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Disorder-assisted assembly of strongly 
correlated fluids of light

Brendan Saxberg1,5 ✉, Andrei Vrajitoarea1,5, Gabrielle Roberts1,5, Margaret G. Panetta1, 
Jonathan Simon1,2,3,4 & David I. Schuster1,3,4

Guiding many-body systems to desired states is a central challenge of modern 
quantum science, with applications from quantum computation1,2 to many-body 
physics3 and quantum-enhanced metrology4. Approaches to solving this problem 
include step-by-step assembly5,6, reservoir engineering to irreversibly pump 
towards a target state7,8 and adiabatic evolution from a known initial state9,10.  
Here we construct low-entropy quantum fluids of light in a Bose–Hubbard circuit  
by combining particle-by-particle assembly and adiabatic preparation. We inject 
individual photons into a disordered lattice for which the eigenstates are known and 
localized, then adiabatically remove this disorder, enabling quantum fluctuations to 
melt the photons into a fluid. Using our platform11, we first benchmark this lattice 
melting technique by building and characterizing arbitrary single-particle-in- 
a-box states, then assemble multiparticle strongly correlated fluids. Intersite 
entanglement measurements performed through single-site tomography indicate 
that the particles in the fluid delocalize, whereas two-body density correlation 
measurements demonstrate that they also avoid one another, revealing Friedel 
oscillations characteristic of a Tonks–Girardeau gas12,13. This work opens new 
possibilities for the preparation of topological and otherwise exotic phases of 
synthetic matter3,14,15.

Synthetic materials, which are composed of interacting ions16, atoms17 or 
photons3,18, rather than interacting electrons as in solid state materials,  
offer a unique window into the equilibrium and dynamical properties of 
many-body quantum systems. Near-equilibrium, minimal realizations 
of superconductors19, Mott insulators20 and topological bands15,21 have 
elucidated the essential physics of these materials. Lattice site22 and 
time23 resolved probes have exposed previously inaccessible quanti-
ties, such as entanglement24,25, to direct observation.

Recently, efforts in synthetic matter have begun to explore explicitly  
out-of-equilibrium phenomena, including time crystallinity26,27, many- 
body localization28,29, quantum scarring30 and bad-metal transport31, 
with prospects for exploring phenomena such as light-induced super-
conductivity32 and measurement-induced phase transitions33. These 
experiments have a particularly marked impact on benchmarking 
computational tools, as late-time dynamics of moderately sized quan-
tum systems are already beyond the capabilities of state-of-the-art  
numerics34.

Often neglected is the fact that preparing equilibrium states is itself 
an intrinsically non-equilibrium process, because driving a quantum 
many-body system to a desired target state requires ‘dynamics’. This 
challenge is typically overlooked in the solid state, in which thermaliza-
tion of long-lived electrons with broadband thermal reservoirs enables 
robust entropy removal despite fundamentally inefficient thermaliza-
tion. In synthetic materials, limited particle lifetimes make it crucial 

to develop optimized state preparation schemes that approach the 
fundamental quantum speed limits.

Efficient preparation of many-body states of ultracold atoms typi-
cally involves: (1) laser cooling, in which scattered light removes entropy 
from individual atoms; (2) evaporative cooling, in which collisions 
dump entropy into consequently lost atoms, producing a Bose–Einstein 
condensate (BEC); and (3) adiabatic variation of the Hamiltonian, so 
that the weakly interacting (BEC) ground state of the initial Hamiltonian 
evolves into the strongly interacting ground state of the final Hamil-
tonian. This approach has been used to produce, for example, Mott 
insulating20 and magnetically ordered35,36 synthetic matter.

Materials composed of microwave photons3 offer the unique pos-
sibility of efficient thermalization via coupling to arbitrarily designed 
low-entropy reservoirs shaped through resonant filters37. This approach 
has been used to stabilize Mott states of light11, with prospects for dev-
il’s staircase38 and Laughlin-like39 matter. Such reservoir engineering 
works extremely well to stabilize incompressible matter; preparation 
of compressible phases, such as superfluids40 and certain quantum 
spin liquids41, requires new approaches.

In this work we harness another strength of photonic materials 
platforms—particle-resolved ‘control’—to explore a new class of state 
preparation schemes compatible with compressible matter. Our 
approach marries the addressability of particle-by-particle injection 
with the robustness of adiabatic evolution, enabling us to assemble 
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arbitrary-density fluids of strongly interacting microwave photons 
in our one-dimensional (1D) Bose–Hubbard circuit11. We first localize 
all eigenstates by imposing disorder that is much stronger than the 
tunnelling. We then inject individual particles into localized lattice 
orbitals, populating a single- or many-body eigenstate of our choos-
ing. Finally, we adiabatically remove the disorder, melting this local-
ized eigenstate into a strongly correlated fluid via tunnelling-induced 
quantum fluctuations. To characterize the fidelity of the preparation 
scheme, we introduce a reversible ramp protocol that maps diabatic 
and decay-induced excitations of the fluid onto localized excitations 
in the disordered lattice. We then characterize the fluid in two ways: 
(1) two-body correlation measurements, which reveal that the pho-
tons avoid one another in the fluid phase, with a universal structure 
characteristic of a Tonks gas; and (2) intersite entanglement measure-
ments, via the purity of single-site density matrices, which reveal that 
the photons delocalize during the melt and relocalize when disorder 
is adiabatically re-introduced.

In what follows, we first introduce the Bose–Hubbard circuit plat-
form and its capabilities. We then describe the disorder-localized 
preparation scheme and test it by assembling arbitrary single-particle 
quasi-momentum states. We validate adiabaticity of the scheme via the 
reversibility of the protocol, directly measuring entropy generation in 
the disordered lattice. We then apply the preparation scheme to assem-
ble few-particle states, characterizing them using new tools which 
reveal that the particles simultaneously delocalize and anti-bunch, 
hallmarks of a strongly interacting fluid of light.

The Bose–Hubbard circuit
Our experiments take place in the quantum circuit shown in Fig. 1a, the 
physics of which is captured by a 1D Bose–Hubbard model for photons 
(illustrated in Fig. 1b):
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The operator ai
† (ai) creates (destroys) a microwave photon on site 

i, with the number operator on site i given by n a a=i i i
† . J is the 

nearest-neighbour tunnelling rate, U is the on-site interaction energy, 
ω0 + δi is the energy to create the first photon in site i and ħ is the reduced 
Planck’s constant.

The lattice sites in which the photons reside are realized as trans-
mon qubits3. The anharmonicity of the transmon provides the pho-
ton–photon interaction on that site. Capacitive coupling between 
adjacent transmons enables nearest-neighbour tunnelling, and flux 
loops permit qubit-by-qubit tuning of the on-site energies. We oper-
ate with J/2π = 9 MHz, U/2π = −230 MHz; note that we have fixed the 
(otherwise arbitrary) gauge of the Hamiltonian with a tunnelling 
term whose sign is the opposite convention to compensate for our 
U < 0 and ensure that the highest energy single-particle states have 
the ‘lowest’ quasi-momenta. Site frequencies are tunable in real time 
over (ω0 + δi)/2π ∈ [4.1, 6.1] GHz (Methods), enabling introduction 
of disorder δi up to 2 GHz, which is much larger than the tunnelling 
energy. The photon lifetime in the lattice is T1 > 10 μs, so ∣U∣ ≫ J ≫ 1/T1 
providing ample time for the photons to collide, organize and become 
entangled before decaying (Supplementary Section I). Site-resolved 
microscopy is achieved by capacitive coupling of each transmon to 
an off-resonant coplanar waveguide resonator, enabling direct read-
out of each transmon’s occupation number through the dispersive 
shift of the resonator (Supplementary Sections D and E). Because the 
system operates in the hard-core limit ∣U∣ ≫ J, the many-body states 
prepared are expected to be lattice analogues of a Tonks–Girardeau 
gas of impenetrable bosons42,43.
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Fig. 1 | Individually addressed many-body states in the Bose–Hubbard 
circuit. a, The physical system consists of a 1D array of capacitively coupled 
transmon qubits patterned on a large-area superconducting microwave 
circuit. This system behaves as a tight-binding lattice for photons11 with 
site-resolved readout performed via microwave resonators dispersively 
coupled to each qubit, and real-time tuning of lattice disorder controlled by 
inductively coupled flux bias lines. b, The physics of this 1D circuit is well 
characterized by the Bose–Hubbard Hamiltonian describing the dynamics of 
interacting particles on a lattice. The transmon qubits (highlighted in blue) 
realize the lattice sites in which the photonic particles reside50, with intersite 
tunnelling  J arising from their capacitive coupling, and the on-site interaction  
U stemming from their anharmonicity. The flux bias lines tune the transmon 

energies to provide site-resolved control over lattice disorder δi. c, To prepare 
(near) arbitrary eigenstates of the disorder-free Hubbard lattice, we impose 
strong (∣δi∣ ≫ ∣ J∣) controlled disorder, ensuring that all eigenstates are  
products of localized photons on individual sites. (1), In this disordered 
configuration it is then straightforward to excite an arbitrary eigenstate by 
injecting photons into individual lattice sites. (2), If the disorder is slowly 
removed (∣δi∣ → 0), the adiabatic theorem ensures that the system always 
remains in the same instantaneous many-body eigenstate, resulting in a highly 
entangled many-body state of the disorder-free lattice. (3) We characterize this 
many-body state via site-resolved occupation and correlation  
measurements.
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Single-particle melting
Our protocol for preparing arbitrary eigenstates of a Hubbard lattice is 
highlighted in Fig. 1c. We begin by introducing strong disorder (∣δi∣ ≫ J) 
in the lattice by controllably detuning the sites (Supplementary Sec-
tion G). In this disordered configuration, tunnelling is suppressed and 
all eigenstates are products of localized photons on individual sites. 
Such states are easily prepared by injecting photons into individual 
sites with calibrated microwave π pulses. The lattice sites are then 
tuned into resonance by reducing the disorder ∣δi∣ → 0 slowly enough 
to maintain adiabaticity, allowing the system to remain in the same 
instantaneous eigenstate, which melts the particles into a correlated 
fluid. We then characterize the prepared states by site-resolved probes 
of occupation, coherence and correlation.

We begin by applying this preparation protocol to construction 
of single-photon particle-in-a-box eigenstates. The dependence of 
these eigenstates on disorder, and their corresponding energies, are 

displayed pictorially in Fig. 2a. At maximum disorder (Fig. 2a, left) 
each eigenstate is localized to a single site, whereas near zero disor-
der the eigenstates are delocalized particle-in-a-box states (Fig. 2a, 
right). Adiabatic evolution ensures that the system remains in the same 
instantaneous eigenstate, forming a unique connection between the 
lattice site the photon occupies in the disordered configuration and 
the state into which it delocalizes.

In Fig. 2b we prepare the highest energy localized states and measure 
the evolution of their densities as we adiabatically reduce the disorder 
to zero. The blue (red) data show the dynamics of a single photon pre-
pared in the highest (second highest) energy site, Q5 (Q3), as it delocal-
izes near degeneracy. The measured density profiles of the final states 
are sinusoidal, with zero and one nodes, respectively, matching the 
probability distributions for the q = π/L and q = 2π/L particle-in-a-box/
quasi-momentum states.

Because photon loss renders our quantum system inherently open, 
we must balance the need for slow evolution (set by the energy gaps) 
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Fig. 2 | Adiabatic assembly of single-particle eigenstates. a–d, The simplest 
demonstration of the preparation protocol is the construction of single- 
photon particle-in-a-box states. a, We plot the numerically computed 
instantaneous eigenstate energies of a photon in a lattice, as disorder is 
reduced to zero over time. We highlight the highest (second highest) energy 
eigenstates in blue (red). In the disordered lattice, the highest (second highest) 
energy eigenstate is a particle localized to the single highest (second highest) 
energy site, and, as disorder is decreased, this state is adiabatically 
transformed into the particle-in-a-box state with lowest (second lowest) 
quasi-momentum. b, We demonstrate this process experimentally by 
assembling these lowest two quasi-momentum states. The blue (red) plots 
show the occupation of each of the lattice sites over time, as the disorder is 
adiabatically reduced to zero; here a single photon initially occupying the 
highest (second highest) energy site, Q5 (Q3) delocalizes into the corresponding 
quasi-momentum state q = π/L (q = 2π/L), shown at the final time in the bottom 
panels. c, To characterize the time required for the adiabatic sweep, we follow 

the protocol depicted: (1) a photon is prepared in a particular site in the 
presence of disorder; (2) the disorder is ramped down and back up over a 
variable time 2tramp; (3) the final occupation of the initially prepared site 
∣⟨Ψfinal∣Ψinit⟩∣2 is measured. d, The result of this protocol for the highest energy 
state (with dashed parameter-free theory), demonstrates that extremely fast 
ramps, tramp ≪ J−1, do not afford the photon sufficient time to tunnel and thus the 
photon remains in its initial site. At intermediate ramp speeds, tramp ≈ J−1, the 
photon undergoes diabatic transitions to other eigenstates and thus ends up in 
other lattice sites, reducing the occupation of its initial site. Only slow ramps, 
tramp ≫ J−1, enable the photon to adiabatically follow the initial eigenstate, 
delocalizing and subsequently relocalizing to its initial site. It is these slowest 
ramps that we use for state preparation. Data points are averages of up to 11 
experiments, each of which is an average of 2,000 individual measurements.
Error bars reflect the s.e.m. (Supplementary Section J); in d, they are smaller 
than the markers.
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to satisfy adiabaticity with the need to evolve faster than photon loss. 
We have developed a protocol to experimentally probe the adiabaticity 
of the process and extract the optimum ramp rate, without needing to 
perform tomography on a highly entangled state: we ramp the disorder 
down to zero and then back up, exactly reversing the downward ramp. 
We then measure the fraction of the time that the photon returns to 
its initial lattice site. Because all eigenstates are localized in the final, 
disordered lattice, this is a direct measure of the overlap of the final 
state with the initial state ∣⟨Ψfinal∣Ψinit⟩∣2. Performing this experiment 
versus total evolution time 2tramp, provides a measure of adiabaticity.

This process is depicted in Fig. 2c for a single particle, in which it is 
applied to the preparation of the highest energy quasi-momentum 
state, as shown in Fig. 2d. For very fast ramps, tramp ≪ J −1, the photon 
remains in its initial site because it lacks the time to tunnel even to 
its nearest neighbour. For intermediate ramp speeds, tramp ≈ J −1, the 
photon has time to delocalize but not to adiabatically follow, and thus 
undergoes diabatic transitions to other quasi-momentum states as the 
disorder is reduced, leading to a decreased population of the initial 
site. When the ramp is sufficiently slow, tramp ≫ J −1, the photon is able 
to delocalize, adiabatically follow the same eigenstate and relocalize, 
resulting in near-unity occupation in the initial site. We use extensions 
of this technique to multiple particles (see Extended Data Fig. 1) behind 
the scenes to optimize performance throughout the remainder of this 
work. This approach is particularly powerful because it is agnostic to 
the details of the physical platform and target state.

Correlated fluid melting
When multiple photons simultaneously reside in our Hubbard circuit, 
interactions strongly modify the behaviour of the system. At unit average 
occupancy (n N L≡ / = 1, where N is the number of photons and L is the 

number of sites), the ground state is a Mott insulator11 because the pho-
tons cannot move without immediately hitting a neighbour, so transport 
is fully impeded. Away from unit occupancy the ground state is a fluid: 
even if U fully blocks photons passing through one another, they can 
still delocalize, move and exchange momentum with their neighbours.

Strongly interacting fluids are challenging to prepare by reservoir 
engineering techniques37, which rely on irreversible photon injec-
tion that halts when adding the next photon costs substantially more 
energy than prior photons. The delocalization of the photon in the 
fluid makes it compressible: the energy required to inject additional 
photons changes smoothly with density, changing abruptly only at 
the unit-filled Mott state.

Here we prepare a compressible, strongly correlated fluid of light 
away from unit filling via a multiparticle variant of our disorder-assisted 
preparation scheme: we determine the filling by the number of photons 
that we coherently inject, and the eigenstate by the sites into which we 
inject photons. In our L = 7 site lattice we inject up to N = 6 photons to 
remain below unit filling. As our interactions are attractive, U < 0, the 
‘ground’ state is actually the highest energy state for a given photon 
number; beyond this detail, the sign of U does not impact the physics.

Figure 3a depicts the many-body spectrum for various fluid photon 
numbers versus disorder. The spectrum splits first into bands of fixed 
photon number separated by ω0, and then into bands of fixed numbers 
of overlapping particles separated by the interaction energy U. Within 
each of these bands, the states are split by fractions of the tunnelling 
energy J, reflecting phonon excitations of the fluid. Fig. 3b provides a 
detailed view of the spectrum relevant for preparing a three-photon 
ground state. The preparation trajectory is highlighted, beginning in 
the disordered lattice with photons occupying the three highest energy 
sites, and ending in the ordered lattice with the photons delocalized 
and entangled.
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Fig. 3 | Adiabatic preparation of strongly correlated fluids of light. The 
ground states of the Hubbard lattice below unit filling are compressible fluids 
because motion of the particles is not fully blocked by collisions as it would be 
in the unit-filled Mott state. a, This is reflected in the many-body spectrum in 
which, in the absence of disorder, there are bands of states (dark blue) of 
width ≈ J in which the photons do not overlap with one another, rather than a 
single state, as would be the case for an incompressible system. These states 
are spectroscopically isolated by the on-site interaction U from all other states 
(light blue). In the incompressible Mott state there is a single gapped (by U) 
ground state. b, In the particular case of three particles in the lattice, the 
highest energy state, which is the fluid ‘ground’ state (because U, J < 0), exhibits 

the largest energy gap to all other states, and can thus be prepared most 
quickly. c, We adiabatically prepare the fluid ground states for two, three and 
four particles in the seven-site lattice. The upper panels display the density 
profiles for these states as the system is tuned from disordered to ordered 
configurations and the particles delocalize and become entangled. We 
highlight the measured fluid densities at degeneracy (bars in lower panels) 
compared to theory (dashed curve). The insets depict particle placements in 
the disordered configuration, which adiabatically connect to the fluids. Data 
points are averages of up to 11 experiments, each of which is an average of 
2,000 measurements. Error bars reflect the s.e.m.
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We perform the disorder-assisted preparation for up to four photons, 
measuring, in Fig. 3c, average density profiles as the lattice is tuned 
from disordered to disorder-free configurations (see Extended Data 
Fig. 2 for the case for five and six photons). These data demonstrate 
that during the melt the photons delocalize from their initial sites into 
all lattice sites, with the melted density profiles in good agreement with 
the disorder-free numerics from exact diagonalization.

Because we operate at large U/J, the physics is well captured by the 
Tonks–Girardeau model (Supplementary Section F), whose ground 
state is of the Bijl–Jastrow form. This wavefunction is written as the 
product of single- and two-particle components ΨB(x) = ϕ(x)φ(x), for 
x = (x0,x1,…,x6)44. The single-particle component ϕ x L( ) = ∏ cos(π / )ii=0

6x  
places each photon in the lowest energy particle-in-a-box state of the 
lattice, whereas the two-particle component φ(x) = ∏i<j∣xi − xj∣ keeps 
the photons apart (whilst minimizing their kinetic energy) by ramping 
the wavefunction to zero whenever they overlap.

In the absence of interactions, the ground-state density would be 
independent of particle number up to an overall scale, reflecting the 
single-particle eigenstate q = π/L of Fig. 2b. The increasingly large 
deviations from such a sinusoidal form as density increases indicate 

that photon–photon collisions are shaping the fluid-density profile. 
A deeper understanding of the fluid’s structure requires exploring 
correlations and entanglement, which is the subject of the remainder 
of this investigation.

Fluid correlations
In the Tonks regime the photon fluid should exhibit short-range repul-
sion between the particles arising from the Hubbard ∣U∣ ≫ J. We probe 
this physics directly through the two-body correlator Pi∣ j, which quan-
tifies the probability of detecting a photon at site i conditioned on one 
being detected at site j. If we consider a two-particle state with a wave-
function Ψ(x1, x2), the detection of a particle at lattice site x1 = xj col-
lapses the wavefunction to a product state Ψ x x δ x x Ψ x( , ) = ( − ) ′( )j1 2 1 2 , 
with the conditional probability of the second photon given by 
P Ψ x= ′( )i j i

2∣ ∣ . This measurement is performed on a minimal two-par-
ticle fluid in Fig. 4a, where the insets show Pi|2 and Pi|3. The strong occu-
pation suppression at i = j reflects the hard-core constraint that forces 
the system wavefunction to vanish when two particles are on top of 
each other. Furthermore, the suppression near i = j reflects the 
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Fig. 4 | Microscopy of the strongly correlated fluid—anti-bunching and 
delocalization. The photon liquid is characterized by photons simultaneously 
(1) avoiding each other and (2) delocalizing. a, To show that the photons avoid 
one another in the fluid we measure the two-body correlator Pi| j at n = 2

7
. 

Pi| j quantifies the probability of detecting a photon at site i given one detected 
in site j. Suppression near i = j reflects both the hard-core constraint and the 
minimization of kinetic energy by photons smoothing their wavefunction  
and thus avoiding nearby sites. The upper (lower) inset showing Pi|3 
(Pi|2) demonstrates that when the first photon is detected in the middle site  
(one site left of the middle), the second photon occupies particle-in-a-box 
states imposed by repulsion of the first photon. b, The normalized two-body 
correlator at various particle numbers (densities) is shown, demonstrating that 
the anti-correlation length decreases as the density increases, in agreement 
with a parameter-free Tonks–Girardeau theory (Supplementary Section F) and 
the intuition that photons occupy less space at higher densities. Also apparent 
are Friedel oscillations at wavevector k n= πF , signalling photon fermionization. 
Large-separation correlation data, polluted by edge effects, are omitted 
(Supplementary Fig. 7). c, We probe delocalization during three-particle fluid 

preparation by measuring the average entanglement between each site and  
the rest of the system, Egl ≡ 2(1 − ⟨Pi⟩) (orange) via the purity of the single-site 
reduced density operator P Tr ρ≡ ( )i i

2 . In the disordered lattice, the state is a 
product of localized photons, thus entanglement is small. In the disorder-free 
lattice, photons delocalize, purity drops and entanglement increases. We 
distinguish environmental entanglement (decoherence) from intersite 
entanglement by returning to the initial configuration before measuring (red); 
this quantity remains small, proving the system remains unentangled with the 
environment. The inset depicts the measurement time within the ramp for 
each curve. d, The entanglement peaks at half-filling at which each site’s 
occupancy provides maximal information about the rest of the system. 
Theoretical (dashed) particle–hole symmetry about (n = 1

2
) is not reflected in 

the data due to increased decay with more particles (increased entanglement 
after reverse ramp at high densities, red). Data points are averages of up to 11 
experiments, each of which is an average of 2,000 measurements. Error bars 
represent the s.e.m. (Supplementary Section J); where absent, they are smaller 
than the data points.
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preference of the photons to minimize their wavefunction curvature 
and thus their kinetic energy. The projective measurement of a photon 
in the lattice has effectively reshaped the two-particle fluid into a single-
particle fluid confined in ‘two’ boxes, in which the pinned (detected) 
photon acts as a potential barrier for the second photon.

To probe two-body correlations in fluids of more than two photons, 
we measure the system-averaged, normalized two-body correlator 
given by:

∑g x
n

n n( ) =
1

⟨ ⟩,
i

i i x
(2)

2 +

which quantifies the probability of simultaneously detecting two parti-
cles separated by x (in lattice sites), normalized to the average density n.  
The central intuition, that each photon has less ‘space’ at higher densi-
ties, is captured in Fig. 4b, in which the anti-bunched region (g(2)(x) < 1) 
gets narrower as density increases. Indeed, when the separation is 
rescaled by the density, the correlator collapses onto a universal 
parameter-free Tonks–Girardeau theory, with each particle occupying 
a volume n1/ , and characteristic Friedel oscillations. These correlations, 
oscillating at the Fermi momentum, k n= πF , are a direct signature of 
the ‘fermionization’ of the photons13.

Fluid delocalization and entanglement
As the photons melt into a fluid they optimize their energy by delocal-
izing as much as possible whilst avoiding one another. The two-body 
correlator explored in the previous section quantifies this avoidance, 
and in this section we explore their delocalization. To achieve this we 
probe the entanglement of a single site with the remainder of the sys-
tem by using a metric developed for interacting spins45: we measure 
the reduced density matrix of each individual lattice site ρi, quantifying 
how strongly it is entangled with the rest of the lattice from its impurity 

ρ1 − Tr( )i
2 . Our global measure of multipartite entanglement/delocali-

zation is this impurity averaged over all sites:

∑E
N

ρ= 2 −
2

Tr( ).
i

N

igl
=1

2

We wish to understand how the global entanglement scales with 
the number of particles and lattice disorder, which dictates the 
degree of delocalization. In Fig. 4c the entanglement is measured for 
a three-particle fluid as we vary the disorder along the adiabatic prepa-
ration trajectory. In the limit of strong lattice disorder the entanglement 
between sites is very small, as the three-particle state is a product of 
localized photons. As we reduce the disorder, the entanglement grows, 
saturating to a maximum value when the sites are degenerate and the 
photons become fully delocalized. Residual entanglement in the dis-
ordered lattice arises from dissipative coupling to the environment, 
that is, decoherence. We exclude the possibility that decoherence is the 
source of entanglement in the fluid phase by ramping the lattice back to 
its initial disordered configuration. The fact that the measured entan-
glement drops definitively proves that the entanglement observed at 
degeneracy comes from delocalization, and not dissipation. Similar 
measurements and conclusions are extracted for all the other particle 
sectors (Extended Data Fig. 3).

The dependence of the entanglement at degeneracy on the average 
density is displayed, together with the expected theoretical calculation, 
in Fig. 4d. The discrepancy at larger filling fractions is due to increased 
particle loss, as anticipated from the increased entanglement after the 
time-reversed ramp. As highlighted in the theory, there is a particle–
hole symmetry in the extracted entanglement measure. This is expected 
because in the hard-core limit, particles at filling n tunnel and avoid 
one another analogously to holes at filling n1 − . Entanglement is max-
imized at half-filling because that is the situation in which knowledge 

of the occupancy of any given site provides the ‘most’ information 
about the occupancy of adjacent sites: at lower (higher) fillings, most 
sites are empty (occupied), so knowledge of any given site’s occupancy 
provides less information.

Outlook
In this work we have demonstrated a way to harness controlled disorder 
to individually index and prepare the eigenstates of a strongly inter-
acting many-body system. In particular, we have assembled quantum 
fluids of light in a 1D Bose–Hubbard circuit composed of capacitively 
coupled transmon qubits. Leveraging our site-resolved tuning capabili-
ties, we tune the qubits out of resonance with one another, individually 
excite only particular qubits and then melt these excitations into a 
fluid. Site-resolved probes of correlation, entanglement and revers-
ibility reveal that this system realizes a Tonks–Girardeau gas12,13. The 
dissipative stabilization technique of ref. 11 will yield lower entropy per 
particle when many-body gaps are large, but the gaps at the critical 
point are small; the approach demonstrated here is preferable when 
the phase is compressible, so dissipative stabilization will be unable to 
stabilize a specific particle number. Leveraging both techniques, the 
Bose–Hubbard circuit is now prepared to study most phases of quantum 
matter. It remains to be seen how our adiabatic preparation approach 
scales with system size; it seems certain that it will be controlled by the 
Kibble–Zurek mechanism46 in the thermodynamic limit, although the 
precise disorder used will probably affect the structure of the excita-
tions generated at the critical point.

By combining the techniques developed in this work with topo-
logical29,47 circuit lattices, it should be possible to prepare topological 
fluids of light5. In conjunction with auxiliary qubits, these adiabatic prep-
aration techniques will enable direct measurements of out-of-time-order 
correlators and information scrambling48, as well as anyon statistics49.

Online content
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ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
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Methods

Device fabrication
The 10 × 20 mm2 chip was fabricated in a two-step lithography process. 
Optical lithography was used to generate a 200 nm thick tantalum 
layer covering in-plane features of size >1 μm, and a second e-beam 
lithography step enabled deposition of smaller Al/AlOx/Al Josephson 
junctions atop the sapphire substrate. Detailed information on the 
fabrication process can be found in Supplementary Section A.

Device parameters
To generate the Bose–Hubbard Hamiltonian for microwave photons we 
fabricated a 1D chain of capacitively coupled transmon qubits, creat-
ing a nearest-neighbour tunnelling energy J ≈ 2π × 9 MHz between the 
qubit lattice sites and made use of the nonlinearity of the qubits to 
generate strong interactions between photons U ≈ 2π × 250 MHz. Each 
transmon lattice site was capacitively coupled to a linear resonator and 
filter (Supplementary Section D), which we probed (Supplementary 
Section E) to determine the state of the connected qubit. To converge 
to these parameters we used finite element simulation techniques, 
mainly HFSS, in the design phase and iterated changes on the basis 
of experimental measurements. A table of system parameters for the 
entire sample can be found in Supplementary Section I.

Microwave wiring
The sample was mounted and wire bonded to a copper PCB, which 
was mounted in shielding consisting of copper, MuMetal and lead to 
prevent radiation interacting with the sample. The shielded sample 
was mounted to the mixing chamber plate of a dilution refrigerator to 
cool the sample below Tc to 9 mK. Microwave coaxial cables and d.c. 
twisted-pair wires fed signals from a room-temperature homodyne 
measurement setup (Supplementary Fig. 1) into the shielded sample. 
We corrected distortions of signals sent to the qubit from the wiring 
and filters by inverting the transfer function and pre-applying a kernel 
to the signal (Supplementary Section H).

Flux bias and crosstalk
By sending d.c. currents near the SQUID loop of the transmon qubits we 
biased the local magnetic field and enabled tuning of qubit frequencies 
of approximately 4–6 GHz, which we used to introduce disorder δi ≫ J to 
the array. This localized the eigenstates of the now disordered system 
to excitations on single sites, which we selectively populated by driv-
ing power at that frequency using the common feedline. The mutual 
inductance we observed between one qubit’s flux line and another 
qubit’s SQUID loop defines a parasitic crosstalk, which we addressed by 
inverting a measured crosstalk matrix and applying linear corrections 
to additional residual error (Supplementary Section G). An additional 
global solenoid near the sample was used to gain an additional degree 
of freedom to bias the qubits and minimize the thermal load at the 
refrigerator needed to run experiments.

Pulse sequence
Initially our lattice started in a strongly disordered configuration ∣δi∣ > U, 
then we jumped to a ∣δi∣ < U configuration and applied excitations to 
transmon lattice sites to avoid further Landau–Zener processes during 
state preparation (Supplementary Section C). We then adiabatically 
removed the remaining disorder to selectively generate the desired 
compressible fluid states on the disorder-free lattice. To optimize per-
formance of the adiabatic trajectory in state preparation we optimized 
reversibility of the trajectory: ∣〈ψi∣ψf〉∣2 (Fig. 2d and Extended Data Fig. 1).

Readout
To readout the state of the lattice we probed the response of radiof-
requency signals sent down into the common feedline at the fre-
quency of the dispersively coupled readout resonators. To extract 
qubit populations in the ∣0⟩ and ∣1⟩ states in this regime we probed 
at two separate frequencies, which maximally distinguish the qubit 
states 0⟩∣  from ∣ ∣1⟩, 2⟩  and ∣1⟩  from 0⟩, 2⟩∣ ∣  and assume population 
lies within only these three states. We used a confusion matrix to 
correct for errors in binning, with additional errors stemming from 
readout crosstalk and Landau–Zener processes (Supplementary  
Section E).

Experimental results
We measured the assembly of single and multiparticle fluid eigenstates 
by measuring the population across all lattice sites, sampled across 
the parameterized removal of disorder δi (Figs. 2b and 3c). To charac-
terize the physics of particle interaction in states with n ≥ 2 photons, 
we measured the two-body correlator given by the conditional meas-
urement Pi∣j (Fig. 4c) and function g 2(x) (Fig. 4d), in which interactions 
influence the shape of the remaining one-particle wavefunction after 
measurement and the latter reveals variation in anti-bunching across 
densities. These results coincide with a parameter-free Tonks–
Girardeau model (Supplementary Section F). We measured delocaliza-
tion of the compressible fluid states (n = −1

7
6
7) as disorder was removed 

via the global entanglement entropy. Figure 4d shows our results for 
n = 3

7 , whereas measurements and theory results for global entangle-
ment across the adiabatic disorder sweep for all densities are displayed 
in Extended Data Fig. 3.

Data availability
The experimental data presented in this manuscript are available from 
the corresponding author upon request, due to the proprietary file 
formats used in the data collection process.

Code availability
The source code for simulations throughout are available from the 
corresponding author upon request.
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Extended Data Fig. 1 | Adiabaticity Curves for All n Fillings. Adiabaticity is 
given by the average number of photons that return to the originally excited 
sites as a function of ramp length. Here, we measure adiabaticity curves for the 
highest energy eigenstate for all n fillings, revealing the minimum ramp length 

needed to be adiabatic when preparing these many-body states. As particle 
number increases, we start to suffer more from loss and no longer fully recover 
the initial starting population.
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Extended Data Fig. 2 | Profiles for n Fillings. Density profiles for the highest energy eigenstates, corresponding to fluid ground states, for filling n=1
7

 through 6
7

. 
For 5 and 6 particles, our results suffer from particle loss.



Extended Data Fig. 3 | Entanglement for n Fillings. Measure of entanglement vs disorder, for filling n=1
7

 through 6
7

. Error bars reflect S.E.M.; here they are smaller 
than markers.
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