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From fundamental studies of light-matter interaction to applications in quantum networking &
sensing, cavity quantum electrodynamics (QED) provides a platform-crossing toolbox to control
interactions between atoms and photons. The coherence of such interactions is determined by the
product of the single-pass atomic absorption and the number of photon round-trips. Reducing the
cavity loss has enabled resonators supporting nearly 1-million optical roundtrips at the expense
of severely limited optical material choices and increased alignment sensitivity. The single-pass
absorption probability can be increased through the use of near-concentric, fiber or nanophotonic
cavities, which reduce the mode waists at the expense of constrained optical access and exposure to
surface fields. Here we present a new high numerical-aperture, lens-based resonator that pushes the
single-atom-single-photon absorption probability per round trip close to its fundamental limit by
reducing the mode size at the atom below a micron while keeping the atom mm-to-cm away from
all optics. This resonator provides strong light-matter coupling in a cavity where the light circulates
only ∼10 times. We load a single 87Rb atom into such a cavity, observe strong coupling, demon-
strate cavity-enhanced atom detection with imaging fidelity of 99.55(6)% and survival probability
of 99.89(4)% in 130 µs, and leverage this new platform for a time-resolved exploration of cavity
cooling. The resonator’s loss-resilience paves the way to coupling of atoms to nonlinear & adaptive
optical elements and provides a minimally invasive route to readout of defect centers. Introduction
of intra-cavity imaging systems will enable the creation of cavity arrays compatible with Rydberg
atom array computing technologies, vastly expanding the applicability of the cavity QED toolbox.

I. INTRODUCTION

Cavity quantum electrodynamics, the study of light-
matter interaction through coupling of emitters to the
field of an optical resonator, enables coherent informa-
tion exchange between material and photonic degrees of
freedom, with wide-ranging applications from qubit state
detection [1–4], to sensing [5–8], and networking [9–11].
Such tools apply not only to coupling of light to laser-
cooled atoms and ions [12–15], but also transmon qubits,
rare earth ionic dopants [16, 17], color centers [18–20],
quantum dots [21, 22], and other optically active emit-
ters.

The fundamental figure of merit that controls the co-
herence of light-matter interactions is the cooperativity,
given by C = 4g2

κΓ , where g is the coherent information
exchange rate, κ is the decay rate of the cavity field and
Γ is the decay rate of the material excitation [23]. For
applications in quantum information science, the num-
ber of coherent information exchanges is approximately√
C (SI B), and the infidelity of a cavity mediated gate is

ϵ ≈ 2π√
C

([24, 25] and SI B). Cavities can also be harnessed
for Purcell enhanced atomic state detection, where the
ratio of atomic emission into the cavity vs free space is
C [23]; equivalently, the Purcell enhanced collection solid
angle is 4π × C.

For a closed optical transition such as those available in
alkali atoms, the cooperativity of a macroscopic resonator

may be expressed in terms of the resonator geometry C =
12
π2

F
2π

λ2

w2 ([23] and SI P), where F is the resonator finesse
defined so that F/(2π) is the mean number of times the
light passes the atom within the cavity, w is the optical
mode size at the atom, and λ is the wavelength of the
optical transition. At fixed λ, this expression suggests
two routes to strong coupling (C > 1)– large finesse or
small mode waist.

Finesses above 105 have been achieved using ion-beam
sputtered dielectric coatings on super polished [26] or
laser ablated [27] substrates, and recently finesses above
106 have been achieved using reactive ion etching [28] to
reduce surface roughness. Further gains would necessi-
tate breakthroughs in atom-scale surface polishing and
part-per-million-level coating absorption.

The decades-long effort to reduce the mode size w has
spanned numerous approaches: in two-mirror cavities,
the near-confocal geometry [29] with length L equal to
the mirror radius of curvature R is a compromise be-
tween resonator alignment sensitivity and optical access
that results in a mode-waist of w =

√
Rλ
2π . Efforts to

reduce the mode waist in two-mirror cavities beyond this
limit have focused on either (a) small mirror separation
L ≪ R (near-planar resonators), providing a substan-
tial reduction in mode waist [12, 27] at the expense of
reduced optical access and sensitivity to E-fields from
proximal surfaces; or (b) near-concentric resonator ge-
ometry L ≈ 2R, providing a few-fold waist reduction
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compared to the confocal geometry at the expense of in-
creased alignment sensitivity [4, 30, 31].

Achieving yet-smaller mode waists requires exploring
more sophisticated resonator geometries. For example,
by employing an additional long propagation arm and/or
a pair of convex mirrors, the bowtie resonator allows
for mode-waists down to a limit imposed by astigma-
tism induced by off-axis incidence on the focusing mir-
rors [32, 33]. Such resonators have demonstrated waists
down to ∼ 7 µm [34], the limit thus far achieved for high-
finesse macroscopic Fabry-Pérot cavities. Wavelength-
scale resolutions have been observed in a multi-pass imag-
ing system for biological samples [35], but never in a
macroscopic device compatible with atomic cavity QED.

In this work we present, for the first time, a macro-
scopic resonator with a λ-scale mode waist. This enables
us to enter the strong coupling regime of cavity QED in
a resonator with finesse below 50. In Section II we in-
troduce this first-of-its-kind resonator geometry and de-
scribe its construction and stability. In Section III we de-
scribe the process of loading/detecting a single atom and
use it to characterize the resonator with a measurement
of the atom-cavity coupling. In Section IV we demon-
strate fast atom detection and in Section V we conclude
by describing opportunities to leverage this new approach
for emerging quantum science and technology.

II. SMALL WAIST LENS CAVITY

The principal innovation in our resonator design is the
integration of a high numerical aperture (NA) aspheric
lens (focal length f) within a two mirror Fabry-Perot
cavity. This lens divides the resonator into a short arm
(length Lshort) between the lens and a spherical mirror
(radius of curvature R), and a long arm (length Llong)
between the lens and a planar mirror (see Fig. 1a). When
Llong, R ≫ f , a small waist appears in the short arm
near the center of curvature of the spherical mirror and
focus of the aspheric lens. The size of this waist, w0 ≈√

f
Llong

×
√

fλ
2π , is very similar to that of a confocal cavity,

but with additional demagnification induced by the long
arm.

There are several important features of note: (i) if the
long arm is long enough, sub-micron waists are possible
at the center of the stability diagram, limited by clipping
and aberration due to finite lens NA (see SI M. (ii) us-
ing an asphere allows us to minimize aberrations while
maintaining a high numerical aperture (NA), unlike a
bowtie resonator with spherical mirrors where astigma-
tism limits the achievable waist [32] (iii) with a round
trip Gouy phase of π/2, the transverse mode structure
of the cavity is neither that of a concentric or a confocal
resonator, suppressing mode mixing due to lower order
aberrations [36]. For our parameters (Llong = 30 cm,
f = 1.45 mm), we expect a waist of 930 nm (see Fig. 1b).
See SI H
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FIG. 1. Resonator Design. The heart of the appara-
tus, shown in (a), is a cavity consisting of a spherical mir-
ror (radius R) that focuses light down to a sub-micron spot,
a high-NA aspheric lens (focal length f) that re-collimates
it, and finally a long propagation (length Llong). This long
propagation distance necessitates that the vacuum chamber
window (gray) reside inside of the resonator. An optical
conveyor belt vertically transports 87Rb atoms to the res-
onator from a magneto-optical trap. (inset) A cavity trans-
mission spectrum reveals a (fitted) finesse F = 40(2); for
a 480 MHz free spectral range (FSR), the linewidth is thus
κ = 2π × 12.4(7) MHz. (b) The paraxially computed mode
waist (w0) is plotted vs the distance between the aspheric
lens and spherical mirror, quantified as the deviation from
overlapping lens and mirror foci. Introduction of the asphere
within the cavity allows for the exploration of resonators that
are asymmetric, consisting of two propagation arms of un-
equal lengths. For Llong ≫ Lshort, the width of the stabil-
ity region (f2/Llong) compresses, leading in the extreme case
(Llong ≈ 30 cm) to a sub-micron waist that persists even in
the middle of the stable range, rather than exclusively near
the (highly-sensitive) edges as is common in macroscopic two
mirror cavities. (inset) A direct measurement of the mode
waist (via scanning a nano-pore across the mode, see SI L)
bounds the mode size at a maximum 1/e2 radius of 1000 nm.

In our implementation of the resonator geometry de-
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FIG. 2. Single Atom Loading (a) Early time dynamics of the Rb cloud emission into the cavity. First (dark green), the
signal increases as atoms are cooled into the cavity-enhanced 785 nm dipole trap. After reaching a maximum (yellow) the
atoms at the center begin to parity project, leading to loss. (inset) Finally (orange) the signal settles to quantized levels,
indicating the presence of 0 or 1 atoms. (b) Full schematic of single-atom loading and localization schemes. First, the atoms
are released from the transport lattice and cooled and compressed into the intracavity-dipole trap (red) by the 3D molasses
beams (dark blue), where the intracavity-dipole trap is created by the addition of off-resonant sidebands exactly 10 FSRs away
(see SI D). Near the small waist, the atoms in the dipole trap undergo light-assisted collisions, parity projecting until only
1 atom is left. In light blue, we show the histogram of scattering statistics with a 1 ms bins for a single atom in a dipole
trap. This corresponds to a scattering rate of ≈ 20 kHz. The single atom in the dipole trap samples the nodes and anti-nodes
readout cavity lattice (light green) equally, cutting the effective cooperativity by a factor of two. To improve on this, we alter
the profile of the trapping light from a dipole trap to a lattice by removing the far sidebands. We take care to choose a 785
nm FSR which is phase-matched with the 780 nm readout lattice. Cooling is performed during this process, leading to a single
atom which is localized to a single cavity anti-node. We plot a histogram of statistics for the localized single atom with a 1 ms
bin size (pink) and find a scattering rate of ≈ 50 kHz.

scribed above, we mount the asphere and the curved
mirror in an ultra-high vacuum load-lock system (see
SI Fig. S8 and [37]). The mount is a custom designed
3-axis piezo-driven and mechanically multiplied flexure-
stage, providing precise control of the relative position
of the asphere and mirror, crucial to aligning the cav-
ity in the presence of drifts (see SI N). We place the
in-coupling (R=98%) flat end mirror of the cavity out-
side vacuum and use it primarily to in-couple our probe
and trapping light. We insert a pellicle right after the
flat mirror to pick-off a controllable (angle-dependent)
fraction of the light circulating in the cavity to either
measure cavity transmission or atomic fluorescence. Fur-
thermore, we employ an electro-optic modulator between
the pellicle and vacuum window for high bandwidth cav-
ity locking. We directly verify a micron scale waist in
an out-of-vacuum test setup by using a gold coated film
containing a 200 nm diameter aperture (see SI L).

III. ATOM-CAVITY COUPLING

To conclusively demonstrate high cooperativity and
the utility of the platform in atom-based quantum in-
formation protocols, we trap a single atom at the waist
of the resonator and use it to probe the cavity. Our ex-
periments begin with a cloud of laser cooled 87Rb atoms
from a magneto optical trap (MOT) which is transported
to the small cavity waist location in a one-dimensional
optical conveyor belt (see Fig. 1a). Additional polariza-
tion gradient cooling (PGC) at the cavity waist location
loads the atoms into an intra-cavity dipole trap at 785 nm
with a peak depth of U0/kB = 2.0(5) mK (measured as
half the trap-induced shift of the atom-cavity resonance
condition).

It is essential that atoms within the cavity be able to
collide to ensure that the PGC process drives parity pro-
jection [38]. As such, the atoms are first loaded into a
dipole trap rather than a lattice. We wash out the cavity
standing wave by applying sidebands to the 785 nm cav-
ity lattice laser, to excite cavity modes 10 free spectral
ranges away, creating a dipole trap at the small waist lo-
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FIG. 3. Trapped Atom Characterization. Once an
atom is detected, we probe its cavity coupling: (a) Cav-
ity transmission vs probe laser frequency, with/without atom
in orange/purple; the mode splitting apparent in the pres-
ence of the atom indicates strong light-matter coupling with
C = 1.6(2). (b) Two-time correlator g(2)(τ) of cavity-
fluorescence from a dipole-trapped atom vs time difference τ .
The fast (∼ 3 µs) oscillations (inset) come from radial oscil-
lations away from the cavity axis where coupling is strongest,
rapidly damped by PGC. The slow decay over ∼ 50 µs comes
from over-damping the weak axial dipole trap. A fit (solid,
see SI J), indicates axial & radial temperatures differ by a fac-
tor ∼ 100 (Tz ≈ 5 µK, Tx,y ≈ 600 µK), while axial & radial
PGC-damping rates differ by a factor ∼ 10 (γx,y = 500 ms−1,
γz = 5000 ms−1). (c) g(2)(τ) of lattice trapped atom; absence
of slow decay indicates stronger axial trapping of the lattice.
The fit (solid, see SI J), reveals equal axial & radial temper-
atures = 200 µK, with axial & radial damping rates differing
by a factor of four (γx,y = 112 ms−1, γz = 400 ms−1). b & c,
insets depict trapping potential in red, light-matter coupling
in white, and extent of atomic motion in purple.

cation (see SI D). Once a single atom is loaded into the
dipole trap, we remove the sidebands while cooling over
2 ms, reloading the atom into a single cavity lattice well.
The trapping wavelength must thus be chosen to align the
780 nm and 785 nm cavity standing-waves at the location
of the small cavity waist (see SI E). To probe the system

we monitor the PGC-induced fluorescence scattered into
the cavity, picked off by the pellicle and directed into a
pair of single photon counting modules (SPCMs).

We first study the atom-cavity interaction with out-
coupling T = 4% well below the internal cavity round
trip loss Lrt = 11.7% to achieve a near-maximal finesse
of F = 40.0(1), and hence a predicted single-atom co-
operativity Cmax = 6. Fig. 2a shows averaged fluores-
cence as an atomic ensemble is cooled into the intra-
cavity dipole trap. An initial compression leads to an
increase in the fluorescence, followed by a sharp decrease
during parity-projection, after which the signal settles to
quantized levels (Fig. 2a). This quantized signal arises
from discrete atomic occupancy of the cavity trap, domi-
nated by either 0 or 1 atom loaded [39]. Fig. 2b shows the
histogram of collected fluorescence photon numbers from
dipole trapped atoms, with a clear separation between
the background and a single atom loaded. After trans-
ferring to an intracavity lattice with depth 800(80) µK,
the signal is enhanced 2-fold because the atom is better
localized to an antinode of the 780 nm cavity field (see
SI E).

Armed with the ability to condition measurements on
the presence of an atom, we extract the single-atom cav-
ity coupling strength by measuring the vacuum Rabi
splitting. In Fig. 3a, we plot the cavity transmission as we
scan a 780 nm probe laser across the cavity resonance,
both with (purple) and without (orange) an atom. A
single-atom vacuum Rabi splitting is clearly visible with
a fitted coupling strength g = 2π × 5.6(3) MHz. Com-
bined with the atomic linewidth Γ = 2π × 6.065 MHz
and our measured κ = 2π × 13.3(1) MHz, this yields
a cooperativity, C = 1.6(2), placing us in the regime
where emission into the cavity is more likely than into
free space. This cooperativity is about a factor of ∼ 4
lower than the maximum achievable due to a combina-
tion of cavity birefringence (≈ 2× reduction) and atomic
motion (≈ 2× reduction) (see SI K). We also leverage
our ability to perform atom-conditioned measurements
to extract the second order correlation function, g(2)(τ)
of the atomic fluorescence, taken both in the dipole trap
(Fig. 3b) and lattice (Fig. 3c) (see Supplement G for
parameters). Both plots exhibit µs-scale oscillations in-
dicative of radial trapping that is damped out over a few
periods by the optical-molasses (see SI J for derivation
of the solid fits); this oscillation reflects the fact that
atoms are more likely to scatter at times when they are
near cavity axis (large g2(τ = 0)), and less likely to scat-
ter a half trap period later when the atom has oscillated
away from the cavity axis (small g2(τ = Ttrap/4)). Data
from the dipole-trapped atom exhibits an additional slow
decay indicative of over-damping of the weakly-trapped
axial motion. By contrast, the lattice-trapped atom is
strongly confined in the axial direction, and so exhibits
an additional, even faster (axial) oscillation in the g2 in-
stead place of over-damped decay apparent for the dipole-
trapped atom.
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IV. OPTIMIZED ATOM DETECTION

The low outcoupling probability employed for the
aforementioned experiments is not optimal for atomic
state detection in the presence of fixed internal cav-
ity losses. The optimum outcoupling is a tradeoff: in-
creased outcoupling improves the fraction of cavity pho-
tons leak out of the cavity before they are lost to scat-
tering/absorption of cavity optics, while reduced out-
coupling improves the cooperativity and thus the prob-
ability that the atom scatters light into the cavity in
the first place. As we show in SI A, the optimal op-
erating point occurs when the outcoupling probability is
Lint

√
1 + Cmax, where Cmax is the cooperativity with no

outcoupling and Lint is the internal cavity loss per round
trip. To further demonstrate the flexibility of our plat-
form, we enter this optimal regime by tuning the angle
of the intra-cavity pellicle to outcouple more light (opti-
mized at 20 %, with an estimated new cooperativity of
≈ 0.8).

Figure 4a shows atom detection for optimized outcou-
pling. Compared to the low-outcoupling configuration,
we observe an increase in the detected photon rate by a
factor of ∼1.7 (Fig. 4a), consistent with expectations (see
SI A). A systematic, model-independent analysis of atom
detection (see Ref. [40] and SI O) reveals that, within
130 µs, we are able to detect an atom with fidelity of
99.55(6)% (see Fig. 4b), while maintaining an atom sur-
vival probability of 99.89(4) % (see Fig. 4b inset), con-
sistent with the atom lifetime in the presence of the mo-
lasses light. These numbers are limited by the internal
losses of our resonator, without which we could increase
the resonator finesse, and thereby the Purcell enhance-
ment factor of the resonator, while maintaining efficient
resonator outcoupling. Reducing these losses, through a
combination of better anti-reflection coatings and lower
surface roughness, will immediately reduce the readout
time.

V. OUTLOOK

In this paper we have introduced an approach to cav-
ity QED that leverages high NA, low-finesse cavities to
enter the strong coupling regime. We load a single atom
into such a cavity, with a finesse F = 40, harnessing cav-
ity enhancement to create first a dipole trap and then
a lattice, which efficiently confines the atom. We vali-
date that we are in the strong coupling regime via an
atom-conditioned vacuum Rabi splitting measurement,
proving the presence of a single atom via a quantized
signal. Temporal correlations of the light scattered by
the atom into the cavity enable precise measurements of
both atom temperature and PGC damping coefficients.
When we optimize the cavity outcoupling to maximize
total atomic light scattering, we are able to detect a sin-
gle atom with a fidelity of 99.55(6)% in a time of 130 µs,
with a survival rate of 99.9%.
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FIG. 4. Characterizing Atom Detection Fidelity. (a)
Histogram of cavity fluorescence photons collected in 1 ms
bins from a single lattice-trapped atom at larger T = 20%
cavity outcoupling. The measured scattering rate is ∼ 75 kHz,
1.7× higher than that measured in the same configuration at
T = 4% outcoupling. See Supplement A for derivation of rela-
tionship between total cavity collection rate and outcoupling.
(inset) Correlations between subsequent measurements of a
single atom: upper-right quartile reflects persistence of an
atom through adjacent measurements; lower-right quartile
reflects an atom lost between the measurements; lower-left
quantile reflects measurements both with no atom; upper-
left quantile reflects appearance of an atom between mea-
surements, indicating imperfect dispersal of the transported
cloud. The elliptical shape of the data in the upper-right
quadrant indicates correlations in scattering rate between
subsequent measurements, likely due to site to site variation
in cavity coupling strength. (b) The model-independent fi-
delity estimates are plotted vs measurement time, showing a
fidelity of 99.55(6)% reached at a measurement time of 130 µs.
The (inset) depicts the corresponding estimated loss proba-
bility vs the imaging time and with a model (solid curve) for
a survival rate of 99.89(4)% and a112(8) ms lifetime (see SI
F).

The parameters of our platform are far from optimized:
a non-birefringent cavity will provide 2× the collection
efficiency, while lower atom temperature will provide an
additional factor of 1.8; free-space photon counters pro-
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vide an extra factor 2 vs their fiber-coupled counterparts,
for a projected detection time of 20 µs. Reduced intracav-
ity loss will yield further improvements in collection effi-
ciency and cooperativity, enabling non-destructive atom
detection in less than ∼ 10 µs. See SI Q. The mini-
mal finesse requirements mean that it will be possible
to strongly couple the atom to more sophisticated intra-
cavity optics: nonlinear crystals will enable in-situ wave-
length conversion for integration with telecom infrastruc-
ture [41]; electro-optics will provide rapid tunability [42];
adaptive optics will enable yet-higher NA operation [43];
and nanophotonics in the end-mirror will enable direct
integration with waveguide devices.

Equally exciting is the possibility of integrating these
cavities with solid-state emitters that otherwise require
nanoscale cavities to achieve large cooperativity due to
inherent material-induced scattering/absorption: cou-
pling to rare-earth ions and silicon vacancies, with their
nearly-closed transitions, would greatly increase the flex-
ibility of those platforms. Finally, in combination with
microlens arrays to stabilize an array of waists, it should
be possible to extend the small-waist resonator technique
demonstrated in this paper to arrays of resonators spaced
by a few microns, for immediate integration with Ryd-
berg atom arrays [44, 45]. Crucially, because atoms can
be mm-to-cm distances from the nearest optic, the sensi-
tivity of Rydberg atoms to surface potentials is mitigated
in these cavities compared to their nanophotonic coun-
terparts. In short, this work heralds a new era of optical
cavity QED where strong light-matter coupling is widely
available, rapidly extensible, and compatible with a much
broader array of experimental platforms and technolo-
gies.
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SUPPLEMENTARY INFORMATION

Supplement A: Derivation of Out-scattering Efficiency

For a cavity with cooperativity Cmax in the absence of any outcoupling (just intracavity losses), the question we
want to address here is how much outcoupling to add to maximize the fraction of photons scattered by the atom that
leak out of the cavity: if we outcouple too little, more of the photons are lost to intracavity losses; if we outcouple
too much we reduce the cooperativity and more photons are lost to free-space scattering.

Suppose we outcouple a factor β more photons than are lost intracavity. This provides a cavity outcoupling fraction
β

1+β and a cavity cooperativity C = Cmax

1+β The fraction of photons scattered by the atom that leak out of the cavity for

detection is then χ = β
1+β × Cmax/(1+β)

1+Cmax/(1+β) . Maximizing this over β yields β =
√
1 + Cmax, and χ = 1− 2

√
1+Cmax−1
Cmax

.

In the limit of large maximum cooperativity Cmax ≫ 1, we then find that C ≈
√
Cmax and χ ≈ 1− 2√

Cmax
; on the

other hand, in the limit of small cooperativity Cmax ≪ 1, we find that C ≈ Cmax

2 and χ ≈ Cmax

4 .
That is, in the limit of large Cmax we should outcouple enough to reduce the cooperativity to the square root of

its maximum value, resulting in outcoupling which is ≈
√
Cmax times larger than the intracavity losses. By contrast

small Cmax we should set our outcoupling equal to our intracavity losses, halving the cooperativity.
These results are interesting because common knowledge (see SI B) was that coherent transfer of photons between

atoms has an infidelity (for C ≫ 1) of approximately 2π√
C

, whereas scattering light into a cavity (thought of as
an incoherent process) has an infidelity of approximately 1

C ; rather than attributing this difference to coherent vs
incoherent scattering, it is now clear that the difference arises from neglecting cavity outcoupling efficiency in the latter
case. This is valuable to know, because otherwise it would have appeared more efficient to pitch and catch quantum
information between atoms in separate cavities rather than coherently transferring between atoms in the same cavity
- it is now apparent that these two processes have the same (unfavorable) scaling with the maximum cooperativity of
the resonator.
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Supplemental Information Fig. S1. Cavity Collection Efficiency. (a) Photon collection efficiency as function of outcoupling
fraction for measured cooperativity (b) histogram showing improvement between increase in outcoupling from 4% (pink) to
20% (red)

Supplement B: Cavity-Mediated Coupling Between Ensembles

This section follows the approach outlined in Jon Simon’s thesis [1]. Suppose we have two atoms (a & b) in the
same cavity and want to coherently couple a hyperfine excitation (between states g & f) from one to the other via a
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cavity-stimulated Raman transition. The Hamiltonian is:

H = g
[
c†(σfe

a + σfe
b ) + c(σef

a + σef
b )
]
+Ω(σeg

a + σeg
b + σge

a + σge
b ) + (δc + i

κ

2
)c†c+ (∆+ i

Γ

2
)(σee

a + σee
b ) (B.1)

Here the cavity is detuned from Raman resonance by an amount δc, the Raman transition is detuned from the
excited state by an amount ∆, g is the single photon/single atom light-matter coupling strength on the f ↔ e
transition, Ω is the Rabi frequency for the laser driving the g ↔ e transition, Γ & κ are the excited atom and cavity
decay rates, c†/c are the field creation and annihilation operators, and σpq

l is the transition operator from state q to
state p in atom l.

There are, of course many pulse protocols to convert |fg; 0⟩ ↔ |gf ; 0⟩. In the presence of dominant cavity and
excited atom loss, they all have the same optimal performance up to factors of order unity. For simplicity we will skip
counter-intuitive driving and all other adiabatic approaches (though they are covered in Simon’s thesis), and consider
only a 4-photon Rabi process.

In that case we can adiabatically eliminate the e-states, resulting in an effective 2-photon Hamiltonian (neglecting
second order shifts that can be compensated with cavity & laser detunings):

Heff
2 =

gΩ

∆

[
c†(σfg

a + σfg
b ) + c(σgf

a + σgf
b )
]
+ i

Ω2

∆2
Γ(σff

a + σff
b ) + (δc + iκ/2 + i

g2

∆2
Γ)c†c (B.2)

Further eliminating the cavity mode results in an effective 4-photon Hamiltonian (neglecting fourth order shifts
that can be tuned out):

Heff
4 =

g2Ω2

∆2δc

[
σfg
a σgf

b + σgf
a σfg

b

]
+ i

[
Ω2

∆2
Γ +

g2Ω2

∆2δ2c
(κ/2 +

g2

∆2
Γ)

]
(σff

a + σff
b ) (B.3)

A full flip-flop of an excitation between atoms a and b thus requires a time τ = π/
(

g2Ω2

∆2δc

)
, resulting in a total

decoherence induced loss ϵ = τ ×
[
Ω2

∆2Γ + g2Ω2

∆2δ2c
(κ/2 + g2

∆2Γ)
]
. In the limit ∆ → ∞, this becomes ϵ = π

2Γδ2c+g2κ
2g2δc

. This

loss is minimized for δc =
g
√
κ√

2Γ
= κ

√
C
8 , with a value ϵ = 2π√

2C
.

Because any two-atom gate can be implemented by [2] mapping two physically separate qubits into one four-level
atom via the cavity field, performing internal four-level operations on the atom, and then mapping back to separate
physical qubits via the cavity field, ϵ sets a lower limit on the infidelity of such a gate.

Similarly, the number of information exchanges between atoms, or between atom and cavity field, is 1/ϵ ∝
√
C.

Finally, a bit of interpretation: if we go to too large a detuning from the cavity, the 4-photon Rabi oscillation slows
down too much and we are dominated by excited-state loss; if we go to too small a detuning from the cavity, the
4-photon Rabi oscillation speeds up, but not as much as the cavity leakage, and we are dominated by that. The sweet
spot is in the middle. The excited state detuning, as long as it is large enough, does not contribute at all. Indeed one
can show that even on resonance with excited state a counter-intuitive pulse sequence gives the same performance up
to a numerical factor of order unity (see ref. [1]).

Supplement C: Cavity Optics Setup

See Figure S2 for a full schematic, including intra-cavity optics, photo-detectors, and in-coupling paths. The setup
includes an EOM and a pellicle beam splitter inserted into the long propagation arm of the cavity. These are used
for high-bandwidth cavity stabilization and tunable outcoupling respectively. During operation, we tune the angle of
the pellicle to switch between 4% and 20% pick-off, depending on if we are optimizing for atom-light coupling (as for
a VRS) or overall photon collection efficiency (as for the readout histograms). The pellicle reflects light out on both
sides, requiring the use of two SPCMs to maximize collection. Using the same pellicle, we also pick off a fraction the
785 nm trap light for a low-bandwidth, slow locking path, from which we generate an error signal and feedback to the
piezo and EOM.

Supplement D: Intracavity Dipole Trap from Multichromatic Driving

We form our intra-cavity trap by driving the cavity with a far detuned 785 nm laser. Driving a single longitudinal
mode of the cavity results in a one-dimensional optical lattice with a small waist, which after parity projection, typically
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Supplemental Information Fig. S2. Detailed Cavity Setup. The resonator with all in-cavity optics is highlighted in gray.
In addition to the aspheric lens, spherical mirror, and planar mirror, we also depict the pellicle used for outcoupling, and the
intra-cavity electro-optic modulator that we use to lock the resonator with ∼ 100 kHz of bandwidth. Light outcoupled from
both sides of the pellicle is coupled to single photon counting modules (SPCMs); a dichroic on one side of the outcoupler picks
off the 785 nm locking light.

leads to single atoms trapped at multiple sites of the lattice. Deterministic trapping of only one atom coupled to the
cavity mode requires an optical tweezer potential – a dipole trap with a small waist. To create this dipole trap, we
drive multiple longitudinal modes of the cavity by phase modulation of the trapping light. Since different longitudinal
modes are phase shifted (in space) with respect to each other, choosing appropriate phase modulation frequency and
strength can result in significant suppression of the sinusoidal intensity variation across a finite region [3]. For our
cavity, we require this region to be centred at d = 1 cm from the curved mirror – the location of the small waist.
Phase modulation with an EOM at n times the free spectral range (FSR) results in a trapping potential given by (to
the first order):

U = U0

(
J−1(β)

2 sin2(kz − nd

L
π) + J0(β)

2 sin2(kz) + J1(β)
2 sin2(kz +

nd

L
π)

)
(D.1)

where U0 is the depth of the initial optical lattice, k is the wave-vector of the carrier, β is the modulation depth,
L ≈ 30 cm is the length of our cavity, and Jα is the Bessel function of first kind. We note the following identity :

sin2(kz − 10

30
π) + sin2(kz) + sin2(kz +

10

30
π) =

3

2
(D.2)

For our cavity L/d ≈ 30, thus driving the n = 10 sidebands at equal intensity as the carrier (i.e. J−1(β)
2 =

J0(β)
2 = J1(β)

2), results in a cancellation of the sinusoidal potential at the cavity waist resulting in a dipole trap
with depth U0/2 (see Fig. S3). While this seems to imply that such a cancellation is only achievable with a fine tuning
of the length and the waist location, numerical calculations suggest that it is possible for any location by changing
the modulation depth. Note that the effect of higher order sidebands can be similarly compensated for by slightly
changing the modulation depth.

Supplement E: Aligning the 780 nm cavity mode and 785 nm intra-cavity lattice

Getting the strongest possible coupling between the atom and the cavity requires that the atom be trapped at the
780 nm cavity mode anti-node. We achieve this by using an intra-cavity lattice for trapping the atom, and choosing the
frequency of the lattice laser such that the anti-nodes of lattice standing wave and the cavity mode are approximately
aligned at z = d, where d ≈ 1 cm is the distance of the mode anti-node closest to the cavity waist, from the curved
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Supplemental Information Fig. S3. left the intensity profile of a single longitudinal mode of the cavity, which takes the form
of standing wave alternating with nodes and anti-nodes right a smooth intensity profile is required to trap a single atom using
light assisted collisions at the small waist. To realize this in the cavity, we drive sidebands 10 FSRs from the carrier, tuning
the relative power in the peaks until the multiple longitudinal modes interfere to create a dipole trap.

mirror 1.
To see how we find the correct lattice frequency, note that the lattice standing wave is given by the function sin2(ndL ),

where n is the order of the mode at which the lattice laser is resonant with the cavity, i.e. L = nλ/2, λ ≈ 785 nm.
Moving this standing wave one period requires changing the phase the frequency by ∆n×FSR, where ∆n = L

d . Our
measured FSR gives L = 31.2 cm, so L/d is not an integer and therefore perfect alignment is not generally possible.
But this guarantees that moving the frequencies by 16 FSRs would either pass through either a minimum or maximum
of coupling.

One of the ways we keep track of this coupling is by measuring the VRS. Another, faster way to keep track of this
coupling, is to trap the particle in the dipole trap with a small residual standing wave, which still leads to parity
projection, but slightly increases the probability of finding an atom at the residual lattice intensity anti-nodes. This
leads to change in scattering rate in the dipole trap as the lattice laser is moved through the different longitudinal
modes. We have used both methods at different times.

We then use a binary search like procedure to find the minimum of the coupling, since that is a clearer signal than a
maximum and then change the frequency by 16 FSRs to find the maximum. Finally, we note that since smallest step
that we can change the phase of the standing wave is d

Lπ, theoretically the worst possible phase offset (if we perform
our alignment procedure perfectly) we can have is d

2Lπ = 0.016π, which corresponds to a misalignment of ≈ 6 nm.

Supplement F: Single Atom Lifetime

To characterize the lifetime of our trapped single atoms, we observe the atom while under molasses cooling light
for 200 ms and plot average fluorescence level vs hold time. An exponential fit then yields a lifetime of 146(6) ms.
See Figure ]S4.

The atom lifetime without the molasses light (in the dark) fits to a lifetime of 50 ms. The nearly threefold increase
in lifetime in the presence of molasses light is likely indicative of intensity-noise-induced parametric heating in the
cavity dipole trap/lattice.

Supplement G: Experimental Conditions for g2(τ) dataset

The g2(τ) dataset was collected at high outcoupling (T = 20% per round-trip) to maximize the data rate, using
a pair of single photon counters (SPCMs) to minimize the impact of detector afterpulsing [4], and time-tagged

1 Note that we can’t guarantee that there is an anti-node at the small waist location. At worst, the anti-node is λ/4 away from the waist,
which only changes the coupling by 0.5%
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Supplemental Information Fig. S4. Survival probability of single atoms in the trap vs hold time, characterized by average
fluorescence level over 700 shots, with lifetime fitted to 146(6) ms.

using custom firmware running on a RedPitaya built on top of the Zynq Time-to-Digital package ([5] and https:
//github.com/madamic/zynq_tdc).

Supplement H: Cavity Stability

We calculate the waist size and Guoy phase of the small-waist resonator in the usual way, by taking the eigenvalues
and vectors of the round trip ABCD matrix. Expressed as (1,q), the eigenvector provides the complex beam parameter
q from which the waist size at a given cavity length can be extracted. The stability condition f2

Llong−f > Lshort−f−R >

0 is extracted by setting the norm of the eigenvalue equal to 1. The argument of this round trip eigenvalue provides
the Guoy phase, or transverse mode splitting. We show plots of the resonator waist size and Guoy phase at the
operating point of our cavity, where we set the long arm Llong = 30 cm and the the focal length f = 1.45 mm for the
C140TMD-B asphere. The only varying parameter then is the length of the short arm (distance between C140 and
curved mirror). We plot the waist size against the perturbation in this short arm length from f (with f chosen as the
edge of the stability diagram and the “design” distance of a normal lens system). See Figure S5.

It is worth noting that the small waist in a occurs at the center of the stability diagram. This is the salient feature
of our new resonator geometry, indicating that a sub-micron mode waist can be achieved at the location of the atom
without operating at the edge of the stability range, as is required in concentric cavities. It is also worth noting at
this point that the Guoy phase for this resonator does not follow the usual bounds for a two mirror cavity. There,
the Guoy phase and consequently the transverse mode splitting runs from 0 to 2π across the edges of the stability
region. In the small waist geometry sketched here, the phase range is halved, running only from π on one end to 0.
This is due to the asymmetry of the cavity. At the operation point of our cavity - the center of the stability diagram
- the Guoy phase of the resonator is π

2 . This has the favorable property that neither the first or second order modes
are overlapped with the fundamental mode of the cavity, circumventing the mode-mixing issues of the confocal and
concentric designs.

Supplement I: Error and Uncertainty Calculations

Error propagation for quoted parameters is carried out using Python’s uncertainties package, with error for fitted
parameters provided by the covariance matrix. For uncertainty bars, two methods are used: (1) chi-squared, fit based
for the lifetime data, and (2) bootstrapping for the survival rate and fidelity data. For bootstrapping, we split the
data into three sets, calculate relevant quantities individually, then calculate the average and standard deviation.

https://github.com/madamic/zynq_tdc
https://github.com/madamic/zynq_tdc
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Supplemental Information Fig. S5. left the small waist cavity stability diagram with a long arm Llong = 30 cm. A waist of
930 nm is achieved at the center of the stability diagram right the Guoy phase of the cavity across the stability range, sweeping
from π to 0.

Supplement J: g(2)(τ) Calculation

There are three relevant timescales in this system : (i) the fastest one set by the Rabi frequency in PGC, detuning,
atomic decay rates and the cavity lifetime, (ii) the time scale set by the scattering rate in the PGC, and (iii) the slowest
timescale, set by the motion in the trap. While it might seem that the fastest, quantum mechanical timescale would
be most interesting, it has been thoroughly explored in the context of resonance fluorescence. With time-resolved
explorations of laser-cooling in mind, we are interested in the slowest of these timescales. Here the dynamics of the
atom are entirely described by the classical Langevin equation of a harmonic oscillator. The 1D Langevin equation is
of the form :

d2x(t)

dt2
+ γ

dx(t)

dt
+ ω2x(t) = η(t) (J.1)

Here η(t) is the random force (noise term) that obeys ⟨η(t)η(t′)⟩ = 2γkBT
m δ(t− t′), γ is the damping rate, m is the

mass, ω is the oscillator angular frequency, and T is the temperature.
Our program for analyzing these dynamics is as follows:

1. Treat the atom as moving in a (separable) intra-cavity potential U(x, y, z) = U0

1+( z
zr
)
2 × exp

(
− 2(x2+y2)

w2
0(1+(z/zr)2)

)
≈

U0 ×
(
1− ( z

zr
)2
)
×
(
1− 2x2+y2

w2
0

)
≈ U0 ×

(
1− ( z

zr
)2 − 2x2+y2

w2
0

)
, where zr ≡ πw2

0

λ ≈ 3 µm is the Rayleigh range
of the cavity mode, w0 ≈ 930 nm is the mode waist, and λ ≈ 780 nm is the wavelength of the trapping light.

2. Treat the atomic scattering rate as separable in the Cartesian atom coordinates Isc ≈ Ipk × cos2 kz ×
e−2(x2+y2)/w2

0 . Note that where the trap varies in z on a length scale of zr, the scattering rate varies in z
on a much shorter length-scale of k−1 = λ

2π – by contrast, the radial trapping and radial scattering rates both
vary on the length scale of w0 - it is for this reason that we claim that the variations in fluorescence rate in the
dipole trap arise predominantly from axial motion2.

3. Generate the equations of motion for each of the spatial degrees of freedom of the atom, including velocity
dependent damping and Langevin noise term arising from the cooling beams (itself normalized based upon the
axis-dependent temperature).

4. For the radial direction, solve these equations for the two-time correlators of each degree of freedom of the atom.
For the axial direction, the fast cos2(kz) variation of the scattering rate requires calculation of the the marginal
probability distribution P (z, t)

2 At least insofar as axial and radial temperatures are equal
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5. Employ these two-time correlators and the marginal distribution of the atomic position, in conjunction with
the knowledge that since the equations of motion are linear the motional degrees of freedom act as gaussian
processes, to compute two-time correlators of the intensity. We will find that the two-time intensity correlator
factorizes into independent correlators in x,y, and z.

6. Normalize the two-time correlator using the expected value of the intensity.

We first note that since motion in the three directions is approximately independent, the variations of scattering rates
due to motion in the three directions are uncorrelated. Writing scattered intensity as I(t) = IpkIx(x(t))Iy(y(t))Iz(z(t)),
we find :

g(2)(τ) =
⟨Ix(x(τ))Iy(y(τ))Iz(z(τ))Ix(x(0))Iy(y(0))Iz(z(0)⟩

⟨Ix(x(0))Iy(y(0))Iz(z(0)⟩2

=
⟨Ix(x(τ))Ix(x(0))⟩

⟨Ix(x(0))⟩2
⟨Iy(y(τ))Iy(y(0))⟩

⟨Iy(y(0))⟩2
⟨Iz(z(τ))Iz(z(0))⟩

⟨Iz(z(0))⟩2

= g(2)x (τ)g(2)y (τ)g(2)z (τ)

(J.2)

1. The radial part

In one of the radial directions, say x, the scattered intensity varies as Ix(x) = e
− 2x2

w2
0 ≈ 1− 2x2

w2
0
. This implies :

g(2)x (τ) =

〈(
1− 2x(τ)2

w2
0

)(
1− 2x(0)2

w2
0

)〉
〈
1− 2x(0)2

w2
0

〉2 (J.3)

We assume a gaussian process and use Wick’s theorem to simplify the fourth order correlator and obtain:

g(2)x (τ) = 1 +
8

w4
0

⟨x(τ)x(0)⟩2(
1− 2⟨x(0)2⟩

w2
0

)2 (J.4)

We further note that for a particle governed by equation J.1, the second order position correlator is well known and
given by Ref [6]:

⟨x(τ)x(0)⟩ = kBTr

mω2
r

e−
γr
2 |τ |

(
cos(ω′τ) +

γr
2ω′ sin(ω

′|τ |)
)
, (J.5)

where Tr is the radial temperature, ωr is the radial trap angular frequency, γr is the radial damping rate, and
ω′ =

√
ω2
r − γ2

r/4. This completes the calculation for g
(2)
x (τ). We assume that our system has cylindrical symmetry,

so g
(2)
y (τ) = g

(2)
x (τ).

2. The axial part

In the axial direction z, the variation in scattered intensity is due to the standing wave nature of the mode, i.e.
Iz(x) = cos2(kz), leading to:

g(2)z (τ) =
⟨cos2(kz(τ)) cos2(kz(0))⟩

⟨cos2(kz(0))⟩2
(J.6)
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a. Intra-cavity lattice

For an atom trapped in tashe intra-cavity lattice, we can follow the same procedure as the radial calculation i.e.
Taylor expand the cosine, and apply Wick’s theorem, yielding :

g(2)x (τ) = 1 + 2k4
⟨z(τ)z(0)⟩2

(1− k2⟨z(0)2⟩)2
(J.7)

b. Dipole trap

This is not possible for an atom in the dipole trap, which has a length scale given by zr, the Rayleigh range. An
atom could possibly sample even multiple longitudinal mode anti-nodes while staying in the trap.

Here we instead use the fact that the trap frequency in dipole trap is much lower, and assume that the motion of the
particle is overdamped. This allows us to simplify the Fokker-Planck equation and solve for the marginal probability
distribution, P (z, t; z0), the probability of finding a particle at position z at time t given that the particle was at
position z0 at time t = 0. The Fokker-Planck equation simplifies to [6]:

∂P (z, t)

∂t
=

∂

∂z

(
ω2
ax

γax
zP (z, t)

)
+

kBTax

mγax

∂2P (z, t)

∂z2
(J.8)

Here Tax is the axial temperature, ωax is the axial trap angular frequency, γax is the radial damping rate. Such
a simplification and marginalization of the full distribution including velocity is possible because the particle attains
terminal velocity at every position, giving ⟨v⟩ = ω2

ax

γax
z. This allows the inertial term in the Langevin equation to be

neglected. For the initial condition P (z, 0) = δ(z − z0), the solution to this equation is a gaussian given by:

P (z, t; z0) =
1

σ(t)
√
2π

exp

(
− (z − z0α(t))

2

2σ(t)2

)
, (J.9)

with α(t) = e−
ω2
ax

γax
t, σ(t) = σ0(1 − α(t)2) and σ0 = kBTax

mω2
ax

. P (z, t; z0) is thus the conditional probability of finding
the atom at position z at time t, given that it was at position z0 at time t = 0, exactly the distribution required to
calculate two-time correlators. Furthermore, P∞(z) = P (z,∞; z0) gives the probability of finding an atom at position
z in steady state.

For the denominator of g(2)z (τ) we have:

⟨cos2(kz)⟩2 =

(∫ ∞

−∞
dzP∞(z) cos2(kz)

)2

=
1

2

(
1 + e−2k2σ2

0

)2 (J.10)

For the numerator we get:

⟨cos2(kz(τ) cos2(kz0)⟩ =
∫ ∞

−∞

(
dz0P∞(z0) cos

2(kz0)

∫ ∞

−∞
dzP (z, t; z0) cos

2(kz(τ))

)
=

1

4

(
e−4k2σ2

0 cosh
(
4α(τ)k2σ2

0

)
+ 2e−2k2σ2

0 + 1
) (J.11)

Putting it all together and simplifying with a bit of algebra, we get for the dipole trap:

g(2)z (τ) = 1 +

2 sinh2

(
2k2σ2

0e
−
(

ω2
ax

γax
|τ |

))
(
e2k

2σ2
0 + 1

)2 (J.12)



17

Supplement K: Effect of temperature on average atom-cavity coupling

The geometric expression for the cooperativity mentioned in the main text is valid for a standing wave cavity with
the atom perfectly localized to a cavity mode anti-node at the cavity waist. In reality, due to its finite temperature,
the atom samples a range of different positions and therefore different couplings to the mode. This leads to an average
observed cooperativity lower than the peak value. We note that we are neglecting the effect of the atom sampling
different velocities, Doppler broadening the atomic transition. We expect this effect to be much smaller than the
lowering of effective coupling, even at the highest expected temperatures.

The functional dependence of cooperativity on the position is exactly the same as that of scattered intensity
discussed in SI J. In fact, if the average value of the cooperativity is reduced from the peak cooperativity (Cpeak by
a factor f), i.e. ⟨C⟩ = fCpeak, the factor f is given by exactly the kind of integrals we have already calculated for the
denominator of g(2) in SI J. We are only interested in the cooperativity when the atom is trapped in the lattice. In
this case the reduction factor is given by:

f =

(
1− 2⟨x2⟩

w2
0

)(
1− 2⟨y2⟩

w2
0

)(
1− k2⟨z2⟩

)
(K.1)

As before, x and y are the radial directions and z is the axial direction,

⟨x2⟩ = ⟨y2⟩ = kBTr

mω2
r

⟨z2⟩ = kBTax

mω2
ax

(K.2)

This gives,

f =

(
1− kBTr

2U0

)2(
1− kBTax

2U0

)
(K.3)

Here U0 is the depth of the trap. In this expression we have neglected the slight difference between 785 nm trap
profile and the 780 nm mode profile and also assumed perfect alignment between both of them. For our measured
values of U0/kB ≈ 800 µK and Tr ≈ Tax ≈ 200 µK, we get f ≈ 0.67. Based on our waist, w0 = 930 nm and finesse,
F = 40, Cpeak = 5.6. Accounting for another factor of 2 from lack of optical pumping and probing with a linear
polarization, we predict ⟨C⟩ = 1.87, close to the measured value of 1.6. This difference could potentially be explained
by the effect of stochastic loading of the atom in different sites along the z direction on the scale of a Rayleigh range,
which would lead to additional variation in coupling, which we have neglected.

Supplement L: Mode Waist Measurement

Approaching the diffraction limit 1/kw0 → 1, the smallest achievable cavity waist is influenced by several non-
quadratic optical effects: non-paraxial propagation & aberrations of the asphere [7] and vector polarization effects [8]
that are small in free space are enhanced by numerous cavity round-trips. Rather than relying exclusively on modeling
to estimate the beam-waist, we prefer to measure it directly.

A traditional knife edge measurement of the waist is not possible, because once the losses from the edge become
comparable to the external and internal losses of the cavity (long before it actually approaches the waist), the
finesse drops precipitously. In addition, the short (zr ∼ 3 µm) Rayleigh range of the sub-micron waist necessitates
measurement with an object that is thin compared to zr, impractical for a razor blade. Indeed, even SNOM-based
mode-mapping techniques [9] result in too much loss near the waist of a sub-micron waist resonator.

We therefore introduce a new way of measuring the mode waist of a cavity in situ using an end mirror with a
small, sub-wavelength hole providing local outcoupling of the cavity field. The size of the hole is chosen such that the
additional loss introduced is small compared to the cavity round trip loss and the finesse does not drop significantly
for all measurement locations, while still providing enough outcoupling to detect the transmission. We use a gold
coated SiN membrane (Norcada) with two holes of nanopores (of radius 100, 200, or 350 nm) separated by 7 µm.
The gold coated membrane acts as the flat end mirror of the cavity which guarantees the focus to be right on the
membrane because of the flat wavefront set by the boundary conditions. We carried out our test by using aspheric
lens with f = 1.5 mm (Thorlabs C140 TMD-B), identical to what we used in the main text.
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The transmission through a sub-wavelength nanopore is approximated by the Bethe formula [10] T ∝ (λ/r)4 for a
circular hole with radius r at wavelength λ in a thin and transversely infinite conductor. In practice the finite thickness
of the gold deposition as well as the existence of surface plasmons and plasmon resonances around the hole complicate
the calculation of the hole transmission; because of the r−4 dependence of transmission on hole size, the size must be
carefully chosen to ensure that the transmission is smaller than the mirror transmission T = 1 − 98.5% = 0.015 to
avoid spoiling the cavity finesse, but large enough to yield a detectable signal. Experimentally we found a diameter of
200 nm gave a clear transmission signal while only reducing the cavity finesse by 15% from 52 to 42, whereas 350 nm
introduced excess loss destroying the cavity and 100 nm yielded no transmission detectable above the noise floor. We
expect that the impact of the 200 nm pinhole’s size on our waist measurement to be ignorable. The hole is then
scanned by a homebuilt, mechanically multiplied 2D piezo stage transverse to the cavity axis to determine the profile
of the cavity waist. The well-defined separation of the two holes is used as an absolute calibration of the scanning
setup.

In figure S6 the transmission through the nanopore is shown as a function of transverse position. The waist is
determined by a gaussian fit to both holes.

Supplemental Information Fig. S6. Measurement on Mode Waist. (a) Schematic of measurement setup. We built a similar
cavity setup as in the main text and placed a gold membrane with pinhole with 200 nm diameter and pitch of 7 µm on a piezo
scanning stage behind the aspherical lens. The extra distance ϵ is tunable via the translation stage holding the asphere. The
piezo stage scans the 2D transverse plane as the transmission signal is recorded by a photodiode. (b) 2D Plot of transmission.
As cavity mode crosses the pinhole, the finesse drops only around 15% from 52 to 42, which allows the transmission measurement
to reflect the point spread function (PSF) without a substantial impact to finesse variation/impedance matching. Note that
the duplication of pinhole pairs on the upper and lower regions is due to the triangle scanning waveform in the y direction of
piezo stage. (c)-(d) Comparison of experiment and paraxial model when cavity length is 29 cm in (c) and 50 cm in (d). Note
that the x axis of experiment plots ∆ϵ refers to relative displacements in ϵ while the x axis ϵ in theory plots refers to absolute
displacements. We expect the absolute ϵ values in the experiment overlap with the central parts of theory ϵ values. The scale
in x direction was calibrated by using 7 µm pitch between the pinholes and we only took the gaussian fit in the x direction as
our data. The error bar is the standard deviation of the average of 4 PSF features in each transmission image.

We extract the waist size for several different positions in the stability diagram, as a function of mirror lens
separation. We measure the finesse and amplitude by sweeping the laser over multiple FSRs at every transverse
position. From the higher order modes in the transmission spectrum we infer the transverse mode spacing and the
position in the stability diagram.

Supplement M: Comparing Lens and Cavity Light Collection Rates

We would like to compare the collection efficiency of a high numerical aperture lens (parameterized here by NAlens)
to that of a standing wave cavity with waist size also limited by NAlens.
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The first thing to note is that if all we care about is maximizing the cavity cooperativity and our loss comes entirely
from clipping, it is always better to reduce the cavity NA by increasing the mode waist to improve the finesse. The
idea is that the finesse limit is set by clipping four per round-trip to Fcav = 2π

4e−2NA2
lens

/NA2
cav

, where NAcav = λ
πw0

and

w0 is the cavity mode waist. The cavity cooperativity is then: C = 24F
π

1
(kw)2 = 6F

π NA2
cav = 3NA2

cave
2NA2

lens/NA2
cav

Because the gaussian factor grows faster than the quadratic prefactor shrinks, we should go to low NAcav (large
cavity waist) to maximize the cooperativity!

What went wrong? Well, for starters we might want a small mode waist for other reasons, like coupling to atoms
in an array, or because achieving high cooperativity at small mode waist relaxes finesse requirements and speeds up
readout. The upshot is that, if we do not expect to be able to get our finesse higher than a few thousand (for example
due to material or linewidth constraints), choosing NAcav ≈ 1

2NAlens is plenty, as it leads to a finesse of approximately
4600; increasing the cavity NA rapidly reduces the finesse – choosing NAcav ≈ 3

4NAlens reduces the finesse to 54.
With the choice NAcav ≈ 1

2NAlens out of the way, we now assume we actually end up with a substantially lower
finesse limited by material constraints (glass absorption, imperfect AR coatings, etc...); in the absence of cavity
outcoupling, the maximum achievable finesse is assumed to be Fmax; choosing to an outcoupler with transmission
β times the internal cavity losses reduces the finesse to Fmax

1+β , but outcouples a fraction β
1+β of the light within the

cavity.
As such, if, in the absence of the cavity, an atom scatters into 4π at a rate Γ4π, the cavity will collect light and

outcouple it at a rate Γcav = Γ4π × 6Fmax

π(1+β) × NA2
cav × β

1+β . If we optimize this rate over β, we find that we should
choose β = 1, halving the cavity finesse, resulting in Γcav = Γ4π × 3Fmax

2π ×NA2
cav. Noting that NAcav ≈ 1

2NAlens we
have: Γcav = Γ4π × 3Fmax

8π ×NA2
lens.

We should now compare this to the single-lens collection efficiency. A lens with NAlens ≪ 1 subtends a solid angle
Ωlens ≈ πNA2

lens. This means that the lens collects light at a rate Γlens = Γ4π × Ωlens

4π = Γ4π × NA2
lens

4 .
We can now compute the cavity collection efficiency enhancement R = Γcav

Γlens
= 3Fmax

2π ≈ Fmax

2 . That is, the total
improvement in collection that the cavity provides is given by half of its finesse.

Note: We have neglected polarizations, assumed that cavity scattering does not induce extra heating, and worked
for the lens in the low NA limit. These assumptions can be made most accurate with an optically pumped atom at a
cavity anti-node, detected in cavity transmission.

Supplement N: Cavity Structure Mechanical Design

a b c

Supplemental Information Fig. S7. Molasses mounts. (a) The vertical flexure allows for control of the y-position of the
curved mirror. Piezo-electric stacks slide into both holders depicted here. (b) 2D flexure allows for control of the x and z
positions of the aspheric lens. Together with the vertical flexure, all degrees of freedom in the relative alignment between the
asphere and curved mirror are accounted for. Piezo stacks slide into only half off the holders here. (b) Molasses mounts, with
3D angles set by proper alignment of beams to the small waist.

As covered in Supplement H, the difficulty in operating cavities at the small waist points of the stability diagram
arises from the increased sensitivity of the cavity axis to transverse misalignments. This sensitivity is much improved
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for the small waist cavity geometry outlined in this paper. Nonetheless, precise in-vacuum positioning is still necessary
to account for drifts in cavity alignment during the bake and to tune the relative position of optics to the stable
point. Our custom designed/machined flexure mounts allow us to accomplish this task without the use of commercial
integrated three-axis piezo stages, which can have long lead times, less throw, and high cost.

The cavity mount uses two waterjet-cut flexures for 3D control of the relative transverse alignment between the
C140 asphere and the ROC = 1 cm curved mirror:

1. A single-axis vertical flexure mount for the curved mirror which provides control over the y-axis control

2. A two-axis horizontal flexure that attaches to the asphere mount and provides x/z motion

Both flexures employ a similar lever arm design to amplify the base 45 µm throw of the NAC2003-H32 Noliac
piezo stacks. Initial designs used a straight lever arm, for which the theoretical amplification is given simply by the
constrained ratio of displacements in piezo, set by the angle of the arm. Space constraints motivated switching to the
curved metal flexing elements shown in Figure S7. To simulate the predicted amplification for this design, we used
Fusion’s stress analysis software with factors included to account for the stress/strain parameters (Young’s modulus,
etc.) of stainless steel. For the vertical mount, two piezos were used (one for each side to preserve symmetry), and
we use a Mach-Zehnder interferometer to measure an amplified throw of ∼ 96 µm. The horizontal flexure operates in
2D, with mobile central platform supported by four lever arm slots. Only two of these four slots are mounted with
piezo stacks – one for control in x and the other for z. We measure and amplified throw of 80 µm in both directions.

The completed structure is secured using vented silver screws, with the vertical flexure sitting upright on the
horizontal flexure. The entire assembly sits on top of a base plate to properly align the component relative to the
loadlock translator arm. We use silver prism mirrors for the 3D molasses beams. These slide into custom machined
molasses mounts (see Figure S7) with angles set to achieve cooling at the small waist.

Supplement O: Model-Free Estimation of the Atom Detection Efficiency

The figures of merit for assessing the performance of the cavity-enhanced readout demonstrated in this paper are (1)
the atom detection fidelity for a measurement of time t and (2) the survival rate of the atom during that measurement.
To estimate these quantities, it is customary to tailor individual fitting routines to the separate sections of the single-
atom histogram (background peak, atom peak, signal tails, etc). However, for fidelities above 99%, the extrapolated
fidelity becomes highly dependent on the functional form of the histogram in its low probability wings [11]. In a cavity
the dependence of g on the axial position of the atom further complicate this choice of functional forms by introducing
averaging of the dipole signal over the nodes and anti-nodes of the readout mode, or by creating an axial variation
in coupling strength beyond the Raleigh range, relevant for lattice signals where the signal atom can in principle be
localized one of many sites.

To circumvent this issue we employ a model-free estimation scheme for calculating the atom detection efficiencies,
as detailed in Section 2.6.7 of reference [11]. The method relies on extrapolating the survival rate S and fidelity F

Supplemental Information Fig. S8. In vacuum installation of the completed flexure assembly, with aspheric lens and curved
mirror glued into mounts.
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from the set of probabilities px1x2
, where x1 is 0 if the the signal is measured above the threshold in the first of two

consecutive shots, and x2 defined similarly for the the second shot in the measurement. The probabilities px1x2
can

than be enumerated individually and related to F and S in a system of equations:

p11 = fF 2
1 S + (1− f)(1− F0)

2 + fF1(1− S)(1− F0) (O.1)

p10 = fF1S(1− F1) + fF1(1− S)F0 + (1− f)(1− F0)F0 (O.2)

p01 = f(1− F1)SF1 + f(1− F1)(1− S)(1− F0) + (1− f)F0(1− F0) (O.3)

where f is the filling fraction, and the overall fidelity F = fF1 + (1 − f)F0. From the two shot data, it is easy
to extrapolate f , p11, p10, and p01 at a given threshold and then to extrapolate F and S from the equation above.
Generally, there will be two solutions, one of which can be discarded since as it will predict F < 0.5. For fidelities up
to 99.9%, the final F is robust to fluctuations in the loading fraction f , though the component fidelities F0 and F1

can be highly sensitive to it. There is only a narrow range of the loading fraction for which all solved parameters are
physical, providing a check on the reasonableness of the extrapolated f .

Supplement P: Comparing Cooperativity Expressions

Here we begin with the most commonly used expression for cooperativity, C ≡ 4g2

κΓ , and show that, up to numerical
factors, it is equivalent to (a) the closed-transition cooperativity Cclosed = 24F

π
1

(kw0)2
, and (b) the Purcell factor,

FP = 3
4π2λ

3 Q
V .

To show that C = Cclosed, we note that for a closed transition, the atomic linewidth can be written using the
Weisskopf-Wigner formula: Γ ≡ ω3d2

3πϵ0ℏc3 , where d is the dipole moment of the transition. The cavity linewidth can
be written in terms of the cavity length L and finesse F according to κ = 2π × c

2L × 1F . Finally, the vacuum Rabi
coupling g can be written as g = dE1/ℏ, where E1 is the electric field of a single photon in the cavity at the location
of the atom. By conservation of energy 1

2ϵ0E
2
1 × π

2w
2
0L = 1

2ℏω, so g2 = 2d2ω
ℏϵ0πw2

0L
. Combining all of these results yields:

C ≡ 4g2

κΓ = 24F
π × 1

(kw0)2
= Cclosed, as anticipated.

To show the equivalence of the Purcell factor FP , we just note that for a standing wave resonator of length L

and finesse F , the quality factor is given by Q = F (2L)
λ , and the mode volume by V = 1

2
π
2w

2
0L. Combining these

expressions yields Fp = 12F
2π3

λ2

w2
0
= 24F

π
1

(kw0)2
, equal to C,Cclosed.

In total, we can understand this equivalence to mean that, at least for atoms with closed transitions, the probability
that the atom emits into a cavity is entirely independent of both transition’s dipole moment, and length of the cavity.
Atoms with narrow transitions (small dipole moments) emit slowly into cavities, but they emit into freespace even
more slowly. Similarly, a long cavity has a small g, and hence a small light-matter coupling strength, but it also has
a narrow linewidth, so the weak coupling has more time to coherently reinforce itself.

The only caveat to this story is that weak transitions and long cavities result in slower atom emission into the
resonator, and hence slower readout; if readout speed is truly the currency, then choosing shorter cavities and
stronger transitions is sensible.

Supplement Q: Photon Loss Budget

The speed with which high-fidelity single atom detection can be performed is set by the photon collection rate at
the photodetector, accounting for all loss channels in the system. We enumerate these for our system at the high
outcoupling (20%) point:

1. Cavity Collection: 15%. At optimal Pellicle outcoupling, the cavity collects 15% of photons (see SI A). This
is double the free space collection efficiency 7.8 % of the ideal 0.56 NA of the C140. Our expression accounts
for the birefringence of the cavity due to the EOM and Pellicle beamsplitter and for the delocalization due to
the finite temperature of the atom. Without the birefringence the predicted collection efficiency increases to 25
%, and for an atom perfectly localized to an anti-node this further rises to 35 %.
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2. Fiber Coupling: 50 %. Light that leaks out of the cavity on both sides of the Pellicle beamsplitter propagates
past an 808 nm line filter, where locking and signal paths are divided, and through to the fiber incoupler. The
780 nm reflection of the LL01-808 Max Line filter from AVR optics can be optimized to be effectively loss (R >
99.9 %). We measure the fiber coupling efficiency of both paths to be ≈ 50%.

3. Quantum Efficiency: 64 %. We use single photon counter module SPCM-AQR-14, with a quantum efficiency
of 64 % at 780 nm.

Overall, we calculate a total collection efficiency of 4.8 %. These parameters are far from optimized. With a more
sophisticated locking and outcoupling scheme to obviate the need for birefringent intracavity optics together with the
use of an EMCCD which does not require fiber-coupling and has a higher overall quantum efficiency (80 % at 780
nm), a fourfold increase in total collection efficiency to 20 % should be achievable. Assuming that detection time
goes linearly with improvements in efficiency, this will enable readout with 99.5 % fidelity in 27 µs. Beyond these
improvements, the use of lenses with better anti-reflection coatings should enable further gains in the photon collection
rate of the cavity by increasing the finesse and therefore the Purcell factor. At present, we extrapolate an internal
loss of the cavity of ≈ 12%, based on our measured finesse at 4% outcoupling. This loss includes the relatively poor
anti-reflection coating on the C140-TMD-B asphere with round trip loss of 1.2 % in addition to loss due to clipping.
Both issues can be circumvented with better polished aspheres. This will enable high-fidelity detection in 10 µs.
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