let Ω(t) take on a shape like that of Fig. 1(b),

Ω(t) = Ω0(t) [1 + α sin(2πft)] , (3)

where Ω0(t) is a slow-evolving gate envelope, and the
fast-oscillating counterterm is determined by a frequency
f , and α determines whether the waveform is positive
valued—a condition required by some hardware implemen-
tations [22]. Supposing that the slow-evolving envelope
in Eq. 3 is red-detuned from the off-resonant transition
causing phase accumulation, the fast-oscillating term adds
a corresponding dispersive shift blue-detuned term with
opposite sign, and can cancel it out. Examples of engi-
neering these dispersive shifts from off-resonant processes
is given in [23]. This is a similar approach to what was
discovered in [21], where an oscillatory offset proportional
to the nonlinearity was found to suppress population of
the leakage states.

The examples presented here focus on exploring dif-
ferent wave envelopes Ω0(t) for two different, candidate
gate systems—iSWAP(θ) = exp

[
iθ/2

(
σ+
1 σ
−
2 + σ−1 σ

+
2

)]
and XCX(θ) = exp[iθ/4 (1 + σx1 ) (1 + σx2 )], where a full
gate rotation θ0 (like the illustration from Fig. 1) would
be θ0 = π. The XCX(θ) gate set—the x-basis version of
CPHASE(θ)—is chosen as it is easier to engineer than
CPHASE. Also note that XCX reduces to single-qubit
operations and one two-qubit XX operation, which along
with iSWAP, becomes the focus of the following example
waveforms.

A. Example Waveforms

We propose some example waveforms with the charac-
teristic fast-oscillating counterterm, as shown in Fig. 1(b).
We focus on two different options for the slow-evolving
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FIG. 2. Waveforms given by Eq. 4 for different rotations of iSWAP (top) and XX (bottom) gates. Waveforms for Eq. 4a
and Eq. 4b are labelled simply as “cos” and “tanh”, respectively, in the legend. The first row of both iSWAP and XX
waveforms use α = 2 in Eq. 3, while the bottom rows use α = 1 to restrict the waveforms’ positivity. The full rotation
waveforms are on the far left, subsequent plots reduce the target rotation and corresponding gate time by the fractional series
{3/4, 1/2, 1/4, 1/6, 1/8, 1/12}.
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FIG. 3. Intrinsic gate error results for fractional gate rotations
for iSWAP (top, 36 ns gate for full π rotation) and XX
(bottom, 24 ns for full π rotation) gates using both positive-
definite (pos) and freely oscillating gate envelopes Eq. 4a (cos)
and Eq. 4b (tanh). For fractional iSWAP gates, we achieve a
gate error < 10−4 down to 1/8th of a gate using tanh envelopes
and 1/6th for XX gates.

envelope Ω0(t) in Eq. 3:

Ω0(t) =
A

2

[
1− cos

(
2π

t

tg

)]
, and (4a)

Ω0(t) =A

[
tanh

(
γ
t

tg

)

− tanh

(
γ

[
t

tg
− 1

])
− tanh γ

]2
.

(4b)

For both Eq. 4a and Eq. 4b, the fast-oscillating part
takes the form from Eq. 3, where we numerically tune the
frequency f for different target rotations, and choose α = 1
for a positive-definite waveform, and α = 2 for waveforms
without such restrictions. A and γ are also numerically
tuned for each target rotation, leaving only 2 parameters
to tune for Eq. 4a waveforms, and three for Eq. 4b. These
are shown in Fig. 2 for iSWAP and XX gates, using
nonlinearity δ = 300 MHz. Per the protocol laid out
in Fig. 1, we first find a waveform for a full two-qubit
rotation with a minimum gate time tg while maintaining
an acceptably low intrinsic error rate. We can then find
waveforms for fractional rotations with corresponding
fractional gate times, tuning the parameters A, γ, and f
to maintain a low gate error. The results presented here
do not consider decoherence and only account for leakage.

Error rate results for these fractional gates are shown
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in Fig. 3. We can see that error-divisibility is achieved
for both iSWAP and XX gates down to 1/8th and 1/6th,
respectively, using the profile Eq. 4b—this profile gives the
best results. Considering that the target angle for a full
XCX operation is half on an iSWAP, we expect this error-
divisible scheme to break down faster for fractional XX
operations, where small tg starts to approach 1/δ ≈ 3 ns.
The limits of this scheme are evidenced by the noticeable
increases in gate error down to 1/12 of a rotation, shown
in Fig. 3, where we also point out a general higher gate
error using positive-definite waveforms. We also note that
intrinsic gate error can be further reduced using higher
resolution in pulse-shaping with a fourier series waveform
to arbitrary precision. But this would require an arbitrary
number of parameters to calibrate, making this option
less-desirable. The waveforms in Eq. 4 provide a simple
parameter space to calibrate that matches experimental
hardware. The complete set of criteria we have proposed
pave a way towards greater depth circuits. Results and
waveforms shown in Fig. 2 and Fig. 3 were obtained using
unitary dynamics (ignoring energy loss and dephasing),
and parameters were found using differential evolution
methods [24].

III. HARDWARE IMPLEMENTATIONS

In the current state of superconducting hardware, ad-
vances in optimal control methods have mostly eliminated
single-qubit gate errors [25–28]. However, multiple-qubit
gate errors are still an order of magnitude greater than
single-qubit gates [10–15], suffering from a combination of
random qubit error during the gate, crosstalk [29–31], and
calibration drift over time in systems using tunable archi-
tectures [32–34]. This error-divisible scheme intrinsically
addresses random qubit error by reducing the duration of
the gates in NISQ algorithms requiring smaller two-qubit
rotations. This can be reliably done with our proposed
scheme provided there are not error-limiting steps. This
means gate protocols using tunable qubit energies [35, 36],
where coupling is done by bringing them into resonance
with each other, cannot be considered for this protocol
due to the fixed amount of time necessary for tuning the
qubit energies. The presence of fixed amounts of time
also eliminates cross-resonance gates [37–40], where there
is a minimum duration needed to suppress leakage in the
process of driving qubits into higher excited energy states.

This leaves us with qubit architectures with fixed qubit
energies [41, 42], in which coupling is achieved by driving
a coupler at the appropriate frequencies. These allow
the implementation of the waveforms presented in Fig. 2,
creating a path towards error-divisibility. The ability to
realize this protocol with any system using a tunable cou-
pler circuit allows for an easy generalization to qubits with
large and small nonlinearities. Thus, while the analysis
and simulations done in this work assumes a transmon
architecture, it is easily realizable for flux qubits [43–45]
and fluxoniums [46, 47].

|q0〉

|q1〉

|q2〉

|q3〉

|q4〉

|q5〉

RZ(φ)

RZ(φ)

RZ(φ)

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

FIG. 4. Circuit diagram for a single layer of VQE implementing
the Hamiltonian Eq. 7 using six qubits. The “θ” labels next to
the iSWAP and CPHASE gates denote their partial rotations
by angle θ.
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FIG. 5. Comparisons for VQE fraction of ground state results
using a stock gate set (blue square), continuous gates (orange
star), and the proposed error-divisible gate scheme (green
triangle).

IV. VQE EXAMPLE

To further motivate the use of the error-divisible pro-
tocol proposed in this work, we demonstrate the utility
of running a variational algorithm with access to error-
divisible gates. The example problem we consider is an
adiabatic evolution

H(t) =

(
1− t

T

)
Hpin +

t

T
Hprob, (5)

where T is the total runtime, Hpin is a pinning Hamil-
tonian with an easily solvable solution, and Hprob is a
harder problem Hamiltonian whose ground state we are
trying to determine by starting in the ground state of
Hpin and adiabatically evolving H(t). Approximating
with a Trotter decomposition [48]

e−i dt(A+B) = e−i dtAe−i dtB +O(dt2), (6)

we are able to implement the Hamiltonian as a collection
of one- and two-qubit gates on hardware. Letting N be
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the number of Trotter layers, we set dt = T/N .
We choose to find the ground state of an Antiferromag-

netic Heisenberg Model (AFM), letting the pinning and
problem Hamiltonians in Eq. 5 be

Hpin = V
∑
j even

σzj (7a)

Hprob = J

nq−2∑
j=0

(
σxj σ

x
j+1 + σyj σ

y
j+1 + σzjσ

z
j+1

)
, (7b)

where nq is the number of qubits, and V and J are energy
scales, which we set V = J = 1 here. The circuit for Eq. 7
is shown in Fig. 4, where the Z rotations correspond
to the pinning Hamiltonian Eq. 7a, and the iSWAP(θ)
CPHASE(θ) sequence performs the problem Hamilto-
nian Eq. 7b by the approximation Eq. 6. T and N are
optimized after every layer in Fig. 4 using a nonlinear
optimization routine [49, 50].

The primary error model considered here is a 1% de-
polarizing noise error rate for two-qubit gates and 0.1%
for single-qubit gates. We compare the performance of
this simulated variational algorithm using error-divisible
gates, continuous gates [17, 18], and a stock gate set.
Results are shown in Fig. 5 with, θ = 2J(t/N) dt and
φ = 2V (1− t/T ) dt. An implementation of Fig. 4 using a
stock gate set would require two two-qubit gates and at
least 4 single-qubit gates (Appendix C), giving an error
rate of at least 2.4% per two-qubit operation in the VQE
layer. With access to continuous gates, there would be
no need for such decompositions, and thus the two-qubit
gate error rate is the 1% we define. Using error-divisible
gates, implementing fractional gates with fractional gate
times, results in a corresponding fractional error rate, and

is thus determined by N . These clear advantages are
demonstrated in simulation as seen in Fig. 5, providing
a clear example of the potential benefit in implementing
error-divisible gates for near-term quantum computers.

V. CONCLUSIONS

We have provided a set of criteria for implementing
error-divisible two-qubit gates using currently available
technology. We introduced the notion of fractional gates
for which error-divisibility provides a huge advantage for
NISQ algorithms. At the heart of this criteria is the abil-
ity to generate a fast-oscillating waveform that can cancel
dispersive shift effects. To that end, we explored two
sets of wave envelopes superimposed with fast-oscillating
terms on two family of gates—iSWAP(θ) and XX(θ), and
found error-divisibility down to 1/6th and 1/8th of a full
rotation, respectively. We then further motivated error-
divisible gates by showcasing their potential advantage by
simulating a variational algorithm for the adiabatic evo-
lution of an antiferromagnetic Heisenberg model problem
Hamiltonian.
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Appendix A: Hamiltonian Derivation

We explicitly derive the rotating frame Hamiltonian (Eq. 1) for the two coupled qubits. Starting from the two
coupled qubits with energies ω1, ω2, and nonlinearity δ, the system is described by the Duffing oscillator Hamiltonian
in the energy basis as well as a coupling Hamiltonian,

H = ω1n̂1 + ω2n̂2 −
δ

2

(
a†1a
†
1a1a1 + a†2a

†
2a2a2

)
+ g(t)

(
a†1 + a1

)(
a†2 + a2

)
, (A1)

with n̂j = a†jaj , g(t) = g0A(t) cos(2π(ω1 − ω2)t), and we have let ~ = 1. Recognizing this Hamiltonian with a time-

independent and time-dependent parts, H(t) = H0 + V (t), this obeys the Schrödinger equation i∂t |ψ(t)〉 = H(t) |ψ(t)〉.
We apply a unitary rotation transformation UR(t) such that a new state can be defined

|φ(t)〉 = UR(t) |ψ(t)〉 . (A2)

Looking at the time evolution of |φ(t)〉,

i∂t |φ(t)〉 = i∂t (UR(t) |ψ(t)〉)
= i∂tUR(t) |ψ(t)〉+ UR(t)(i∂t |ψ(t)〉)
= iU̇R(t) |ψ(t)〉+ UR(t)H(t) |ψ(t)〉
= iU̇R(t)U†R(t) |φ(t)〉+ UR(t)H(t)U†R(t) |φ(t)〉 ,

(A3)

where we have used A2 to replace |ψ(t)〉 = U†R(t) |φ(t)〉. From here, it’s clear that the state |φ(t)〉 also obeys the
Schrödinger equation with a modified Hamiltonian

i∂t |φ(t)〉 =
(
iU̇R(t)U†R(t) + UR(t)H(t)U†R(t)

)
|φ(t)〉 . (A4)

This is our rotating frame Hamiltonian i∂t |φ(t)〉 = HR(t) |φ(t)〉. Separating the time dependent part of the Hamiltonian
A1, we express HR(t) as

HR(t) = iU̇R(t)U†R(t) + UR(t)H0U
†
R(t) + UR(t)V (t)U†R(t), (A5)

allowing us to separate this problem into solving three smaller parts. Letting UR(t) = ei(ω1n̂1+ω2n̂2)t, we have

iU̇R(t)U†R(t) = −(ω1n̂1 + ω2n̂2) (A6a)

UR(t)H0U
†
R(t) = ω1n̂1 + ω2n̂2 −

δ

2

(
a†1a
†
1a1a1 + a†2a

†
2a2a2

)
(A6b)

UR(t)V (t)U†R(t) = −g(t)
(
a†1e

iω1t + a1e
−iω1t

)(
a†2e

iω2t + a2e
−iω2t

)
(A6c)

where we have used the relations a†e−iωn̂t = eiωn̂ta†eiωt and ae−iωn̂t = eiωn̂tae−iωt. Replacing g(t) (ignoring 2π and
using cos [(ω1 − ω2)t] for the moment) and using Euler’s formula, A6c becomes

UR(t)V (t)U†R(t) = −g0
2
A(t)

(
a†1a
†
2e

2iω1t + a†1a2e
2i(ω1−ω2)t + a1a

†
2���

1

e0 + a1a2e
−i2ω2t

+ a†1a
†
2e

2iω1t + a†1a2���
1

e0 + a1a
†
2e
−2i(ω1−ω2)t + a1a2e

−2iω1t
)
.

(A7)

Making the rotating wave approximation, we can toss all fast-oscillating terms and keep slow-oscillating and stationary
ones. Note that if ω1 and ω2 are close or far apart only changes the final result by a factor of 2 under the approximation,
since the terms oscillating at (ω1 − ω2) are the same as the stationary ones. Putting together A6 and A7, our
approximated, rotating frame Hamiltonian is

HRF = −δ
2

(
a†1a
†
1a1a1 + a†2a

†
2a2a2

)
−A(t)g0

(
a†1a2 + a1a

†
2

)
. (A8)
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Letting HRF = H0 +H1, with H0 = δ
2

(
a†1a
†
1a1a1 + a†2a

†
2a2a2

)
and H1 = −A(t)g0

(
a†1a2 + a1a

†
2

)
, we perturbatively

find the effective Hamiltonian, treating A(t) as fixed for the moment. Ignoring states of higher energy than |2〉, the
eigensystem for H0 is given by

0{|0102〉 , |0112〉 , |1102〉 , |1112〉},−δ{|0122〉 , |2102〉 , |1122〉 , |2112〉},−2δ |2122〉 . (A9)

Since the action of H1 on any |2〉 state results in a |3〉 state, we ignore any corrections on those and focus on perturbative
corrections for the |0〉 , |1〉 subspace (0 eigenenergy states in A9). Because these are degenerate, we diagonalize the
perturbing Hamiltonian H1 in this unperturbed eigenstate

∣∣n0〉 subspace. Building out the
〈
n0i
∣∣H1

∣∣n0j〉 matrix, we get0 0 0 0
0 0 −A(t)g0 0
0 −A(t)g0 0 0
0 0 0 0

 , (A10)

giving us the first-order corrections to the degenerate states

0(|0102〉 , |1112〉),±
A(t)g0√

2
(|1102〉 ∓ |0112〉). (A11)

The only state in this subspace with a non-zero, second order correction is |1112〉, yielding |0122〉 and |2102〉 upon the
action of H1, giving us

4A(t)2g20
δ

|1112〉 . (A12)

Eliminating second-excited energy states now
(
a† → σ+, a→ σ−

)
, and up to second order in perturbation theory—

combining A11 and A12, we get the effective Hamiltonian

H ' −A(t)g0
(
σ+
1 σ
−
2 + σ−1 σ

+
2

)
+
A(t)2g20

δ
(1 + σz1)(1 + σz2). (A13)

This dispersive shift gives an effective CZ and partial iSWAP. To counter this, we can choose A(t) = A0(t)[1 +
B sin(2πft)], where A0(t) is a slow-evolving wave envelope. Given f � g0, the leading exchange term in A13 remains
unaffected, while the oscillatory effects create off-resonant dispersive shifts that counter the effects of the σz1σ

z
2 term.

Appendix B: Simulation Data

Simulated data for waveforms and results in Fig. 2 and Fig. 3. This set of data was obtained by numerically tuning
the listed parameters for each individual two-qubit rotation. Note that for the really small gates (4 ns and smaller),
this protocol starts to break down, thus we do not see a similar pattern in parameters choices determined by the
numerical exploration.

We note that it would be convenient for a realization of this technique to use the same set of parameters for
all partial rotations of a gate by tuning more parameters. For example, using device parameters for the current
experimental realization—qubit nonlinearities −0.16346 × 2π GHz and −0.254655 × 2π GHz—and ignoring qubit
energies in the rotating frame, if we modify Eq. 3 to Ω(t) = Ω0(t) [c+ α sin(2πf)] such that c and α can be arbitrarily
tuned, using Eq. 4a we can numerically find {A, f, α, c} = {82.645 MHz, 1.868 GHz, 1.333, 0.336} to get the gate errors
{1.21, 0.67, 0.30, 0.49, 0.29, 7.43, 102.99} × 10−6, shown in the figure below.

Appendix C: Reference implementations

We use the following notation:

= iSWAP , = iSWAP(θ) , =
√
iSWAP ,θ π

2
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iSWAP waveforms

Cosine profile—Eq. 4a
Non positive definite (α = 2) Positive definite (α = 1)

Fraction tg (ns) A (MHz) f (MHz) Error (10−5) A (MHz) f (MHz) Error (10−5)
1 36 13.91 -515.31 0.51 13.89 -377.61 5.93

3/4 27 13.91 -524.11 0.23 13.86 -374.14 0.44
1/2 18 13.87 -529.38 0.20 13.85 -410.17 14.67
1/4 9 13.84 -528.47 1.10 13.74 -528.06 17.98
1/5 6 13.77 -642.43 8.99 13.66 -644.62 16.67
1/8 4.5 13.04 -571.80 20.46 13.38 -548.56 8.46
1/12 3 10.25 -784.42 97.44 40.00 -183.81 113.59

Tangent profile—Eq. 4b
Fraction tg (ns) A (MHz) f (MHz) γ Error (10−5) A (MHz) f (MHz) γ Error (10−5)

1 36 8.82 -523.28 9.37 0.36 8.83 -369.09 9.35 0.49
3/4 27 10.17 -525.38 6.32 0.45 8.06 -384.34 13.99 4.67
1/2 18 10.59 -525.40 5.74 0.56 8.16 -363.04 12.67 1.63
1/4 9 9.94 -591.50 6.40 1.74 10.23 -458.40 6.11 7.09
1/5 6 14.92 -576.66 3.62 0.58 14.85 -565.25 3.63 7.58
1/8 4.5 9.58 -593.94 9.06 0.51 9.50 -603.31 7.79 3.87
1/12 3 6.94 -684.12 15.00 4.60 40.00 -167.78 6.87 1.11

TABLE I. Parameters for iSWAP waveform results in Fig. 2 and error rates in Fig. 3.

XX waveforms

Cosine profile—Eq. 4a
Non positive definite (α = 2) Positive definite (α = 1)

Fraction tg (ns) A (MHz) f (MHz) Error (10−5) A (MHz) f (MHz) Error (10−5)
1 24 10.42 -854.11 7.11 10.42 -698. 30 20.21

3/4 18 10.42 -861.22 4.42 10.41 -717. 74 16.50
1/2 12 10.41 -850.74 2.88 10.39 -768. 57 11.88
1/4 6 10.32 -955.75 11.16 10.31 -961. 83 14.13
1/5 4 8.33 0.00 172.07 8.30 -923.54 171.03
1/8 3 6.27 0.00 191.99 40.00 -171.60 133.28
1/12 2 5.00 -9.06 123.77 40.00 -251. 10 83.48

Tangent profile—Eq. 4b
Fraction tg (ns) A (MHz) f (MHz) γ Error (10−5) A (MHz) f (MHz) γ Error (10−5)

1 24 7.66 -851.68 6.25 5.20 8.28 -715.89 5.38 20.31
3/4 18 10.08 -870.65 4.11 4.03 8.12 -752.41 5.56 16.74
1/2 12 6.62 -898.74 9.29 4.33 6.56 -801.57 9.52 9.59
1/4 6 12.52 -901.87 3.34 1.92 12.98 -909.24 3.24 5.21
1/5 4 6.34 -892.32 13.41 2.38 6.24 -903.65 13.65 2.29
1/8 3 5.18 0.00 15.00 66.43 5.18 0.00 15.00 66.43
1/12 2 5.00 -20.70 15.00 93.95 18.28 -250.01 8.09 79.21

TABLE II. Parameters for XX waveform results in Fig. 2 and error rates in Fig. 3.

Number of qubits Stock Continuous Error-divisible

4 0.507243 0.575992 0.817031
6 0.509382 0.585032 0.802391
8 0.512273 0.59149 0.770956
10 0.514339 0.59568 0.757204
12 0.515807 0.598545 0.754664

TABLE III. Data fir results plotted in Fig. 5, comparing the percent of the ground state energy that each type of gate set is
able to produce.
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FIG. 6. Fractional gates using the same set of parameters. {A, f, α, c} = {82.645 MHz, 1.868 GHz, 1.333, 0.336} (top) to get the
gate errors {1.21, 0.67, 0.30, 0.49, 0.29, 7.43, 102.99} × 10−6(bottom).

where iSWAP(θ) = exp
[
iθ/2

(
σ+
1 σ
−
2 + σ−1 σ

+
2

)]
, with a full iSWAP = iSWAP(π), and

√
iSWAP = iSWAP(π/2).

Using a stock native gate set—with CNOT as the base two-qubit gate, we can implement the two-qubit SWAP and
iSWAP gates.

=
,

=
S

S

H

H .

With access to a broader set of native two-qubit gates, arbitrary two-qubit gates can be implemented more efficiently.
For example, with access to a native

√
iSWAP, we can achieve the lowest-error implementation of SWAP that the

authors are aware of from [52],

=
RX(−π

2 )

RX(−π
2 )

RX(π2 )

RX(π2 )

RY (−π
2 )

RY (−π
2 )

RY (
π
2 )
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π
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π
2

π
2

π
2

This explicitly demonstrates the benefit of having access to a native partial gate like
√
iSWAP for implementation of

other two-qubit gates. More broadly, any arbitrary iSWAP(θ) rotation can be implemented using native
√
iSWAP

gates,

=
RZ(

3π
4 )

RZ(
π
4 )

RZ(
θ
2 + π)

RZ(− θ
2 )

RZ(
π
4 )

RZ(−π
4 ) .

θ π
2

π
2

This decomposition highlights the benefit of having access to a native set of arbitrary θ rotations that would allow the
reduction of two-qubit gate error proliferation, as well as energy loss by virtue of spending less time on a single gate.
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