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ABSTRACT

Cold atoms in cavity quantum electrodynamics experiments, and their counterparts using

superconducting or solid-state qubits, have enabled impressive and complementary results

in quantum-enhanced technology. Combining the advantages of these platforms has clear

benefits for quantum networking and metrology, but is complicated by their operation at

different ranges of the electromagnetic spectrum. Atomic gases provide a possible solution

due to their ground state optical transitions and dense energy level structure with GHz

transitions between highly excited Rydberg states.

This thesis will describe how a gas of ultracold Rydberg atoms can be simultaneously cou-

pled to single optical and millimeter wave photons using cavity electromagnetically-induced

transparency. I will describe the development of a new hybrid quantum apparatus, includ-

ing high finesse optical and mm-wave resonators at 5 Kelvin, a cryogenic laser-cooled atom

source, and techniques for manipulating atoms in a superconducting cavity. This system

has immediate applications for upconverting mm-wave photons to optical frequencies for

long-distance quantum communication, with predicted efficiency of greater than 90% and

bandwidth of ∼ 3 MHz. Furthermore, the very high cooperativity coupling achievable at

mm-wave frequencies could enable cavity-mediated interactions between Rydberg atoms and

creation of metrologically useful entangled atomic states. I will report recent results from

the experiment, including evidence of coupling between Rydberg polaritons and a mm-wave

resonator with photon occupation n ≈ 1, with a clear path forward to enter the strong

coupling regime.

xii



CHAPTER 1

INTRODUCTION

Quantum mechanics provides an extraordinarily well-tested and precise description of the

microscopic world. Although the fundamental equations are well-known, groups of more

than a few interacting particles exhibit rich and useful phenomena enabled by entanglement,

which may be difficult or impossible to calculate directly [1]. This richness has motivated the

creation of quantum systems from the ground up, intentionally engineering a system whose

behavior depends critically on quantum mechanics. Designer quantum systems have led to

direct observation of entanglement [2], quantum phases of matter [3] and quantum phase

transitions [4, 5].

Another effort focuses on creating precisely controlled entangled states of many particles

for computation or simulation purposes [6], inspired by the discovery of algorithms which

outpace all known classical methods for certain problems [7]. Recent progress has resulted

in entangled states of more than a dozen qubits [8, 9, 10]. Such quantum state engineering

requires a large number of qubits which can be precisely controlled, yet are isolated from

undesired signals in the environment.

This desire to create a clean, controllable quantum system has generated a diverse variety

of platforms, including (but far from limited to) trapped ions [11], neutral atoms [12], and

superconducting circuits [13]. Although each of these continue to show rapidly improving

control, as a rule they have unique benefits and drawbacks, and no one platform is capable

of all desired tasks. This raises the possibility that a combination of traditionally separate

platforms, or a hybrid quantum system, may outperform any individual solution [14].
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1.1 Optical mm-wave Transduction

A prototypical example of a useful hybrid quantum systems is a single-photon link between

GHz and optical frequencies. Optical photons are ideal carriers of quantum information

whose state can survive transit over many kilometers of fiber optic, enabling communica-

tion between distant quantum systems, or modular connections of quantum information

processors [15, 16]. Meanwhile superconducting circuits operate at ∼ 10 GHz microwave fre-

quencies, and so must be kept inside a dilution refrigerator to avoid thermal photons, making

long-distance state transfer impossible. Furthermore, Josephson junction based qubits have

no accessible optical transitions. An external system which couples to both frequency regimes

is needed. Such frequency transducers have been demonstrated using the direct electro-optic

effect [17, 18] and radiation pressure in opto-mechanics [19, 20, 21, 22].

Another approach is to use atoms, which interact strongly with the electromagnetic

field at their transition frequencies, including ground-state optical transitions and Rydberg-

Rydberg transitions which occur over a large range, including GHz frequencies [23]. The

combination of huge Rydberg dipole moments and large ensembles are predicted to enable

transduction bandwidths of hundreds of kHz or even several MHz [24, 25]. However, to date

atomic transducers have only been experimentally implemented in a classical regime [26, 27],

due to the difficulty of integrating Rydberg atoms into a hybrid system.

The system described in this thesis takes this approach, using Rydberg atoms to couple

to both optical and GHz frequency fields. However, instead of operating at microwave

frequencies in the 10 GHz range, we elect to use mm-wave Rydberg-Rydberg transitions

at 100 GHz. The 10× higher energy scale means thermal mm-wave photons are frozen

out at a temperature of ∼ 5 K, 10 times higher than microwave photons, as shown in

Figure 1.1, enabling single-photon experiments without the cost and inconvenience of a

dilution refrigerator. In addition, 100 GHz transitions are accessible at lower Rydberg states

n = 36, rather than n = 100 for 10 GHz transitions. As the Rydberg d.c. polarizability scales

2



as n7, these lower states are dramatically less sensitive to technical noise from stray electric

fields. Although there are a number of proposals for Rydberg-based interconverters at 10 GHz

and methods to reduce sensitivity to d.c. fields [28], these schemes remain experimentally

challenging.

10 GHz
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Figure 1.1: Mean thermal photon

occupation of microwaves and

mm-waves.

Transduction at mm-wave frequencies also has

fundamental benefits for interfacing with quantum

computers from a heat load perspective. Any trans-

duction scheme requires pump photons to bridge the

energy gap between input and output frequencies,

which are lost with some probability. This imposes

a heat load per converted photon proportional to the

output frequency, so that direct conversion from mi-

crowave to optical frequencies may overwhelm a di-

lution refrigerator’s cooling power at large conversion

bandwidth. By upconverting first to 100 GHz on the dilution refrigerator stage, then to

optical frequencies on a higher cooling power stage, this limitation on conversion bandwidth

is drastically reduced [29].

1.2 Hybrid Cavity QED

In cavity QED experiments, the usefulness of mm-wave atomic transitions was early rec-

ognized for the large Rydberg dipole moments and lifetimes, and the availablility of super-

conducting resonators. The first demonstration of cavity Rabi oscillations in occured with

a thermal beam of sodium Rydberg atoms traversing an 82 GHz resonator [30], and later

the coupling of single atoms traversing a cavity was demonstrated by a single-atom maser

operating at 21 GHz [31]. Later experiments showed direct evidence of field quantization [32]

and Schrödinger cat states of the cavity field [33].

3



By 2004, cooling and trapping of ground state atoms allowed direct observation of vacuum

Rabi splitting in optical resonators with a single trapped atom, rather than an average

over many single atoms traversing a cavity [34, 35]. Single atom strong coupling led to

photon blockade antibunching of the transmitted cavity field [36]. Since then, the toolbox

for controlling optical light with cavity QED has progressed rapidly, leading to single and

paired photon sources [37, 38], quantum memories [39], and quantum gates [40].

If atoms in a cavity can engineer interesting dynamics for light, the reverse is also true.

Many atoms coupled to a shared cavity mode see an effective atom-atom interaction. This

has been used to generate a variety of Hamiltonians for simulations of quantum phase tran-

sitions [41, 42]. Cavity-mediated interactions can also be used to produce specific use-

ful quantum states. An off-resonantly driven cavity creates an effective one-axis twisting

Hamiltonian [43], leading to squeezed states where entanglement-induced correlations be-

tween particles enable useful metrological gain [44, 45, 46]. Interactions between particles

have also been used for enhanced readout protocols [47], leading to metrological sensitivity

two orders of magnitude beyond the standard quantum limit [48]. At long times, one-axis

twisting dynamics even produce “oversqueezed,” non-Gaussian states, including maximally

entangled GHZ states [49, 8].

It is in this context that we are once again interested in the exceptional properties of

mm-wave transitions between Rydberg states. Light-induced squeezing schemes are funda-

mentally limited by loss of the cavity photons, or loss of the atomic states they excite. The

figure of merit for these systems is the single-atom cooperativity η = 4g2

κγ [50], relating the

atom-cavity coupling rate g to the cavity and atom loss rates κ, γ. Useful entanglement

amongst N atoms can be generated so long as Nη & 1 [44, 45, 49]. However, reaching

Heisenberg-limited metrology requires η ∼ N . Our system has the potential to place thou-

sands of cold Rydberg atoms in a resonator with a cooperativity η ∼ 104, compared to a

state of the art of η = 145 in optical cavities [51]. In addition to enabling entanglement of
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many atoms, this strong nonlinearity from the mm-wave cavity can be transferred to the

optical domain through EIT. Although we have not achieved these cooperativities in the

current experiment, the quality factor of our mm-wave resonators will increase by a factor

of 1000 when the system is upgraded from a 5 K to a 1 K cryocooler, providing a clear path

forward.

An important part of this thesis is the construction of a hybrid quantum experiment.

Any given qubit implementation is sensitive to certain sorts of environmental perturbations,

and must be isolated from these effects. A hybrid quantum experiment has more sorts of

components and is sensitive to more sorts of perturbations. Millimeter waves require low

temperatures, Rydberg atoms are decohered by electric fields, and optical cavities require

sub-angstrom vibrational stability. Integrating these often conflicting requirements into a

single experiment is challenging, and two chapters of the thesis will cover the tools I have

built to do so.

1.3 Thesis Layout

The experiment presented here centers on a sample of rubidium atoms coupled to two res-

onators simultaneously, so Chapter 2 will introduce the formalism of cavity QED. I will

begin with the paradigmatic Jaynes-Cummings model, in which a single atom in a cavity

produces a large photonic nonlinearity. Introducing multiple atoms in the cavity enhances

the light-matter interaction strength, but removes the nonlinearity that comes from atomic

saturation. Using cavity Rydberg EIT, a collective atomic excitation can be transformed

into a collective Rydberg excitation, which may then interact with a mm-wave resonator.

I will explain how the mm-wave resonator can be used to induce an all-to-all interaction

among the atoms, restoring a strong nonlinearity, or alternatively to facilitate transduction

between optical and mm-wave frequencies. Along the way the all-important cavity QED

parameter called cooperativity will be introduced.
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Chapters 3 and 4 will describe the hybrid experimental apparatus. Chapter 3 focuses

on novel techniques for trapping atoms in a cryogenic environment, construction of hybrid

optical mm-wave resonators, the laser system, and magnetic field control in a superconductor.

The chapter will conclude with early results from the experiment, with a signature of coupling

between a single Rydberg polariton and the mm-wave resonator.

Chapter 4 is devoted to a deeper discussion of the effort to stabilize optical cavities to

sub-angstrom precision despite strong vibrational noise from a cryocooler. I will describe

the design of our custom low-vibration cryostat, early generations of unstable cavities, and

the mechanical theory which allowed us to pinpoint the flaws in those cavities. Finally, I will

describe the new generation of optical resonators which are rigidly stabilized by compliant

springs to the necessary precision.

Chapter 5 introduces a mathematical description of all-resonant transduction using an

atomic ensemble in a cavity. The system is currently being upgraded with the necessary

ultraviolet optics for mm-wave to optical transduction, but internal efficiencies > 90% and

bandwidths of ∼ 3 MHz are predicted.

Finally, Chapter 6 extends the concepts of impedance matching from frequency trans-

duction to the spatial domain, enabling near-unity conversion between spatial modes of light

in optical cavities.
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CHAPTER 2

CAVITY QED

Interacting photons are a promising tool for distributed quantum networking, quantum in-

formation processing, and simulation of many-body systems. However, because light in a

vacuum is non-interacting, as can be seen from the linearity of Maxwell’s equations, in-

teractions between photons must be engineered using a matter-based mediator which itself

interacts with the electromagnetic field.

Optical crystals with nonlinear properties allow effective optical interactions, with im-

portant applications including sum and difference frequency generation, optical parametric

amplification, and four-wave mixing. However, these phenomena require strong optical drives

involving many photons to achieve a nonlinear effect.

Atomic systems can mediate extraordinarily strong light-matter interactions. Indeed, one

important application of the system described here is to enable efficient four-wave mixing,

which is a classical nonlinear process. However, atomic systems are even able to achieve

strong nonlinearity at the single-photon level, where the behavior is strongly altered by the

presence of a single photon. This opens the possibility of true single-photon interactions.

This chapter offers an introduction to the interaction of an atom or atomic ensemble with

quantized light in an optical cavity, known as cavity quantum electrodynamics (cQED). We

will begin with a single atom coupled to the modes of a closed cavity, described by the Jaynes-

Cummings Hamiltonian. We will then treat coupling to the environment in the Heisenberg

picture using input-output formalism, and adapt this approach to an approximate treatment

using non-Hermitian Hamiltonians. The latter approach provides a natural method for

restricting to a privileged subset of the Hilbert space, which is extremely useful for analyzing

nonlinear and many-atom systems.

We will then place a large ensemble of atoms into the cavity, which enhances the light-

matter interaction, but removes nonlinearity from the system. A Jaynes-Cummings type
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nonlinearity can be recovered by simultaneously coupling the atoms to an additional res-

onator, this time at mm-wave frequencies. This nonlinearity can be transfered to the optical

domain, and can be extremely strong compared to traditional optical nonlinearities. Fi-

nally, we will introduce the problem of impedance-matched transduction in atomic systems,

whose efficiency is set by a single parameter called the cooperativity which quantifies the

light-matter interaction. Later on in Chapter 5, we will see how both optical and mm-wave

transitions can be collectively enhanced for efficient transduction between the two frequen-

cies.

2.1 Quantized Light-Matter Interaction

We begin with a brief derivation the Jaynes-Cummings model, which is the prototypical

example of quantized light coupled to matter. A quantized electromagnetic field in a closed

cavity is coupled to a single atom.

The uncoupled electromagnetic field is quantized in the usual way1. Then, the coupling

between the field and an atom is written in the dipole form, whose derivation can be found

in standard textbooks [52, 53]. The total Hamiltonian is:

H =
∑

i

~ωi |i〉 〈i|+
∑

k

~ωk
(
a†a+

1

2

)
− d ·E (2.1)

1. Quantization of the field, in broad strokes, proceeds by decomposing the classical electromagnetic
fields into uncoupled normal modes, yielding a vector potential of the form A(r, t) =

∑
k αk(t)fk(r) + c.c.,

where each mode oscillates at a single frequency αk(t) = αk(0)e−iωkt and ωk = c|k|. The spatial mode
functions fk(r) satisfy the specified boundary conditions and are normalized over the integration volume as∫
V
|f(r)|2d3r = 1. Dropping the k index for now, each mode is then written in terms of a unitless function a(t)

by defining α(t) = i
√

~
2ωε0

a(t) (this choice of constants will ensure the energy of a single photon is ~ω). The

functions a, a† are then quantized by imposing the commutation relation [a, a†] = 1. The EM Hamiltonian

becomes H =
∑

k ~ωk

(
a†kak + 1

2

)
. Finally, the electric and magnetic field operators are easily obtained

by their usual definition in terms of the vector potential: E(r, t) = −∂tA(r, t) = −
√

~ω
2ε0
f(r)a(t) + h.c.,

B(r, t) =∇×A(r, t) = i
√

~
2ωε0
∇× f(r)a(t) + h.c.
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where ~ωi is the energy of the atom in state i, ak is the annihilation operator for a photon

in mode k with energy ~ωk, E is the electric field operator, and d = er is the atomic dipole

operator.

For alkali atoms, only the single valence electron has a significant interaction with light,

and the atomic dipole operator can be written as

d =
∑

ij

|i〉 〈i|d |j〉 〈j| =
∑

i<j

dij
(
σij + σji

)
(2.2)

where dij = 〈i|d |j〉, and σij = |i〉 〈j| is the atomic transition operator from state |j〉 to

state |i〉. Note we have used dij = dji, and we also have dii = 0 due to parity.

In the long-wavelength (or dipole) approximation, the electric field is evaluated at a single

position r0 representing the atomic center of mass, which is accurate as the electron wave-

function of size ∼ aBohr is much smaller than the optical wavelength. Then the interaction

Hamiltonian takes the form

Hint = −d ·E(r0) (2.3)

The electric field at position r0 is given by E(r0) = −∑k

√
~ωk
2ε0

(
fk(r0)ak + f∗k(r0)a

†
k

)
,

where fk(r) is normalized over the mode volume.

For simplicity we will now restrict to two atomic levels g and e, so the dipole operator

becomes deg ≡ d, and one cavity mode c with frequency ωc which is nearly resonant with

this transition. Later on additional atomic levels will be reintroduced. Then, defining the

coupling strength ~g = −
√

~ωc
2ε0
d · f(r0), the interaction Hamiltonian is

Hint = ~
(
σeg + σge

) (
gc+ g∗c†

)
(2.4)

Often an effective mode volume V is defined as if the field strength at the atom were

uniform over the whole cavity, i.e. V |f(r0)|2 ≡
∫
|f(r)|2d3r=1, so |f(r0)| = 1√

V
. Then the
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coupling constant is written as

g = −ε̂ · d
√

ωc
2ε0~V

(2.5)

where ε̂ is the polarization vector of the field at r0.

Dropping the vacuum field energy, the dipole approximation Hamiltonian becomes

H = ~ωeσee + ~ωcc†c+ ~
(
σeg + σge

) (
gc+ g∗c†

)
(2.6)

2.1.1 Rotating Wave Approximation

The interaction term in the Hamiltonian is expanded as

Hint/~ = gσegc+ g∗σgec† + gσgec
† + g∗σgec (2.7)

In the absence of interaction, the Heisenberg equation of motion for c is ċ + iω0c =

0, a first-order differential equation with solution c(t) = c(0)e−iωct. Similarly, σge(t) =

σge(0)e−iωet. Therefore in the interaction picture, we can see the first two terms in Hint will

oscillate slowly as e±i(ωe−ωc)t, while the latter two oscillate rapidly as e±i(ωe+ωc)t.

As long as the coupling g � ω, the rapidly oscillating terms will only weakly affect the

dynamics and can be dropped2. Put another way, dropping these terms is valid so long as

the coupling does not cause the interaction picture amplitudes c̃(t) and σ̃ge(t) to vary at

time scales comparable to ω. If they did, then many cavity longitudinal modes would have

2. This is analogous to the classical harmonic oscillator, where a second-order differential equation ẍ +
ω2
0x = 0 can be reduced to a single first-order equation by defining the variable a ≡ ẋ − iω0x, so that
ȧ + iω0a = 0. There is also an a∗ equation, ȧ∗ − iω0a

∗ = 0, but the two equations are uncoupled, so
the second-order system is fully described by just one first-order equation. However, if damping terms are
added, or if multiple oscillators are coupled (e.g. with a spring, producing terms like kx1x2), the differential
equations for a and a∗ are coupled together. In that case, the RWA approximation can be made if g � ω.
The exact solution is easy to obtain, but the RWA reduces the complexity from 2 first-order ODEs per
oscillator to 1 per oscillator.
For the quantum problem, the regime where g approaches ω is known as the ultrastrong coupling regime. It
can also be solved without the RWA [54, 55], but it is considerably more difficult.
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to be occupied, and the single-mode approximation would not be valid anyway.

2.1.2 The Jaynes-Cummings Hamiltonian

Finally, this yields the Jaynes-Cummings Hamiltonian [56]

H = ~ωeσee + ~ωcc†c+ ~
(
gσegc+ g∗σgec†

)
(2.8)

The Hamiltonian is block diagonal, in that it only couples pairs of near-degenerate states

|n+ 1, g〉 and |n, e〉, where the first index is the photon number and the second is the atomic

state. Then defining the detuning δec = ωe − ωc, the eigenstates are found by diagonalizing

each block. The energies are

En,±/~ = ωc (n+ 1) +
1

2

(
δec ±

√
δ2
ec + 4|g|2 (n+ 1)

)
(2.9)

For ωe < ωc (negative δec), the states are written

|n,+〉 = − cos
θ

2
|n+ 1, g〉+ sin

θ

2
|n, e〉 (2.10)

|n,−〉 = sin
θ

2
|n+ 1, g,〉+ cos

θ

2
|n, e〉 (2.11)

with

tan θi =
2g
√
n+ 1

δec
(2.12)

For ωe > ωc (positive δec), the states are written

|n,+〉 = sin
θ

2
|n+ 1, g〉+ cos

θ

2
|n, e〉 (2.13)

|n,−〉 = cos
θ

2
|n+ 1, g〉 − sin

θ

2
|n, e〉 (2.14)

Meanwhile the ground state |0, g〉 is uncoupled and experiences no shift. It is useful to
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Figure 2.1: Transmission spectra of a driven cavity with atoms. Blue, the transmis-
sion of a bare cavity. Orange, vacuum Rabi splitting induced by atoms resonant with the
cavity. Green, cavity electromagnetically induced transparency.

examine two limits for the other states:

For g � |δ|, the eigenstates are symmetric and antisymmetric superpositions |n,+〉 ≈
1√
2

(|n+ 1, g〉+ |n, e〉), and |n,−〉 ≈ 1√
2

(|n+ 1, g〉 − |n, e〉),. The energies are En,±/~ ≈

ωc (n+ 1) ± |g|
√
n+ 1. Even with zero photons in the system, there is a splitting between

the two states, which is known as the vaccum Rabi splitting. Thus, probing the cavity

in transmission, even weakly, will reveal a two-peak structure, as shown in Figure 2.1 and

described more thoroughly in Section 2.3.1. The splitting is strongly dependent on the

photon number, which causes a nonlinearity examined in the next section.

For g � |δ|, the eigenstates are close to the uncoupled states, with a population admixture

of magnitude
4g2(n+1)

δec
. The energies are equal to the original bare energies, but Stark shifted

apart by ~g
2(n+1)
δec

.

2.1.3 Photon Blockade

The photon-number dependent splitting of the Jaynes-Cummings eigenstates can lead to a

strong optical nonlinearity, which is very useful for quantum information processing appli-
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cations. Under certain conditions, only one photon can be present in the system at a time,

known as the photon blockade effect [57]. If a probe with frequency ωo resonantly drives one

of the n = 0 polaritons, say ωo = ω+g, then the |0,+〉 state will be populated. However, the

energy required to transition from |0,+〉 to |1,+〉 is ω+
(√

2− 1
)
g. Therefore, the probe is

off-resonant by
(√

2− 2
)
g. If g is much larger than the width of the eigenstates (set by loss

processes examined in the next section), then a second excitation cannot enter the system.

2.2 Input, Output, and Dissipation

In our experiments, all measurements occur by probing a resonator with a probe tone, and

detecting the light leaking out. Therefore, it is essential to understand how the system

receives and loses energy to the outside world. This coupling of the quantum system under

study to the continuum of outside modes inevitably leads to dissipative loss. In fact, coupling

to a reservoir is the most natural way to treat dissipation in quantum mechanics: an ad hoc

approach of adding damping terms to the Heisenberg equations of motion would lead to

unphysical decay of the commutators of system operators [58].

We will begin by treating input and output in the Heisenberg picture, which allows the

entire spectrum of cavity operators to be calculated. This is particularly convenient for sys-

tems with linear dynamics, including frequency transducers. Afterward, we will introduce an

approximate treatment in the Schrödinger picture using non-Hermitian perturbation theory,

where we can specialize to considering a few privileged states.

2.2.1 Input-Output Theory

Consider an optical cavity with one partially transmissive mirror which couples it to the

environment. This derivation will borrow from Walls and Milburn [59] and Steck [53]. Then

the cavity mode with annihilation operator c is supplemented by a continuum of outside

modes with annihilation operators b(ω). All field operators c, b(ω) have units s−1/2. The
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outside modes have commutation relations
[
b(ω), b†(ω)

]
= 1 and are coupled to the cavity

mode with strength g(ω). Then dropping zero-point energy terms, the model Hamiltonian

for the system is3:

H = ~ωcc†c+ ~
∫ ∞

0
dωωb†(ω)b(ω) + ~

∑

ω

g(ω)
[
b†(ω)c+ c†b(ω)

]
(2.15)

The Heisenberg equations of motion for the operators are then (note that while the outside

modes are indexed by their center frequency ω, they still have explicit time dependence in

the Heisenberg picture)

ċ = −iωcc− i
∑

ω

g(ω)b(ω) (2.16)

ḃ(ω) = −iωb(ω)− ig(ω)c (2.17)

or, in a rotating frame c̃ = eiωctc, b̃(ω) = eiωctb(ω),

˙̃c = −i
∑

ω

g(ω)b̃(ω) (2.18)

˙̃b(ω) = −i (ω − ωc) b̃(ω)− ig(ω)c̃ (2.19)

Now the latter equation is formally integrated. The initial conditions for integration can

be chosen at a time t0 < t, which will be seen to correspond to the “input” field, or a time

t1 > t, which will correspond to the “output” field. The integration can be done with an

3. This model certainly seems reasonable, but a rigorous justification is more involved. For example,
when the resonator is opened to the environment, it is no longer strictly possible to define normal modes
confined to the interior of the cavity, so it may be asked what exactly the operator ĉ represents, and whether
the coupling constants g(ω) can be derived from first principles. The general question of how to model
open/coupled cavities with discrete modes, is relevant in both quantum and classical physics, where it is
known as coupled-mode theory. One method to derive Equation 2.15 is to add an auxiliary perfectly reflecting
mirror at infinite distance, and solve the exact normal modes of this system [60]. For now, we will simply
begin with the present model and find that it results in a Lorentzian cavity line, which matches the classical
analysis of a high-finesse cavity.
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integrating factor, yielding

b̃(ω) = e−i(ω−ωc)(t−t0)b̃0(ω)− ig(ω)

∫ t

t0

dt′e−i(ω−ωc)(t−t
′)c̃(t′) (2.20)

where t0 < t and b0(ω) = b(ω, t = t0), or

b̃(ω) = e−i(ω−ωc)(t−t1)b̃1(ω) + ig(ω)

∫ t1

t
dt′e−i(ω−ωc)(t−t

′)c̃(t′) (2.21)

where t < t1 and b1(ω) = b(ω, t = t1).

Inserting the former into Equation 2.18 and passing to a continuum limit yields

˙̃c = −i
∫ ∞

0
dωρ(ω)g(ω)e−i(ω−ωc)(t−t0)b̃0(ω)−

∫ ∞

0
dωρ(ω)g(ω)2

∫ t

t0

dt′e−i(ω−ωc)(t−t
′)ã(t′)

(2.22)

The exponential factors oscillate rapidly far from ω ≈ ωc, so we can extend the lower

integration limit to −∞, and assume g(ω) ≈ g(ωc), ρ(ω) ≈ ρ(ωc) are roughly constant

in a sufficient range around ωc, which is a Markov approximation. Then performing the

integration with some delta-function tricks and finally leaving the rotating frame yields

ċ = −iωcc−
κ

2
c+
√
κcin(t) (2.23)

cin(t) ≡ − i√
2π

√
ρ(ωc)

∫ ∞

−∞
dωe−iω(t−t0)b0(ω) (2.24)

κ ≡ 2πρ(ωc)g(ωc)
2 (2.25)

where we have defined the input field operator cin(t) (units s−1) and the constant κ. A
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similar calculation substituting Equation 2.21 into 2.18 yields

ċ = −iωcc+
κ

2
c−√κcout(t) (2.26)

cout(t) ≡
i√
2π

√
ρ(ωc)

∫ ∞

−∞
dωe−iω(t−t1)b1(ω) (2.27)

where we have defined the output field operator cout(t). Finally, subtraction of Equa-

tions 2.23 and 2.26 yields
√
κc(t) = cin(t) + cout(t) (2.28)

which says that the output field is equal to a prompt reflection of the input field with R ≈ −1,

plus a leakage field from the cavity weighted by
√
κ.

A few remarks:

1. Determination of the coupling constants: Examination of Equation 2.23 shows that κ

is a Lorentzian linewidth. Comparison to the classical case yields κ = 2π × c
2LF with

finesse F . This fixes the initially undetermined coupling constant g as g =
√ κ

2π .

2. Extension to multiple ports and arbitrary cavity Hamiltonian: suppose there are multi-

ple ports to the environment. Also suppose the intracavity Hamiltonian is Hsys, which

before was just ~ωcc†c. Then a similar derivation yields

ċ = − i
~
[
Hsys, c

]
− 1

2
(κ1 + κ2) c+

√
κ1cin,1(t) +

√
κ2cin,2(t) (2.29)

and

√
κ1c(t) = cin,1(t) + cout,1(t) (2.30)

√
κ2c(t) = cin,2(t) + cout,2(t) (2.31)

The total cavity decay rate is now κ =
∑
i κi. Again, comparison to the classical case
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tells us that κi is the loss rate through mirror i, with value κi = 2π Ti
Trt

, round trip time

Trt and mirror power transmission Ti.

3. Input field: in the absence of any input light, cin(t) represents a Langevin noise opera-

tor, which does not contribute to the expectation value of normally ordered operators.

In this thesis we will only measure intensity and g2, which are given by such nor-

mally ordered operators. However, if the cavity is driven by a coherent drive field of

amplitude ξe−iωt at mirror 1, then

ċ = −iωcc−
κ

2
c+
√
κ1ξe

−iωt (2.32)

where we have still neglected a noise term.

This equation can be easily solved, and then the output field at mirror 2 is

cout,2 =
√
κ2c, (2.33)

giving the cavity transmission.

2.3 Non-Hermitian Hamiltonians

If Langevin noise terms are neglected in the results of the last section, then the loss term in

the cavity input equation 2.32 is equivalent to modifying the cavity energy directly in the

Hamiltonian as ωc → ωc − iκ2 .

Atomic loss can be included in a similar way, where the decay rate γe = ω3d2

3πε0~c3
is obtained

by a similar calculation [61] as for the cavity known as the Wigner-Weisskopf approximation,

or by Fermi’s golden rule.

Meanwhile the coherent input drive in Equation 2.32 is equivalent to adding to the Hamil-

tonian a term ξ
√
κ1

(
ae−iωt + a†e−iωt

)
. Finally, the transmitted output field is calculated
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from the cavity state using Equation 2.33.

All together, this gives a prescription to calculate the cavity transmission in terms of a

non-Hermitian Hamiltonian4:

H = ~
(
ωe − i

γe
2

)
σee + ~

(
ωc − i

κ

2

)
c†c+ ~

(
gσegc+ g∗σgec†

)
+ ξ
√
κ1

(
ae−iωt + a†e−iωt

)

(2.34)

Going into a rotating frame at the drive frequency, which amounts to examining a trans-

formed wavefunction |ψ̃〉 = eiAt |ψ〉, with A = ωc†c+ ωσee, the Hamiltonian becomes

H = ~
(
δe − i

γe
2

)
σee + ~

(
δc − i

κ

2

)
c†c+ ~

(
gσegc+ g∗σgec†

)
+ ξ
√
κ1

(
c+ c†

)
(2.35)

where δe = ωe − ω and δc = ωc − ω.

2.3.1 Non-Hermitian Perturbation Theory

As we are interested broadly in single-to-few photon phenomena, the cavity will be probed

only weakly. This suggests that the probe be treated as a perturbation, V = ξ
√
κ1

(
c+ c†

)
.

In the absence of a probe, the atom-cavity system begins in the vacuum state |ψ0〉 ≡ |0, g〉,

and no term in the Hamiltonian couples it to a different state. To first order in the probe,

the only accessible states are the single excitation states (this will be clear in the formal

treatment): |1, g〉 and |0, e〉. Then no other states enter the dynamics, and the Hamiltonian

H = H0 + V can be written in matrix form:

4. Treating loss in this way allows decay from the population of one state without growth in the population
of another, losing probability conservation. This treatment is identical to ignoring the aρa† operator terms
in the master equation [62]. For the present case of a single atom strongly coupled to a cavity, those terms
are important. However, when we treat the case of many atoms later, the return of any given atom to its
ground state is not so important, and the non-Hermitian Hamiltonian approach is very accurate.
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H0 =




0 0 0

0 δc − iκ2 g

0 g δe − iγe2



, V = ξ

√
κ1




0 1 0

1 0 0

0 0 0




(2.36)

with basis vectors |0, g〉 = (1 , 0 , 0)T , |1, g〉 = (0 , 1 , 0)T , |0, e〉 = (0 , 0 , 1)T .

Because this is a non-Hermitian matrix, modifications must be made to the usual deriva-

tion of perturbation theory, which relies on the orthogonality between the eigenkets and the

eigenbras. For a non-Hermitian Hamiltonian, the eigenkets and eigenbras are not necessarily

orthogonal, and thus are not related by Hermitian conjugation, but by matrix inversion.

Closely following References [63, 64, 65], we begin in an initial state |ψ0〉 which is an

eigenket H0 |ψ0〉 = ε0 |ψ0〉. We then require that we can identify a single eigenbra 〈ψc0|

which satisfies

〈ψc0|ψ0〉 = 1 (2.37)

〈ψc0|ψi〉 = 0 (2.38)

〈ψc0|H0 = ε0 〈ψc0| (2.39)

where |ψi〉 are the (unknown) eigenkets of H0 besides |ψ0〉. In our case this is satisfied by

〈ψc0| = 〈0, g|.

Then, perturbation theory in V yields a steady-state wavefunction |ψss〉 = |ψ0〉+ |ψ(1)
0 〉,

with first-order correction

ε
(1)
0 = 〈ψc0|V |ψ0〉 = 0 (2.40)

|ψ(1)
0 〉 = (ε01−H0)−1QV |ψ0〉 (2.41)

where Q = 1− |ψ0〉 〈ψc0| projects onto the subspace orthogonal to |ψ0〉.5

5. In the derivation, Q arises because ε
(1)
0 |ψ0〉 = 〈ψc0|V |ψ0〉 |ψ0〉 = (1−Q)V |ψ0〉. Similarly at second
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To employ second-order perturbation theory, states in the two-excitation manifold must

also be included in the Hamiltonian matrix. Then the second-order correction can be calcu-

lated as

ε
(2)
0 = 〈ψc0|V QG0V |ψ0〉 (2.42)

|ψ(2)
0 〉 = G0V G0V |ψ0〉 (2.43)

with6

G0 = (ε01−H0)−1Q (2.44)

Note that higher-order corrections do not follow the simple pattern of Equation 2.43, but

they will not be used in this thesis in any case.

Finally, the cavity transmission with an atom can be directly calculated from the first-

order steady-state wavefunction in Equation 2.41. The output field is given by Equation 2.33,

then a photodetector measures [66]
〈
c
†
outcout

〉
. Normalized to the drive rate |ξ|2, the trans-

mission is

T =
1

|ξ|2
〈
c
†
outcout

〉
= κ2

〈
ψss

∣∣∣ c†c
∣∣∣ψss

〉
= κ2 〈ψss | 1, g〉 〈1, g |ψss〉

T = κ1κ2

∣∣∣
〈

1, g
∣∣∣
(
ε01̌− Ȟ0

)−1
∣∣∣ 1, g

〉∣∣∣
2

(2.45)

where we used that c†c = |1, g〉 〈1, g| in the one-excitation manifold, and the superscript on

1̌, Ȟ0 shows that they act only on states orthogonal to |ψ0〉 (so they can be written as 2× 2

matrices). For a symmetric cavity, κ1 = κ2 = κ
2 .

order, ε
(2)
0 |ψ0〉 = (1−Q)V |ψ(1)

0 〉.
6. We have assumed that we are in a frame rotating with the drive frequency. Often instead we

will write H0 in a frame rotating with some other frequency ωo, so the drive has time dependence
V = ξ

√
κ1
(
ae−iδlt + a†eiδlt

)
, with δl = ω − ωo. Then going into the correct rotating frame modifies

the Hamiltonian, which amounts to writing G0 = (ε01 + δlNexc −H0)
−1
Q, where Nexc = a†a + σee is the

number of excitations in the system. Note that ε01 arises from a constant energy offset (zero-point energy)
and will always be set to zero, while δlNexc arises from a rotating drive term.
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This expression for (lossless) cavity transmission requires only a matrix inversion, and

will be applicable even for complicated Hamiltonians involving many atoms with multiple

internal states! Using the Hamiltonian in Equation 2.36 gives the vacuum Rabi splitting, as

described in Section 2.1.2 and shown in Figure 2.1. For a symmetric cavity, this is

T =

∣∣∣∣∣∣∣∣

−i
1 + i δc

κ/2
+

4g2/κγ

1+i δe
γe/2

∣∣∣∣∣∣∣∣

2

(2.46)

Meanwhile, the second-order steady-state wavefunction in Equation 2.43 can be used to

calculate correlation functions in the cavity transmission.

2.4 Multiple Atoms

Our experiments will usually involve thousands of atoms in the cavity. The Jaynes-Cummings

Hamiltonian is easily extended to the case of N atoms, yielding the Tavis-Cummings Hamil-

tonian:

H = ~δcc†c+ ~δe
N∑

i=1

σiee + ~
N∑

i=1

(
giσ

i
egc+ g∗i σ

i
gec
†
)

+ ξ
√
κ1

(
c+ c†

)
(2.47)

If all atoms are identically coupled to the cavity, there are elegant treatments of their

collective behavior [67, 68], in which the atoms act as a single spin vector. However, even

with non-uniform couplings, a great simplification occurs by defining the collective operators

Σeg =
1

gcoll

∑

i

(
giσ

i
eg

)
(2.48)

gcoll =

√∑

i

|gi|2 (2.49)

NE =
∑

i

σiee (2.50)

21



and a corresponding normalized, single-excitation collective state |E〉 = Σeg |0〉. Then the

Hamiltonian becomes

H = ~δcc†c+ ~δeNE + ~
(
gcollΣegc+ g∗collΣgec

†
)

+ ξ
√
κ1

(
c+ c†

)
(2.51)

To understand the collective states, first consider the case where the atoms are coupled

identically. Then gcoll = g
√
N , representing the

√
N collective enhancement of the coupling

strength compared to the one-atom case. In the one-excitation state |E〉, the single excitation

is shared between all atoms. Furthermore, consider the commutator
[
Σge,Σeg

]
=

Ng−Ne
N ,

where Ne is the number of atoms in state e. Because this commutator has no terms which

change the state of any atom, the collective excitation operator is a “ladder operator”:

applying Σeg twice creates two excitations, then Σge brings the system back to the unique

one-excitation state |E〉, and does not couple it into other states. Thus the system will only

ever go up and down the excitation ladder. There is no need to keep track of the individual

atoms, only the number of collective excitations!7 Furthermore, at low excitation numbers,

the commutator is nearly 1, so collective excitations are essentially bosonic.

In the one-excitation manifold, then, the accessible states are |0, G〉, |1, G〉, and |0, E〉,

and we can write a non-Hermitian Hamiltonian nearly identical to the previous one. Drop-

ping the vacuum state from the matrix, we have

H0 =




δc − iκ2 gcoll

gcoll δe − iγe2


 (2.52)

with the only difference being g replaced with gcoll.

For nonuniform couplings, calculating the same commutator as before gives
[
Σge,Σeg

]
=

7. The Hamiltonian contains another term NE =
∑N
i=1 σ

i
ee. This term also does not couple the system

outside the ladder of collective excitations. In fact, the commutator [Ncoll,Σeg] = Σeg shows that this is the
number operator for collective excitations.
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1
g2coll

∑
i |gi|2

(
σ̂igg − σ̂iee

)
. Applied to the vacuum, this equals 1, which means there is still a

unique one-excitation state |E〉, as long as we never go beyond first order. At higher excita-

tion numbers, the commutator contains terms which change the state of individual atoms,

coupling out of the collective manifold. For example, Σge applied to the state ΣegΣeg |0〉

yields mostly |E〉, plus a small coupling to a state outside the ladder. However, this coupling

is suppressed by a factor of NexcN , so it is usually negligible at low excitation numbers.

The bottom line is, to a very good approximation the system can be fully characterized

by the number of collective excitations, and Σeg is nearly a bosonic operator.

2.4.1 Behavior of Collective States

A single atom, strongly coupled to a cavity, results in a large photonic nonlinearity. However,

strong coupling requires the coupling strength g to be large compared to the loss rates κ,

γe (later, we will see the degree of coupling is quantified by a single parameter called the

cooperativity η). It is also technically challenging to bring just one atom into a cavity,

particularly if it is to be exactly at the mode maximum.

With N atoms in the cavity, the coupling strength is enhanced by ∼
√
N , and each

excitation is “shared” amongst the atoms with weight gi. We will often use the enhancement

of gcoll to define an “effective atom number” by gcoll = g0
√
Neff , where g0 is the coupling

strength for an atom at the mode maximum. This enhancement makes it much easier to

reach the strong coupling regime, and avoids the technical problems of working with single

atoms.

The introduction of many atoms has changed the commutation relation of a single atom,
[
σeg, σge

]
= σee, to just a harmonic oscillator

[
Σeg,Σge

]
≈ 1. Thus we have lost the

nonlinearity associated with atomic saturation, which is so useful for cavity QED! In fact,

for some experiments (transduction), we will want the system to be as linear as possible,

so this isn’t a problem. Moreover, we will regain a Jaynes-Cummings like nonlinearity by
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coupling the atoms to a second cavity at mm-wave frequencies. This nonlinearity can be

transferred to the optical field, and has the potential to be extremely strong compared to

what is achievable with an optical cavity alone.

2.5 Rydberg Electromagnetically-Induced Transparency

For an atom to interact strongly with mm-waves, it must be excited to a Rydberg level with

principle quantum number n ≈ 36. Thus, we now wish to add additional atomic levels to

the Hamiltonian.

The simplest solution would be to use a laser at the ground-to-Rydberg transition fre-

quency for rubidium, around 297 nm. Indeed, in Chapter 5, we will do exactly this. However,

ultimately we want to interface mm-waves with an optical wavelength that is suitable for

telecom fibers. Ultraviolet light is hardly ideal for this purpose, not to mention that building

a high-finesse optical cavity for UV would be a challenging task. Finally, the transition is

not closed, substantially decreasing the achievable atom-cavity coupling strength, which will

be quantified later by the cooperativity η.

Instead, we will excite Rydberg atoms using electromagnetically-induced transparency

(EIT), a two-photon scheme in which the atom is first coupled from the |5S1/2〉 state (g) to

an intermediate |5P3/2〉 state (e) by a cavity photon at 780 nm, then to a Rydberg s state

(r) by a strong classical blue beam at 480 nm. The next subsection derives the Rydberg

collective states, but the reader can safely skip to the first-order matrix Hamiltonian in the

following subsection.

2.5.1 Rydberg Collective States

The blue laser has frequency ωblue and Rabi frequency Ωi for the ith atom. The Hamil-

tonian can then be written in a frame with the cavity field and |e〉 state rotating at the

drive frequency ω, while the |r〉 state rotates at ω + ωblue, which amounts to examining a

24



transformed wavefunction |ψ̃〉 = eiAt |ψ〉, with A = ωc†c + ω
∑
i σ

i
ee + (ω + ωblue)

∑
i σ

i
rr.

Then

H = ~
(
δc − i

κ

2

)
c†c+ ~

(
δc − i

γe
2

)
NE + ~

(
δr − i

γr
2

)∑

i

σirr

+ ~
(
gcollΣegc+ g∗collΣgec

†
)

+ ~
∑

i

(
Ωiσ

i
re + Ω∗i σ

i
er

)
+ ξ
√
κ1

(
c+ c†

) (2.53)

with δr = ωr − ωblue − ω.

We wish to define a collective Rydberg operator similar to Σeg. It turns out that if Ωi

are nonuniform, there is no longer a nice ladder of collective states – a method to treat this

case is presented in Section 5.5. Therefore assuming uniform Ω, we define

NR =
∑

i

σirr (2.54)

Σre =
∑

i

σire (2.55)

Σrg = ΣreΣeg =
1

gcoll

∑

i

(
giσ

i
rg

)
(2.56)

where Σrg is approximately a bosonic creation operator for R type excitations, NR counts

R type excitations, and Σre converts an excitations of E type to R type. The single R

excitation state is

|R〉 = Σrg |0〉 =
1

gcoll

∑

i

giσrg |0〉 (2.57)

where the excitation is shared among the atoms with weights gi.

With these definition, Σre obeys exact commutation relations

[Σer,Σre] = Ne −Nr (2.58)

[
Σre,Σeg

]
= Σrg (2.59)

[
Σer,Σrg

]
= Σeg (2.60)
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Finally, the operators Σrg, Σeg obey quasi-bosonic commutation relations. As before,

they are exactly bosonic if we restrict to one excitation, with corrections and couplings to

other states of order Nexc
N for higher excitation number Nexc. These corrections will always

be ignored, so we might as well write them as bosonic operators R† = Σrg, E
† = Σeg, and

approximate Σre ≈ R†E:

H = ~
(
δc − i

κ

2

)
c†c+ ~

(
δe − i

γe
2

)
E†E + ~

(
δr − i

γr
2

)
R†R

+ ~
(
gcollE

†c+ g∗collc
†E
)

+ ~Ω
(
R†E + E†R

)
+ ξ
√
κ1

(
c+ c†

) (2.61)

Note that while gcoll is enhanced by the number of ground state atoms, Ω is only enhanced

by the number of E and R excitations.

2.5.2 Rydberg Polaritons

Now, we can calculate the transmission spectrum with an additional atomic level. One may

worry that coupling to the lossy intermediate E state would cause loss, removing the benefit

of long Rydberg lifetimes. However, it is well known that a three-level atom driven on two-

photon resonance experiences zero population in the middle state [69], a phenomenon called

electromagnetically-induced transparency (EIT).

In this case the atoms are also in a cavity, but it turns out that the first-order Hamiltonian

is the same as that for a free three-level atom. With an additional atomic sublevel, the one-

excitation states are now |C〉 ≡ |1, G〉, |E〉 ≡ |0, E〉, and |R〉 ≡ |0, R〉. In this basis the

Hamiltonian is

H0 =




−iκ2 gcoll 0

gcoll δec − iγe2 Ω

0 Ω δrc − iγr2




(2.62)

where we have gone into a frame rotating at the cavity frequency ωc because we are initially

considering no drive, and δec = ωe − ωc, δrc = ωr − ωblue − ωc.

26



We search for an eigenstate with exactly zero population in the E state, so long as two-

photon resonance is maintained. Neglecting loss rates and setting δrc = 0, we look for an

eigenstate H0 |ψ〉 = λ |ψ〉, where the state vector |ψ〉 = (AC , AE , AR)T , and AE = 0. This

gives equations

λAC = 0

0 = gcollAC + ΩAR

λAR = 0

The solution is the so-called “dark polariton”:

λ = 0 (2.63)

|ψD〉 =
1√

g2
coll + Ω2

(Ω |C〉 − gcoll |R〉) (2.64)

= (cos θD |C〉 − sin θ |R〉) (2.65)

where tan θD = gcoll
Ω is the dark-state rotation angle. The dark polariton is a superposition

of a cavity photon and a collective Rydberg excitation, with the relative weight set by θD.

The two other eigenstates can be solved for:

λ± = ±
√
g2
coll + Ω2 (2.66)

|ψB±〉 =
1√
2

(sin θD |G〉 ± |E〉+ cos θD |R〉) (2.67)

These are called “bright polaritons” because they have finite population in E and thus

strongly scatter light.

Reintroducing loss, allowing nonzero δrc, and solving for the eigenstates, the dark polari-
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ton linewidth becomes [70, 71]

γD ≈ κ cos2 θD + γr sin2 θD + aδ2
rc (2.68)

where a = 4γe
Ω2g2coll

(Ω2+g2coll)
3 . The first two terms are just loss through the cavity and Ryd-

berg state scattering, weighted by the dark-state rotation angle. The third term introduces

additional loss when two-photon resonance is broken.

Note that, so long as δrc = 0, the dark polariton is unaffected by loss from the |E〉 state!

Thus, when the cavity is driven on two-photon resonance, it is populated by a superposition

of only a cavity photon and a long-lived collective Rydberg excitation, leading to a narrow

transmission peak as shown in Figure 2.1. Controlling the blue power Ω tunes θD, i.e. how

“cavity-like” vs “Rydberg-like” the dark polariton is, with low blue powers corresponding

to Rydberg-like. The two bright polaritons also appear when probing the cavity, and are

separated energetically from the dark polariton by
√
g2
coll + Ω2. We will generally be less

interested in these, as they are lossy.

Using electromagnetically-induced transparency, we are able to excite Rydberg-like exci-

tation via a convenient wavelength of 780 nm, while bypassing the loss of the intermediate

state. The dark polariton inherits the properties of the Rydberg atom, and will thus strongly

couple to mm-waves, with strength tunable by changing Ω.

2.6 Interfacing Atoms and mm-Waves: Strong Nonlinearity

Rydberg polaritons can interact with a mm-wave field by transitioning to a nearby Rydberg

state. If this coupling is enhanced by a mm-wave cavity, then a nonlinearity very similar to

that of the Jaynes-Cummings model is expected.

We introduce a mm-wave resonator with field operators b, b†, which is nearly resonant

with the r ↔ f atomic transition. Even for a λ scale resonator, the wavelength is 3 mm for
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100 GHz light, so the mode is much larger than the atomic cloud, and the atom-resonator

coupling is nearly a constant h. Then we can define a nearly bosonic collective operator F

just as for cavity Rydberg EIT, giving

H =
(
δc − i

κ

2

)
c†c+

(
δb − i

κm
2

)
b†b+

(
δe − i

γe
2

)
E†E

+
(
δr − i

γr
2

)
R†R +

(
δf − i

γf
2

)
F †F +

(
gcollE

†c+ g∗collc
†E
)

+ Ω
(
R†E + E†R

)
+ h

(
b†F †R +R†bF

)
+ ξ
√
κ1

(
c+ c†

)
+ ζ
√
κm

(
b+ b†

)
(2.69)

This Hamiltonian is written in the rotating frame of both an optical and mm-wave drive

at ωo and ωm, respectively. This amounts to examining a transformed wavefunction |ψ̃〉 =

eiAt |ψ〉, withA = ωoc
†c+ωmb†b+ωo

∑
i σ

i
ee+(ωo + ωblue)

∑
i σ

i
rr+(ωo + ωblue − ωm)

∑
i σ

i
ff .

The detunings are δc = ωc − ωo, δe = ωe − ωo, δr = ωr − ωblue − ωo, δb = ωb − ωm, and

δf = ωf − ωo − ωblue + ωm. In experiments with no mm-wave drive, ωm is an arbitrary

frequency, which can be set to ωb for convenience.

As before, all atomic excitation operators are bosonic. However, unlike the EIT Hamilto-

nian, this Hamiltonian is not linear, due to the presence of nonquadratic terms b†F †R+h.c..

Thus, its behavior is significantly more complicated. In fact, this situation resembles the

single-atom Jaynes-Cummings Hamiltonian, where the nonlinearity comes not from the

atomic transition operator, but from a cubic term of bosonic operators. Instead of a single

atom strongly coupled to an optical cavity, we can create a single Rydberg polariton, which

is strongly coupled to a mm-wave cavity. At this point, we can observe a nonlinearity by

either injecting photons into the mm-wave cavity, or injecting optical photons to create more

Rydberg polaritons, each of which is strongly coupled to the mm-wave cavity.

For very weak optical probes, the system can be treated to first order in perturbation

theory to calculate a linear transmission. We can follow the usual prescription and identify

the one-excitation states, now indexed by |nc, nb, X〉, where X is one of the possible collective
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atomic excitations. The accessible states are |1, 0, G〉, |0, 0, E〉, |0, 0, R〉, and |0, 1, F 〉8.

When a strong coherent mm-wave tone of amplitude β pumps the system, the system

becomes approximately linear. Then the b operator can be approximated b̂ → β. The

nonlinear coupling term becomes hβR†F +hβ∗F †R, which looks like a simple coherent drive

of the R ↔ F transition. This produces an Autler-Townes splitting of the dark polariton

peak.

Otherwise, the system behaves nonlinearly. The optical transition experiences antibunch-

ing or photon blockade, which can be seen in the g2 correlation function. To date, we have not

observed the strong coupling required for VRS on the mm-wave transition, or for g2 suppres-

sion. The reason is simply that our cryostat is too warm: the quality factor of the mm-wave

resonator decreases exponentially with temperature rise, increasing the cavity linewidth and

obscuring nonlinear effects. Qualitatively, the mm-wave vacuum Rabi splitting 2h is much

smaller than the linewidth κm, so the peaks are not resolved. At current temperatures of

∼ 5 K, the mm-wave linewidth is 4 MHz. At temperatures of 1 K, the linewidth improves

to 5 kHz, a 3 order of magnitude difference. This is a planned experiment upgrade which

will yield exciting new physics! It should also be noted that at current temperatures, there

is a non-negligible thermal population of the mm-wave cavity. To treat that case properly,

a master equation formalism should be used. Additionally, active cooling techniques using

Rydberg atoms can remove thermal photons from the mm-wave mode [72].

2.7 Impedance Matching in Atomic Systems

We have seen how interfacing a Rydberg excitation with a mm-wave cavity can result in

a strong photonic nonlinearity. Another interesting application of this atomic coupling to

8. The state |0, 1, F 〉 contains both a mm-wave photon and an atomic F excitation. If there is only an
optical drive and no mm-wave drive, the Hamiltonian in Equation 2.69 always creates these two excitations
together, so we need only consider states with Nb = NF . Be careful, though, because as more excitations are
added, the bosonic enhancement of this transition is effectively squared. If there is an additional mm-wave
drive, or if there are thermal mm-wave photons, then we can no longer restrict to states where Nb = NF .
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the mm-wave field is photonic transduction, in which an optical excitation is absorbed by

the atom-cavity system, and a mm-wave excitation is emitted (or vice versa). This is, in

fact, an ideally linear process. Regardless of the incoming state of the optical field, an ideal

transducer should implement a linear map c† → b†.

To get a sense for how transduction works in atomic systems, we will first investigate how

a single atom in a cavity can be used to efficiently scatter incoming light from a Gaussian

mode into an outgoing dipole radiation pattern. This is an elastic scattering process which

changes the spatial mode of light without changing its frequency, and will be described by

the same Hamiltonian as the cavity-based mode converters in Chapter 6. Along the way we

will encounter the extremely important cooperativity parameter, which is a figure of merit

governing many cavity QED processes.

Next, we will consider the case where we want to convert an incoming optical photon

into some outgoing excitation accessible from the Rydberg state. For example, the Rydberg

state might be able to decay and emit a photon into a mm-wave cavity. When the Rydberg

state is accessed by a two-photon EIT transition, the efficiency of this process will again

depend on the cooperativity, though in a different form.

2.7.1 Dipole Emitter Impedance Matching

Consider a single atom inside an optical cavity with one partially transmissive mirror. The

atom has decay rate γe, the cavity linewidth is κ, and the coupling between them is g. This

system is described exactly by the Hamiltonian of Equation 2.36. If the cavity is weakly

probed, we can use the first-order non-Hermitian perturbation theory to calculate the steady-

state population of the atomic excited state, Pe = |〈0, e|ψss〉|2, and the rate of free-space

scattering Γout = γePe. On resonance (δc = δe = 0) and normalized to the input photon

rate Γin = |ξ|2,

Γout
Γin

=
4η

(η + 1)2
(2.70)
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where we have defined the all-important cooperativity

η =
4g2

κγe
(2.71)

In the case η = 1, the efficiency of scattering is unity. Since the atom emits as a dipole,

this represents a perfect mode converter between an incoming Gaussian mode and outgoing

dipole radiation. Furthermore, the time-reversed calculation is identical, so if we had a

source of incoming dipole radiation, an atom-cavity system could perfectly convert it to a

Gaussian beam9.

2.7.2 Cooperativity and Impedance Matching

Remarkably, the efficiency of resonant scattering does not depend on g, κ, or γe individually,

only on the unitless cooperativity parameter. This deserves further consideration.

One interpretation of cooperativity is the ratio of the rate at which cavity photons are

scatterd by the atom, given by Fermi’s golden rule as 4g2/γe, to the rate that photons leak

through the mirror, κ. Thus, at η = 1, the rate for photons leaving the two ports is exactly

matched.

However, in the present case where the cavity is driven directly, the prompt reflection

destructively interferes with light leaking through the mirror. At η = 1, the reflected power

is exactly canceled, and all input photons leave as photons scattered by the atom. This is

called impedance matching, and will be explored in greater detail in Chapter 6, in particular

Section 6.2. The key point is that when in- and out- coupling rates are equal, the reflection

goes to zero, and therefore all power exits through the desired output port.

In most cases, we don’t wish to scatter light into free space – in fact, this is the main loss

9. With N atoms in the cavity, g receives a
√
N collective enhancement, so the condition for unity

scattering out of the cavity becomes η = 4Ng2

κγe
= 1. However, the light scattered outside the cavity is no

longer necessarily be in a dipole pattern – having many atoms scatter together strongly affects the spatial
distribution of scattered light [50].
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mechanism we want to avoid. Still, cooperativity governs the efficiency of most transduc-

tion processes, including photon storage in a spin wave [73], and scattering from a Rydberg

atomic state, as we will see in the next section. Cooperativity also governs many nonlinear

cavity QED processes, including the number of collisions between interacting Rydberg po-

laritons [70], and the strength of the Jaynes-Cummings nonlinearity [74]! Roughly speaking,

it determines the degree to which a nonlinearity is resolved – the Jaynes-Cummings splitting

scales as g, while the widths of the eigenstates scale as κ and γe.

Lastly, there is a powerful result that η can be interpreted in terms of geometric param-

eters of the optical cavity. First we calculate the mode volume for a Gaussian mode with

mode function f(r) = 1√
N
u(r), N is some normalization constant. Then with the mode

maximum at and r0, the mode volume is

V =

∫
|u(r)|2d3r

|u(r0)|2 = L

∫ ∞

0
e−2r2/w2

02πrdr (2.72)

V =
πw2

0

2
L (2.73)

where the integral is simplified because the power is identical through any cross section.

Thus, using the expression for g in Equation 2.5,

g = d

√
2ωc

ε0hLw
2
0

(2.74)

For a two-mirror cavity we multiply g2 by an additional factor of 2 by assuming it is at

the maximum of a standing wave mode, and again normalizing the mode so that one photon

gives an energy of ~ω10.

Then we express κ = c
2LF , where F is the finesse, and the atomic decay rate γe = ω3d2

3πε0~c3
,

10. For a running wave cavity we do not make this modification, and also we have κ = c
L , as each round

trip involves one pass through the cavity length, not two. The result is η = F
π
σ
w2

0
.
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to obtain

η =
24F
π

1

k2w2
0

=
4F
π

σ

w2
0

(2.75)

where σ = 6
k2

is the atomic cross section. The cooperativity can thus be interpreted as the

number of round trips a photon in the cavity makes, times the ratio of the atomic cross

section to the beam area
πw2

0
2 . In Equation 2.75, all properties of the atom other than

the transition wavelength have dropped out, as has the cavity length, leaving only finesse,

wavelength, and mode waist. In fact, this result can be obtained from a purely classical

calculation, regarding the atom as a dipole emitter [50].

This is an extremely important result for designing optical cavities: the system’s behavior

will only depend on the cavity waist and finesse. For example, increasing the length of

the cavity decreases g due to the larger mode volume, but this is exactly canceled by the

corresponding decrease in κ. That said, while figures of merit like transduction efficiency and

nonlinearity only depend on the unitless cooperativity, the experimental time scale depends

on the actual rates g, κ, γe. Thus, for high transduction bandwidth, or taking data in a

reasonable amount of time, or having coupling rates exceed decoherence from technical noise

sources, shorter cavities are ideal.

2.7.3 EIT Impedance Matching

Suppose that, instead of converting an input Gaussian beam into dipole radiation, we would

like to convert it into some outgoing excitation accessible only from a Rydberg state. This

could be the free decay products of the Rydberg, or more practically, the Rydberg state may

scatter into a mm-wave cavity at a rate 4g2
m/κm. In any case, we will call the rate at which

the Rydberg decays κr (instead of γr, so as to emphasize that this is a desirable process

instead of a loss process). To access the Rydberg state, we will use a classical EIT beam and

an ensemble of atoms as before. Then the Hamiltonian in the strongly-coupled basis with
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all transitions resonant is similar to Equation 2.62:

H0 =




−iκ2 gcoll 0

gcoll −iγe2 Ω

0 Ω −iκr2




(2.76)

As in the last subsection, the steady-state wavefunction can be solved, and the rate of

decay from the Rydberg state is Γout = κrPR. This rate will depend on the strength of our

EIT control beam. Therefore we will optimize Ω to maximize the decay from the Rydberg

state.

Before calculating the exact solution, it is useful to try to understand the process phys-

ically in the high-cooperativity case, adapted from an argument in Reference [64]. By the

impedance matching argument above, we want the in- and out- coupling rates to be equal.

Thus, we would like to find a steady-state where PCκ = PRκr
11. An approximate dark state

is given by the lossless case in Equation 2.63, yielding PC
PR

= Ω2

g2coll
. These two equations set

Ω2 = κr
κ g

2
coll.

However, by design there is loss, and the decay from R must be scattered from population

in the E state, i.e. Γout = PE
4Ω2

κr
. Then the free space scattering rate is Γloss = PEγe, and

we can calculate the efficiency χ

χ =
Γout
Γin

=
Γout

Γout + Γloss + Γrefl
=

Γout
Γout + Γloss

(2.77)

=
4Ω2/κr

4Ω2/κr + γe
(2.78)

=
η

η + 1
(2.79)

where in the first line we used conservation of excitation number, Γin = Γout+ Γloss+ Γrefl,

11. The actual condition for zero reflection requires input rate is the sum of all output rates, PCκ =
PRκr + PEγe. For high cooperativity, loss through E is small and this is a minor correction.
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and zero reflection for impedance matching, Γrefl = 0.

The efficiency is thus η
η+1 . Exact computation gives identical efficiency, but ideal control

beam Rabi frequency Ω2 = κr
κ

(
g2
coll + γeκ

4

)
.

As in the case of dipole scattering, the efficiency here depends only on η. However,

instead of η = 1, the requirement for high efficiency is η � 1. Why the discrepancy? For

dipole scattering, η represented the ratio of the output rate to the input rate: 4g2/γe to κ,

which is 1 when impedance matched.

In the present case, any scattering through γe is considered loss. Then the efficiency

χ = η
η+1 can be easily understood in the time reversed case: a Rydberg atom is created

and brought down to the E state by the control beam. From here, the excitation can be

lost at a rate γe, or it can leave through the cavity at a rate 4g2/κ. The branching ratio

for scattering through the cavity is
4g2/κ

4g2/κ+γe
= η

η+1 . Finally, optimizing Ω ensures good

impedance matching, so that there is no additional reflection loss.
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CHAPTER 3

A HYBRID QUANTUM APPARATUS

This chapter will describe the construction of a hybrid cryogenic quantum apparatus ca-

pable of interfacing cold Rydberg atoms with high-finesse optical and 100 GHz mm-wave

resonators. Additionally, the end of the chapter will describe early experimental results from

atoms simultaneously coupled to both cavities.

The elaborate interior of the experimental chamber, shown in Figure 3.1, reflects the

many requirements imposed upon a hybrid quantum system. Compared to a conventional

AMO experiment, the most obvious difference is the sheer number of components, and the

prevalence of copper. Of course, because a low thermal occupation is required for 100 GHz

photons, the entire system must be cryogenic. Thus we will begin by introducing the custom

cryogenic system built for low temperatures and compatibility with an AMO experiment.

A particularly sensitive design point is the decoupling of vibrations between the cryocooler

and the rest of the experiment, including the optical cavity. This will be postponed until

Chapter 4 for a more complete discussion.

Next, a novel source of cold atoms, which is itself thermalized to the cryogenic environ-

ment, will be described. Cooling and trapping of alkali atoms to µK temperatures is common

to many AMO experiments. However, a number of modifications had to be made to adapt

these techniques to a cryogenic environment. I will then discuss the superconducting mm-

wave resonators we created, how they are interfaced with optics, the use of superconductivity

to create an extremely stable magnetic environment for the atom, and the use of strong mm-

waves to tune the properties of our atoms. Finally, I will discuss an agile laser system which

can probe a cavity even in the presence of vibrations.

In the last section of the chapter, I will present initial results from the experiment,

including the observation of cavity EIT, and first signatures of coupling between Rydberg

polaritons and a mm-wave resonator with sub-photon occupation.

37



Figure 3.1: Science chamber interior. A top view of the science chamber showing MOT,
lattice, and cavity optics, atom source shield, cryogenic plates, and mm-wave circuitry.
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Figure 3.2: Interior of custom two-chamber cryostat. Thermal connection between
the cryocooler and the experiment occurs via flexible braids and two long copper cold arm
tubes for the 4 K and 35 K stages.

3.1 Pulse Tube Cryocooler

Cryogenic temperatures are required to freeze out thermal photons at 100 GHz, and also

to be well below the superconducting transition temperature of niobium. A number of cry-

ocooler technologies exist, from simple liquid helium bath cryostats to sophisticated dilution

refrigerators capable of reaching millikelvin temperatures. We selecetd a closed cycle pulse

tube cryocooler (Cryomech PT410), which is a closed system requiring no helium refilling.

Pulse tubes cryocoolers operate on a thermodynamic cycle where enthalpy flow through

the cryocooler is controlled by periodic pulses of high-pressure helium [75]. Most pulse

tubes have a two stage design, with a 35 K stage that has high cooling power, and a lower-

temperature ∼ 4 K stage. Compared to other cryocooler designs, pulse tubes require no

moving parts at cryogenic temperatures; however, the flow of helium still produces significant

mechanical vibrations. As AMO experiments, and particularly optical cavities, are extremely

sensitive to mechanical vibrations, we built a custom two-vacuum chamber design in which

the cold head is mechanically isolated from the experiment. The two chambers are called the

“fridge chamber” and ”science chamber.” Detailed analysis of the vibrational performance
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(b)(a)

Figure 3.3: Details of pulse tube cryocooler, (a) Cooling capacity curve for Cryomech
PT410 with base temperature ¡2.8 K, 1 W of cooling power at 4.2 K, and 40 W at 45 K, (b),
Picture of pulse tube inserted through top flange of vacuum chamber into 35 K radiation
shield.

is given in Chapter 4.

Thermal transfer between the chambers is accomplished by two cold arms made from

OFHC copper, one for each stage, as pictured in Figure 3.2. The cold arms are connected to

their respective stages at the pulse tube via flexible copper braids. In the science chamber

a 35K plate and a 4K plate rigidly support the cold arms in a cantilevered configuration.

These plates then supply the cooling power for all other components. Each has a breadboard

pattern of threaded holes for convenient connections.

3.1.1 Thermal Management

The ultimate achievable temperature is a function of the cryocooler itself, the amount of en-

vironmental heat pumped into the system (heat load), and the quality of thermal connection

between the cryostat and the payload. The Cryomech PT410 (with CPA298C compressor)

is rated for a base temperature of 2.8 K at zero heat load. 1 W of heat load increases the

temperature to 4.2 K (this is referred to as the cooling power at 4.2 K), while the other stage

supports 40 W at 45 K. A full cooling power curve is in Figure 3.3(a).
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Heat load increases the temperature of the cold head itself. Additionally, if the heat load

is applied distantly from the cold head, a thermal gradient is esablished. This relation is

usually specified by
d(T1−T2)

dQ = Z, where Z is the thermal impedance between two points

and is a function of temperature. The thermal impedance across an object can be calculated

from the heat equation and known thermal conductivities. In fact, all thermal connections

are made from OFHC copper to minimize Z, so the thermal gradients across these pieces

are generally very small. However, bolted connections produce a large thermal impedance

– the temperature mostly increases in steps between the cold head and the payload at each

thermal connection.

The 4K components must be totally encapsulated by opaque 35K surfaces to absorb

radiation from room temperature. Therefore, 35K radiation shields made from aluminum

surround all 4K components (the shield around the pulse tube is in Figure 3.3b). The 35 K

arm is a tube surrounding the 4 K arm, and a hole in each radiaton shield allows the cold

arms to fit through snugly. Radiation from a black body room temperature, determined

by the Stefan-Boltzmann law, is approximately 42 mW/cm2. Up to a small geometric

correction, the radiation absorbed by the 35K shields is determined by their surface area,

approximately 0.27 m2 for the science chamber and 0.18 m2 for the fridge chamber, for a

total heat load of 189 W. However, this value is diminished by a factor of the emissivity of

both the emitter (stainless steel vacuum chamber) and the absorber. To reduce radiative

heat load to a manageable level, the 35 K shields are covered with multilayer insulation,

a layered blanket of low-emissivity mylar held apart by low-thermal conductivity polyester

(sourced from OxfordICE and Talas, respectively).

Two windows in the 35 K shield provide optical access for laser beams and imaging. These

are made from UV fused silica, which has high absorption of all thermal infrared wavelengths

from room temperature. The windows are thermalized by clamping them against a copper

ring using SEM mounting clips. As long as the windows are well thermalized and fully absorb
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incoming infrared, they will appear to the 4K stage as a heat source at only 35 K.

In the science chamber, the 4K plate is mechanically supported by the 35K plate, which

is in turn supported by the room temperature outer chamber. Additional heat load arises

from thermal conduction through these supports, so they should be carefully designed.

Figure 3.4: Stainless steel standoffs

to mechanically support and ther-

mally insulate cryogenic plates.

Three stainless steel standoff tubes, each ma-

chined as a single piece and pictured in Figure 3.4,

support the 4K plate. They are threaded on top and

flare to a rectangular base at bottom to be screwed

down at two points on bottom; this design prevents

loosening when the 4K plate is torqued. The tubes of

OD 8.9 mm are hollowed out from the bottom to a

wall thickness of 0.5 mm. The length of the thin seg-

ment is 48 mm. With boundary conditions of 35 K on

one side and 4 K on another, each conducts 18 mW of

heat. In future the wall thickness should be decrased,

but this is not the dominant heat load in our system.

Similar standoffs made of G-10 fiberglass resin com-

posite separate the 35K plate from room temperature,

with negligible heat load.

The current temperature of the experimental cav-

ity is 5 K, the cold head is 3.5 K, and the thermal impedance between the science chamber

and cold head is 3.8 K/W. This suggests a heat load of about 400 mW on the 4K stage. The

cooling power curve in Figure 3.3 suggests about 500 mW.

At this temperature, the mean thermal photon occupation is about 0.5, and resistive

losses in the superconductor are still by far the limitation on quality factors. For future

experiments, it will be imperative to reach ∼ 1 K temperatures through a combination of
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additional cooling stages (probably a Joule-Thompson or helium sorption cooler), manage-

ment of parasitic heat load, and optimization of the thermal conductivity.

Finally, we note that the cryogenic temperatures allow efficient cryopumping to reach

ultrahigh vacuum levels, as contaminants are frozen, condensed, or cryo-adsorbed onto cold

surfaces. A copper piece covered in activated charcoal and thermalized to 4 K aids the

cryopumping due to the enormous surface area of the charcoal. Although many AMO and

ion trap experiments are turning to cryogenic temperatures to reach XHV level vacuums [76],

in our case it is used to have great leeway in experimental design (read: duct tape inside the

chamber) while still reaching acceptable vacuum. Before cooldown, a cold cathode vacuum

gauge (Pfeiffer PKR 251, mounted far from any cryogenic surfaces) measures 10−5 mbar,

decreasing to 4 × 10−8 at cryogenic temperatures. The pressure near cryogenic surfaces

is considerably better, as evidenced by atom lifetime data presented later in Figure 3.8.

Because the entire experimental cycle occurs in ∼ 0.1 s, extremely low pressures and long

lifetimes are not required.

3.2 Cryogenic Grating Magneto-Optical Trap

As with most atomic physics experiments, ours begins by cooling and trapping atoms in

a magneto-optical trap (MOT). The combination of a quadrupole magnetic field and red

detuned lasers shined from all directions provides positional trapping and velocity damping

in 3 dimensions. The MOT (or perhaps a collimated atom source [77, 78]) could have been

constructed in a separate chamber at room temperature, with restricted optical access to

prevent radiative load on the 4K stage. However, it is much more convenient to mount the

MOT magnetic coils and optics directly at 35 K. This necessitated three main modifications

to the conventional MOT protocol.

The atom source is one or more rubidium dispensers from SAES Getters, continuously

run with 3 to 4 amps of current. The dispensers are mounted on an electrically insulating
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Figure 3.5: Cryogenic atom source. Rubidium atoms are sourced from alkali dispensers
from SAES Getters. An aluminum box at room temperature surrounds the dispensers so
that atoms are prethermalized to 293 K before trapping. An additional 35 K copper box
surrounds this to shield the science chamber from radiation from the atom source.

block of machinable macor ceramic. In other experiments, the atoms from the dispensers

fill the chamber with a background vapor of rubidium, from which a MOT can be loaded.

However, our early attempts to create a MOT did not load any atoms.

To make a cryogenic atom source, the solution was to enclose the dispensers in a box

that is well thermalized to room temperature, and to further enclose that in a 35 K box,

as shown in Figure 3.5. The aluminum box is connected via aluminum tube to the room-

temperature wall of the vacuum chamber. This arrangement performs two functions. First,

it protects cryogenic surfaces from radiation from the getter, which can reach temperatures

of several hundred degrees Celsius. This heat load could potentially release cryopumped

contaminants from the surface, ruining the chamber pressure. Second, the room temperature

box prethermalizes atoms from the very hot dispenser. In a room temperature experiment the

walls of the chamber perform this prethermalization; however, in a cryogenic chamber, the

atoms are likely to freeze onto surfaces [79], leaving only the direct output from the dispenser

to be trapped. Unfortunately, the high temperature of atoms from the dispenser leaves very

few within the MOT capture velocity [79]. Thus, the room temperature box allows atoms

to prethermalize, before drifting into the MOT capture volume through consecutive holes in
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(b)(a) (c) MOT

Figure 3.6: Grating magneto-optical trap. (a) Microfabricated blazed grating chip with
three sections to reflect a single input beam into a tetrahedral pattern for magneto-optical
trapping. (b) Three rubidium dispensers mounted on ceramic macor mount. (c) Side view
of coils, with bright magneto-optical trap visible in center.

the room temp box, the 35 K box, and the back of the MOT coils.

With a functional cryogenic atom source, we create a magneto-optical trap using a single-

chip MOT grating. A conventional 6-beam MOT requires significant optical access, but

the science chamber has only two windows to minimize radiative heat load. The grating

MOT chip, graciously provided by the Arnold group at Strathclyde [80, 81], is pictured in

Figure 3.6(a). Three microfabricated blazed grating segments reflect a single 2 cm input

beam into a tetrahedral pattern, providing radiation pressure along all 3 spatial axes. The

chip is mounted directly onto one of the magnetic coils with SEM clips, and a hole in the

grating and coil holder allows rubidium vapor to enter from the back.

Initial creation of the MOT follows the usual protocol. Two lasers described in Sec-

tion 3.5, and denoted the MOT and repump lasers, are near resonant with the 85Rb |F = 3〉 →

|F ′ = 4〉 and |F = 2〉 → |F ′ = 3〉 transitions, respectively. The former can scatter many pho-

tons from the atomic cycling transition atoms to slow them, while the latter repumps atoms

when they occasionally fall out of the cycling transition. A picture of the MOT between the
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magnetic coils is in Figure 3.6(c).

Polarization gradient cooling must be slightly modified in the cryogenic environment.

As usual, the quadrupole field is turned off, bias fields are adjusted to zero, laser powers

are decreased, and laser detunings are increased. However, the field changes are resisted

by eddy currents in surrounding high-electrical conductivity copper. The magnetic field

ringdown outside the chamber was measured to have an exponential time constant of 26 ms,

but using atoms as magnetic field sensors suggests a longer time constant inside the chamber,

as described in Section 3.4. During this coil ringdown, we use an optical molasses stage to

damp the atomic motion so that fluctuating magnetic fields do not destroy the MOT. The

detunings are similar to the MOT stage, with slightly higher powers; the molasses lasts for

about 20 ms. Finally, after PGC, the atomic cloud is cooled to 5 µK.

3.2.1 Optical Lattice Transport

The magneto-optical trap center is 63 mm above the mode of the optical cavity due to

geometric constraints, so atoms must be transported after trapping. This is accomplished

by trapping the atoms in a standing wave optical lattice formed by counterpropagating

beams, and shifting the frequency of one beam [82]. The resulting intensity profile moves at

a speed v = λ∆f
2 , forming an optical conveyer belt.

A schematic of the lattice beam path, threaded through the MOT location and the hybrid

cavity, is shown in Figure 3.7(a). Three turning mirrors each on the upper and lower paths

guide the beams. The figure also shows fluorescence images of the lattice loading from the

PGC (b) and after the PGC has fallen away (c). The lattice is derived from a narrow 785

ECDL amplified by a tapered amplifier. The TA output is split into two paths, each of which

is frequency shifted by a double pass acousto-optic modulator, with RF tones provided by

a direct digital synthesizer (DDS). The tone provided to one AOM is ramped in a triangle

wave to accelerate the atoms in the lattice, then decelerate them to bring them to a stop in
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Figure 3.7: Optical lattice transport, (a) Diagram of transport lattice beam path
threaded through MOT and hybrid cavity, (b) Loading of lattice from PGC-cooled atoms,
(c) Atoms trapped in lattice as MOT cloud falls away.

the cavity. Initial lattice loading efficiency is around 30%, while transport efficiency can be

in excess of 90% with accelerations up to 500g.

The lifetime of atoms in the lattice varies strongly as a function of transport distance, as

shown in Figure 3.8, from a minimum of 350 ms at the MOT position, up to 900 ms at the

center of the cavity. We attribute this to the heightened cryopumping efficiency inside the

cavity, which is strongly thermalized to 4K.

3.3 mm-Wave Resonators

A key feature of the experiment is a millimeter wave resonator to enhance the interaction

between Rydberg atoms and the field at 100 GHz. The resonator must possess as high a

quality factor and as small a mode volume as possible to achieve the highest cooperativity,

while also having optical access for lasers and atoms to enter the mm-wave mode.
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Figure 3.8: Optical lattice lifetime versus position. The lifetime of atoms in the
lattice varies as a function of transport distance. This can be attributed to the variation in
cryopumping efficiency at different positions. Near the end of the transport, the atoms enter
the cavity, which is strongly thermalized to 4 K, exhibiting stronger cryopumping.

109 GHz 98 GHz 92 GHz

30 GHz

(a) (b) (c)

(d) (e)

Figure 3.9: Seamless evanescent-coupled mm-wave resonators. A high-quality factor,
low-mode volume mm-wave resonator is formed by the intersection of two or more holes in a
superconductor. Altering the size or configuration of the tubes allows customization of the
mode spatial and frequency structure. Figure from Reference [83].
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Figure 3.10: Quality factor measurements of mm-wave resonators. Figure from
Reference [83].

To achieve this, we designed a new type of resonator based on the intersection of evanes-

cent waveguides, as pictured schematically in Figure 3.9. Two or more intersecting holes are

drilled through a piece of pure niobium. The characteristic size at the intersection is greater

than that of the individual tubes, allowing a localized mode to form. The hole diameters

are chosen so that they do not act as waveguides at the target mode frequency – that is, the

frequency is below cutoff, and waveguide propagation is exponentially supressed with length.

This design has a number of benefits. It can be easily machined from a monolithic block

of niobium and thus has no seams, leading to high quality factors. The holes provide built-in

optical access for lasers and atoms. Long holes completely suppress radiative loss, while a

single shorter hole can be used for coupling to the input waveguide. Finally, the geometry

is very flexible, allowing for fine tuning of mode frequencies and shapes. The mode volume

for our 100 GHz resonator is approximately λ/10.

An array of machined resonators is shown in Figure 3.10(a). After machining the cavities

are chemically etched in a solution of H3PO4, HNO3, and HF to remove surface irregu-
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larities and increase quality factors. The quality factor of the resonator is determined by

fitting the reflection signal according to Equation 2.28, shown in part (b). The Q increases

exponentially as temperature drops below the superconducting transition, predicted by a

Mattis-Bardeen fit. At 1K, Q saturates to 3 × 107, corresponding to a linewidth of only

3 kHz! Combined with a low mode volume, this will lead to very high cooperativity for

Rydberg atoms. Many more details on mm-wave resonators can be found in Reference [83]

and Aziza Suleymanzade’s thesis.

The frequencies of the mm-wave resonators are set by the sizes and alignment of the

coupling holes, which are about 1.3 mm in diameter for a 100 GHz cavity. A deviation

of only 1 micron thus leads to a frequency error of order 75 MHz, much greater than the

linewidth of 3 kHz. Achieving a target frequency through machining alone is unrealistic.

One solution is to remove excess material through further acid etching. The etch rate can be

calibrated fairly accurately, and we have can achieve precisions of 10-20 MHz in this fashion1

Further tuning can be accomplished by squeezing the cavity in a hydraulic press, with which

we have achieved several MHz precision. Finally, Section 3.3.2 will discuss methods for

tuning the atoms instead with extremely high precision, and a range of several MHz.

The same cavity architecture can be used to create lower-Q bandpass filters at mm-

wave frequencies, simply by shortening the tube along the coupling directions, as shown in

Figure 3.11. Room-temperature aluminum filters, with no chemical etching, are sufficient to

achieve Qs of 400 and 3 dB insertion loss. We have investigated using such filters to clean

the output of our mm-wave sources, but they are not in use currently.

1. Tuning the cavity frequency requires repeated cycles of etching and measurement. For high Q cavities,
the coupling Q is a function of the geometry and must roughly match the desired total Q, while the internal
Q depends on temperature. Thus, the cavity is heavily undercoupled and impossible to measure unless at
cryogenic temperatures, making the measurement process tedious. A possible solution (so far untested) is to
machine the cavity for a coupling Ql of around 1000 so it can be measured at room temperature. For final
cryogenic operation, an additional length of niobium tube can be placed between the cavity and the input
waveguide. The resulting seam will generate some loss, but it will be suppressed because it is already in the
evanescent coupling tube.
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Figure 3.11: Cavity mm-wave filters of various frequencies. Machined mm-wave filters
follow a similar design as cavities, but with shorter coupling tubes along one direction for
moderate Q. These aluminum filters were machined in the CNC and have a Q of 400 with
3 dB insertion loss.

(a) (b) (c)

Figure 3.12: Hybrid optical mm-wave cavity, (a) 3D rendering with atoms and laser
input, (b) Early hybrid cavity design with visible mirrors and piezos, (c) New spring-
assembled cavity in place below MOT coils.

3.3.1 Hybrid Cavity

Due to the inherent optical access of this mm-wave resonator design, it is in principle simple

to create a hybrid cavity: simply attach mirrors to either side of the niobium block, and their

Fabry-Perot mode will intersect with the maximum of the mm-wave mode. The evanescent

waveguide tubes are still much larger than the optical modes, so beam clipping is not an

issue. In practice, additional problems had to be solved to create a stable, cryogenic Fabry-

Perot cavity, in particular one made of dissimilar materials, which will be discussed further

in Chapter 4.

Pictures of such a hybrid cavity are shown in Figure 3.12, where (a) is a CAD model, (b)
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is an early cavity design, and (c) is a modern, spring-assembled cavity design fully integrated

into the experiment. The cavity is attached directly to mm-wave circuitry, which places it

below the magneto-optical trap. Additional flexible copper braids attach directly from the

cavity to the 4K tube to increase cooling power. The result is a hybrid cavity ready to accept

atoms and interface with mm-wave sources and laserse.

3.3.2 Tuning Mode

So far, we have achieved mm-wave resonant frequencies within 7 MHz of the desired atomic

resonance. While this is an accuracy of 0.007%, it is still a large detuning compared to the

relevant Rydberg and cavity linewidths. The resonance condition is fine-tuned by Stark-

shifting the Rydberg levels with a coherent microwave tone.

The relevant section of the Rydberg manifold is shown in Figure 3.13(a), where the blue

arrow represents the resonant cavity mode (science transition), and gray arrows represent

the action of the tuning tone. Note that we have chosen a π polarized |36S1/2〉 ↔ |35P1/2〉

transition for the science mode with respect to the cavity axis, even though a circularly

polarized transition to |35P3/2〉 would have a higher Clebsch-Gordan coefficient, because it

is difficult to engineer circularly polarized mm-wave modes. To avoid admixture of multiple

states, we have chosen the π polarization. The simulated E-field distribution of the science

mode is shown in part (b) of the figure.

The tuning tone is resonantly enhanced by a second mm-wave cavity mode, shown in

part (c)2. The orthogonal geometry of the cavity constrains the two resonant modes to have

orthogonal polarizations, so the tuning mode has lin polarization.

Figure 3.13(d) shows simulated Stark shifts for an arbitrary tuning tone power (achiev-

able with our sources) versus frequency, obtained by diagonalization of the Hamiltonian.

Eigenstate overlap with three selected states are indicated by color. We choose a tuning

2. Indeed, the cavity efficiently rejects any tone which is not at a resonance frequency
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(a) (b)

(c)

(d)

Figure 3.13: Cavity Stark tuning of Rydberg atoms. (a) In addition to a near-resonant
mm-wave cavity mode, a second off-resonant mode can be for Stark shifting atomic levels.
(b), (c) Simulated E-field distributions for the science and tuning modes, respectively. (d)
Simulated Stark shifts for an arbitrary tuning power. Color on each plot indicates overlap
with the specified state. 53
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Figure 3.14: Modified precision rectifier for mm-wave power lock.

mode frequency near 101 GHz. At this frequency, the |36S1/2〉 state energy can be easily

shifted down by 100 MHz with achievable mm-wave powers, and with negligible admixture

of other states. Meanwhile, the |35P1/2〉 is shifted up by approximately 40% as much as

the 36S state shifts down. State energies and matrix elements are obtained from the Alkali

Rydberg Calculator package [84]. This Stark tuning scheme provides a precise method to

tune atoms into resonance with the cavity.

Large Stark tuning means that a small fractional change in the mm-wave source power

can move the atoms off resonance. For stable operation, the mm-wave power must be locked.

The power is controlled with a voltage variable attenuator (Mi-Wave 900WF-30/387), and

detected with a finline power detector (Mi-Wave 950W/387). The loop is closed through a

homebuilt PI controller. Initially, the lock introduced noise into the mm-wave power which

showed up as a decoherence mechanism in the Rydberg polariton linewidth. Adding an

attenuator after the power detector, and severely limiting the lock bandwidth, fixed this

problem, which was probably due to a lock oscillation or writing high-frequency noise into

the lock. The current setup has resulted in Stark shifts of 5 MHz that are stable to at least

10 kHz, potentially better, and no broadening attributable to the lock. However, the tuning

scheme itself does cause broadening, see Section 3.6.3
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The mm-wave voltage variable attenuator used for power locking is intolerant of any

negative voltage, but requires near-zero tuning voltage for low powers. A bipolar op-amp

with a modified precision rectifier circuit, shown in Figure 3.14 allows operation down to

exactly zero with no risk of negative voltage. For negative Vin, the circuit functions as an

inverting amplifier. Since the sense resistor lies after protection diode D1, the output voltage

is not affected by the diode, and Vout = −R2
R1
Vin. For positive input voltages, D1 is off and

conducts no current, while D2 turns on, providing a feedback path so the op-amp does not

run open loop. Since one end of R2 is connected to virtual ground, and no current flows

through it, Vout = 0. Finally, D3 ideally has no effect, because it connects virtual ground to

ground. However, if the op amp were to lose power, the negative input would pass directly

through to the output; D3 prevents such a situation.

3.4 Magnetic Field Control

The presence of superconductors and high-electrical conductivity copper at cryogenic tem-

peratures presents interesting challenges and opportunities for magnetic field control. As

already noted, atom cooling sequences must be modified to account for eddy current ring-

downs.

In addition, a well-known property of superconductors is their ability to set up permanent

magnetic fields. We directly observed this behavior using atoms inside the superconducting

niobium resonator as probes. Figure 3.15(a) shows the EIT transmission spectrum as a

function of bias magnetic field when the cavity is above the critical temperature Tc. The

fields create Zeeman shifts, as expected. Below Tc, as shown in part (b), the applied bias

field is completely screened by the superconductor, and has no effect on the atoms.

When the resonator is cooled below the superconducting transition temperature, the

magnetic field in the holes is “frozen in.” Future changes to the applied field are counteracted

by currents according to Lenz’s law, which persist indefinitely. Initially, this effect was
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(a)
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Figure 3.15: Magnetic field control in a superconducting cavity. (a) Above Tc,
magnetic fields cause Zeeman shifts in the EIT spectrum. (b) Below Tc, external fields are
screened by the superconductor, and are invisible to the atoms. (c) Ringdown of magnetic
fields above Tc, measured by atoms.
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Figure 3.16: Laser system for probing rubidium D2 line.

detrimental, as a random field was frozen in upon cooldown. However, by warming the

cavity up, carefully optimizing the field, and cooling it back down, the field is permanently

optimized, and is totally unaffected by environmental noise! Care must be taken when

optimizing the fields, that they are allowed to stabilize fully. The field ringdown inside the

(warm) cavity can be measured by the Zeeman shift in the atoms as a function of wait time

since coil adjustment, as shown in Figure 3.15(c). The field in the cavity takes about 200

ms to stabilize.

3.5 Laser System

The laser system for probing the rubidium D2 line is shown in Figure 3.16. All lasers are

DFB diodes from Eagleyard. A reference laser is locked to via Doppler-free spectroscopy to

a feature in the 87Rb |F = 1〉 → |F ′ = 2〉 manifold, providing a stable frequency reference.
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Two other diodes provide repumper and cycling transition light for the magneto-optical trap.

The latter is amplified by a tapered amplifier, before both are fiber coupled and sent to the

outside of the science chamber, where they are combined on a 50/50 beamsplitter.

The repump and MOT lasers are locked to the reference laser via beatnote offset locking.

A small amount of power is split off from the laser, combined with light from the reference

via a single-mode fiber splitter, and detected by a high-bandwidth photodiode (Hamamatsu

G4176). The resulting signal is at the difference frequency between the lasers3. This beatnote

is mixed down to near 200 MHz using an RF signal provided by an agile direct digital

synthesizer. The signal is split, with one arm passed through a helical filter in transmission,

which has a sharp resonance at fhf ≈ 200 MHz. The two arms are mixed together with the

correct relative phase so there is a zero crossing at the helical filter resonance. This provides

a suitable lock point. By changing the DDS frequency while in lock, the laser frequency

adjusts to maintain a difference of fhf .

3.5.1 Frequency Following

An additional locking scheme maintains resonance of all probe lasers with the science optical

cavity, as shown in Figure 3.17. A narrow 1560 nm laser and some frequency doubled power

at 780 nm are obtained from a fiber laser source in the adjacent “multimode polariton” lab.

These beams are absolutely frequency stable. A transfer cavity in ultrahigh vacuum is used

to transfer the stability of the 780 beam onto our 480 nm EIT control laser, so that the 480

nm laser can be absolutely stable at an arbitrary frequency.

With all lasers stable, an electro-optic modulator (EOM1) generates a sideband of the

780 nm beam at exactly the |F = 3〉 → |F ′ = 4〉 atomic resonance frequency. The cavity

3. The beatnote’s signal-to-noise ratio is fundamentally limited by shot noise, but can also be limited
by technical noise in the detection. If one laser is much stronger than the other, then both the signal and
the noise scale with the square root of this beam’s power. The power should be increased until shot noise
determines the noise floor as measured on a spectrum analyzer, rather than technical noise. Past this, the
SNR does not improve unless the other beam’s power can be increased.
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Figure 3.17: Locking scheme for science cavity with frequency following.

cannot be locked with 780 nm light, as this would interfere with the atoms. Instead, the

cavity is first manually tuned to be resonant with the 780 nm sideband. A second modulator

(EOM2) generates a sideband on the 1560 laser. This sideband is scanned until it is resonant

with any cavity feature; then, locking the feature to this sideband stabilizes the cavity, while

maintaining resonance with the 780 nm sideband. The blue laser is then tuned to two-photon

resonance.

A unique feature of our locking scheme is the ability for the lasers to follow fast changes of

the cavity length caused by pulse tube vibrations. Because the D2 transition is quite broad,

it is permissible for the 780 nm laser to change its frequency to follow the narrower cavity, so

long as the 480 nm adjusts in the opposite direction to maintain two-photon resonance. Laser

following is accomplished by feeding the cavity error signal to a voltage-controlled oscillator.

The output of the VCO controls the 1560 sideband frequency at EOM2, closing the loop.

Note that this lock is in parallel to the piezo lock of the cavity; it is preferable for the piezo
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Figure 3.18: Cryogenic optics mounts. Custom cryogenic optics mounts have three lines
and one plane of contact with right-angle prism mirrors, which are glued in place.

to stabilize the cavity length, but for high-frequency noise above the piezo bandwidth, laser

following is useful.

The same VCO output is split and fed to both the 780 laser and the 480 laser. For

the former it is doubled and fed to the EOM1 sideband, and for the latter it controls the

frequency of a double-pass acousto-optic modulator. Now, because all three lasers move with

the same VCO frequency, they will all follow the cavity shaking.

3.5.2 Cryogenic Optics

Custom optics were required due to limited optical access and the large amount of optical

paths in the chamber: MOT cooling light and imaging, lattice guide mirrors, and optical

cavity probes. Additionally, traditional methods of mounting optics can loosen at cryogenic

temperatures, or tighten and induce stress. CNC-machined cryogenic beam elevators are

shown in Figure 3.18. The mounts mounts have three lines and one plane of contact with

right-angle prism mirrors, which are glued in place. This constrains all relevant degrees of

freedom of the mirror, minimizing reliance on cryogenic epoxy, while maintaining a minimal
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footprint to maintain room for the MOT beam. We have found that this highly constrained

mirror design has held up to multiple cooldowns better than mounts where epoxy is the

primary constraint.

3.6 Hybrid Cavity QED

With cold rubidium atoms transported into the hybrid cavity, we are able to characterize the

light-matter coupling by probing the optical cavity in transmission. Each experiment begins

by optically pumping the cavity with the narrow probe laser, tuned to the |F = 3〉 → |F ′ = 3〉

transition. Although the cavity is resonant with the |F = 3〉 → |F ′ = 4〉 cycling transition,

sufficient light can be injected off resonance using a high probe power. An additional re-

pumper beam tuned to |F = 2〉 → |F ′ = 3〉 is incident along the lattice path.

After pumping, the probe laser is swept over a range of 30 to 60 MHz around the atomic

resonance in 1 ms, and the transmitted light is collected in an Excelitas single-photon counter

module (SPCM). During this time some atoms are depumped, or the atoms that were initially

pumped by the cavity mode drift away. Therefore we optically pump again, and probe again.

The same sample of atoms can be probed 50 times in this manner before significant atom

loss.

3.6.1 Electromagnetically-induced transparency

We begin by probing the atom-cavity system when it is far detuned from mm-wave resonance.

The resulting transmission spectra, shown in Figure 3.19, are characteristic of vacuum Rabi

splitting, or cavity electromagnetically induced transparency when the control laser is on.

For all plots, black lines are fits to non-Hermitian perturbation theory from Chapter 2, where

the cavity and atomic 5P linewidths are independentally calibrated.

In this data, taken before freezing the optimal field into the superconductor, the fitted

γr is approximately 500 kHz, far above the natural linewidth of the Rydberg state. We
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(a) (b) (c) (d)

Figure 3.19: Vacuum Rabi splitting and EIT transmission spectra in hybrid cavity.
(a,b) Level diagram and measured transmission spectrum for vacuum Rabi splitting induced
by an atomic ensemble in a cavity. Black line is a fit to non-Hermitian perturbation theory.
(c,d) Adding a classical control beam produces Rydberg EIT, evidenced by the narrow peak
on two-photon resonance.

attribute this to imperfect optical pumping, so that the atoms are no longer an ideal 3-level

system, causing decoherence of the collective state. This sort of decoherence mechanism is

captured by the fitting function, but it is indistinguishable from actual decay of the Rydberg

state.

After optimization of the magnetic field and optical pumping, the EIT spectrum improves

dramatically, as shown in Figure 3.20. Better optical pumping allows all atoms to be in the

stretched state with the highest Clebsch-Gordan coefficient for σ+ probe light, improving

the g (additionally, more atoms were loaded in the sample). Moreover, the fitted γr is 82

kHz, a dramatic improvement due to better coherence of the collective state. The remaining

difference from the natural Rydberg linewidth is likely due to a combination of Doppler

broadening and stray electric fields. This is currently being investigated.

3.6.2 Autler-Townes Splitting

We first observe coupling between a Rydberg polariton and the mm-wave field by driving a

coherent tone at the Rydberg-Rydberg transition frequency, causing Autler Townes splitting

in Figure 3.21. A clear avoided crossing is observed as the mm-wave tone frequency is

swept over resonance in part (a). Subfigure (b) shows a single transmission trace taken near
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Figure 3.20: EIT transmission spectrum with improved magnetic field control in
superconductor. Freezing in the correct field allows better control of polarizations and
optical pumping, and correspondingly better coherence of the Rydberg polariton. Black line
is non-Hermitian perturbation theory fit, where κ is indepdently calibrated. The rates in
the inset are in units of natural frequency.

(a) (b)

Figure 3.21: Autler-Townes splitting in Rydberg manifold from mm-wave drive,
(a) Scanning a coherent mm-wave drive across the |36S〉 ↔ |35P 〉 Rydberg transition dis-
plays characteristic hybridization and AC Stark shit. (b) A single transmission spectrum
with near-resonant mm-wave drive shows split EIT peak between bright polaritons.
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Figure 3.22: Tuning of Rydberg transition into resonance with mm-wave cavity
Scanning a coherent mm-wave drive across the |36S〉 ↔ |35P 〉 Rydberg transition displays
characteristic hybridization and AC Stark shit. (b) A single transmission spectrum with
near-resonant mm-wave drive shows split EIT peak between bright polaritons.

resonance, where the split EIT peak lies between the two bright polaritons.

In this case, the mm-wave cavity is not resonant with the atomic transition, and the

tuning tone is injected far from cavity resonance. Therefore this equivalent to a free-space

coherent drive, and is not evidence of strong coupling to the cavity.

3.6.3 mm-wave Tuning and Hybrid Coupling Signature

Finally, we can use the Stark tuning scheme described in Section 3.3.2 to shift the atoms into

resonance with the mm-wave cavity. Figure 3.22 shows fitted γr as a function of the atomic

shift for two cavities. For each data point, the atomic levels are shifted with a coherent

mm-wave tone at 101 GHz far from any atomic transition, and the frequency of the control

beam is changed so that two-photon EIT resonance δrc = 0 occurs at the same frequency as

64



atom-cavity resonance, δec = 0, producing the usual symmetric EIT spectrum.

The gray curve was taken using a mm-wave cavity that was far from atomic resonance,

so no signature of atom-cavity coupling is expected. Nevertheless, we observe a quadratic

increase of γr as the atom is progressively Stark shifted further. This effect is attributed

to inhomogeneity of the mm-wave tuning mode across the atomic sample. Atoms closer to

the mode center see a higher amplitude of the tuning field, while farther atoms are tuned

less. This inhomogeneity leads direcly to decoherence of the collective state, displaying

characteristic quadratic suppression of decoherence for dark state polaritons [70].

The green curve was taken using a mm-wave cavity a few MHz away from atomic res-

onance. When the atom is Stark tuned into cavity resonance, we see a clear signal in the

increase of γr. This could be attributed to a near vacuum Rabi splitting of the EIT peak, but

with a coupling too small to be resolved. In fact, the cavity is not in a vacuum state: at 5 K,

we expect a mean thermal occupation n = 0.6 photons. Nevertheless, this is clear evidence

of coupling between a cavity Rydberg polariton and a mm-wave cavity with sub-photon

occupation!
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CHAPTER 4

VIBRATIONS AND MECHANICAL DESIGN

Optical cavities are a useful and versatile option to enhance the light-matter interaction

in quantum systems. The effective optical depth (or cooperativity) of an atomic sample is

enhanced by a factor of the cavity finesse F , which can reach values of hundreds of thousands

for state of the art dielectric mirrors. This provides an attractive option to reach the high

cooperativity regime, as other methods to enhance the optical depth, such as increasing

atomic density and tighter focusing of the beam, are limited with current technologies.

The linewidth of an optical cavity scales inversely with the finesse, so that the relative

frequencies of the laser and cavity resonance peak must be controlled to a high precision. Sta-

bilizing the cavity resonance to within a linewidth requires the length be stable to ∆L < λ
2F ,

where λ is the wavelength of light. Even for the relatively modest finesses F ∼ 2000 used

here, this requires ∆L ∼ 2 Å for 780 nm light. This is by far the most stringent positional

stability requirement in most experiments. Nevertheless, optical cavities are extremely com-

mon in AMO experiments, and it is somewhat remarkable that such stability is relatively

easily achieved by attaching mirrors to a rigid structure (and sometimes locking with a

piezoelectric actuator, which often only has low bandwidth to correct for slow drifts), and

minimizing noise in the lab.

Unlike most atomic physics experiments, this experiment resides in a helium cryostat to

suppress thermal mm-wave populations and enable the use of superconducting materials.

Cryogenic systems generally add vibrational noise, significantly complicating the task of

stabilizing an optical cavity. While wet cryostats introduce relatively modest vibrations

from boiling cryogenic liquids [85], they must be refilled periodically, which is disruptive and

expensive. Closed cycle cryogenic systems operate continuously with no need for refilling.

However, closed cycle cryostats produce large vibrations with amplitudes around 10-20 µm

due to high-pressure helium flow through the cold head [86], which occur about once per
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second and have significant high-frequency components due to the impulse-like nature of

the helium flow. As we will see, the vibrations of the cryostat are not the only difficulty

– material property changes at low temperatures pose additional difficulties for stabilizing

optical cavities.

In this chapter, I will first review methods of cryogenic vibration isolation that have

been used successfully, and describe the particular challenges of our hybrid atomic system

which must be addressed. I will then describe the performance of the custom low-vibration

cryostat built for this experiment. Despite this vibration suppression, early optical cavities

used in the system suffered from huge mechanical resonances which made them impossible

to stabilize. I will show how a circuit model of mechanics helped to understand these issues,

and to design a new generation of spring-stabilized cavities which provide stability at the

25 pm-rms level, sufficient for the experiments here. Finally, several options for further

vibration suppression will be discussed, which could be useful if higher-finesse cavities are

required.

4.1 Overview of Cryogenic Vibration Suppression

Cryogenic operation is necessary in a wide variety of experiments, many of which are also

highly sensitive to acoustic noise. Cryogenic vibration suppression has received particular

attention in scanning probe microscopy (SPM) experiments [85, 87, 88, 89], where the tip-

sample distance must be stabilized to 10 or even 1 pm within a bandwidth of a few kHz [90].

Meanwhile, cryogenic optical resonators with finesses in the 105 range are used as stable

frequency references in optical clock experiments, where vibrations can become a domninant

source of instability at low integration times [91].

The past few years have seen growing interest in cryogenic solid-state quantum emitters

inside optical fiber-based microcavities [92], which often require an in-situ 2D positioning

system to scan through embedded emitters. In liquid-helium cryostats, fiber-based cavities
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have been stabilized [93, 94] to a level of 4pm [95], and macroscopic optical cavities have also

been successfully locked [19]. In closed-cycle cryostats, open microcavities have attained

stability in the range of 30-100 pm rms [96, 97, 98, 99], or better in the quiet periods of

the cryocooler cycle. One group has stabilized a finesse 120, 000 fiber cavity to less than

1 pm [100] using a combination of room-temperature vibration isolation with gas exchange

cooling, and thermooptic feedback [101].

All of these systems, especially those in closed-cycle cryostats, employ various methods

of vibration isolation to achieve the necessary mechanical stability. Many of these techniques

fall into a few broad categories, which are reviewed here, both to understand the present

experiment, and as a reference for future improvements if higher stability is required. The

most important section for the present experiment is Section 4.1.4.

4.1.1 Mechanical Decoupling

The best possible method to isolate a sensitive experiment from the vibrations of a closed-

cycle cryostat would be to leave them mechanically unconnected. Unfortunately, this is not

possible. Vacuum integrity requires a continuous connection of the room temperature stage,

while transmission of cooling power requires some sort of contact for heat transfer.

The next best thing is to rigidly fix the cryostat and experiment in place separately, and

connect them with links which are as soft as possible. This is part of the design philosophy

of nearly every optical cryostat, ours included. Vacuum connections are usually performed

with flexible bellows, while heat transfer often occurs through flexible copper braids [102].

In reference [103], the cryocooler vacuum chamber is rigidly mounted on an aluminum pillar,

while the cavity vacuum chamber is rigidly mounted on a separate optical table via a vibra-

tion isolation table. The only mechanical connections are the vacuum bellows and flexible

thermal links. A very thorough design for mechanical decoupling via a long cold arm is

presented by Micke et al [76].
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As an alternative to flexible copper links, heat can be transfered through helium exchange

gas [95, 100, 88, 89], which has much less vibration transmission, at the expense of design

complication and some cooling power.

In addition to propagation through the vacuum chamber and thermal links, vibrations

can propagate through the air and floor. These vibrations outside the vacuum assembly can

be further attenuated. The motor and helium compressor can be placed far from the science

chamber and cold head, even in a separate room [76], and the helium hoses can be guided

through heavy sand-filled containers to damp vibrations [104]. The room-temperature com-

ponents (pumps, compressor, cryostat chamber) can all be supported on separate vibration

isolation platforms to isolate from floor vibrations [90, 87], while acoustic shielding can reduce

ambient acoustic excitation. These measures also protect against ambient noise unrelated

to to the cryostat.

4.1.2 Low-Pass Mechanical Filtering

A second option for vibration isolation is to build a platform which only passes low frequency

vibrations, upon which the payload is mounted. The platform of mass M is supported by

a spring with spring constant k; together they form a simple harmonic oscillator whose

amplitude response falls off above the resonance frequency. The platform is isolated both

from forces applied directly to the platform, and to vibrations of its support point (which

appear as a force of F = k∆xsupport). The platform can be suspended (common in SPM

designs [105, 88, 89, 85]), or supported from below (common in microcavity designs [99, 96]).

The harmonic oscillator transmission x
F falls off above resonance as 1/ω2. Thus the

displacement attenuation at high frequencies can be increased by a factor of 100 each time

the filter resonance frequency is decreased by a factor of 10. This strategy has a limit:

the resonance frequency of a mass supported vertically on a spring can be written ω0 =
√

g
∆L where ∆L is the spring extension (or compression) length, so decreasing the resonance
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frequency requires more space. One solution is to use a relatively stiff spring to support the

mass with minimal compression, then place negative spring constant elements in parallel

with the stiff spring, decreasing the effective spring constant k. An example of a negative k

element is a beam on the edge of buckling, which tends to bow outward in the direction it

is displaced. A more common strategy in cryogenic vibration isolation is to place multiple

mass-spring systems in series; their high-frequency attenuations multiply, while the spring

extension increases more slowly [106].

If the only connection between stages is through compliant springs, there is a tradeoff

between high thermal conductance (scaling with cross-sectional area) and high spring com-

pliance (scaling inversely with cross-sectional area). Additional thermalization elements like

soft copper braids can be placed in parallel with the springs, so long as they are much softer

than the springs, so that the total compliance is not compromised [105].

One potentially useful design for our system does not mount the cavity on a vibration

isolation stage, but rather converts the cold arm between cryocooler chamber and science

chamber into a low-pass filter by hanging it as a pendulum [76].

Mechanical low-pass designs generally rely on the properties of ideal masses and springs.

However, at high frequencies, both masses and springs have internal resonances and may

no longer act ideally. There are few measurements of high-frequency (> kHz) vibration

isolation, as high-frequency measurements are difficult, but it is very relevant to our system.

A good primer on high-frequency vibration isolation can be found in reference [107]. One

recent STM design has a high-corner frequency isolator before a low-corner isolator, so that

the former can pre-filter high frequencies which might excite resonances of the latter [105].

4.1.3 Damping

An issue with resonant vibration isolation systems is that transmissibility increases near

the resonance frequency. This may not be too problematic for optical cavity stabilization,
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as rigid cavities are less susceptible to low-frequency vibration, and their lengths can be

actively stabilized at low frequencies (see Subsection 4.1.4). Still, the stage resonances can

be decreased with damping1.

Damping is difficult in cryogenic environments due to altered material properties, ruling

out common room-temperature designs like layered masses on elastomer rings [108]. The best

solution is magnetic eddy current damping [109], where the relative motion of a conductor

and magnets dissipates energy as eddy currents.

Damping also degrades high-frequency roll-off. A one-axis damped vibration isolator,

with harmonic excitation at its support point with amplitude xs, has equation of motion

d2x

dt2
+ 2ξω0

d

dt

(
x− xseiωt

)
+ ω2

0(x− xseiωt) = 0 (4.1)

The magnitude of the response is

∣∣∣∣
x

xs

∣∣∣∣ =

√√√√ 1 + (2ξω/ω0)2

(
1− ω2/ω2

0

)2
+ (2ξω/ω0)2

(4.2)

At ω � ω0
ξ , the rolloff degrades from 1/ω2 to 1/ω.

This problem only occurs when the motion of the platform is damped with respect to

the source of vibrations. In this case the term 2ξω0
d
dtxs acts as a coupling whose magnitude

increases with frequency. In principle, if the damping were instead relative to a fixed refer-

ence, e.g. by attaching the magnets to a very stable part of the room-temperature frame,

this term goes away. Another option is a tuned mass damper, which has been implemented

for a cryogenic optical cavity [99]. In this case an auxiliary mass is suspended via a spring

from the main platform, and the relative motion between those two masses is damped, so

that there is no dissipative coupling to the vibration source. The auxiliary mass and spring

1. Another option to reduce stage resonances is active feedback on the vibration isolation stage itself
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are chosen to have a resonance frequency near ω0, maximizing relative motion between the

two at the problematic resonance frequency so that dissipation is maximized.

4.1.4 High-Pass Mechanical Filtering

An optical cavity is stable when the separation between its mirrors is constant. A rigid

mechanical structure joining the mirrors acts as a high-pass filter for the mirror separation,

converting vibrational noise to common-mode displacement which does not alter the length.

The high-pass cut-off frequency is set by the structure’s mechanical resonance frequencies.

In fact, far below resonance frequencies, acceleration of the cavity support ẍs is equivalent

to a gravity-like force on the cavity [110] F (r) = ρ(r)ẍs = −ω2ρ(r)xs, which can easily

be simulated in finite-element packages. This is a second order high-pass. The deflection is

a function of this effective force (and thus density) and the cavity rigidity. Cavity length

changes are further suppressed with highly symmetric spacer and mounting design, ensuring

both mirrors are displaced identically.

Extremely stable cryogenic resonators have been constructed from rigid sapphire [91] or

single-crystal silicon spacers [103, 111] with optically contacted mirrors and high symmetry.

Thus, high resonance frequencies perform three functions. Passive stability at low fre-

quencies is increased due to the high-pass effect. Active stabilization bandwidth is increased

as problematic resonance phase shifts are pushed higher. Finally, environmental noise cou-

ples strongly into resonances but tends to fall off at sufficiently high frequencies, so it is best

to have resonances above significant noise.

It is this last factor that proves dominant for our current cavities.

As a final note, a combination of the mechanical low-pass and high-pass techniques could

effectively cancel noise at all frequencies.
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4.1.5 Requirements for Hybrid Atomic System

The techniques described in this section have been proven to reduce pulse tube vibrations

to a level sufficient for locking a high-finesse optical cavity. However, there are various

engineering tradeoffs for these solutions, some of which are at odds with the unique goals of

our system.

In particular, low-pass vibration isolation stages require soft thermal interlinks between

each stage, imposing significant thermal impedances and limiting cooling power and tem-

perature at the payload. Even with very careful thermal design, in dilution fridge systems

the cooling power is generally decreased by a factor of 7 or more [102, 112, 113], while vi-

bration isolation stages on 4 K cryostats have demonstrated payload temperatures from 7

to 11 K [99, 97].

Likely with further engineering, these problems could be solved. However, our hybrid

system is extremely sensitive to temperature, as the superconducting mm-wave cavity quality

factor rises exponentially with lower temperatures. Furthermore, in the current design, the

mm-wave circuitry is rigidly connected to the cavity. Thus this would also need to be

isolated, adding to the size of the isolator, and putting great demands on cooling power due

to the active mm-wave amplifier. Finally, our system already has many components due to

being a hybrid system, and adding additional complication inevitably interferes with other

subsystems. For these reasons, it is preferable to use a simple solution with high thermal

conductance.

The goal of our system is to rigidly connect the cavity to the science chamber cold

plate, maximizing cooling power, while ensuring that all cavity mechanical resonances are

far above the noise frequencies. The cavity must also be stiff enough that low frequency

noise is heavily suppressed. Several factors work in our favor. Our custom cryostat design

already suppresses vibrations substantially. Furthermore, the optical cavity is only moderate

high finesse, and can be rigidly constructed (compared to open cavity structures), thus
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requiring correspondingly moderate vibration isolation. On the other hand, our cavity must

be relatively long (> 1 cm), as the mm-wave quality factor is limited by the length of holes

drilled for optical access. This decreases cavity rigidity. Also, this requires macroscopic

mirrors to accomodate larger radii of curvature and mode sizes, adding mass to the system

(compared to fiber mirrors). As will be seen later, this added mass causes problematic

mechanical resonances, though they can be fixed with proper mechanical design.

4.2 Custom Low-Vibration Cryostat

Our experiment has a home-built cryostat designed to minimize transmission of vibrations

from the cold head to the experiment. The system is based on a Cryomech PT410 pulse

tube cryocooler with CPA298C compressor. This is a closed cycle cryocooler with two stages,

providing 1 W of cooling power at 4.2 K and 40 W at 45 K, with a base temperature rated

at 2.8 K. As the cooling performance was discussed in Chapter 3, we focus here on the

low-vibration design.

The philosophy of the design is to mechanically decouple the experiment into two in-

dependently supported subsystems . The cold head subsystem contains the cold head and

pumps, while the experiment subsystem contains the vacuum structure and all experimental

components. The exterior is shown in Figure 4.2, where experiment components are colored

green, cold head components blue, and flexible linkages between them orange.

The cold head subsystem consists of two plates supported by a t-slotted framing system,

which is hung from structural elements in the ceiling. The cold head attaches directly to the

upper plate. The lower plate has vacuum connectors to attach a turbomolecular pump. The

frame extends from above down through a hole in an optical table, which allows the lower

plate to sit below the table surface. This hole also facilitates access to the pulse tube from

below, when the lower plate is removed.

The experiment subsytem is supported by the optical table, and consists of two vacuum
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Figure 4.1: Custom two-chamber cryostat with vibration-decoupling design. Blue
and green subsystems are independently supported, linked by flexible bellows (orange).
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Figure 4.2: Flexible thermal connection. Fridge chamber interior with flexible braids
connecting cold head to the cold arms.

chambers, rigidly connected together. The science chamber rests directly on the table,

while the fridge chamber has 3 protrusions above the optical table. The space between the

protrusions and the table is filled by shims, and then it is clamped together. The fridge

chamber rests around the cold head. From the fridge chamber, one flexible vacuum bellows

extends up to the top plate, while another extends down to the bottom plate, completing

the vacuum exterior.

The pulse tube comes with the remote motor option, so that the motor rests far from

the cold head and is connected to it by flexible helium lines. The helium compressor sits in

a separate room, and is connected to the motor by similar lines.

Inside the vacuum chamber, the science chamber contains two copper plates meant to be

thermalized to 35 K and 4 K. Two copper cold arms transfer cooling power from the cold

head plates to the science chamber plates. The 35 K cold arm is a hollow tube, so that it

can surround the 4 K arm to protect it from room temperature radiation.
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(a) (b)

Figure 4.3: Accelerometer measurement of vibration isolation. (a) Pulse tube on in
various locations. (b) Effect of pulse tube on science chamber top.

Both cold arms are attached to the cold head via flexible copper braids to minimize

vibration transmission. In the initial design, the cold arms were also to be attached to

the science chamber plates with flexible braids. Then the cold arms would be suspended

by strings from the vaccum chamber walls, allowing them a pendulum degree of motion

similar to a recent design [76]. Instead, to maximize cooling power, the cold arms are rigidly

attached to the science chamber plates, so they are mechanically supported in a cantilever

fashion and do not need to be suspended.

4.2.1 Accelerometer Measurement

The vibrational performance of the cryostat is ultimately measured by the spectrum of posi-

tional displacement at the payload. First, a convenient way to coarsely check the vibration

suppression is to use a MEMS accelerometer. In Figure 4.3, we plot the power spectral

density of the output voltage of an accelerometer, measuring along the vertical direction.

These measurements are all taken at room temperature. In Figure 4.3a, the pulse tube is on,

and the accelerometer is placed directly on the cold head (blue), on the science chamber top

(orange), on the optical table (green), or on the 35K plate of the science chamber interior
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(red). In Figure 4.3b, the accelerometer is placed on the science chamber top with the pulse

tube on (blue) or off (orange).

The accelerometer is not rated for high frequencies, so the absolute calibration at any

given frequency is unreliable. However, to the extent that it is linear, we can compare

readings in two conditions to determine the relative suppresssion. Compared to the cold head,

measurements at the other locations are uniformly lower by 3 to 4 orders of magnitude. There

are also two qualitative features worth pointing out: first, the pulse tube adds significant

broadband noise around 3 kHz, 10 kHz, and 20 kHz compared to ambient. Second, there

is strong ambient noise at 30 Hz and 60 Hz even without the pulse tube. This is not 60

Hz electrical noise; we attribute it to a pendulum-like resonant mode of the whole vacuum

chamber or optical table.

4.2.2 Interferometer Measurement

An optical interferometer can be used to measure vibrations at cryogenic temperatures,

and with much greater precision. A self-heterodyne interferometer was constructed with a

reference arm on the optical table, and the signal arm formed by a retroreflection mirror on

the science chamber 35K plate. The mirror was oriented to measure displacements along

the axis parallel to the cold arms. As the displacement was greater than a full fringe,

the interferometer had to be locked. The interference of the two arms was measured on a

photodiode outside the chamber, resulting in a signal

M ∝ sin ∆φ ≈ 2πf

ν
+

2π∆L

λ/2
(4.3)

where ∆φ is the phase difference between the arms, f is the laser frequency, ν = c
2(Lsignal−Lref)

is the free spectral range of the interferometer, and ∆L is the displacement of the mirror.

This signal was fed through a PI loop filter and into the laser controller’s current modulation
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(a)

(b)

(c)

Figure 4.4: Interferometer measurement on science chamber 35K vibrations. (a)
Absolute displacement, (b) Power spectral density of displacement, (c) Integrated RMS
Displacement.
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port, which modulates the laser frequency, to lock the relative phase of the two arms. The

voltage sent to the laser then equals

V =
1

G

L

1 + L

(
ν∆L

λ/2

)
(4.4)

where G is the laser transfer function from input voltage to frequency and L is the loop gain.

For a tight lock (L� 1), this is V = 1
G

(
ν∆L
λ/2

)
. Calibrating the laser transfer function and

interferometer free spectral range yields the displacement. The control loop had a unity gain

bandwidth of 10 kHz, but no signal was visible above the noise floor past 2 kHz anyway.

The vibrational amplitude on the science chamber 35 K stage is 400 nm peak-to-peak,

and around 80 nm rms. The majority of this occurs at the frequency of the pulse tube

(around 1 Hz) and its first few harmonics. Again we see substantial motion at 30 Hz and 60

Hz, attributable to a vibrational mode of the whole chamber and optical table. Above 100

Hz, the vibrational noise is too small to be detected with the sensitivity of this instrument.

Nevertheless, high-frequency vibration proved troublesome for early generations of optical

cavities.

4.3 First Generation Optical Cavities

I now discuss the construction of our cryogenic optical cavities, starting with the first gener-

ation of highly vibration-prone designs. The requirements for our optical cavities are fairly

simple. Two mirrors must be held rigidly apart by a spacer, and at least one mirror must

be mounted on a piezoelectric actuator for length tunability. The spacer is made from a

block of pure niobium, as it also functions as a superconducting mm-wave resonator. In our

earliest cavities, these components were bonded with cryogenic epoxy. Because these res-

onators are fairly short and constructed from a single block of metal, we would expect them

to be quite robust to vibrational noise. Indeed, this was the case at room temperature –
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the pulse tube barely affected the cavities. However, once cooled to cryogenic temperatures,

the cavity transmission peaks would shake by up to tens of linewidths, amounting to several

nanometers of relative shaking between the mirrors. Here these early cavity designs will be

described, and their poor performance explained.

4.3.1 Optical Cavity Components

Several features are common to the construction of all cavities presented here. The mirrors

are 7.75 mm diameter round, UV fused silica substrates with 25 mm radius of curvature and

4 mm thickness. The spacers are bulk niobium, with varying lengths near 2 cm, and varying

cross sections about 2 cm × 2 cm. The exact dimensions of the spacers are different for

each cavity and haven’t been seen to affect vibrational performance much (other factors are

limiting), so the point won’t be belabored.

We interchangeably used two piezoelectric actuators, both multilayer ring actuators:

Thorlabs PA44LEW, and PI PD080.3x. The properties of these actuators are summarized

in Table 4.1. For all cryogenic cavities, we mounted both mirrors on piezos and drove the

two in parallel. At room temperature, the two piezos together were measured to have a

range of 4-5 µm, or 10-13 free spectral ranges at 780 nm, with minor variations between

piezos. At 4 Kelvin, the throw consistently decreased to approximatly 15% of the room

temperature values. Forunately, this is still greater than a free spectral range at 780 nm.

At cryogenic temperatures, piezos experience a large increase in the coercive field, making

them extremely resistant to depoling. Therefore they can be driven with negative voltages,

potentially doubling the range (though this was not necessary in our case).

The expected mass-on-spring resonance for the mirror and piezo, with one end fixed, is

estimated from the mass of the mirror and the spring constant of the piezo. The mirror

mass is M = 0.50 g for mirrors with the dimensions given above (and density of fused

silica 2.63 g/cm3). The spring constant of the piezo can be estimated as the ratio of the
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Actuator Thorlabs PA44LEW PI PD080.3x Unit
Outer diameter 8.3 8 mm
Inner diameter 3.0 4.5 mm

Height 2.0 2.5 mm
Travel range 2.6 2 µm

Blocking force 1800 > 1000 N
Capacitance 550 300 nF

Axial resonant frequency 515 > 500 kHz
Mass 0.72 ∼ 0.66 g

Table 4.1: Properties of the two piezos used for optical cavities.

blocking force to travel range, yielding k = 7 × 108 N/m for the Thorlabs piezo. The axial

resonance frequencies of the loaded piezo, fixed on one end, can be calculated by solving the

one-dimensional wave equation in the piezo with appropriate boundary conditions, yielding

a transcendental equation 0 = 1 − 2πfr
M√
kmp

tan

(
2πfr

√
mp
k

)
. For M � mp the first

resonance frequency is approximately fr = 1
2π

√
k

M+mp/3
. For M � mp the first resonance

frequency is approximately fr =
1
4

√
k
m

1+M
m

. The exact resonance frequency is > 100 kHz.

This is far above any frequencies of interest, so the piezo can be treated as an ideal spring

supporting an effective mass m
3 according to a one-pole expansion of its mechanical transfer

function [114].

4.3.2 Epoxy Cavity Construction

Early cavities were constructed by bonding mirrors and piezoelectric actuators to either side

of the spacer with a cryogenic epoxy, largely following techniques from the Regal group at

JILA [115]. Thin invar washers were also placed between spacer and piezo, and between piezo

and mirror. The idea was that invar’s low coefficient of thermal expansion would be better

matched to that of the mirror and piezo, preventing cracking. However, we later stopped

using the invar washers with little change in performance. We note that most cryogenic

epoxies contract far more than the pieces being bonded anyway.

During construction, the piezo, mirror, and optional invar washers are held together by
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(a) (b)

Figure 4.5: Construction of epoxied cavities. (a) Cavity in gluing jig (no invar design),
(b) Finished cavity (invar design).

a clamp and a mounting jig, as shown in Figure 4.5(a). The mounting jig fits tightly around

spacer and mirror to properly locate the mirror; sometimes a separate jig is used to center

and glue the piezo first. Before the components are placed in the jig, they are all cleaned.

The spacers are cleaned in an ultrasonic bath with the standard sequence of UHV-cleaning

solvents. The piezos are wiped down with isopropyl alcohol using a lint-free cloth. If the

mirrors have visible dust on their surfaces under a microscope, they are cleaned using First

Contact polymer cleaning solution. For very persistent dust, one can fold a piece of lens

tissue several times, grasp it in forceps, wet it with a couple drops of acetone, fold the tissue

over the forceps so no metal is exposed, and firmly wipe it across the mirror surface. This is

then repeated with methanol to remove residual solvent.

Once the stack of components is firmly clamped in the mounting jig, the epoxy is pre-

pared. Early designs used Stycast 2850FT with Catalyst 9, a very common cryogenic epoxy.

The resin and catalyst are mixed according to the recommended ratio for about 2 minutes.

The mixing should be done as smoothly as possible to avoid introducing air bubbles. After

mixing, the epoxy is placed in an o-ring sealed vacuum pot pumped by an oil-free scroll pump

to degas it. The epoxy is left under vacuum for about 5 minutes, and a valve to atmosphere
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is periodically cracked open so that the pressure does not go too far below 5 mbar. Appar-

ently too low pressures can boil off some components of the epoxy, causing issues. I have not

thoroughly verified that this degassing process has any effect on the ultimate performance

of the epoxy bond, but it is said to be a good idea.

The epoxy is then painted in a full circle around each component in the stack using a

toothpick or thin piece of music wire. Care should be taken to press the epoxy thoroughly

into the corner between each component, as this part is responsible for much of the bond

strength and stiffness. Also, the epoxy attaching the piezo to the spacer should not go too

far up the side of the piezo, as this can bind the piezo and limit travel range. Once the epoxy

is painted on, it is left to cure for the recommended cure schedule. A completed cavity with

invar washers and Stycast 2850 FT is shown in Figure 4.5(b).

4.3.3 Epoxy Cavity Performance

After building a cavity as described above, we placed it in the vacuum chamber and cooled

it down. At room temperature, even with the pulse tube on, it worked well. By the time

it reached a temperature of 35 K, the cavity resonance peak was shaking around by tens

of linewidths, making it impossible to lock. During subsequent cooldowns, the performance

degraded further.

Various measures were tried to create a more stable cavity. Eventually one cavity shook

around by only a few linewidths. The length excursions of this cavity were measured in

a similar fashion to the interferometer in Equation 4.4. However, in this case the laser is

locked to the cavity not by tuning the laser diode current, but by creating a sideband with an

electro-optic modulator driven by a tunable voltage-controlled oscillator (Hewlett-Packard).

Calibrating the output frequency of the VCO from its voltage input yields the cavity length

change exactly as for the interferometer. In this case the resolvable signal is much better

due to the high displacement sensitivity of the cavity, and because the unity gain bandwidth
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(a)

(b)

(c)

Figure 4.6: Length shaking of epoxy cavity. (a) Absolute displacement, (b) Power
spectral density of displacement, (c) Integrated RMS Displacement.
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Figure 4.7: Block diagram for transfer function measurement.

of the lock is now 100 kHz.

The cavity length shaking is shown in Figure 4.6. The absolute length in Figure 4.6(a)

shows peak-to-peak excursions of ±0.6nm, amounting to ±6 linewidths for a finesse 4000

cavity, while the rms in Figure 4.6(c) is 0.15 nm. Most importantly, almost all of the shaking

occurs at a frequency near 3 kHz.

This is suggestive of a resonance in the system. I measured the transfer function of the

piezo to determine the properties of this resonance. The transfer function is measured in lock

according to the scheme in Figure 4.7, where K represents the PI loop filter, G is the piezo

driver and piezo mechanical response, and the loop gain is defined as L ≡ KG. The error

signal is passed through a RedPitaya FPGA which injects a sinusoidal signal and measures

the error signal before and after injection. Then the ratio x
y = L.

The transfer function, shown in Figure 4.8, indeed shows a very large resonance around

3 kHz. Similar resonances have been seen in cryogenic Fabry-Perot cavities before [115], but

that experiment was in a wet fridge and so the resonance was not excite by pulse tube noise.

In addition to the main resonance, there are many smaller resonances that occur as pole-

zero pairs, most prominently at 3.5 kHz. The large resonance, however, enters as a single

pole; this is confirmed by the fact that the roll-off of the transfer function increases above 3

kHz. This form of the transfer function is enough to exactly identify the source of the large

resonance. To understand this, we will take a brief diversion to discuss mechanical network
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Figure 4.8: Piezo transfer function for epoxy cavity.

analysis.

4.4 Mechanical Network Analysis

The transfer function in Figure 4.8 incorporates the lockbox and piezo driver in the electrical

domain, and the piezo’s response in the mechanical domain. The electrical side is easy to

understand; the transfer function falls off with frequency due to both the integrator in the

lockbox, and the RC filter formed by the piezo driver with the capacitive piezo.

The mechanical side represents the combined properties of the piezo actuator, the mir-

ror, and the entire mounting structure upon which the piezo sits. All of these objects have

their own resonances, leading to the complicated transfer function observed. We wish to

understand the properties of many interconnected mechanical objects. Luckily, every physi-

cist knows a formalism for understanding interconnected electrical components: network

analysis. Here we briefly review the analogous theory for mechanical networks, which will

prove useful for understanding the issues with the previous cavity, and designing a proper
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Figure 4.9: Two springs in parallel.

replacement.

4.4.1 Mobility Analogy

Consider an ideal spring fixed at one end, and driven sinusoidally on the other end. The

position of the other end is goverend by Hooke’s law, F = kx. Taking the time derivative

and Fourier transform, this equation can be written in two suggestive ways:

F =
k

iω
v (4.5)

v =
iω

k
F (4.6)

where F is force, v is velocity, and k is the spring constant. Note that F and v are power-

conjugate variables, exactly as are the voltage V and current I in the electrical domain.

The first equation resembles the definition of a capacitor’s impedance, with the analogies

F ↔ V , v ↔ I, and 1
k ↔ C. Here C is capacitance.

Meanwhile, the second equation resembles an inductor’s impedance, with the analogies

v ↔ V , F ↔ I, and 1
k ↔ L. Here L is inductance.

Which of these two interpretations should we choose? Consider now two springs in

parallel, as in Figure 4.9. The spring constants should of course add, ktot = 2k. In the

first analogy, the springs are treated as capacitors with C = 1
k , and the total capacitance is
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Mobility Analogy
Electrical Mechanical

Voltage V Velocity v
Current I Force F

Capacitance C Mass m
Inductance L Compliance 1/k
Impedance Z Mobility M

Table 4.2: Analogous quantities in the mobility analogy.

Ctot = C + C = 2
k . The two spring constants have not added as expected.

In the second analogy, the springs are treated as inductors with L = 1
k , and the total

inductance is Ltot = 1
1/L+1/L

= 1
2k . This latter correspondence produces the correct result.

Thus we choose the so-called mobility analogy with v ↔ V , F ↔ I to convert a mechan-

ical network into an equivalent circuit2. The properties of the analogy are summarized in

Table 4.2.

Another way to justify choosing this analogy is that charge Q and momentum p are both

conserved quantities. Thus there is correspondence between Kirchhoff’s current law ( with

I = dQ
dt ) and Newton’s second law (with F = dp

dt ). Just as the sum of currents into a point

must equal zero, the sum of forces on a point mass (including the inertial force F = ma)

must equal zero. There is a similar correspondence between Kirchhoff’s voltage law and

velocity.

Two points are worth mentioning. First, one would expect that since v ↔ V , we would

call the ratio of v
F the impedance, so the impedance of a spring would be Zwrong = k

iω .

For all intents and purposes, this is correct. However, historically the other analogy was

preferred, so it is universally agreed upon to call “mechanical impedance” the ratio of Fv . As

that name is taken, we will call the the mobility M = v
F , which is the ratio of the “voltage-

like” variable to the “current-like” variable in this analogy. Mechanical mobility thus plays

2. There is a circuit which produces the correct equations of motion using the first analogy, where F ↔ V ,
v ↔ I. However, this circuit has a different topology than the mechanical network. In fact, it is the dual
topology, we can go from one analogy to the other simply by taking the dual circuit.
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the same role as electrical impedance.

Second, the circuit analogy of a mass, which is a capacitor, always has one terminal

connected to ground3. This is because the velocity of a mass is always measured with

respect to a fixed reference frame. When writing out the equations of a motion for a point

mass, one will never encounter a term like m (ẍ1 − ẍ2).

4.4.2 Piezoelectric Transducers

We also need to construct the circuit equivalent of a piezoelectric transducer. The constitu-

tive equations for a piezoelectric material can be modeled as [117, 118]

S = sET + dTE (4.7)

D = dT + εTE (4.8)

where S is the linearized strain tensor, sE is compliance under constant E (short-circuit

conditions), T is the stress tensor, d is the piezoelectric tensor, E is the electric field, D

is the electric flux density, and εT is the permittivity tensor under constant T (unclamped

conditions).

We use a 1D model, only considering uniaxial stress and strain, and only applying voltage

in one direction. Further, we assume stress and strain are uniform through the piezo, which

is valid because the axial resonant frequency of the piezo is far above the frequencies under

consideration here (see Section 4.3.1). Then the quantities reduce to scalars: S becomes

∆l
l with piezo length l, T is A

k with cross-sectional area A and spring constant k, T is F
A

with force F , d is the piezoelectric charge constant, and E = V
t with voltage V and layer

thickness t.

3. Interestingly, the lack of an ungrounded capacitor makes it rather difficult to build a mechanical high-
pass filter. In 2002, it was discovered that the mechanical equivalent of an ungrounded capacitor can in fact
be built [116], though it is rather more complicated than just a mass. In fact, it need not Even be massive.
Within four years, the so-called “inerter” was in use by Formula One cars.
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Figure 4.10: Two-port network model of a 1D piezoelectric transducer.

In the second equation D becomes Ql
A with free charge on each layer Ql, ε is Ct

ANl
with

capacitance C and number of layers Nl. Taking the time derivative and multiplying through

by factors yields

v =
1

k
Ḟ + δV̇ (4.9)

I = δḞ + CV̇ (4.10)

where we have finally defined the effective piezoelectric charge constant of a multilayer ac-

tuator, δ = Nld.

This represents a two-port network, where one port is electrical and the other mechanical,

as shown in Figure 4.10. On the mechanical side, the actuator looks like a velocity source

(with magnitude iωδV ), in series with a spring (i.e. an inductor with inductance 1/kp).

There is an additional force F which comes from any mechanical elements external to the

piezo. Now, we can use this model to understand the mechanical transfer function.

4.4.3 Circuit Model of Mechanical Resonances

The equivalent circuit of a piezoelectric actuator, attached on one end to a mounting struc-

ture and on the other end to a mirror, is shown in Figure 4.11(a).

The mount enters the model as an additional mobility Mm in series with the piezo, which

91



Mm

iωδV

1/kp

mp +M

vmirror

vmount

(a)

Mm

iωδV

1/kp

mp

1/kepoxy

M

(b)

Figure 4.11: Model of driven piezo interacting with mount and epoxy resonances.
(a) with very rigid epoxy, (b) with compliant epoxy.

may be an arbitrary function of frequency4. The length of the piezo defines a relative distance

between its two faces, so active control of the piezo appears as a velocity source between the

mount and mirror. In particular, this ensures that any “current” (force) entering the mirror

is drawn from the mount – since there is no external force applied, the piezo must push on

both equally for momentum conservation.

The origin of pole-zero type resonances is now clear. Suppose the mount has a resonance

at frequency ωa with a corresponding pole in Mm. At this frequency Mm diverges and the

velocity at the mirror vmirror goes to zero. This is an antiresonance frequency for the mirror5.

However, because Mm rapidly goes from a small value to infinity and back, its magnitude

passes through all real numbers in a small frequency interval. For a lightly damped structure,

the phase can only be roughly 0 or π. Therefore at some nearby frequency ωr, Mm exactly

cancels the mobilities of the piezo and mirror. At this frequency vmirror diverges, so this is a

resonance for the mirror. Thus, resonances in the mount lead to pole-zero pairs in the mirror

4. Note that Mm is the actual transfer function of the mount, which may have a complicated 3D internal
structure. We only require that its interaction with the piezo can be modeled as a 1D displacement

5. This is exemplary of a general result that, when driving and measuring at the same point, an anires-
onance frequency corresponds to a resonance frequency for the rest of the structure, were that point held
fixed [119]. This has interesting applications in characterizing quantum circuits, where a problematic lossy
element can be tracked down by its very narrow antiresonance [120].
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Masterbond EP21TCHT-1

Figure 4.12: Comparison of mechanical transfer functions for different cryogenic epoxies.

transfer function. Generally, this is a consequence of Foster’s reactance theorem [121].

What, then, is the origin of the lone pole in the transfer function from Figure 4.8? One

explanation is a “mass-on-spring” or LC-type resonance of the piezo, where the impedance

iω
kp

and 1
iω(mp+M)

sum to zero at ω =

√
kp

mp+M
. However, the mirror is very light, and the

piezo is very stiff, so this shouldn’t occur until well over 100 kHz.

The answer is provided in Figure 4.11(b). Here we separate out the epoxy as a separate

spring constant. Then there is a resonance defined by kepoxy and M . Evidently, the epoxy

loses its hold during cooldown, and becomes a very weak spring! This is the origin of the

large resonance at 3 kHz.

To remedy this situation, I first tried constructing cavities with other cryogenic epoxies.

The best results came from using Masterbond EP21TCHT-1. Figure 4.12 shows a comparison

of transfer functions of the original Stycast cavity and a Masterbond cavity which also had

the invar washers removed. The Masterbond cavity had a first resonance at 20 kHz, and

indeed had excellent vibrational performance. However, even with this epoxy, results were

inconsistent: an identically prepared cavity had a resonance at 10 kHz. This is right on
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Figure 4.13: CAD model of spring preload mirror mounts on optical cavity.

top of the spike of pulse tube noise, so there was again order of 1 nm of shaking. Another

solution is needed.

4.5 Spring Preload Cavities

The problem of constructing our optical cavity is essentially one of bonding dissimilar ma-

terials. The spacer, piezos, and mirrors are all of different composition. Normally epoxy is a

fantastic solution to this problem, and epoxied mirror-piezo assemblies can reach resonance

frequencies of 180 kHz or more [122], limited by factors besides the epoxy. However, as we

have seen, the properties of epoxy degrade at cryogenic temperatures, introducing major

resonances. Some ultrastable cryogenic resonators get around this problem by using only

sapphire or single-crystal silicon components which can be optically contacted, but this is

not an option for us.

Another possible solution is to clamp mirror, piezo, and spacer together, for example by

screwing the stack between two metal plates. But a stiff clamp limits the motion of the piezo.

Furthermore, the force applied by a stiff clamp varies strongly with length, so a tiny length
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Figure 4.14: Circuit model of spring preload mirror mount.

intolerance would crack the mirror or loosen the clamp. Even with precision fabrication,

thermal contraction during cooldown would change the clamp length.

All of these problems can be solved by placing a compliant spring with low spring constant

ks between the stack and the rigid clamp. Even with a weak spring, an arbitrarily high

preload force can still be applied by compressing the spring sufficiently. The dependence of

force on manufacturing tolerance and thermal contraction is small, dFdL = ks.

One might worry that the introduction of a compliant spring would introduce low-

frequency resonances, similar to the weakened epoxy. However, examining the circuit model

of a spring preload mirror mount in Figure 4.14, it is clear that the preloading spring enters

in parallel to the piezo’s compliance, rather than in series, so it increases the effective spring

constant. It is also clear from this model that the zero-frequency range of the piezo is reduced

by a factor of
kp

kp+ks
, which is minor for small ks.

A final concern is that the weak spring may have self-resonances due to its non-zero

mass. A self-resonance frequency corresponds to infinite mobility, which the circuit model in

Figure 4.14 suggests would have minimal effect as it is in parallel with the mirror. However,

a spring self-antiresonance corresponds to infinite stiffness, so the mirror would see zero

displacement. Along with this zero would come a corresponding pole in the piezo transfer

function, by the same argument as before. Furthermore, above a spring’s first self-resonance
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frequency, we would not expect ideal behavior; modeling the spring as a 1D elastic bar

reveals that the rolloff of a mass-spring system decreases to 1/ω after the first resonance.

For these reasons I choose a rather light and stiff spring which should have high self-resonance

frequencies.

4.5.1 Preloading Piezoelectric Actuators

Piezo actuators very commonly have a compressive preload force applied to them by a

compliant spring, in order to protect them from tensile stresses in dynamic operation. This

is relevant when the actuator moves a large mass at high frequencies, and often a large

compressive stress of order 15 MPa is used. In the present case, the preload serves an

entirely different purpose: to keep the mirror pressed tightly to the piezo, and the piezo

pressed tightly to the cavity. The preload force need only be sufficient to push the mirror

against the piezo during the maximum expected acceleration. During locking, displacements

are very small, so the maximum acceleration will occur while scanning for a resonance. The

force needed to accelerate a mirror of mass M while scanning the piezo is

Fpreload = Mxω2
scan (4.11)

where x is the scan range and ωscan is the scan frequency. For M = 0.5 g, x = 2µm (the full

piezo range), and ωscan = 2π× 1 kHz, Fpreload = 0.04 N, with a stress of less than 1 kPa for

the cross-sectional area of our piezos.

A much larger preload force will be used anyway, primarily because a reasonably stiff

spring is desired, and it must be designed for at least ∼ 0.1 mm compression to avoid unreal-

istic machining tolerances. Also, preloading is known to make the piezo behave more ideally

and increase achievable strain [123]. This effect arises from the alignment of ferroelectric

grains which were not perfectly aligned in the poling process.
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There is a tradeoff for preload spring stiffness. A low stiffness allows for looser dimensional

tolerances, but a high stiffness-to-mass ratio may push resonance frequencies higher.

4.5.2 Spring Preload Design

A CAD model of the spring mirror mount design, attached to an optical cavity, is shown

in Figure 4.13. The individual components are shown laid out in Figure 4.15. The design

consists of the usual piezo and mirror, as well as a guidepin, two stacked conical disc springs

(Belleville disc springs), an aluminum housing tube, and an optional lid. One end of the

guidepin has a depression to fit the mirror. The other end of the guidepin is a long, hollow

tube, which passes through both the disc springs, and a central hole in either the housing

or the lid, depending on the design. This serves to center both mirrors and disc springs

relative to the housing. All components have central holes to allow light into and out of the

structure.

The stack of piezo, mirror, guidepin, and springs is assembled inside the aluminum hous-

ing. Then the cavity spacer can be attached to the housing with screws (no lid design), or

a lid can be attached similarly (lid design), and later the assembly can be attached to the

cavity spacer. The inside length of the housing equals the height of the stack (measured

precisely with a height gauge), minus the desired deflection of the springs.

The lid design is slightly more convenient for its portability; also, the piezo can be centered

precisely by matching its ID to a hole in the housing, and passing a cylinder through both

during assembly. However, the lid design has slightly more mass, which could in principle

hurt vibrational performance.

The disc springs are McMaster-Carr part number 9713K14. Each has outer diameter

0.343”, inner diameter 0.164”, thickness 0.019”, height 0.028”, and mass 0.13 g. The rated

working load is 55 lbf (245 N), at which point the deflection is 0.005” (0.13 mm). This

deflection is well within the machining tolerance of the housing. Usually two disc springs,
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(a)

(b)

Figure 4.15: Components of spring mirror mounts laid out. (a) no lid design, (b) lid
design.
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Figure 4.16: Completed cavity with spring mirror mounts.

stacked in the same orientation (this is known as the parallel configuration), are used to

double the stiffness [124], though one spring has been found to work similarly well. Disc

springs stacked in opposite orientations add like springs in series, so this is known as the

series configuration.

The guidepins have a mass of 2.26 g. This has varied mildly between various designs.

The clearance between the guidepin and its matching hole in the housing (or lid) is 0.002” in

our design, to accomodate thermal contraction. At one point after a warmup the guidepin

apparently became stuck due to stiction with the housing. The piezo would not move, and

the cavity finesse degraded considerably, perhaps due to mirror stress. After the maximum

piezo voltage was applied, there was a loud click as the stiction loosened, and the piezo

movement and cavity finesse were both recovered.

A completed cavity with spring mirror mounts in shown in Figure 4.16, where one mount

is the lid design and the other is the no lid design. The two show similar performance.
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4.5.3 Material Considerations

Spring material selection is usually guided by the need for an extremely high yield strength,

as well as high stiffness and, ideally, low density. We have the additional requirement that

the material be nonmagnetic, even at cryogenic temperatures. As a general rule, density and

elastic moduli are mostly unaffected by alloying elements, while yield strength and magnetic

properties are affected.

Some useful information about cryogenic material properties can be found in [125, 126].

The 300 series stainless steels are nonmagnetic, due to their austenitic crystal structure. Still,

even nonmagnetizable steels at room temperature may become magnetizable at cryogenic

temperatures. The more stable the austenite structure, the better. 304 steel is good, 316

is sometimes considered better, nitrogen-containing austenitic steels are excellent, and high-

manganese steels are the best.

Austenitic stainless steels can be used as springs, but only when their yield strength

is increased by strain hardening. Some austenitic steels, including X10CrNi18-8, become

magnetizable after strain hardening, while others, including X5CrNiMo17-12-2, are resistant.

Nevertheless, we chose 302 steel disc springs available on McMaster-Carr and haven’t had

any issues.

Aluminum and titanium alloys are nonmagnetic, but may become brittle at cryogenic

temperatures (less so for extra-low-interstitial titanium alloys). Also, aluminum springs are

usually not manufactured due to its lack of a fatigue limit and low yield strength. Likely

none of these are important limitations due to the low forces involved in mirror positioning,

and future designs would likely benefit from using aluminum or titanium alloys. One worry

is that Ti-6Al-4V goes superconducting between 4K and 5K. Aluminum, titanium, and steel

all have high (and roughly equal) ratios of Young’s modulus to density, which is important

for high resonance frequencies.

Beryllium copper is nonmagnetic and has excellent cryogenic properties. However, it has
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a worse ratio of elastic moduli to density than other options. Also it is highly toxic if inhaled.

Disc spring manufacturers usually specify strict requirements for the mating surfaces

of the springs. For example, Christian Bauer recommends that the clearance between the

spring’s inner diameter and the guidepin be 0.15 mm. They also recommend that the guide-

pin and both flat surfaces compressing the spring have surface hardness > 55 HRC and be

ground and polished to reduce friction. Finding cryogenic, nonmagnetic materials with such

properties is difficult.

As a substitute, I used nitronic 60 stainless steel for the guidepins and lids, as it is

known to have excellent resistance to galling, and excellent magnetic properties at cryogenic

temperatures, as nitrogen stabilizes the austenitic structure. However, the no lid design,

which uses aluminum on one compression surface, had equal performance as the lid design.

Because the forces on these springs are small, likely these guidelines matter very little.

4.5.4 Performance of Spring Mirror Mounts

The vibrational performance of the spring mirror mount is shown in Figure 4.17, measured

with similar techniques as in Section 4.3.3. The first major mechanical resonance in the

transfer function occurs at 18 kHz. As expected, the overall shaking amplitude is much

less than for the epoxy cavity, at approximate 0.15 nm peak-to-peak ((a)) or 0.02 nm rms

((c)). Even the peak-to-peak shaking is less than the linewidth of a finesse 2500 cavity. This

allowed a complementary measurement of the shaking in which the VCO lock was turned

off, and the error signal was monitored directly, which was be calibrated to give the cavity

length. The result was very similar to this VCO lock measurement.

Examining the integrated rms length ((c)) shows that noise enters gradually in a band

around 10 kHz, and again in the range of 18-30 kHz. The 10 kHz noise can be attributed to

the large spike in pulse tube noise at this frequency, observed qualitatively by the accelerom-

eter in Figure 4.3. The noise between 18 and 30 kHz, on the other hand, can be tied exactly

101



(a)

(b)

(c)

(d)

Figure 4.17: Length shaking of spring cavity. (a) Absolute displacement, (b) Power
spectral density of displacement, (c) Integrated RMS Displacement, (d) Transfer function.
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(a)

(b)

Figure 4.18: Zoomed-in view of (a) Power spectral density of displacement, (b) transfer
function, showing correspondence between resonances and noise.

to the cavity resonances seen in the transfer function.

A detailed comparison between the power spectral density and transfer function in this

range is presented in Figure 4.18. The shaking occurs exactly at the mechanical resonances,

with noise suppressed 2-3 orders of magnitude at other frequencies. This confirms that the

majority of the cavity length instability arises from mechanical resonances in the cavity

structure, which are excited by ambient noise from the pulse tube. It seems there would be

additional benefit from pushing these resonance frequencies even higher.

Mechanical resonances occur frequently above 20 kHz, separated by less than a kHz.
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Figure 4.19: Mechanical transfer function for a shorter mirror in a spring-piezo mount, with
higher resonance frequencies.

A similar transfer function was observed when the spring box was mounted standalone, so

the resonances probably do not come from the cavity spacer. It is unlikely that the mass-

on-spring mode of the mirror and guidepin mass and piezo stiffness plays a role, as that is

estimated to occur around 100 kHz, and also all observed resonances enter as pole-zero pairs.

One possibility is that these could be self-resonances in the disc springs. Another is that the

resonances could belong to the aluminum housing tube, plus the associated screws attaching

it to the cavity. Finite element simulation of the tube alone suggests no resonances below 44

kHz, but mechanical resonances arising from bolted structures can be difficult to simulate.

To help distinguish between these possibilities, I created another spring-mounted mirror,

but using a flat, 2 mm thick mirror rather than a 4 mm thick mirror with 25 mm radius of

curvature. The housing tube is correspondingly shorter by 2 mm, with 7.85 mm total length.

The transfer function is shown is Figure 4.19. In this case, the first resonance occurs above

40 kHz, a dramatic improvement. The change seems to rule out self-resonances in the disc

spring. This lends support to the explanation that the resonances arise from the mechanics

of the housing tube and associated fasteners. In any case, I expect that incorporating this
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shorter-mirror design into the cryostat would improve vibrational performance dramatically.

4.5.5 Temperature Dependence

There is a clear connection between resonance frequencies and vibrational performance:

pushing the first resonance to higher frequencies is helpful, because there is less noise to

resonantly couple in at higher frequencies.

In addition, we have observed a change in vibrational performance with temperature.

Figure 4.20(a) shows the rms length of the cavity as a function of time, averaged in 4

ms bins, at 245 K and 9 K temperatures. The peak amplitude is similar. However, the

vibrations ring down quickly after each pulse tube hit at warm temperatures, whereas they

ring almost until the next pulse tube hit at cryogenic temperatures. An obvious explanation

is increased material quality factors at cryogenic temperatures [127, 128, 129], which would

lead to longer resonance ringdowns. This should appear as narrower peaks in the transfer

function; indeed, Figure 4.20(b) shows peaks about 10 times narrower and significantly taller

at cryogenic temperatures. It is also possible that noise in the environment persists longer

due to increased quality factors of the copper plates, etc.

4.6 Conclusion

By joining the components of an optical cavity with compliant springs instead of epoxy,

we have eliminated the problematic resonances which result from degradation of epoxy at

cryogenic temperatures. The spring preloaded mirror mount cavities are sufficiently stable

for our current experiments at finesse ∼ 3000.

For higher finesse cavities, the linewidth decreases, generally requiring higher stability.

However, for many of our experiments, the absolute frequency of the cavity is not too impor-

tant, so long as it is within ∼ 1 atomic linewidth (6 MHz) from the rubidium D2 transition

frequency. Then we can simply have the laser follow the cavity with no penalty.
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(a)

(b)

Figure 4.20: Temperature variation in spring cavity of (a) RMS vibrational amplitude (av-
eraged in 4 ms bins), (b) transfer function, showing increased quality factor at low temper-
atures.
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Figure 4.21: Potential design for an extensional flexure spring mirror mount.

For other experiments, it may be useful to improve vibrational performance further. The

easiest solution would be to go to smaller mirror substrates. Indeed, fiber mirrors seem to be

immune to these epoxy resonances, as they are very light and can be completely encapsulated

in epoxy, though larger mirrors than this are needed to surround the mm-wave cavity. All

of the strategies discussed in Section 4.1 could be helpful, particularly low-pass vibration

isolation stages. There will also likely be a large benefit from the shorter mirror design

shown in Figure 4.19, which pushes the first resonance frequency from 18 kHz to > 40 kHz.

No doubt the mechanical design could be optimized further. A number of groups have

created nanopositioners using blade flexures to preload piezoelectric actuators [130, 131, 132],

which could be adapted for mirror mounting. These have achieved resonance frequencies up

to 26 kHz, but would likely be better with shorter piezos. Another group has created

a preloaded cryogenic mirror mount [133] using a flexural extension spring in parallel to

the piezo. A similar concept shown in Figure 4.21 has simulated resonances over 40 kHz,

and could be machined as a single piece using waterjet or EDM, avoiding bolt resonances.

Pushing the resonance frequencies up further with such designs would improve resilience to

noise from the cryocooler.
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CHAPTER 5

OPTICAL TO MM-WAVE TRANSDUCTION

The goal of this chapter is primarily to introduce the mathematical formalism we use to

understand optical to mm-wave transduction in atomic systems, and also to describe the

state of the experimental progress toward this goal, which is ongoing. An ideal quantum

transducer can be described by a beam-splitter Hamiltonian, H = c†b + b†c. In the input-

output formalism, this Hamiltonian creates a linear and entanglement-preserving mapping

from input field operators in the mm-wave domain to output field operators in the optical

domain (or vice versa). At the same time, the internal state of the transducer should be left

unchanged, so that no information is left in the transducer.

We will begin by writing down the Hamiltonian for our transducer, with two cavities and

two control beams coupled to an ensemble of atoms. This Hamiltonian has two significant

differences from the analysis of cavity electromagnetically induced transparency in previous

chapters. First, the collective states which greatly simplified the Hamiltonian in previous

sections can only do so when all atoms couple uniformly to all fields in this case. Second,

the presence of a classical ultraviolet control field coupled to the ground state of the atoms

means that we can no longer separate the Hilbert space into a single zero-excitation vacuum

state, plus a small set of higher-order excitation states. This separation is essential for the

linearized perturbation theory employed in earlier chapters. Indeed, each atom can be in a

different superposition of its ground state and a Rydberg state coupled by the ultraviolet

laser, giving 2N possible states.

There are two regimes where the system is easily solved. First, in far off-resonant opera-

tion, there is negligible population of all non-ground atomic states, and adiabatic elimination

of the atoms [134, 24] recovers a unique vacuum state and a beamsplitter Hamiltonian. Sec-

ond, in the presence of a very strong or far-detuned ultraviolet drive, the atoms can be

expressed in the dressed state basis, and the off-resonant dressed state for each atom can be
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Figure 5.1: Relevant energy levels for optical-mmwave transduction.

dropped from consideration. This again recovers a unique vacuum state. The latter scheme

is valid even for all-resonant operation, and reduces to the former when all beams are far de-

tuned. Using this analysis, we will predict the performance of the transducer under realistic

experimental conditions.

5.1 Basics of Atomic Transduction

An ideal quantum transducer performs a unitary transformation between photons at two

frequencies. This means that the conversion process is reversible, lossless, and coherent.

These conditions are required to perform transduction without altering the quantum state

of the information.

Practically, the solution involves a mediator which can be excited by light at either

frequency. The rate at which photons are absorbed by the mediator must be much greater

than the rate of any loss processes; this ensures lossless conversion, and is quantified by

the cooperativity at each frequency. The coupling rate at one frequency should equal the

coupling rate at the other frequency; this is the impedance matching condition, and ensures

109



that photons are transduced instead of simply reflected. Finally, the coupling rates set a

maximum bandwidth for conversion, and thus should exceed the expected rate of input

photons.

We will use a cloud of rubidium atoms as a mediator. A diagram of the relevant energy

levels is shown in Figure 5.1. Rubidium has a strong electron dipole transition from the

ground state |5S1/2〉to the excited state |5P3/2〉at 780 nm, which will be used to interface

with the optical field. Meanwhile, an atom in a Rydberg state has strong inter-Rydberg

level transitions with frequencies dependent on the choice of Rydberg level. By working at

n = 36, we have access to transitions near 100 GHz. A strong ultraviolet laser is used to

promote atoms from the ground state to this Rydberg level.

Transduction can be simply understood as a cyclic process for the atoms. An atom is

promoted by a laser at 297 nm to the |35P1/2〉 state. An incoming 100 GHz photon brings

the atom to the |36S1/2〉 state, aided by a resonator. Another classical beam at 480 nm

brings the atom down to the |5P3/2〉state, where it can emit a photon at 780 nm, again

aided by a resonator.

The beams at 297 nm and 480 nm provide the energy to bring the atom up and down

to the Rydberg manifold, maintaining energy conservation. There are thus four frequencies

at play, making this a four-wave mixing (FWM) process. Other schemes for microwave-

to-optical transduction have proposed using an atomic ground state hyperfine transition

to interface with the microwave field. These schemes need only one classical beam at the

difference frequency of the optical and microwave fields to ensure energy conservation, so

a three-wave mixing process is also possible1. However, the ground state magnetic dipole

transition is quite weak, making it difficult to achieve sufficient coupling rate.

1. Since all transitions used in the FWM scheme couple to the electron dipole moment, selection rules
require that ∆L = ±1. Therefore, a cyclic process requires an even number of transitions, another reason
for using a four-wave mixing process. In the three-wave mixing process, the microwave transition couples to
the ground state magnetic dipole moment, altering the selection rules
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5.1.1 Transducer Hamiltonian

By adding an ultraviolet laser, we can write down the Hamiltonian for optical - mm-wave

transduction. In the rotating wave approximation, the Hamiltonian is:

H = ωaâ
†â+ ωbb̂

†b̂+
∑

i

[
ωeσ̂

ee
i + ωrσ̂

rr
i + ωf σ̂

ff
i +

(
giâσ̂

eg
i + h.c.

)

+
(

Ωie
−iωbluetσ̂rei + h.c.

)
+
(
hib̂σ̂

rf
i + h.c.

)
+
(

Υie
−iωuvtσ̂fgi + h.c.

)]
(5.1)

The usual procedure to remove time dependence of the classical coupling fields is to transform

all atomic levels into the rotating frame. In the present case, due to the cyclic nature of the

transitions, there will be additional constraints on the rotating frame transformation. We

will work in a frame where the optical and mm-wave cavity field operators â and b̂ rotate

at frequencies of ωo and ωm, respectively, which will ultimately correspond to the input and

output frequencies. Meanwhile, the atomic levels |e〉, |r〉, and |f〉 rotate at frequencies ωo,

ωo + ωblue, and ωo + ωblue − ωm.

This transformation will result in a Hamiltonian with no time dependence, except for

one term which becomes Υi
2 e

i(ωo+ωblue−ωm−ωuv)tσ̂
fg
i . This time dependence can only be

canceled if we choose ωo and ωm such that

ωo + ωblue − ωm − ωuv = 0 (5.2)

This constraint arises because |f〉 (and every other state) is connected to the ground state

by two paths, both of which must have their time dependence canceled. The constraint can

be viewed is a statement of energy conservation – for an input optical photon at frequency

ωo and fixed pump frequencies, the output mm-wave photon will be emitted at a frequency

of ωm = ωo + ωblue − ωuv.

Our rotating frame amounts to examining a transformed wavefunction |ψ̃〉 = eiAt |ψ〉,
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with A = ωoa
†a + ωmb

†b +
∑
i

[
ωoσ̂

ee
i + (ωo + ωblue) σ̂

rr
i + (ωo + ωblue − ωm) σ̂

ff
i

]
. In this

rotating frame, the Hamiltonian becomes

H = δaâ
†â+ δbb̂

†b̂+
∑

i

[
δeσ̂

ee
i + δrσ̂

rr
i + df σ̂

ff
i +

(
giâσ̂

eg
i + h.c.

)

+ (Ωiσ̂
re
i + h.c.) +

(
hib̂σ̂

fr
i + h.c.

)
+

(
Υi

2
σ̂
fg
i + h.c.

)]
(5.3)

Here δa = ωa − ωo, δb = ωb − ωm, δe = ωe − ωo, δr = ωr − ωblue − ωo,δf = ωf − ωuv,

and we have chosen ωo, ωmto satisfy the aforementioned equality in Equation 5.2.

5.1.2 Phase Matching

So far we have not mentioned the propagation phase factor eik·r of each laser, which is

implicit in the coupling constants Ωi,Υi, gi for an atom at position ri.These phase factors

can be removed with an additional unitary transformation to the atomic wavefunctions,

|ψ̃i〉 = T
†
i |ψi〉,and

T
†
i =




1 0 0 0

0 e−ik780·ri 0 0

0 0 e−i(k480+k780)·ri 0

0 0 0 e−ikuv·ri




This yields a Hamiltonian (now explicitly including spatial phase factors)

H = δaâ
†â+ δbb̂

†b̂+
∑

i

[
δeσ̂

i
ee + δrσ̂

i
rr + df σ̂

i
ff +

(
giâσ̂

i
eg + h.c.

)

+
(

Ωiσ̂
i
re + h.c.

)
+
(
Pihib̂σ̂

i
rf + h.c.

)
+

(
Υi

2
σ̂ifg + h.c.

)]
(5.4)
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with all of the phase factors included in the factor

Pi = e−i(k480+k780−kmm−kuv)·ri (5.5)

As was the case for the time dependence, the spatial phase for each atom cannot be

removed from the Hamiltonian unless k480 + k780 − kmm − kuv = 0. Given the previously

stated requirement that ωo + ωblue − ωm − ωuv = 0 and ω = c |k|, the phase matching

condition is met when all beams are copropagating23. We will assume this is the case, so

that Pi = 1,4 which yields the final Hamiltonian under phase-matched conditions.

5.2 Resonant Transduction

Far off-resonant operation allows all excited states of the atoms to be adiabatically eliminated

from the problem [134, 24], yielding reversible transduction between optical and mm-wave

frequencies. However, the conditions of adiabatic elimination require negligible atomic pop-

ulation of the Rydberg f state. Thus, while the Rabi frequency of the 780 nm transition

in our scheme is enhanced by a factor of
√
N , where N is the atom number, the mm-wave

Rabi frequency is just the single-atom value. Even though the single-atom mm-wave Rabi

frequency is quite high in our system (200-300 kHz), this is lower than the other frequencies

in the system, and thus is a limiting factor for the bandwidth.

It is thus desirable to have macroscopic population of the lower Rydberg state f . This

2. Generally we do not have good control over the wave vector for our mm-wave mode, which leads to
phase mismatch on the order of Pi = eikmzi . This leads to a phase variation of 2π over one mm-wave
wavelength. As long as the dimension of the atomic cloud is much less than the mm-wave wavelength, all
atoms emit in phase, so this effect is negligible

3. The laser wave vectors in a near-resonant atomic medium can be strongly modified from their free
space values, as demonstrated in slow-light EIT. This effect will not be considered here.

4. It is also important to note that the phase of the optical mode is only eik780r in a running wave
cavity. In a standing wave cavity, as is used in our experiment, the coupling strengths gi ∝ cos (k780z) can
be decomposed into two counterpropagating modes gi ∝ 1

2

(
eik780z + e−ik780z

)
. We will not explore this in

detail, but in the end we expect a 50% reduction in transduction efficiency, as only one running wave mode
participates in transduction, while the other scatters strongly into free space [135].
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(a)

(b)

Figure 5.2: The dressed state elimination approximation used in resonant transduction, but
demonstrated in a simpler three level system. (a) Change of basis from the bare atomic
states to the Ω dressed states. In the bare states picture, the two ground states |0〉 and
|1〉 are assumed to be at equal energies, and are coupled with Rabi frequency Ω. Only the
|0〉 state is coupled to the upper state |2〉, with Rabi frequency g. In the dressed state
picture, the states |+〉 and |−〉 are equal superpositions of the original ground states, and
are thus each coupled to |2〉 with strength g√

2
. However, if the detuning on the |0〉 ↔ |2〉

coupling is Ω, then one dressed state is resonantly coupled, while the other is off-resonant.
(b) Time evolution of an atom initially prepared in the dressed state |+〉. In the left panel,
the dressing beam Ω is weak so that both dressed states are relevant, leading to interference
in the Rabi oscillations. In the right panel, Ω � g, and the atom oscillates between the
resonantly coupled dressed state |+〉 and the upper state |2〉. The other dressed state |−〉 is
irrelevant to the dynamics and can be eliminated, leaving an effective two-level system.
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can be engineered by increasing the strength of the classical ultraviolet beam, or moving it

closer to resonance. Indeed, a fully resonant ultraviolet beam will couple the g and f states

to yield atomic dressed states |±〉 = 1√
2

(|g〉 ± |f〉). Clearly an atom prepared in |−〉 will

couple to both the optical and mm-wave fields. With all atoms prepared in the |−〉 state,

we would then expect an enhancement of
√
N
2 on both optical and mm-wave transitions.

However, consider what occurs when a single atom in the |−〉 state absorbs an optical

cavity photon. The atom transitions to a state 1√
2

(|e〉 − |f〉) = 1√
2

[
|e〉+ 1√

2
(− |+〉+ |−〉)

]
.

When the atom emits back into the cavity, it can be coupled back into either the |−〉 or

|+〉 state. In fact, the cavity may so couple every atom into a superposition of |−〉 and

|+〉, so that the state space expands to a size of 2N . What’s more, the two dressed states

couple to the mm-wave field with opposite signs, so we expect destructive interference in the

transduction process.

The situation is resolved when the two dressed states are well-separated in energy. In

this case, when the system is initially prepared in one dressed state (|−〉), all couplings to

the other dressed state are off-resonant, so it can be dropped from the problem. This process

is shown in a simple 3-level system in Figure 5.2. Here, an atom’s two ground states |0〉 and

|1〉 are coupled by Rabi frequency Ω, and the atom is prepared in its |−〉 state. A separate

beam couples the |0〉 state to a higher-energy |2〉 state. Even though this coupling beam has

matrix elements which mix the dressed states, the off-resonant |+〉 state can be eliminated

from the problem. The result is an effective two-level system, with Rabi oscillations between

|−〉 and |2〉.5

This situation is analogous to driving the D1 transition in rubidium with a laser, while

ignoring the D2 transition. The dipole operator only couples to the orbital angular momen-

tum quantum number l, so one might expect it to couple the initial J = 1
2 state to both the

5. In this illustration, we also choose detunings such that the dressed state |−〉 is resonantly coupled to
the remaining state. Otherwise the atom would just stay in the initial |−〉 state instead of undergoing Rabi
oscillations.
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J ′ = 1
2 and J ′ = 3

2 states. However, due to the strong fine structure splitting (analogous to

the Ω drive), it can be engineered that only one J ′ state is resonant with the drive.

In our transducer, elimination of one dressed state recovers the situation where we have

a unique vacuum, and a small number of one-excitation states. We will treat this mathe-

matically in the next section.

5.2.1 Elimination of Dressed State

We pass from the bare state basis to the dressed state basis by applying a unitary transforma-

tion to each atomic wavefunction [136], examining the states |ψ̃i〉 = U
†
i |ψi〉. This transforma-

tion is chosen to diagonalize part of the Hamiltonian: Huv =
∑
i

[
δf σ̂

i
ff +

(
Υiσ̂

i
fg + h.c.

)]
.

The dressed states have energies

Ei± =
1

2

(
δf ±

√
δ2
f + 4 |Υi|2

)
(5.6)

and take the form (for positive δf )

|+〉i = sin
θi
2
|g〉+ cos

θi
2
|f〉 (5.7)

|−〉i = cos
θi
2
|g〉 − sin

θi
2
|f〉 (5.8)

with

tan θi =
2Υi

δf
(5.9)

The change of basis is

U
†
i = |+〉i 〈+|i + |−〉i 〈−|i

U
†
i = |+〉i

(
sin

θi
2
〈g|+ cos

θi
2
〈f |
)

+ |−〉i
(

cos
θi
2
〈g| − sin

θi
2
〈f |
)
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In this basis, the Hamiltonian from Equation 5.4 becomes

H = δaâ
†â+ δbb̂

†b̂+
∑

i

[
δeσ̂

i
ee + δrσ̂

i
rr + Ei−σ̂

i
−− + Ei+σ̂

i
++

+

(
gi cos

θi
2
âσ̂ie− + gi sin

θi
2
âσ̂ie+ + h.c.

)

+
(

Ωiσ̂
i
re + h.c.

)
+

(
−hi sin

θi
2
b̂σ̂ir− + hi cos

θi
2
b̂σ̂ir+ + h.c.

)]

There are now two ground states for each atom, |−〉 and |+〉, which are superpositions

of the atomic |g〉 and |f〉 states. Both states are coupled to both cavity modes. As noted

before, a single photon in either cavity mode can transfer each atom between the two ground

states, as can be seen by repeated application of the Ĥ operator. This leads to an accessible

Hilbert space which is exponential in the atom number.

However, the ground states are split by

Esplit = E+ − E− =
√
δ2
f + 4 |Υi|2 (5.10)

If the atoms are initially prepared in the |−〉 state, and all Rabi frequencies and loss rates

are much less than this splitting, then we may neglect coupling to the |+〉 state and drop

any terms containing it from the Hamiltonian.6 This yields

H = δaâ
†â+ δbb̂

†b̂+
∑

i

[
δeσ̂

i
ee + δrσ̂

i
rr + Ei−σ̂

i
−− +

(
gi cos

θi
2
âσ̂ie− + h.c.

)

+
(

Ωiσ̂
i
re + h.c.

)
+

(
−hi sin

θi
2
b̂σ̂ir− + h.c.

)]

Finally, for a cleaner form we will go into a frame where the atomic levels −i, ei, ri (but

6. Even if the initial state preparation is imperfect and some population lies in the |+〉 state, it is possible
to choose detunings such that the |−〉 state is resonantly coupled to e, r. In this case, the |−〉 state will
participate much more strongly in the transduction process, and we still expect little influence from atoms
in the |+〉 state.
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not the cavity operators) rotate at Ei−. We will also define gi = gi cos θi2 , hi = −hi sin θi
2 .

Then

H = δaâ
†â+ δbb̂

†b̂+
∑

i

[
δieσ̂

i
ee + δirσ̂

i
rr +

(
giâσ̂

i
e− + h.c.

)

+
(

Ωiσ̂
i
re + h.c.

)
+
(
hib̂σ̂

i
r− + h.c.

)]
(5.11)

where δie = ωe − Ei− − ωo, δ
i
r = ωr − Ei− − ωblue − ωo. Note that each atom may see a

different light shift due to inhomogeneity of the ultraviolet laser. In the rotating frame, this

yields atom-dependent δie, δ
i
r.

In summary, by eliminating one dressed state, we have obtained a unique zero-excitation

vacuum state when no cavity photons are in the system,

|0〉 = |0, 0,−−− · · ·〉 (5.12)

i.e. zero optical photons, zero mm-wave photons, and all atoms in the |−〉 state. The vacuum

state couples to both optical or mm-wave cavity modes with strength g cos θ2 and −h sin θ
2 ,

which is useful for transduction – by changing the ultraviolet Rabi frequency and detuning,

we can redistribute the coupling strength between these two transitions. In the presence of

a cavity photon, the Hamiltonian couples the vacuum+photon state to a small set of other

one-excitation states, i.e. those with one atom in an e or r state. This is a good starting

point for applying our standard perturbation theory.

The condition for validity of this elimination was that E+−E− =
√
δ2
f + 4 |Υi|2 is much

greater than any Rabi frequencies or loss rates. This condition encompasses the conventional

condition for adiabatic elimination of the f state (large δf ), but also includes the case of

large UV Rabi frequency, even with no detuning. We anticipate that this will allow large

population of the f state and large collective enhancement of the mm-wave transition.
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5.2.2 Decay of the Dressed States

Our transduction bandwidth is greatly increased by placing some of the atomic population

in the lower Rydberg state. However, this state has a finite lifetime, and the atoms will

eventually decay. As long as this process is slow compared to the transduction bandwidth,

then many photons can be transduced before decay becomes important. Eventually, the

atomic sample may need to be repumped or replenished, making this a pulsed process.

Generally, as the Rydberg decay rates γr are much slower than any other timescales in the

problem, we expect these effects to be small.

If the g ↔ f transition were closed, then the steady-state density matrix of the atoms

under a UV drive could be calculated with the optical Bloch equations. For example, resonant

light would produce a steady state which is a 50/50 statistical mixture of g and f . In this

case, the g atoms would be distinguishable from the f atoms, and we anticipate that the

absorption of a transduction photon would be collectively enhanced, but the emission at the

other frequency would not. In reality the transition is not closed, and atoms which decay from

the f state may be shelved in other metastable states. Other experiments have still found

good agreement with the steady-state optical Bloch equations for a closed transition [26]. In

the worst case, we can model atoms which decay as lost (until they are repumped).

The number of atoms in the f state is N sin2 θ
2 ≡ Nf , and the decay rate per Rydberg

atom is γf . Thus atoms decay at a rate Nfγf , and the total atomic sample is depleted at a

rate Γsample = γf
Nf
N . With 100 atoms in the f state, the collective mm-wave Rabi frequency

is h
√
αN = h

√
100 ≈ 2 MHz, yielding a sufficient bandwidth. If the total atom number in

the cavity is N = 1, 000, then α = 0.1, and for γf = 5 kHz the sample is depleted at a rate

of Γsample = 500 Hz, which is much less than the transduction bandwidth.

There is another depumping mechanism: an excited atom can off-resonantly emit a cavity

photon and fall into the |+〉 state, after which the cavity photon can leave with rate κ (or

κm). These processes occurs at a rate Pe

(
g
√
N

Esplit

)2
κ, where Pe is the per-atom population
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of the e state, and Pr

(
h
√
N

Esplit

)2
κm, where Pr is the per-atom population of the r state. The

former process is suppressed both by
(
g
√
N

Esplit

)2
and by Pe, where Pe is kept small anyway

to minimize free-space scattering from the e state. The latter process is more severe, but

h
√
N

Esplit
will still generally be very small, as we generally operate in parameter ranges where

h
√
N ≈ 1 MHz, while Esplit ≈ 50 MHz. Additionally, this is the atom depletion rate; the

sample depletion rate is less by a factor of N .

These couplings to the N+ = 1 manifold additionally cause an AC Stark shift of our

desired atomic states, which can be calculated in a similar fashion.

5.3 Transducer Performance

In this section we will derive analytical and numerical results for the expected performance of

the transducer from Equation 5.11, given reasonable experimental parameters. Following the

treatment of EIT from previous sections of the thesis, we can restrict to a single excitation

in the system, and identify a single collective state corresponding to each atomic level. The

transitions from the ground state will be enhanced so that the − ↔ e coupling is gcoll =

g
√
N , and the − ↔ f coupling is hcoll = h

√
N . Actually, as we will see in the next section,

collective states are only valid here in the maximally symmetric case, i.e. if all couplings

are uniform between atoms. Such a situation can be engineered, for example, by trapping

the atoms in a volume small compared to all beam waists (or depumping atoms outside this

volume). Moreover, these results give useful analytical forms, and small corrections will be

calculated in Section 5.5.

The one-excitation Hamiltonian can then be written in matrix form. The phase of cou-
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plings can be chosen to make them real. Then

H =




δa − iκ2 gcoll 0 0

gcoll δe − iγ2 Ω 0

0 Ω∗ δr − iγr2 hcoll

0 0 hcoll δb − iκm2




(5.13)

with |1, 0,−〉 =




1

0

0

0




, |0, 0, E〉 =




0

1

0

0




, |0, 0, R〉 =




0

0

1

0




, |0, 1,−〉 =




0

0

0

1




.

The system begins in the vacuum state |0〉 from Equation 5.12, with each atom in

a single dressed state −, and no optical or mm-wave photons present. The system is

driven into a steady state given by |ψ1〉 =
[
Ĥ0

]−1
V̂ |0〉, where the perturbation is V̂ =

√
κEin

(
â† + â

)
.7 Then the transmitted mm-wave field amplitude to linear order is given

by t(ω) =
√
κm 〈0|b̂|ψ1〉. Note we are calculating transmission from an optical input to

mm-wave output, but the result is the same in the other direction.

Finally, all energies will be expressed relative to the cavity frequency ωa, which amounts

to defining variables δa ≡ −ω, δe ≡ δea − ω, δr ≡ δra − ω, δb ≡ δba − ω.

5.3.1 Optimal Transducer Parameters

The expression for t(ω) is easily calculated, but is messy, so it is not shown here. This

expression can be used to calculate the optimum blue Rabi frequency to maximize on-

resonance efficiency, setting

[
d|t(ω)]2

dΩ

∣∣∣∣
Ω=Ωopt

= 0. As explained in Section 2.7.3, the optimal

Ω is chosen to guarantee impedance matching. If all levels are resonant (δea = δra = δba = 0),

7. The perturbation in a non-rotating frame is V̂ =
√
κEin

(
â†eiωdt + âe−iωdt

)
, where ωd is the frequency

of the drive laser. However, recall that we have already expressed the Hamiltonian in a frame with â rotating
at an arbitrary frequency ωo. Identifying ωo with the drive laser frequency eliminates all time dependence.
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the result is

Ωopt =
√
ηo + 1

√
ηm + 1

√
γeγr (5.14)

We denote the efficiency with Ω = Ωopt as T (ω) =
[
|t(ω)|2

]
Ω=Ωopt

. On resonance, this

becomes

T (0) =
ηoηm

(ηo + 1) (ηm + 1)
(5.15)

Thus the on-resonance efficiency depends only on the cooperativities of the two transitions.

This could have been anticipated from the less thorough calculation in Section 2.7.3.

With typical parameters, it is easy to achieve ηo, ηm > 20, leading to efficiencies exceeding

90%. With gcoll = 15 MHz, κ = 4 MHz, γe = 6 MHz, hcoll = 1 MHz, κm = 2 MHz, and

γr = 30 kHz, we have ηo = 38, ηm = 67.

In the high-cooperativity regime necessary for high efficiency, the expression for Ωopt

simplifies to Ωopt ≈ 2gcollhcoll√
κκm

. The blue Rabi frequency scales with the optical and mm-

wave Rabi frequencies, but scales inversely with the geometric mean of the cavity decay

rates. Increasing the cavity linewidths decreases blue power requirements, but also decreases

efficiency.

Finally, we can plot transducer efficiency as a function of frequency. Because g, h are

comparable to κ, κm, the lineshape may not simplify to a simple Lorentzian. In Figure, we

plot transducer lineshapes for several values of κm, showing that a full-width half max of

∼ 3 MHz can be expected, limited by the collective mm-wave coupling rate of 1 MHz for

our chosen parameters.

5.3.2 Off-Resonant Operation

The previous expressions were all developed for the case of all-resonant operation (except the

UV transition, which had no such restrictions). Analytic formulae can be obtained for the
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Figure 5.3: Transducer bandwidth versus mm-wave cavity linewidth. Parameters
are g/2π = 15 MHz, Γ/2π = 6 MHz, κ/2π = 4 MHz, h/2π = 1 MHz, γr/2π = 30 kHz. Note
the non-Lorentzian shape when h ∼ κm.

Figure 5.4: Off-resonant transducer efficiency. Parameters are g/2π = 10 MHz, Γ = 6
MHz, κ = 4 MHz, h = 2 MHz, γr = 30 kHz, κm = 4 MHz.
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case of off-resonant operation. However, they are quite lengthy. In Figure 5.4, the optimal

value of Ω, and the corresponding transduction efficiency, are plotted as functions of δe and

δr. The blue power requirement increases, while achievable efficiency goes down: all-resonant

operation (except for UV) appears to be strictly better.

The performance decreases strongly with |δr|, but only modestly with |δe|. This can be

understood by the former breaking the approximate EIT condition, causing population of

the lossy |5P3/2〉 state.

5.4 Transducer Collective States

In previous chapters we have seen that a resonator coupled to an atomic ensemble can be

described nearly exactly by considering just a few collective atomic states and their coupling

rates to the light fields, rather than keeping track of the entire atomic ensemble. This

simplification worked even when atoms had non-uniform couplings to the resonator, so long

as they coupled uniformly to all other beams.

In the case of the transducer, however, it is generally insufficient to consider a single

collective number and collective coupling rate for each transition. We may see a problem

by calculating the collective states directly. As before, we can begin with all atoms in the

ground state, and apply the part of the Hamiltonian corresponding to optical excitation.

This results in a state

|E〉 =
1

gcoll

∑

i

giσ̂
i
eg

However, we could also have applied the UV excitation, then the mm-wave excitation,

then the classical 480 nm coupling parts of the Hamiltonian. If all of these couplings are

uniform, the collective state is

|Ẽ〉 =
1√
N

∑

i

σ̂ieg

Excitation via these two path ways does not commute, and there are generally multiple
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UV excitations present in the system at a given time. The end result is that the collective

states no longer provide a clear solution to the Hamiltonian. One exception is the maximally

symmetric case, when all atomic couplings are equal on all transitions, in which case the

usual collective state procedure can be followed.

Previous work [134] has observed that inhomogeneous couplings could induce an addi-

tional loss mechanism for the converter, and suggested working far off-resonance as a solution.

The worry is that atoms are far from the waist of the optical mode are still coupled to the

mm-wave mode and UV laser. These atoms will absorb mm-wave photons and be coupled

by the blue beam to the lossy |5P3/2〉state, scattering into free space and losing the mm-

wave photons. In the next section, we will introduce a method to calculate the transduction

efficiency with all atoms considered, and find that in reality this effect is small.

5.5 Transducer with Non-Uniform Couplings

We have a Hamiltonian which has a unique zero-excitation state, instead of the 2N possible

combinations of atoms in the g and f states. From here we would like to reduce the problem

to a linear one by following the prescription from previous chapters: identify 3 or 4 collective

states which constitute a complete set of accessible one-excitation states, and use first-

order non-Hermitian perturbation theory to compute transmission from mm-wave to optical.

Unfortunately, as we have seen, there are no privileged collective states in most circumstances

– all one-excitation states must be considered.

Still, there are only 2N+2 one-excitation states: an optical photon, a microwave photon,

one of N atoms in the e state, or one of N atoms in the r state. We can still restrict

to this manifold and apply first-order non-Hermitian perturbation theory to calculate the

transmission spectrum. The resulting (2N + 2) × (2N + 2) matrix could be solved with a

full matrix inversion. However, it turns out that the sparsity of this matrix can be used

to calculate the transmission in closed-form, without any matrix inversion. This will allow
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efficient computation of transduction efficiency even in the presence of non-uniform couplings.

We begin with the vacuum state |0〉 from Equation 5.12, with each atom in a single dressed

state −, and no optical or mm-wave photons present. The system is driven into a steady

state given by |ψ1〉 = −
[
Ĥ0

]−1
V̂ |0〉, where the perturbation is V̂ =

√
κξ
(
â† + â

)
.Then

the transmitted mm-wave field amplitude to linear order is given by t(ω) =
√
κm 〈0|b̂|ψ1〉.

Note we are calculating transmission from an optical input to mm-wave output, but the

result is the same in the other direction.

The Hamiltonian from Equation 5.11 is rewritten to include loss terms:

H = ∆aâ
†â+ ∆bb̂

†b̂+
∑

i

[
∆i
eσ̂
i
ee + ∆i

rσ̂
i
rr +

(
giâσ̂

i
e− + h.c.

)

+
(

Ωiσ̂
i
re + h.c.

)
+
(
hib̂σ̂

i
r− + h.c.

)]
(5.16)

where the detunings are loss rates are combined into ∆i
e = δie − iγe2 .

We write |ψ1〉 in a basis of single-excitation states:

|ψ1〉 =

[
Aaa

† +
∑

i

(
Aieσ

eg
i + Airσ

rg
i

)
+ Abb

†
]
|0〉 (5.17)

The previous equation for determining |ψ1〉 is rewritten as:

H0 |ψ1〉 =
√
κEinâ

† |0〉 (5.18)
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This yields a system of linear equations

√
κEin = ∆aAa +

∑

i

g∗iA
i
e (5.19)

0 = giAa + ∆i
eA

i
e + Ω∗iA

i
r (5.20)

0 = ΩiA
i
e + ∆i

rA
i
r + hiAb (5.21)

0 =
∑

i

h
∗
iA

i
r + ∆bAb (5.22)

We may use the two middle equations to eliminate Aie and Air in terms of Aa and Ab.

Substituting these values into the first and last equations will then leave two equations for

the optical cavity and mm-wave cavity amplitudes. Elimination yields

Aie =
−gi∆i

rAa + Ω∗i hiAb
∆i
e∆

i
r − |Ωi|2

(5.23)

Air =
−hi∆i

eAb + ΩigiAa

∆i
e∆

i
r − |Ωi|2

(5.24)

Finally, substituting this into the two cavity mode equations:

√
κEin =

(
∆a −

∑

i

|gi|2 ∆i
r

∆i
e∆

i
r − |Ωi|2

)
Aa +

(∑

i

g∗iΩ
∗
i hi

∆i
e∆

i
r − |Ωi|2

)
Ab (5.25)

0 =

(
∆b −

∑

i

∣∣hi
∣∣2 ∆i

e

∆i
e∆

i
r − |Ωi|2

)
Ab +

(∑

i

h
∗
iΩigi

∆i
e∆

i
r − |Ωi|2

)
Aa (5.26)

These two equations can be easily solved for Aa, Ab. Then the transducer transmission

is t(ω) =
√
κmAb.

A similar method can be used to calculate closed-form EIT transmission spectra and,

with a litle more complication, g2 statistics in systems with interacting Rydberg polaritons

(see the supplement of Reference [137])
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5.5.1 Elimination of Atomic Degrees of Freedom

Equations 5.25 resemble input-output equations for the two cavity fields.8 We may wish to

find a simple Hamiltonian containing only cavity operators which yields these input-output

equations. However, the terms ∆i
e = ωe − Ei− − ωo − iγe2 and ∆i

r contain the input/output

frequencies ωo and ωm, which makes this difficult.

If all atomic states are far detuned, then ωe − Ei− − ωo is approximately constant as ωo

is swept over the bandwidth of the converter, and it is also much larger than γe
2 . In this case

we may approximate the detunings as real constants, ∆i
e ≈ δie0, ∆i

r ≈ δir0. The equations

simplify to

√
κEin =

(
−iκ

2
+ ωa − βa − ωo

)
Aa + SAb (5.27)

0 =
(
−iκm

2
+ ωb − βb − ωm

)
Ab + S∗Aa (5.28)

with constants

S =
∑

i

g∗iΩ
∗
i hi

δie0δ
i
r0 − |Ωi|

2
(5.29)

βa =
∑

i

|gi|2 δir0
δie0δ

i
r0 − |Ωi|

2
(5.30)

βb =
∑

i

∣∣hi
∣∣2 δie0

δie0δ
i
r0 − |Ωi|

2
(5.31)

These input-output equations are generated by a Hamiltonian

Hadiabatic = (ωa − βa) â†â+ (ωb − βb) b̂†b̂+
(
Sâ†b̂+ S∗b̂†â

)
(5.32)

8. Of course, these equations involve amplitudes Aa, Ab, instead of operators â, b̂. In the one-excitation
manifold, operators and amplitudes are interchangeable – for a wavefunction in the form of Equation 5.17,
we have â |ψ1〉 = Aa. The Hamiltonian we will obtain by replacing the amplitudes with operators will only
be correct to first order. However, if the full system can be regarded as nearly linear, then it becomes exact.

128



Note that this equation is valid even for a near-resonant ultraviolet beam. For far-detuned

UV, we identify cos θi2 ≈ 1, sin θi
2 ≈

Υi
δf

. Then neglecting terms in
|Ωi|2
δie0δ

i
r0

and ignoring

the frequency pulling terms βa, βb yields exactly the Hamiltonian obtained by adiabatic

elimination in References [134, 24].

5.6 Conclusion

A major argument for microwave (or mm-wave) to optical conversion is that optical pho-

tons can be transmitted over great distances through room temperature fiber optics, while

preserving their quantum state. The optical wavelength most convenient for interfacing

with rubidium, 780 nm, can have an attenuation as low as ∼ 3 dB/km in optical fibers,

limited by Rayleigh scattering. While a better option than cryogenic mm-wave links, this

would require quantum repeaters at kilometer or sub-kilometer intervals to transmit over

larger distances [15]. At ideal telecom wavelengths around 1560 nm, losses can be below

0.2 dB/km [138]. Other atoms such as ytterbium have convenient transitions at these wave-

lengths [24]. The techniques described in this chapter are broadly applicable to other atomic

species.
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CHAPTER 6

TUNABLE FINESSE AND MODE CONVERSION

This chapter is based on Reference [139].

High fidelity mode conversion and sorting are crucial tasks for quantum communica-

tion [140, 141], as well as high-bandwidth mode-division multiplexed classical communica-

tion [142]. At the transmitting end of a communication network, mode conversion enables

the encoding of information into the transverse spatial degrees of freedom of an optical field

or fiber, thereby substantially increasing the bit-rate. At the receiving end, mode-sorting

enables decoding of the previously encoded spatial information. While both mode conver-

sion and sorting are fundamentally linear in the electromagnetic field, they are technically

challenging because the necessary linear transformations are not generically quadratic in the

transverse spatial coordinates and as such cannot be directly implemented with standard

optics like mirrors, lenses, and beam splitters.

At moderate efficiency, “mode shaping” can be achieved with a single phase plate [143,

144] or digital micromirror device [145] that redirects a fraction of an incident optical field

into a diffracted target mode. Near-unity efficiency requires implementing a unitary trans-

formation of all of the incident mode to the target mode. In the special case of Hermite-

Gauss↔Laguerre-Gauss interconversion, this unitary transformation can be realized via a

pair of astigmatic lenses [146], since HG and LG modes are related to one another by only the

relative phase of horizontal and vertical mode excitations. More general approaches to high

fidelity mode-converting unitaries include numerically optimized nanostructured couplers

between waveguides [147, 148]; adiabatically varying coupling between macroscopic optical

fibers [149]; conformal beam transformations implemented in two or more holographic phase

gratings [150, 151, 152]; meshes of Mach-Zehnder interferometers [153, 154]; and long period

fiber gratings [155].

Implementing an arbitrary mode converter is formally equivalent to changing one quan-
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tum mechanical wave-function into another using only spatially local potentials which cannot

themselves redistribute probability in space, but can impose phase gradients that result in

such redistribution under the influence of a kinetic energy term. While lenses and mirrors

can impart spatially varying phase profiles onto an incident optical field, it is the subsequent

diffraction that must redistribute intensity; reshaping the mode via attenuation would irre-

versibly reduce the conversion efficiency. To our knowledge, prior work fits predominantly

into three paradigms: adiabatically varying the system Hamiltonian such that an input

mode/initial eigenstate is smoothly converted into the desired output mode/final eigenstate

(as in coupled fibers); bang-bang unitaries that, in discrete steps separated by free evolu-

tion/diffraction, convert between input and output modes (as in cascaded diffraction gratings

and long-period fiber gratings); or something in-between that implements a “shortcut to adi-

abaticity” [156].

In this work we explore a fourth paradigm relying on impedance mismatches between

optical cavities to achieve near-unity efficiency mode conversion [157] without nanophoton-

ics or non-quadratic optics. Using only lenses and mirrors, we demonstrate conversion of an

HG00 mode into an arbitrary target HGm0 mode by simply varying the length of a Fabry-

Pérot resonator over a few nanometers. The large propagation distances required for other

approaches are realized in our work by repeated round trips through the structure of the

coupled cavities. Related ideas [158, 159] in a nanofabricated setup allow mode conver-

sion in a ring resonator coupled to a multimode waveguide, with mode-dependent phase

matching providing mode selectivity; that approach affords ∼ 5% bidirectional conversion,

as fabrication imperfections limit the (fine-tuned during fabrication) impedance match, and

fiber-to-chip coupling induces losses. Indeed, resonant impedance matching between cavities

has enabled efficient coupling of a Y-junction to a waveguide [160] without any mode control.

In our work, coupled macroscopic resonators enable rapidly tunable impedance matching to

arbitrary modes and remove the need to couple to a chip.
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In Section 6.1 we introduce the simpler problem of coupled, impedance-mismatched

Fabry-Pérot cavities in the single-mode limit. Here the result is a cavity of tunable finesse

F . We experimentally demonstrate such finesse tunability over a decade. In Section 6.3 we

consider the full problem of coupled, misaligned multimode Fabry-Pérot cavities, where the

resulting behaviour corresponds to an optical mode converter. Implementing these ideas, we

demonstrate optical conversion efficiency >75% for the first 6 Hermite-Gauss modes, limited

by mirror loss. In Section 6.4 we explore applications of these tools.

6.1 Tunable Finesse Cavity

We begin by analyzing two single-mode Fabry-Pérot cavities coupled through a shared mir-

ror, as shown in Fig. 6.1a. We will find that this arrangement acts as a tunable finesse

cavity— it traps light for a short duration (low finesse) or a long duration (high finesse).

The two cavities have identical waists and share a mutual axis to avoid inter-mode coupling.

The total optical transmission of this arrangement can be calculated in the S-matrix

formalism (see Supplement 1) in terms of the lengths of the two cavities, the wavenumber

k of incident light, and the power reflection and transmission coefficients of the mirrors M1,

M2, and M3. A more intuitive understanding arises by observing that any single-mode

scattering element is fully described by its (frequency δ ≡ 2kL dependent) reflection and

transmission coefficients. It is thus valid to combine mirrors M2 and M3 with the propagation

distance L between them, into a single composite “effective mirror” M23 with reflection and

transmission coefficients r23(δ), t23(δ) (Fig. 6.1a, inset).

In this picture, what remains is the simple two-mirror “primary” cavity defined by the

separation between M1 and M23. The total transmission of the primary cavity is thus

precisely that of a simple two-mirror Fabry-Pérot with a frequency-dependent reflection

coefficient for one end-mirror. The finesse of the primary cavity can be computed [162]

as F ≈ 2π
T1+T23+X1+X23

so long as the properties of M23 remain ∼ constant across said
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a

b

c

Figure 6.1: Tunable finesse optical cavity. a, Schematic of two coupled single-mode
cavities. Mirrors M2 and M3 act as a single “effective mirror” M23 with frequency-dependent
transmission T23(δ), where δ ≡ 2kL is the round-trip propagation phase in M23. Sub-λ
variations in the M2-M3 separation change their joint transmission, and thereby the finesse
F of the composite M1-M23 cavity. T23 varies from unity at resonance to 1

4T2T3 between
resonances (Ti is the power transmission of mirror i). b, Measured F of the M1-M23 cavity
as a function of the round-trip optical phase δ in M23, obtained from cavity ringdowns (for
high F) and transmission spectra (for lowest F). The solid line is theory from measured
mirror reflectances, limited by the reflectance (R1 = 0.9997(1)) of M1 (R1 = 1 shown
dashed). Error bars represent 1 s.d. c, Typical low- and high-F ringdown measurements with
representative exp-erfc fit [161] (black line). Top inset: the cavities are mutually resonant
(support an integer number of half wavelengths λ/2) for low F . Bottom inset: displacing
M3 by a λ/4 detunes M23, reducing its transmission and achieving high F .
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resonance. Here T1 and T23 are power transmission coefficients and X1, X23 are power loss

coefficients. As T23 is tuned, the finesse F varies. Since T23 is simply the transmission of

the Fabry-Pérot consisting of M2 and M3, it can range from unity to near zero as the length

L tunes the cavity from resonance to anti-resonance, thereby varying F from small to large

values.

Harnessing these principles, we construct a tunable finesse cavity using mirrors with

reflectances R1 = 0.9997(1) and R2 = R3 = 0.990(2) for 780 nm light. The finesse is

tuned by varying M23’s length with a piezoelectric actuator, and is then measured either

spectroscopically or by cavity ringdown [161] (Fig. 6.1c). The computed transmission of

M23, T23 is shown in the black curve of Fig. 6.1a, varying from unity on resonance to

1
4T2T3 ≈ 2.5 × 10−5 at maximum detuning. The measured finesse (Fig. 6.1b) is in close

agreement with a parameter-free theory (solid curve).

The finesse saturates at 1.7(2)× 104, limited by the reflectance of M1, and is compared

to theory for a perfect M1 (R1 = 1) in the dotted curve of Fig. 6.1b. From there, the

next bound on finesse is set by the minimum transmission of the variable reflector, Fmax =

8π
T2T3

≈ 2.5 × 105 for R2 = R3 = 0.99. In practice, we anticipate an ultimate finesse

limit set by scattering and absorption losses of the mirror coatings, akin to a conventional

Fabry-Pérot cavity (see Supplement 1). Losses from the M2 substrate and M3 coating are

strongly suppressed in high-finesse configurations, where very little power resides within

M23. A single-pass substrate loss of 1% (0.1%) only limits F ≤ 1 × 105 (2 × 105), which

improves further with higher R2, R3. Furthermore, fused-silica glass can exhibit loss < 1

ppm/cm [163], obviating this limitation.

When the detuning between the cavities is smaller than the linewidth of the secondary

cavity, the above picture breaks down, because (a) the M23 transmission T23 becomes

strongly frequency dependent, or equivalently (b) there is an avoided crossing between the

two coupled cavity modes. In practice, this limits the round-trip loss of the primary cavity
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Lrt < T1 + T3.

6.2 Impedance Matching Physical Picture

The mode converter presented in the next section relies on multimode impedance matching.

This is analogous to impedance matching in a single-mode cavity: at resonance, a two-

mirror, single-mode cavity with equal in- and out- coupling T1 = T2 transmits all light. This

is a somewhat surprising result: a single mirror may be highly reflective, but two together,

separated by an integer number of wavelengths, is 100% transmissive.

In the lossless case, impedance matching ensures 100% transmission. More generally, we

say a system is impedance matched when there is zero reflection.

To understand this phenomenon, consider the reflection from a single-mode optical cavity

where the input mirror has field reflection coefficient r1 and is assumed to be lossless. The

cavity reflection is given by the well-known formula [162]

S11 =
1

r1

r2
1 − grt
1− grt

where grt is the round trip gain including reflection from all mirrors, and a phase factor.

The reflection goes to zero when r1 = grt
r1

. Clearly the phase factor of grt must be zero, i.e.

the cavity is resonant. Squaring both sides, impedance matching requires

R1 = G (6.1)

where G ≡ g2rt
R1

is the round trip power gain of all components except the input mirror.

This is a general condition for impedance matching with lossless input mirror. More

insight can be gained in the high-finesse case, where all reflectances are nearly 1 and Ri =

1 − Ti, Ti � 1. Then G is a product of small losses, G =
∏
i6=1 (1− Li) ≈

∑
i6=1 Li, and

the sum is again over all losses besides the input mirror, including transmission through
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non-input mirrors. The high-finesse impedance matching condition becomes

T1 =
∑

i6=1

Li (6.2)

In the high-finesse case the circulating power at any point in the resonator is approxi-

mately constant – the loss throughout a round trip is negligible – and we can describe the

cavity’s state with a single amplitude a.

Finally, the condition in Equation 6.2 can be easily understood by energy conservation.

Energy conservation implies Pin = Plost. The power lost is Plost = |a|2∑i6=1 Li. Here the

sum excludes transmission through the input mirror because, by construction, there is zero

reflection, i.e. no power leaving from the input mirror.

To obtain Equation 6.2, we would then like to say that Pin = |a|2T1. This is not

immediately obvious. However, consider the time-reversed case1. Then the power leaving

mirror 1 is clearly equal to |a|2T1. So in the un-time reversed case, we must have Pin = |a|2T1,

and our statement of energy conservation implies the impedance matching condition.

This completes the rigorous explanation for the standard high-finesse impedance match-

ing condition, T1 =
∑
i6=1 Li. For very low-finesse cavities, Equation 6.1 is more correct.

The two are identical for two-mirror cavities (with lossless input mirror).

6.3 Mode Converter

Coupled optical cavities, as shown in Fig. 6.2a, enable near-unity efficiency mode conversion

by a multimode generalization of single-mode impedance matching: at resonance, a two-

mirror, single-mode cavity with equal in- and out- coupling T1 = T2 transmits all light.

The two coupled resonators explored in the prior section can be understood as one single-

1. The time reversal argument is easier if there are no losses (only transmission through mirrors) in the
cavity. Otherwise, in the time reversed case the lossy elements have to be generating light. We can imagine
this occurs by sources inside those elements.
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c

Figure 6.2: Principle of Cavity Optical Mode Conversion. a, Two coupled Fabry-Pérot
resonators can act as an optical mode converter when a small transverse offset is introduced
between their axes to couple their otherwise-orthogonal transverse modes. Mirrors M2 and
M3 act as a single “effective mirror” M23 with frequency- and mode- dependent transmission

T
i↔j
23 , for input/output modes HGi/j,0. Near-unity efficiency i↔ j mode conversion through

the full system M1+M23 is achieved when the input- and output- couplings to the composite

cavity M1/M23 are equal, T1 = T
i↔j
23 (the “impedance matching” condition), and no light

leaks out through other modes. b, Simulated transmission of the effective mirror M23 (in the
absence of M1), with a translated HG0,0 input generating an HG3,0 output. The transmission

T 0↔3
23 is limited by the (translated) 0/3 mode overlap of ≈ 6%, and the dashed horizontal

line denotes T1. The frequency dependence of the transmission guarantees that there are two
frequencies where T1 = T 0↔3

23 (dashed vertical lines), resulting in perfect mode conversion
at these frequencies once mirror M1 is introduced, as shown in c.
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 M   23 Length

Figure 6.3: Demonstration of High-Efficiency Mode Conversion. An input HG00
mode may be coherently converted into any higher order HGm0 mode by using two coupled,
transversely offset Fabry-Pérot cavities. The output spatial profile (top) and end-to-end
conversion efficiency (bottom) are plotted for output modes HG00...HG50 and HG10,0. As
the length of output cavity M23 is tuned with a piezoelectric actuator, its higher-order modes
are individually brought near resonance with the drive laser. Each resonant mode of the M23
cavity satisfies the impedance matching condition at two laser frequencies (Fig. 6.2), giving
two peaks with near-unity efficiency mode conversion. In each panel the laser frequency
is swept by ±300 MHz around the mutual resonance, demonstrating a mode-conversion
bandwidth of ∼ 50 MHz. Mirror absorption and scattering limits the maximum conversion
efficiency (hashed region). Optical power may be diverted into other accidentally degenerate
modes, distorting the output mode and spectrum (right-most panel). Model fits (solid lines)
are consistent with a transverse offset between cavities of 1.30(1) waists.

mode cavity with input coupling T1 and (frequency-dependent) output coupling T23(ω) of

the composite mirror M23. Unity transmission again occurs when in- and out- couplings are

equal, T1 = T23(ω). Because T23 exhibits a resonance peak whose center frequency can be

tuned by adjusting the length L between M2 and M3, it is always possible to satisfy the

impedance matching condition for a given drive frequency ω = ωd.

In the absence of transverse mode coupling, an input HGm ≡ HGm0 mode produces an

output HGm mode, and the single-mode analysis applies. Introducing a transverse offset

between the coupled cavities breaks orthogonality between their higher-order modes and

generates inter-mode couplings (Fig. 6.2a). In this case, the HG0 mode of the primary cavity

appears displaced on M23, and thus has non-zero overlap with all modes of M23. As such,

M23 now exhibits frequency- and mode- dependent transmission T
i↔j
23 (ω) =

∣∣αij
∣∣2 T j23(ω),
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with input and output modes i and j having an overlap integral αij . The transverse modes

of M23 each have their own transmission function T
j
23(ω), all with identical linewidths, but

different resonant frequencies due to the round-trip Gouy phase of M23 [162]. The simulated

HG0→ HG3 transmission peak is shown in Fig. 6.2b.

We expect unity transmission to occur when T1 = T
i↔j
23 (ωd), where in-coupling occurs

through the HGi mode at M1, and out-coupling occurs through the HGj mode of M23.

The multimode S-Matrix calculation shown in Fig. 6.2c (and detailed in the Supplement)

supports this intuition, showing nearly 100% conversion efficiency. As the length of M23, L,

is tuned, its higher order modes individually approach resonance with the drive laser and

primary cavity, satisfying the impedance matching condition at two drive-laser frequencies

and thus permitting conversion of any input mode i into any output so long as
∣∣αij

∣∣2 > T1.

Indeed, for the theory in Fig. 6.2, the mode overlap between HG0 and HG3 is only ∼ 6%,

but near-unity conversion still occurs.

To demonstrate these principles, we construct a mode converter using mirrors with re-

flectances R1 = R3 = 0.965(5), R2 = 0.972(1) at 780 nm, whose performance is shown in

Fig. 6.3. In each panel, the laser frequency is scanned to satisfy the resonance condition.

Between panels, the length L of M23 is varied with a piezoelectric actuator to bring the

target mode to resonance with the HG0 mode of the primary cavity. The transmission is

monitored on a large-area photodiode to determine conversion efficiency, and on a CCD

camera to ascertain mode shape. With the cavities transversely offset by ∼1 waist, HG0

through HG5 were generated with total conversion/transmission in excess of 75%. To access

higher order modes, the offset was increased to ∼2.5 waists, yielding conversion of modes up

to HG12; the HG10 mode is shown with 75% total transmission.
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6.4 Outlook

We have presented a new framework for understanding coupled multimode optical resonators,

where one resonator acts as a frequency- and mode- dependent mirror for the other resonator.

Harnessing this new perspective, we demonstrate both a variable finesse cavity and an arbi-

trary spatial mode converter. By introducing an intracavity electro-optic modulator [164], we

anticipate rapid tunability of finesse and output mode, enabling control of photon dynamics

within a cavity lifetime.

In our approach, the mode conversion bandwidth is set by the cavity linewidth, and

so can be increased by scaling down to micro-resonators. Working with small ROC fiber

Fabry-Pérots [92] should enable bandwidths up to ∼10 GHz, and extending these ideas

to nanophotonic platforms would allow further bandwidth gains [165, 147]. Meanwhile,

superpolished mirrors with loss < 3 ppm [166] should enable efficiency up to 99%, limited by

leakage into undesired modes. The mode converter is inherently bidirectional and can thus

convert TEMm0 → TEM00.

The techniques introduced in this work can be employed to interconvert between field

profiles of any physical system in which coupled resonators can be realized whose eigenmodes

are the desired input and output field profiles. Coupling to a twisted optical resonator [167]

whose eigenmodes are Laguerre-Gauss (LG) would enable high-efficiency generation of op-

tical orbital angular momentum states for optical communication. Similarly, the use of

astigmagtic cavities would allow control over both mode indices of the HGmn output. In-

deed, these concepts transcend even light: by coupling together phononic resonators with

disparate mode structures, it should be possible to deterministically and efficiently reshape

acoustic waves [168].
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Lilian Childress. A mechanically stable and tunable cryogenic fabry–pérot microcavity.
Review of Scientific Instruments, 92(5):053906, 2021.

[100] Benjamin Merkel, Alexander Ulanowski, and Andreas Reiserer. Coherent and purcell-
enhanced emission from erbium dopants in a cryogenic high-q resonator. Physical
Review X, 10(4):041025, 2020.

148



[101] Johannes FS Brachmann, Hanno Kaupp, Theodor W Hänsch, and David Hunger.
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nanophotonic resonator. Opt. Express, 19(11):10563–10570, 2011.

153



[166] Christina J. Hood, H. J. Kimble, and Jun Ye. Characterization of high-finesse mirrors:
Loss, phase shifts, and mode structure in an optical cavity. Phys. Rev. A, 64(3):033804,
2001.

[167] Nathan Schine, Albert Ryou, Andrey Gromov, Ariel Sommer, and Jonathan Simon.
Synthetic landau levels for photons. Nature, 534(7609):671–675, 2016.

[168] Samuel J. Whiteley, Gary Wolfowicz, Christopher P. Anderson, Alexandre Bourassa,
He Ma, Meng Ye, Gerwin Koolstra, Kevin .J Satzinger, Martin V. Holt, F. Joseph Here-
mans, Andrew N. Cleland, David I. Schuster, Giulia Galli, and David D. Awschalom.
Spin–phonon interactions in silicon carbide addressed by gaussian acoustics. Nature
Phys., 15(5):490–495, 2019.

[169] Samuel J. Mason. Feedback theory-some properties of signal flow graphs. Proc. IRE,
41(9):1144–1156, 1953.

[170] D. Riegle and P. Lin. Matrix signal flow graphs and an optimum topological method
for evaluating their gains. IEEE Trans. Circuit Theory, 19(5):427–435, 1972.

[171] George B. Arfken, Hans J. Weber, and Frank E. Harris. Mathematical methods for
physicists. Academic Press, Waltham, 7 edition, 2011.

[172] Zhexin Zhao, Cheng Guo, and Shanhui Fan. Connection of temporal coupled-mode-
theory formalisms for a resonant optical system and its time-reversal conjugate. Phys.
Rev. A, 99(3):033839, 2019.

[173] Wonjoo Suh, Zheng Wang, and Shanhui Fan. Temporal coupled-mode theory and the
presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum
Electron., 40(10):1511–1518, 2004.

[174] Crispin W. Gardiner and M. J. Collett. Input and output in damped quantum systems:
Quantum stochastic differential equations and the master equation. Phys. Rev. A,
31(6):3761, 1985.

[175] Hermann A Haus. Waves and fields in optoelectronics. Prentice-Hall, Englewood Cliffs,
1984.

[176] Robert J. Lang and Amnon Yariv. An exact formulation of coupled-mode theory for
coupled-cavity lasers. IEEE J. Quantum Electron., 24(1):66–72, 1988.

154



APPENDIX A

SI: MODE CONVERSION

A.1 Single-Mode S-Matrix Approach for Coupled Fabry Pérot

Cavities

The behavior of a general linear coupled cavity system may be exactly analyzed with a

scattering (S) matrix approach, so long as the paraxial and scalar field approximations are

valid. In this section only a single spatial mode will be considered. The light field in a given

transverse plane may then be described as an amplitude of a right- and a left-traveling wave,

or a vector ψ = (ψr, ψl)
T .

For a region of space containing paraxial optical elements between two transverse planes,

there exists a mapping between the incoming waves on either side to the outgoing waves,

called the scattering matrix. With the two sides labeled A and B, the scattering matrix S

is defined by:



ψA,out

ψB,out


 =



S11 S12

S21 S22






ψA,in

ψB,in


 (A.1)

The scattering matrices for simple optical elements like on-axis mirrors and regions of free

propagation are well known. When multiple optical elements are placed in succession, the

overall scattering matrix can be calculated by the transfer matrix approach, or equivalently

by pairwise application of the cascaded scattering matrix formula:

Stot =



S1

11 + S1
12S

2
11FS

1
21 S1

12

(
1 + S2

11FS
1
22

)
S2

12

S2
21FS

1
21 S2

22 + S2
21FS

1
22S

2
12


 (A.2)

with F =
(
1− S1

22S
2
11

)−1
.
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This formula is sufficient to calculate the overall behavior of a single-mode paraxial

system. Using the elementary scattering matrices for free propagation, P =




0 eiφ/2

eiφ/2 0




and mirrors, M =



r it

it r


, we obtain the scattering matrix for a Fabry-Pérot resonator:

SFP =



r1 − eiφt21r2

1−eiφr1r2
− e

iφ
2 t1t2

1−eiφr1r2

− e
iφ
2 t1t2

1−eiφr1r2
r2 − eiφt22r1

1−eiφr1r2


 (A.3)

where φ is the round-trip phase accrued in the cavity and ri, ti are the field reflection and

transmission coefficients. For two coupled Fabry-Pérots the transmitted component is

S11 =
−ie12 i(φ1+φ2)t1t2t3

1− eiφ1r1r2 − eiφ2r2r3 + ei(φ1+φ2)r1r3
(
r2
2 + t22

) (A.4)

An effective finesse for the primary cavity can be extracted by putting Equation A.4 in

the usual form of transmission through a Fabry-Pérot, Et/Ei = −e
iφ1
2 t1t23

1−geiφ1 , with round-trip

gain:

g = r1
r2 − r3eiφ2

(
r2
2 + t22

)

1− r2r3eiφ2
(A.5)

and t23 the transmission of the M23 cavity. Both of these numbers vary slowly with φ2 in

high-finesse configurations. Then the finesse is evaluated as [162] F =
π
√
|g|

1−|g| .

The effect of mirror loss on the transmitted field can be easily calculated. Loss in the

outer mirrors M1 and M3 simply reduces the transmitted power by a factor of T1
1−R1

T3
1−R3

,

where 1 − Ri is the power transmission of a lossless mirror with the same reflectance. To
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treat loss in M2, we note that Equation A.4 is invariant under the substitution:

r2 → r′2 =
r2
β

t2 → t′2 =
t2
β

r1 → r′1 = βr1

r3 → r′3 = βr3

t1 → t′1 = βt1

β2 = r2
2 + t22 = 1− L2

Thus the transmitted field of a cavity with lossy M2 is equivalent to a cavity with loss-

less M2 and modified M1 and M3. This cavity has spectral properties set by R′1, R
′
2, R
′
3

and also a loss-induced amplitude reduction given by
T ′
1

1−R′
1

T ′
3

1−R′
3

= β T1
1−β2R1

T3
1−β2R3

≈
T1

T1+L1+L2

T3
T3+L3+L2

in the high reflectance limit.

Multielement scattering systems may also be treated as a signal flow graph and efficiently

solved with Mason’s gain formula [169].

A.2 Suppression of Loss Through Higher-Order Modes

In the tunable finesse cavity, imperfect mode matching leads to leakage of light out of the M1-

M23 cavity through higher-order modes of M23, potentially limiting the maximum achievable

finesse. As with leakage through the lowest mode of M23, this loss is suppressed as the modes

are detuned from the primary cavity resonance. By making the M23 cavity highly degenerate,

it is possible for the fundamental mode of the primary cavity to be spectrally isolated from

all modes of the M23 cavity, thus avoiding accidental near-degeneracies. We choose L to

realize a half-confocal cavity with ωnlm = ωfsr

[
n+ 1

4(l +m)
]
, ensuring that the mode of

the primary cavity is detuned by at least 1/8 of a free spectral range (FSR) from all modes of
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M23. This detuning results in a transmission suppression of 2−
√

2
4 ≈ 15% relative to that at

a detuning of 1/2 the FSR: as long as the mode matching is better than 85%, the maximum

finesse should not be significantly affected.

A.3 Multimode Scattering Matrix Approach for Coupled

Fabry-Pérot Cavities

A general paraxial system may be analyzed by the same scattering matrix approach with

simple modifications. For simplicity this discussion will use a single transverse dimen-

sion, but the approach is easily extended to a full 2D transverse treatment. The light

field in a given transverse plane may be decomposed into a basis of orthonormal Hermite-

Gauss mode amplitudes for right- and left-traveling waves, described by a vector ψ =
(
ψ0,r, ψ1,r, . . . , ψn,r, ψ0,l, ψ1,l, . . . , ψn,l

)T
= (ψr,ψl)

T . It is accurate to restrict to a finite

number n modes so long as the field distribution is bounded and nonsingular.

There is an infinite family of such Hermite-Gauss decompositions parameterized by the

“complex beam parameter” q and an axis around which the modes are centered. q determines

both the scaling (or waist) of the basis functions, and the degree of wavefront curvature.

Equations A.1 and A.2 are both valid in the multimode case, but with the entries Sij

understood to be block matrices of size n×n. As long as the multimode scattering matrices

of the individual optical elements are known, the overall scattering matrix may be calculated.

In the Hermite-Gauss basis, the scattering matrices of paraxial optical elements, such

as free-space propagation and on-axis mirrors, have a simple form. Such elements do not

produce mixing between modes, only overall rescaling and wavefront curvature, amounting to

a change in the q parameter [162]. Put another way, the block elements Sij of the scattering

matrix are diagonal, so long as it is understood that the fields on each port of the interface

are expressed in Hermite-Gauss bases with the appropriate q values. We could express the

vector with reference to its basis ψ =
(
ψr,qr ,ψl,ql

)T
, but this will be left implicit in our
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a

b

Figure A.1: Simulated Spectrum of Coupled Multimode Optical Resonators. a,
Simulated transmission of the mode converter demonstrated in the main text, with T1 =
T3 = 0.035, T2 = 0.028, and an input HG00 beam. The output mode content (indicated by
hue) varies as the length of the M23 cavity is tuned, bringing different HGm0 modes near
resonance with the primary cavity. The output power (indicated by color saturation) reaches
near unity at the impedance matched condition, as confirmed by the measured cross-sections
in Fig. 3 of the main text, corresponding to perfect mode conversion. Successive mode
orders display reduced peak splitting, reflecting a reduced coupling to the HG00 mode of the
primary cavity. After HG50 the splitting is smaller than the cavity linewidth and impedance
matching cannot be achieved, so higher-order modes disappear from the spectrum. The
coupling coefficients are set by the transverse offset between cavities, here 1.3 mode waists.
b, Increasing mirror reflectance (T1 = T2 = T3 = 0.01) and transverse offset (2.1 mode
waists) allows more modes to be impedance matched, and reduces leakage into accidentally
near-degenerate modes. An input HG00 can be coherently converted into HG00–HG13,0.
Modes HG70–HG13,0 belong to the next lower axial mode group and appear interspersed
amongst HG00–HG60.
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equations. The required relation between q values on each port of a paraxial element can be

calculated using the ABCD matrix formalism, but it is not necessary for this discussion.

Inside an optical resonator, there exists a particular choice of q which is transformed back

into itself after each round trip [162]. This is the most convenient choice, and it guarantees

that every element of the resonator is described in a diagonal basis for most resonators,

including all two-mirror resonators.

However, the mode converter consists of two optical resonators which have mismatched

optical axes and/or waists, so no choice of optical axis and q will yield diagonal forms for

the scattering matrices of all elements. One solution is to describe the third mirror as an

off-axis mirror whose scattering matrix has mode-mixing terms. Instead, we add an explicit

change-of-basis matrix at the interface between the two resonators. This does not represent a

physical optical element, but a mathematical transformation which allows the field on either

side to be written in different bases. The matrix conveniently casts the field inside each

resonator in terms of the eigenmodes of that resonator. The elements of the change-of-basis

scattering matrix take the form

S12,mn = 〈ψm|ψn〉

S21 = S
†
12 ≡ K†

S11 = 0

S22 = 0

where the overlap integral 〈ψm|ψn〉 between Hermite-Gauss modes with different optical axis

and q may be calculated numerically, or analytically using the method in Supplement A.5.

The scattering matrices for paraxial elements with the correct q are as follows. Mirrors

act as n copies of the form M from Supplement A.1 on the individual modes. Propagation

through free space gives a phase shift P12,mn = S21,mn = δmne
i[kL+(m+1)θ], where θ is the
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well-known Gouy phase which may be calculated from q and L.

The overall scattering matrix for mode-mismatched coupled cavities may be found from

repeated application of Equation A.2. The left-to-right transmission is:

S21 = −it1t2t3eiΦ2/2K
[
I − r1r2eiΦ1 − r2r3K†eiΦ2K +

(
r2
2 + t22

)
r1r3e

iΦ1K†eiΦ2K
]−1

eiΦ1/2

(A.6)

and the left-to-left reflection is:

S11 = r1I−t21eiΦ1/2
[
r2I −

(
r2
2 + t22

)
r3K

†eiΦ2K
]
×

[
I − r1r2eiΦ1 − r2r3K†eiΦ2K +

(
r2
2 + t22

)
r1r3e

iΦ1K†eiΦ2K
]−1

eiΦ1/2

(A.7)

where Φi is the round trip propagation matrix for cavity i, including Gouy phases.

The mode converter of the main text is simulated using the S-matrix formalism in

Fig. A.1. Near-unity efficiency mode conversion is predicted when different modes of the

two cavities are near resonant, as measured experimentally in Fig. 3 of the main text.

Multielement, multimode cavities may also be treated as noncommutative signal-flow

graphs with matrix-valued weights and efficiently solved with Riegle’s rule [170].

A.4 Mode Purity

Mode purity can be calculated exactly using the S-matrix formalism, or estimated from the

mirror transmission coefficients. Mode purity is degraded due to imperfectly suppressed

outcoupling through parasitic modes of the M23 cavity. The mode in the primary cavity

sees outcoupling through the target mode T
i↔j
23 , which is set approximately equal to T1 in

the impedance matched condition. It also sees outcoupling through each unwanted mode

p equal to T
i↔p
23 =

∣∣αip
∣∣2 T2T3fp(ω), where αip is the mode overlap integral and fp(ω) is

a resonant enhancement factor, which is of order unity if the mode is moderately detuned.
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The ratio between power in parasitic mode p and the target mode j therefore scales as
∣∣αip

∣∣2 T2T3
T1

fp(ω). We note that the sum of all overlap integrals is bounded as
∑
k |αik|2 = 1.

This estimate neglects the second-order effect of additional modes excited in the primary

cavity.

A.5 Overlap of Hermite-Gauss Modes

To analyze coupled resonators which are not spatially mode-matched, it is useful to perform

a change of basis between their eigenmodes. This transformation requires the overlap inte-

grals between offset and/or rescaled Hermite-Gauss (HG) functions. These integrals may be

calculated numerically, in which case it is useful to calculate the Hermite polynomials using

a stable algorithm such as the recurrence relation [171] Hn+1(x) = 2xHn(x)− 2nHn−1(x).

They can also be calculated analytically using the method of generating functions. Here

we work in a single transverse dimension for simplicity. The normalized Hermite-Gauss

functions HGn with waist w are given by:

HGn(x;w) =

√√
2/π

2nn!w
Hn

(√
2x

w

)
e
− x2

w2 (A.8)

where Hn(x) is the nth-order Hermite polynomial and the HG functions are taken to have

no wavefront curvature (valid when the overlap is taken at the mode waist). The generating

function for unnormalized HG functions is:

gw(x, t) = e
2
√
2x
w t−t2e−

x2

w2 (A.9)

=
∞∑

n=0

Ht

(√
2x

w

)
e
− x2

w2
tn

n!
(A.10)

The overlap integral between modes m and n of two HG bases is calculated by taking the

integral of the product of their respective generating functions, picking off the correct series
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coefficients, and inserting normalization factors:

∫
HG∗m,λw(x)HGn,w(x+ aw)dx =

√
2

π2mm!2nn!λw2

[
dm

dum
dn

dtn

∫
g∗λw(x, u)gw(x+ a, t)dx

]

u,t=0

(A.11)

=

√
2

2mm!2nn!

√
λ

1 + λ2
e
− a2

1+λ2 ×
{
dm

dum
dn

dtn
Exp

[
(1− λ2)(t2 − u2) + 4tuλ+ 2

√
2a(u− λt)

1 + λ2

]}

u,t=0

(A.12)

In this work we only require the overlap of modes with zero wavefront curvature. However,

a similar derivation applies more generally, using the complex q-parameter formulation of

the Hermite-Gauss functions.

A.6 Two-Mode Coupled Mode Analysis

In Supplement A.7 we derive coupling constants for the phenomenological temporal coupled

mode theory (TCMT) treatment of multimode coupled optical cavities. Here we use the

results for a simple case with two transversely offset optical resonators coupled through a

shared mirror, each supporting a single mode (which may have different transverse profiles).

Assuming reciprocal media and neglecting loss, the scattering matrix takes the form [172,

173]:

S = −I − iD 1

(Ω− iΓ)− ωD
T (A.13)
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with

Ω =



−δ2 g

g δ
2


 (A.14)

D =



√
γ1 0

0
√
γ2


 (A.15)

Γ = D†D =



γ1
2 0

0 γ2
2


 (A.16)

(A.17)

with δ the detuning between the modes. The coupling rate between the resonator mode

in cavity i and its corresponding output channel is
√
γi = − logRiνi, where νi is the free

spectral range and Ri is the reflectance of the output mirror. The coupling rate between the

two resonator modes is g = α
√− logRcν1ν2, where α is the overlap integral between the

two modes and Rc is the reflectance of the shared mirror.

Impedance matching occurs when the reflection coefficient vanishes. In the energy-

conserving case, transmission reaches unity at this point, indicating full mode conversion.

With matched cavity decay rates γ1 = γ2 = γ, this occurs at δ = 0, ω = ±
√
g2 −

(γ
2

)2
.

Under these conditions, evaluation of the eigenmodes of the effective Hamiltonian, Ω − iΓ,

shows that equal stored energy resides in each cavity.

For g < γ
2 there is no real solution, but the minimum reflection occurs at δ = 0, ω = 0.

Thus a solution with unit efficiency mode conversion exists whenever |α|2 > γ2

−4 logRcν1ν2
.

For mismatched cavity decay rates γ1 6= γ2, impedance matching occurs at δ 6= 0, but

there is still generally a solution for sufficiently large |α|. In this case, the product of the

stored energy and the decay constant of each cavity is equal.
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A.7 Multimode Coupled Mode Analysis

The S-matrix analysis of Supplement A.3 relies only on the paraxial and scalar field ap-

proximations and is otherwise exact. Coupled optical cavities can also be analyzed using the

temporal coupled mode theory (TCMT), a phenomenological model of open resonant optical

systems. Although TCMT is not derived from first principles, it has been shown to agree

well with rigorous analysis and provides useful intuition for the design of optical devices.

TCMT is mathematically equivalent to the input-output formalism of damped quantum

systems [174]. Here a full multimode theory for coupled optical resonators will be developed,

while Supplement A.6 specializes to the two-mode limit to discuss impedance matching.

In this formalism an optical cavity is described by a set of M cavity modes which are

allowed to couple with each other and with N ports, each containing an incoming and

outgoing propagating channel. Assuming reciprocal media, the coupled mode equations

are [172, 173, 157] :

d

dt
a = −i (Ω− iΓ)a+DTs+ (A.18)

s− = Cs+ +Da (A.19)

where a is a state vector containing the M amplitudes of the modes, normalized such that

|ai|2 corresponds to the energy stored in the ith mode. Ω and Γ are M ×M Hermitian ma-

trices, with Ω representing the resonator mode frequencies and couplings and Γ representing

decay processes. The resonances are coupled to the N incoming channels s+ and outgoing

channels s− according to the coefficients in the N ×M matrix D. The channel amplitudes

are normalized such that |s+i|2 (|s−i|2) is the power carried by the ith incoming (outgoing)

channel. The N × N symmetric matrix C = CT represents direct coupling from input to

output channels, including direct reflection and processes not included in the resonant modes

a.
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Assuming harmonic time dependence for a then eliminating a from Equations A.18, A.19

gives the S-matrix s− = Ss+ as:

S = C − iD 1

(Ω− iΓ)− ωD
T (A.20)

For systems with no absorption loss, all decay comes from radiative coupling to prop-

agating channels. When energy conservation and time-reversal symmetry hold, it can be

shown that [172]:

Γ =
D†D

2
(A.21)

CD∗ = −D (A.22)

C†C = I (A.23)

In what follows, we neglect loss so that these relationships hold.

All that remains is evaluation of the (system-dependent) coupling constants in C, D,

and Ω. For two coupled optical resonators, the modes are enumerated as follows. All modes

are labeled by their tranverse spatial mode index t. Channel modes have an additional

port index yielding s±,pt. Resonator modes have a cavity index and an axial mode index z

yielding actz.

To define the direct coupling matrix C we note that any incoming power not coupled

into the resonator is reflected into the same channel, so C is diagonal. Combined with

Equation A.23, this means each element of C is a phase factor with unit magnitude. We

take coupling to occur at the mirror surface, so that all transverse modes must experience

the same reflection phase shift. This defines C up to a single arbitrary phase, which we

choose so that C = −I.

The resonator-to-channel matrix D only couples modes with the same spatial mode

index t. Resonator modes in a given cavity only couple to mirror(s) connected to that
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cavity. Therefore the element Dpt′,ctz = ξptzδt,t′σp,c, where we define σp,c = 1 if port p is

connected to cavity c and zero otherwise, and ξptz is a complex constant. The magnitude of

ξptz is fixed by an energy conservation argument [175]. We note that the energy of a single

populated mode actz with no input decays as |actz(t)|2 = |actz(0)|2 e−
∑
p γpt, where the sum

is over ports accessible from cavity c, γp = −νc lnRp is the decay rate into port p, νc is the

free spectral range of cavity c, and Rp is the reflectance of the mirror at port p. The power

exiting is d
dt |actz(t)|

2 = −
(∑

p γp

)
|actz(t)|2. Therefore we ascribe a decay coefficient γp to

each port p coupled to actz. However, according to Equation A.19 the power exiting into

port p is
∣∣s−pt

∣∣2 =
∣∣Dpt,ctz

∣∣2 |actz(t)|2. Thus
∣∣Dpt,ctz

∣∣2 = γp and
∣∣ξptz

∣∣ =
√
γp.

The phase of ξptz is constrained by Equation A.22 and our choice of C = −I, yielding

D∗ = D, so all elements of D are real and defined up to a sign. Each resonant mode can

have one arbitary sign in the coupling constant at one port. For all other ports accessible

to that mode, the sign must be chosen consistently. This is important when multiple axial

modes are included; adjacent axial modes have opposite parity, and incorrectly chosen signs

will affect the interference between modes.

Finally we evaluate the closed-cavity Hamiltonian matrix Ω. The diagonal elements

are just the (real) mode frequencies set by the free spectral range and transverse mode

spacings. The off-diagonal elements represent coupling rates between resonant modes. We

evaluate these with a similar energy conservation argument as used for D [175]. Coupling

occurs between the modes of two cavities separated by a mirror of reflectance Rc. The

circulating power in mode ac′t′z′ of cavity c′ excites a mode actz of cavity c. According

to Equation A.18, the coupling contributes to d
dtactz a term Ωctz,c′t′z′ac′t′z′ . This can be

compared to excitation of a mode by a propagating channel, which contributes to d
dtactz a

term Dpt,ctzs+pt, where the incident power is P =
∣∣s+pt

∣∣2 and we have already determined

the magnitude
∣∣Dpt,ctz

∣∣ =
√
−νc lnR. In the present case the incident power due to mode

ac′t′z′ is P = |ac′t′z′|2 νc′
∣∣∣αt′,t

∣∣∣
2
, where the overlap integral αt′,t restricts to that portion of
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the incident mode which is spatially mode-matched. Comparing these two cases, we must

have
∣∣∣Ωctz,c′t′z′

∣∣∣ =
√
−νcνc′ lnRc

∣∣∣αt′,t
∣∣∣. The phase of the coupling coefficients must be

chosen with similar concern as the elements of D, taking into account the opposite parity

of adjacent axial modes.

Although there exists an exact coupled-mode description of single-mode resonators [176]

which could be extended to the multimode case, we do not pursue that here, as the S-matrix

description of Supplement A.3 provides exact results, and the simpler coupled-mode theory

is quite accurate and useful for intuition.
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