
PH
YS

IC
S

A nonlinear, geometric Hall effect without
magnetic field
Nicholas B. Schadea,b,c,1, David I. Schustera,b, and Sidney R. Nagela,b,c

aDepartment of Physics, The University of Chicago, Chicago, IL 60637; bThe James Franck Institute, The University of Chicago, Chicago, IL 60637;
and cThe Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637

Edited by Steven M. Girvin, Yale University, New Haven, CT, and approved October 24, 2019 (received for review September 20, 2019)

The classical Hall effect, the traditional means of determining
charge-carrier sign and density in a conductor, requires a mag-
netic field to produce transverse voltages across a current-carrying
wire. We demonstrate a use of geometry to create transverse
potentials along curved paths without any magnetic field. These
potentials also reflect the charge-carrier sign and density. We
demonstrate this effect experimentally in curved wires where
the transverse potentials are consistent with the doping and
change polarity as we switch the carrier sign. In straight wires,
we measure transverse potential fluctuations with random polar-
ity demonstrating that the current follows a complex, tortuous
path. This geometrically induced potential offers a sensitive
characterization of inhomogeneous current flow in thin films.

transverse potential | Hall effect | surface charge | graphene

In 1879, Edwin Hall discovered that a transverse potential
appears across a current-carrying wire placed in a magnetic

field (1). Physics instructors traditionally teach the Hall effect
when the magnetic field is first presented in introductory elec-
tricity and magnetism as the way to distinguish the sign of the
charge carriers in a conductor (2). Indeed, the Hall effect is an
efficient way to disentangle the role of electron and hole conduc-
tion in semiconductors (3) and is commonly used to measure the
magnitude of magnetic fields (4). Here we present a different
mechanism using geometry alone, without a magnetic field, to
produce a transverse voltage that also reflects the sign and den-
sity of the charge carriers. A current traveling through a curved
wire must undergo centripetal acceleration to follow the curve.
This acceleration occurs due to electric fields from charges dis-
tributed along the wire edges; the direction of the field must
change with the sign of the carriers. No magnetic field is nec-
essary. This observation changes the way we think about the
creation of transverse potentials in wires because it is simply a
geometric effect that has until now gone unnoticed.

The transverse voltage that we predict and measure is
quadratic in the current. It is therefore distinct from many linear
Hall effects such as the spin (5), valley (6), and anomalous (7)
Hall effects. However, the geometric effect we describe should
be contrasted with predictions (8) and recent measurements of
a nonlinear Hall effect in nonmagnetic bilayer materials such as
WTe2 (9).

By 1850, Kirchhoff realized that surface charge distributions
are necessary simply to confine a current inside a wire (10).
Subsequently, the role of surface charges has been investigated
theoretically (11–13) and experimentally using single-electron
transistors (14, 15). The effect we describe is also related to how
currents are confined within wires. Our experiments show that
the effect can be used for sensitively probing nonhomogeneous
current flow in thin films as well as systems where magnetic fields
do not occur such as the bulk of a superconductor. While the
effect is small, it is measurable even in bulk conductors. Using
graphene wires to optimize the signal, we measure transverse
potentials ≈0.5 mV.

In the conventional Hall effect, when an electric current i of
charge carriers q passes through an applied magnetic field B,

the carriers experience a magnetic Lorentz force FB = qv×B.
Charge accumulates at the wire edges, as illustrated in Fig. 1A,
until the electric field caused by these charges cancels FB to
create a transverse potential difference:

∆VHall =
iB

tnq
. [1]

Here n is the charge-carrier density and t the wire thickness
along the direction of B. A measurement of ∆VHall determines
n and the sign of the charge carriers.

To show that magnetism is not necessary for producing trans-
verse voltages sensitive to n and the sign of q , we take advantage
of surface charge distributions that are a result of geometry—
curvature in the path of the current—rather than magnetic
forces. The surface charges create a transverse component of
the electric field and exert a force on the current such that it
follows the wire. For a wire in the shape of a circular arc, the
transverse electric force must point radially toward the circle cen-
ter to accelerate the carriers centripetally; this mandates that the
direction of the radial electric field (and thus the potential differ-
ence between the wire edges) depends on the sign of the current
carriers, as illustrated in Fig. 1B. The polarity of this potential,
analogous to the polarity of a Hall potential, reveals the sign of
the carriers.

Theory
Calculating this potential is straightforward. We assume the
wire is a semicircular annulus with inner radius rin and outer
radius rout; the wire has a rectangular cross-section of width
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is a probe of current paths in conductors.
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Fig. 1. Surface charge distributions that produce transverse potentials. (A)
In the classical Hall effect, the directions of current, i, and of the magnetic
field, B, determine the direction of the magnetic force. The surface charges
produce a transverse electric field E. (B) In a curved wire without an applied
magnetic field, the centripetal acceleration of the carriers is due to an elec-
tric force. Surface charges produce an electric field whose direction reveals
the sign of the carriers. (C) Circuit for measurement of transverse poten-
tials due to wire geometry. Orange regions are metal and purple regions
are exposed graphene. (D) Optical micrograph of the curved graphene wire
in a completed device. Graphene electrodes are visible in center at top and
bottom. (Scale bar, 20 µm.)

w ≡ (rout− rin) and thickness t . We force the radial edges of
the half annulus to be equipotentials, as illustrated in Fig. 1B,
with potential difference E =Va −Vb . Symmetry requires that
the current density vector field is purely azimuthal, such that
the charge carriers on average follow semicircular trajecto-
ries. We assume that the conductivity σ and carrier density n
are uniform and that all charge carriers have the same mass
m and charge q .

Unless the wire is a superconductor, the current-density mag-
nitude, j (r), is equal to the longitudinal (azimuthal) component
of the electric field, Eθ = E/(πr), times the conductivity: j (r) =
σE/(πr). The transverse (i.e., radial) component, Er , provides
the force necessary for the carriers to follow circular paths on
average.

In the curved wire that we consider, the magnitude of the local
drift velocity 〈v〉 of the carriers is proportional to the current
density, 〈v〉= j/nq , and the force for keeping these particles in
a circular orbit of radius r is F =m〈v〉2/r =Erq . The radial
electric field is thus

Er (r) =−dV (r)

dr
=

m [j (r)]2

n2q3r
, [2]

where V (r) is the transverse electrostatic potential. This can be
integrated across the width of the wire, w , to find ∆Vgeom≡
Vout−Vin,

∆Vgeom =

[
r−2
in − r−2

out

2t2 (ln (rout/rin))2

](
m

n2q3

)
i2 [3]

≈
[

1

rinwt2

](
m

n2q3

)
i2 in limit w� rin [4]

≈
[
w

rin

](
m

n2q3

)
〈j 〉2 in limit w� rin. [5]

The terms in square brackets depend only on the wire geome-
try. The expression in Eq. 3 is exact for a wire of any width;
the approximations in Eqs. 4 and 5 are valid in the narrow-
wire limit, w� rin, with 〈j 〉= i/wt being the average current
density. As in the Hall effect, the potential ∆Vgeom is an odd
power of the charge q , which means that the sign of q can be
determined.

We note that this result, essentially due to momentum con-
servation, is equally valid in the diffusive limit where the charge
carriers experience collisions that randomize their velocities.
Momentum conservation still dictates that the electric field must
include a radial component as in the Drude model (16),

d

dt
〈p (t)〉= qE − 〈p (t)〉

τ
. [6]

In steady state, with a constant azimuthal current, the left side
of Eq. 6 must equal the transverse force necessary to keep the
current traveling along a circular arc. This leads to Eq. 2. See SI
Appendix for details.

There are 2 significant differences between this transverse
potential and the Hall effect, however. The first one is that
the mass of the carriers, m , enters into the expression for the
potential difference. The second difference is that ∆Vgeom is
quadratic, rather than linear, in the current, i .

Experimental Validation
Circuit Design. To maximize the signal ∆Vgeom, we need high
current i (or current density j ) and low carrier density n . It is
advantageous to use a conductor whose charge-carrier sign and
density can be modulated to check whether the signal and carri-
ers change sign concurrently. Monolayer graphene satisfies these
conditions (17).

Due to graphene’s electronic band structure, as the Fermi
energy approaches the Dirac point, the effective mass m∗ of
the charge carriers vanishes and the carriers behave like rela-
tivistic Dirac particles (18). The effective mass is given by m∗=
(~/vF )

√
πn2D, where vF is the Fermi velocity, ~ is the reduced

Planck constant, and n2D =nt is the 2D carrier density (19, 20).
By applying a gate voltage to place the Fermi energy far from
the Dirac point, we ensure that the charge carriers in our cir-
cuits have a nonzero effective mass. Additionally, we design our
wires to be orders of magnitude longer and wider than the elec-
tronic mean free path in room-temperature graphene (21), which
means that the nonrelativistic, diffusive transport model should
be applicable to our experiments.

Our circuit, illustrated in Fig. 1C, consists of a curved graphene
wire with measurement leads on either side and a straight
graphene wire as a control. We use graphene grown by chem-
ical vapor deposition and transferred by the manufacturer
(Graphenea, grain size ≤20 µm) to a doped silicon wafer with
a 300-nm oxide gap. We use photolithography, electron-beam
evaporation, and plasma etching to pattern the graphene and
to place Ti/Au contacts on it, as shown in Fig. 1D. (See Mate-
rials and Methods for a detailed nanofabrication procedure.) We
control the sign and density of the carriers in the graphene by
applying a back-gate voltage Vbg to the silicon. As initially fab-
ricated, the samples are highly doped; we current-anneal (22)
them to cross the Dirac point at Vbg< 100 V.

The fact that the signal is quadratic in the current may be
exploited to remove several potential sources of measurement
error. The i2 dependence means that an ac current at frequency

24476 | www.pnas.org/cgi/doi/10.1073/pnas.1916406116 Schade et al.
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ω produces a transverse potential at frequency 2ω. We use a
lock-in amplifier to measure the potential at 2ω while filter-
ing out potentials at ω. A Hall potential due to a dc magnetic
field, such as that of the Earth, will appear at ω and thus can be
safely ignored. The potential drop due to the longitudinal elec-
tric field component within the wire, Eθ , likewise occurs at ω,
so we need not worry about imperfect alignment of transverse
measurement leads. By checking that ∆Vgeom is proportional to
i2, we ensure that any 2ω harmonics in the current do not con-
tribute to the signal. Fluctuations in the conductor’s resistivity
due to Joule heating give rise to longitudinal oscillations in the
potential that occur at 3ω and higher harmonics, but not at 2ω.
(See SI Appendix for details.)

Two extraneous sources of a 2ω signal are due to 1) the Hall
voltage from a current-induced magnetic field and 2) the Seebeck
effect. In SI Appendix we describe how we have minimized their
contribution so that they do not affect our results.

Results
We measured the potential difference, ∆Vgeom, across the
curved wires in our samples. In all of the samples, without any
current annealing and at Vbg = 0, ∆Vgeom is positive, corre-
sponding to positive charge carriers. This is what is expected
in graphene on a SiO2 substrate (15, 17, 23). We fitted the
measured transverse potentials to a power β of the current
amplitude, |∆Vgeom| ∝ iβ , and we find 〈β〉= 2.00± 0.11. This
confirms that the measured potential rises quadratically with the
current, as shown in Fig. 2A. There is significant scatter in the
signal magnitude between samples as shown in Fig. 2B. For a
driving voltage E = 1.00 V, the current is i ≈ 370± 130 µA and
the average magnitude of the signal is 〈∆Vgeom〉≈ 0.46 mV.
Using Eq. 3 and averaging over the samples, we measure〈
m/(n2t2q3)

〉
≈ 5× 10−6 kg m4·C−3.

After current annealing, we can apply a back-gate voltage Vbg

to the sample and move the Fermi level to the other side of the
Dirac point where the charge of the carriers has the opposite
sign. We find that ∆Vgeom changes sign at a back-gate volt-
age close to that of the conductance minimum, as shown in
Fig. 2C. This confirms that this measurement determines the
sign of the charge carriers using only geometry. [This behav-
ior shows hysteresis with the direction of the Vbg sweep, as is
typical of electrical properties of graphene (23).] Rather than
showing a singularity, ∆Vgeom passes smoothly through zero
near the Dirac point. This is consistent with prior observations
that in graphene samples near the Dirac point, inhomogeneities
and defects make the graphene behave as a random assortment
of electron and hole puddles rather than as a uniform material
with n ≈ 0 (15, 24–26).

Because our samples are thin, the current i is small even
though the current density j is very large. Therefore, the mag-
nitude of the Hall-effect contribution from a current-induced
magnetic field should be (SI Appendix, Fig. S3) at least 20
times smaller than the signal we observe and the prediction of
Eq. 3. We checked (SI Appendix) that ∆Vstraight is not due to
the Seebeck effect by varying the length of the graphene voltage-
measuring leads. We also measured the second harmonic in the
driving current and found that it is too small to account for the
2ω transverse potential that we observe.

The sign of the potential difference, ∆Vstraight, between the
2 sides of the straight wire, is not picked out by the curvature of
the wire. However, we still find a signal whose phase is either
φ= 0 or φ=π, as shown in Fig. 2B. The average signal over
many samples 〈∆Vstraight〉≈ 0, but in a single sample, the mag-
nitude of the signal in the straight section can be comparable
to, but usually smaller than, that in the curved section. We find
〈|∆Vstraight|〉≈ 0.35 〈|∆Vgeom|〉. As we sweep Vbg in a sample
that has been current annealed, ∆Vstraight changes sign (just as
does ∆Vgeom), as shown in Fig. 2D.

We measured ∆Vstraight from a long straight wire with 8 pairs
of electrodes across it, illustrated in Fig. 2E. We average over
4 long-wire samples and find that the magnitude of ∆Vstraight

falls off with d , the distance from where the graphene makes
contact with the metal source and drain as shown in Fig. 2F. The
potential drops by nearly 2 orders of magnitude from near the
leads, where d ≈ 10 µm, to the center, where d ≈ 500 µm.

Discussion
It is unexpected that there is a significant signal across a straight
section of wire. The sign of this voltage varies from place to
place along the wire and in different samples and its magnitude
is smaller than, but comparable to, that in the curved section.
We conclude that the reason for this behavior is that the current
paths are not homogeneous. The signal observed in the straight
sections is thus due to the current taking a meandering path
along the wire.

To rationalize the decrease of ∆Vstraight from the ends of
the wire, we assume that the current is injected from the Ti/Au
leads into the graphene at localized points; the current then fans
out as it moves down the wire. This is consistent with studies
showing that metal contacts introduce inhomogeneous doping
(25) and that contact may be poor due to surface impurities on
the graphene (15, 27). Photocurrent mapping of graphene tran-
sistors has revealed irregular electrostatic potential landscapes,
including at the metal contacts and along the edges (24). As
the current flows down the wire, it expands to fill more of the
wire’s width. Because the signal is quadratic in the current den-
sity, for fixed total current, the smaller the width, the larger
will be the signal.

This interpretation also offers an explanation for the large
measured magnitude of 〈∆Vgeom〉. If the mass in Eq. 3 is taken
to be the bare mass of the electron with charge q = e , our data
suggest a carrier density n2D≈ 1012 cm−2, which is one-tenth
the value expected for our doping level (17). Using the effective
mass of the carriers would give an even smaller value for n2D.
However, if the current paths are not given by the wire width,
w , but rather by the heterogeneity of the conductivity, then we
can account for the observed large value of 〈∆Vgeom〉 by using a
smaller width in Eq. 3.

There is considerable evidence that currents in thin metal films
(28, 29) and in 2D conductors such as graphene are not uni-
form throughout the wires. In graphene this has been ascribed
to scattering at grain boundaries (30), as well as to charge pud-
dles (15, 26) and local strains (31, 32). Graphene’s electrical
properties are anisotropic, depending on the lattice orientation
(33), and they require a conductivity tensor (34) for a detailed
analysis. Since our wires are large enough that they are polycrys-
talline, these features would manifest themselves as resistivity
inhomogeneities. The measurement of a transverse 2ω signal,
∆Vstraight, is an elegant probe of the tortuous current path.

Conclusion
We have demonstrated a transverse voltage across a current-
carrying wire due to geometry alone. In the classical Hall effect,
a magnetic field curves the paths of charge carriers inside a
straight wire so that charges accumulate on the wire edges
transverse to the current. In the geometric analog, we do not
bend the paths of the carriers but instead bend the conductor
itself to create a purely geometric effect. The observed signal
is consistent with a prediction from elementary mechanics and
electrodynamics.

We observe signals even in straight wires. Although the wires
themselves are straight, the internal current paths are not. Just
as for curved wires, charge distributions are necessary to con-
fine currents to any heterogeneous path. The nonlinear trans-
verse voltage offers an additional technique for studying such
heterogeneities.

Schade et al. PNAS | December 3, 2019 | vol. 116 | no. 49 | 24477
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D

F

Fig. 2. Measured transverse potentials in graphene wires. (A) Signal across curved wire versus current. Colors correspond to different samples, each with
rin= 10 µm, rout= 100 µm, and graphene measurement leads of length L≥ 90 µm. Black line, average of power-law fits to individual data sets, has slope =
2.0. (B) Signals from curved (blue) and straight (red) wires in 34 samples at an average current 〈irms〉≈ 370 µA. The radius and angle represent the magnitude
and phase of the measurement. Error bars are smaller than data markers. (C) Signal across a curved wire (blue) and circuit’s conductance (black) versus Vbg

after current annealing. (D) Measurements from curved wires when the Fermi level is below (Left) or above (Right) the Dirac point, controlled by changing
Vbg after current annealing. Symbols correspond to different samples. For a curved wire phase φ= 0 indicates positive charge carriers. (E) Long-wire design
with 8 pairs of measurement leads. (F) Signal versus distance from the metal edges at either end of the straight wire, averaged across back-gate voltage
sweeps from −100 V to +100 V in 4 samples.

An important difference between the classical Hall effect and
the geometric effect that we have demonstrated is that the lat-
ter depends on the mass of the charge carriers. If the relevant
mass in Eq. 3 is the effective mass, then this transverse potential
represents a simple way of measuring the effective mass in wires
where current path tortuosity is negligible. Alternative methods
of measuring the effective mass of charge carriers in graphene
are nontrivial (19, 20).

Recent work (9) has found a nonlinear Hall effect due to
an induced Berry curvature (35) in bilayer conductors. Such an
effect is not expected to occur in a single-layer material such as
graphene and is not predicted to depend on the wire curvature.
Our purely geometric effect can contribute to the signals found

in those experiments and in turn those effects, if present, could
masquerade as a geometric effect.

Low-temperature quantum Hall effects arise due to time-
reversal symmetry breaking in a magnetic field. In the presence
of quantum interactions, the magnetic Hall effect becomes par-
ticularly remarkable; it would be interesting to consider whether
any striking quantum effects could be observed at very low
temperatures due to wire geometry alone.

Materials and Methods
Circuit Fabrication. We begin with CVD graphene that has already been
transferred by the manufacturer (Graphenea) to a doped silicon wafer with
a 300-nm SiO2 gap and diced to 10-mm × 10-mm chips in a class 1,000

24478 | www.pnas.org/cgi/doi/10.1073/pnas.1916406116 Schade et al.

D
ow

nl
oa

de
d 

at
 U

N
IV

E
R

S
IT

Y
 O

F
 C

H
IC

A
G

O
-S

C
IE

N
C

E
 L

IB
R

A
R

Y
 o

n 
D

ec
em

be
r 

11
, 2

01
9 

https://www.pnas.org/cgi/doi/10.1073/pnas.1916406116


PH
YS

IC
S

cleanroom. To improve adhesion between the graphene and the oxide sub-
strate, we anneal the samples at 300 ◦C in nitrogen for at least 6 h using a
Gemstar ALD (Arradiance).

We use the cleanroom in the Pritzker Nanofabrication Facility at the Uni-
versity of Chicago for our photolithography procedure. Our first round of
photolithography is for the metal portions in our circuit designs. We first
spin LOR 3A (MicroChem) onto the graphene at 500 rpm for 10 s and
then at 3,000 rpm for 45 s, for an undercut during development. We then
bake the sample at 180 ◦C for 5 min. We next spin AZ 1512 photoresist
(Clariant) onto the sample at 500 rpm for 10 s and then at 4,500 rpm for
45 s and bake it at 115 ◦C for 1 min. We use a Heidelberg MLA150 Direct
Write Lithographer to expose the pattern for our metal pads onto the chip,
using a 405-nm laser and a dose of 100 mJ/cm2. We develop the photore-
sist in AZ 300 MIF (Clariant) under gentle agitation for 1 min and then
transfer it to deionized water for 1 min. We immediately dry the sample
with nitrogen.

We use electron-beam evaporation (Angstrom Nexdep) to deposit a layer
of metal onto the substrate for the electrode pads. We first deposit 2 nm
of titanium (0.5 Å/s) and then 50 nm of gold (1.0 Å/s). We perform lift-
off by submerging it overnight in AZ NMP (Clariant) at room temperature.
The next morning, we rinse the sample with acetone (Fisher/VWR) and iso-
propyl alcohol (Fisher/VWR) and then dry it with nitrogen. We are careful to
prevent the chip from drying out while it is exposed to acetone.

We next perform another round of photolithography to pattern the
graphene itself. We spin poly(methyl methacrylate) (495 PMMA A 4;
MicroChem) onto the substrate at 500 rpm for 10 s and then at 4,000 rpm
for 60 s. We bake the sample at 145 ◦C for 5 min. Next we spin AZ 1512 pho-
toresist onto the sample again at 500 rpm for 10 s and then at 4,500 rpm
for 45 s. We bake the sample at 115 ◦C for 1 min. Using the direct write
lithographer once again, we align to our previous pattern and then expose
an inverted pattern for the graphene and metal portions of the circuits,
using the 405-nm laser and a dose of 100 mJ/cm2. During this step, we
expose the areas where the graphene will ultimately be removed. We
develop the photoresist with the same steps that we use in our first round
of photolithography.

We use oxygen plasma etching (YES CV200 Oxygen Plasma Strip/Descum
System) to remove the exposed PMMA layer and to remove the graphene
once it is exposed. Using 50 sccm of oxygen, we etch at 400 W for 80 s.
We inspect it under an optical microscope afterward to determine whether
the graphene has been completely removed from the exposed areas. If it
has not, we etch for 20 s or 40 s longer. Finally, we strip off the unexposed
photoresist and PMMA by submerging the sample vertically in acetone for

at least 6 h. Afterward, we rinse the sample with isopropyl alcohol and dry
it with nitrogen.

We inspect each device on the chip under an optical microscope to make
sure that the metal and graphene regions are intact and well aligned. We
vacuum seal the chips for storage under low vacuum once fabrication is
complete.

Current Annealing. As initially fabricated, the samples are highly doped; the
Fermi level is far from the Dirac point. Under these conditions it is impracti-
cal to move the Fermi level to the other side of the Dirac point by applying
a back-gate voltage. However, we can current anneal (22) the samples by
injecting a current of i ≈ 3 mA (〈j〉≈ 107 A/cm2). To do this, we apply 10.0 V
between the source and drain of the device for at least 2.5 h and typi-
cally overnight, while the sample is exposed to air. Once this is done, the
back-gate voltage corresponding to the graphene conductance minimum
typically falls within the range of 0 to +100 V, so we can access the other
side of the Dirac point by using a back-gate voltage less than +100 V.

Electrical Measurements. We perform electrical measurements on the
graphene circuits using a probe station where the samples are exposed
to air at room temperature. We use an SR830 lock-in amplifier (Stanford
Research Systems) for transverse potential measurements at frequencies
between 10 Hz and 250 Hz. To measure the resistance of the graphene wires,
we use a Model SR570 Low-Noise Current Preamplifier (Stanford Research
Systems) and a BNC-2110 Shielded Connector Accessory (National Instru-
ments). We control the back-gate voltage using an HP 6827A Bipolar Power
Supply/Amplifier.

Data Availability. All data needed to evaluate the conclusions in this paper
are present in the main text and in SI Appendix.
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