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Abstract—We present an adaptation of direct collocation – a
trajectory optimization method commonly used in robotics and
aerospace applications – to quantum optimal control (QOC); we
refer to this method as Pade Integrator COllocation (PICO). This
approach supports general nonlinear constraints on the states and
controls, takes advantage of state-of-the-art large-scale nonlinear
programming solvers, and has superior convergence properties
compared to standard approaches like GRAPE and CRAB. PICO
also allows for the formulation of novel free-time and minimum-
time control problems – crucial for realizing high-performance
quantum computers when the optimal pulse duration is not
known a priori. We demonstrate PICO’s performance both in
simulation and on hardware with a 3D circuit cavity quantum
electrodynamics system.

Keywords—quantum optimal control, superconducting qubits,
direct collocation, nonlinear programming, numerical methods

I. INTRODUCTION

The field of optimal control, which has its origins in
aerospace engineering and robotics, has produced a large body
of sophisticated methods for solving control problems funda-
mentally similar to the problems posed in quantum optimal
control (QOC) [1–5]. However, many of these methods have
yet to be adopted by those working on control problems for
quantum systems. This work aims to bridge the gap between
robotic control and quantum control and, in so doing, provide
a new perspective to practitioners of QOC.

Current widely used QOC methods [6, 7] fall into the
category of indirect methods, in that they do not include
the states as decision variables. In this work, we introduce
Padé Integrator COllocation (PICO) as an alternative, fully
direct method. PICO is an adaptation of the direct collocation
method [8] tailored to the quantum setting. With this method,
we are able to leverage large-scale nonlinear programming
solvers, specifically the interior point method IPOPT [9]. We
demonstrate that PICO, due to being a direct method, improves
upon existing indirect methods in several ways, and is able
to produce state-of-the-art results in both simulation and on
hardware.

Our contributions include:
• A novel formulation of QOC using direct collocation
• Structure-preserving Padé integrators that efficiently

compute an approximation of the matrix exponential to
simulate quantum dynamics

• An open-source implementation QuantumCollocation.jl
[10]

We demonstrate state-of-the-art results, both with regard to
fidelity and time optimality, on a set of simulated problems of
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Fig. 1. PICO pulse simulated state evolution for a target state of
|g1〉. (a) Time evolution of the separate transmon and cavity levels for the
duration of the control pulse. In either case, the other system component is
traced out. Cavity photon number populations increase in order, before being
manipulated to end in the single photon state. For this pulse, the transmon
|f〉 state and cavity photon numbers above 6 are not significantly populated.
Dashed vertical lines indicate the times of the Wigner tomography slices in
(e). (b) Time evolution of the cavity populations in phase space, shown as
Wigner tomography plots. Starting in the vacuum 0 photon state, the state
evolves under the control pulse into the final 1 photon state. Time slices go
from left-right and up-down at the equally spaced time points indicated by
the gray vertical lines in the cavity populations plot in (d).

increasing difficulty. We also show that PICO produces pulses
with state-of-the-art performance on an experimental system.

This paper is structured as follows: First, in Sec. II, we
review the problem of quantum optimal control and existing
solution methods. Then, in Sec. III, we introduce our method,
PICO. In Sec. IV we demonstrate PICO’s performance on
three QOC problems of increasing difficulty. Finally, in Sec. V,
we present the hardware results achieved with PICO.
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II. BACKGROUND

In this section, we review relevant prior work. First, we
discuss the mathematical formulation of quantum optimal
control. Then, we review gradient-based methods for solving
QOC problems, followed by gradient-free methods. Finally,
we review the direct collocation method commonly employed
to solve trajectory optimization problems in aerospace and
robotics applications.

A. Quantum Optimal Control
The control of quantum systems can be framed as an

optimization problem over the space of time-dependent state
trajectories subject to dynamics described by the Schrödinger
equation. For a unitary operator, in our setting, this is given
by:

U̇ = −iH(a(t))U. (1)

The dynamics are controllable via drive parameters a(t) ∈
Rd in the Hamiltonian. For simplicity, we will limit ourselves
to considering Hamiltonians of the form,

H(a(t)) := H0 +
∑
i

ai(t)Hi, (2)

where t ∈ [0, T ], H0 is the system’s drift term, and Hi

are referred to as the drive terms. Handling other types of
Hamiltonians—e.g. those that are nonlinear in the controls—
is also possible in our method.

QOC problems typically fall into three categories, corre-
sponding to three different types of quantum objects: quantum
states |ψ(t)〉, which satisfy ∂t |ψ〉 = −iH |ψ〉; unitary opera-
tors U(t), which satisfy Eqn. (1); and density operators ρ(t),
which satisfy ρ̇(t) = −i[H, ρ].

QOC methods are agnostic to the form of the state and the
dynamics, so we will primarily discuss unitary operators, as
they are arguably the most general. In this case, given a desired
gate Ugoal, the objective we will be most concerned with is the
unitary infidelity loss, defined as,

`(U) := 1− 1

n

∣∣∣tr(U†goalU
)∣∣∣, (3)

for U ∈ SU(n).
We discretize the time interval [0, T ] into N time steps

of size ∆t; the states and controls at each time step are
denoted Uk and ak, respectively. One then solves the following
optimization problem:

minimize
a1:N−1

J(a1:N−1) = `(UN (a1:N−1)), (4)

where

UN (a1:N−1) =

N−1∏
k=1

exp (−iH(ak)∆t). (5)

Current approaches for solving this problem fall into two
categories: gradient-based methods and basis function meth-
ods. Both of these are indirect methods, as they treat the final
state U(T ) as a function of the controls and minimize the
objective J(a1:N−1) only over the controls a1:T−1, as opposed
to considering both the states and controls as decision variables
in what are known as direct methods [11].

B. Gradient-Based Methods

Gradient-based methods involve initializing the controls
a1:T−1 with an initial guess, rolling out the state using
Eqn. (5), and then iteratively updating the controls using
a gradient descent algorithm; this type of approach is also
referred to as a shooting method. Evaluating the objective
J(a1:N−1), which requires a costly full rollout, is necessary at
each iteration to compute a gradient and update the controls:

a← a− β∇J(a). (6)

There are efficient ways to compute this gradient [12], but
the approach is still limited by rollouts and other factors:
The solution is dependent on the initial guess, gradient-based
methods are prone to falling into local minima, and it is
difficult to rigorously enforce constraints on the states.

The most popular gradient-based method is known as
GRAPE (GRadient Ascent Pulse Engineering) [6], which
is available through the popular QuTiP python library. The
company Q-CTRL also implements its own gradient-based
optimization tool [13, 14], which is the industry standard, and
is what we compare our results to in this paper.

C. Gradient-Free Methods

There are other approaches that do not require taking
gradients (but still require objective evaluations). These ap-
proaches typically utilize a parameterized basis of functions
to sufficiently reduce the number of decision variables so
that gradient-free optimization algorithms — e.g. the Nelder-
Mead simplex method — can be utilized. In the case of the
popular CRAB algorithm [7], this is accomplished by utilizing
a Fourier basis for each pulse component:

a(t) = 1 +

∑Nc

n=1 bn sin(ωnt) + cn cos(ωnt)

λ(t)
. (7)

Where Nc is the number of terms taken in the series expansion
and λ(t) is chosen to enforce the boundary conditions. The
result is a smaller optimization problem:

minimize
b1:Nc ,c1:Nc ,ω1:Nc

J(b1:Nc
, c1:Nc

, ω1:Nc
). (8)

D. Trajectory Optimization and Direct Collocation

An alternative approach for solving trajectory optimization
problems is direct collocation (DIRCOL) [8]. DIRCOL is
a direct method that overcomes many of the limitations of
indirect methods by including both the states and controls
at each time step as decision variables, denoted by xk and
uk respectively. In this formulation, objective evaluations are
cheap, as they do not involve rollouts, and the dynamics are
explicitly enforced as equality constraints between knot points
(state and control samples) zk = (xk, uk)>.

Enforcing the dynamics as constraints is a key property of
DIRCOL that allows numerical solvers to temporarily violate
these constraints during intermediate steps of the solution
process en route to satisfying them at convergence. This
infeasible-start capability, along with the ability to easily



enforce constraints on the state variables, is the source of many
of the advantages of direct over indirect methods.

A trajectory optimization problem can be simply stated
in the direct framework: We begin in an initial state, i.e.
x1 = xinit, and find a control sequence u1:N−1 such that xN
minimizes an objective J consisting of a loss `(xN ) measuring
the distance between the final state xN and the goal state
xgoal. We may also include other objectives terms, including
e.g. penalties on higher derivatives of the control pulse to
encourage smoothness. It is common to enforce the dynamics
constraints implicitly, i.e. as f(zk, zk+1) = 0. We can then
write the DIRCOL problem as:

minimize
z1:N

J(z1:N )

subject to f(zk, zk+1) = 0,

x1 = xinit,

(9)

which is a large sparse nonlinear program that can be effi-
ciently solved with a nonlinear solver such as IPOPT.

III. PADÉ INTEGRATOR COLLOCATION

This section deals with formulating QOC problems as direct
collocation trajectory optimization problems. We will focus on
optimizing for SU(n) gates. Using the loss `(·) defined in
Eqn. (3) and the naive dynamics

f(Uk+1, Uk,ak,∆t) = Uk+1 − exp(−iH(ak)∆t) Uk, (10)

where ∆t is fixed. A simple DIRCOL formulation of this
problem can be written as follows:

minimize
U1:N ,a1:N

`(UN )

subject to f(Uk+1, Uk,ak,∆t) = 0

U1 = In

(11)

We detail several practical considerations: First, we will
cover how to convert the complex-valued objects in Eqn. (11)
to real values. Next, we will discuss a novel, efficient way
to enforce the dynamics, which avoids costly evaluations
of the matrix exponential present in (10). Finally, we will
discuss a few extensions for achieving smooth and time-
optimal solutions.

A. Isomorphic Formulation

To move between complex-valued quantum states and real-
valued problem variables, we follow [12] and utilize an
isomorphic representation for complex vectors and matrices.
We use a tilde or the notation iso(·) to represent isomorphic
representations. For a complex-valued vector ψ ∈ Cn and
matrix H ∈ Cn×n, we then have, respectively,

ψ̃ =

(
Reψ
Imψ

)
and H̃ =

(
ReH − ImH
ImH ReH

)
, (12)

where ψ̃ ∈ R2n and H̃ ∈ R2n×2n.
Since the dynamics involve an evaluation of exp(−iH) —

i.e. exponentiation of the generator — we also define:

G(H) := iso(−iH) =

(
ImH ReH
−ReH ImH

)
. (13)

And, since H is linear in a and G is a linear function of H ,
we define:

G(a) := G(H(a)) = G(H0) +
∑
j

ajG(Hj). (14)

B. Padé Integrators

The isomorphic dynamics are still in the form of Eqn. (10):

f(Ũk+1, Ũk,ak,∆t) = Ũk+1 − exp(G(ak)∆t) Ũk. (15)

The matrix exponential in its present form is a costly oper-
ation that does not account for how matrix exponentials are
numerically computed in practice. One approach to address
this is to use the Padé approximant for the exponential [15],
which approximates the matrix exponential as

exp(A) ≈ B−1(A)F (A), (16)

where B(A) and F (A) are truncated power series in A whose
the coefficients can be chosen to match exp(A) up to some
desired order.

We take advantage of this structure in PICO by recognizing
that the leading matrix inverse is computationally expensive
and not necessary to compute directly since we are enforcing
the dynamics constraints implicitly. Thus, we can rewrite the
dynamics using the Padé approximant as:

P(Ũk+1, Ũk,ak,∆t) := B(ak,∆t)Ũk+1 − F (ak,∆t)Ũk.
(17)

Since we solve most of our problems in a rotating frame
without very fast dynamics, we find that the fourth order
diagonal Padé integrator, denoted P(4) is sufficient. It is
defined by

B(4)(a,∆t) := I − ∆t

2
G(a) +

∆t2

12
G(a)2 (18)

and

F (4)(a,∆t) := I +
∆t

2
G(a) +

∆t2

12
G(a)2. (19)

Intuitively, B evolves the state backward a half step in
time and F evolves the state forward a half step. Padé
approximants have nice properties w.r.t. matrix Lie groups,
namely that they are structure-preserving [16]). In practice, we
find that any difference between rollouts under P(4) and the
matrix exponential is always of lower order than the infidelity
of the optimal solution. For problems with particularly fast
dynamics, higher-order Padé integrators can be used at very
low additional computational cost.

C. Smooth Solutions

Smooth control pulses are often desirable. To achieve this,
we augment the states of the system with the first and second
derivatives of the drive parameter so that the knot points are
now zk = (Ũk,ak, ȧk, äk)> with ä the new control variable.
This procedure is equivalent to using a piecewise cubic spline



interpolation of the controls, which is convenient for inter-
polating trajectories. The new dynamics for this augmented
problem are given by

f(zk, zk+1) =

P(n)(Ũk+1, Ũk,ak,∆t)
ak+1 − ak − ȧk ·∆t
ȧk+1 − ȧk − äk ·∆t

. (20)

By adding quadratic regularization costs on ak, ȧk, and äk,
and possibly bounding constraints on the velocities ȧk or
accelerations äk, we can easily control the smoothness of the
pulse.

D. Time-Optimal Solutions

In our framework, it is possible, and very useful, to treat
the timestep ∆t as a decision variable: the knot points are
augmented as, e.g., zk = (Ũk,ak,∆tk)>. It is often necessary
to add bound constraints, ∆tmin < ∆tk < ∆tmax, to prevent
the solver from taking advantage of discretization errors. In
practice, it also helps to constrain all the ∆tks to be equal.

This augmentation adds extra freedom to the optimization
problem, allowing the optimal duration of the pulse, which is
often not known a priori, to be found by the solver. This is
referred to as a free-time problem. Moreover, we can now add
a cost term to the objective of the form Jmintime(∆t1:N−1) =∑

k ∆tk and an inequality constraint F(UN ) ≥ F̄ on the final
state fidelity which is rigorously enforceable in our method.
This allows us to achieve minimum-time solutions for a chosen
fidelity, which are helpful for realizing higher-fidelity quantum
computations in the presence of decoherence.

IV. SIMULATION EXAMPLES

In this section, we describe the results of applying PICO to
a set of three examples of increasing difficulty: a minimum-
time single-qubit problem, a two-qubit problem, and a three-
qubit problem. In all examples, we use a random initial guess
for the controls and the geodesic on SU(n) from the identity
to the desired gate as a (dynamically infeasible) initial state
trajectory. Except for the single-qubit example, all examples in
this paper (including the hardware result) use the smooth solu-
tion problem formulation described in Sec. III-C. Code for all
of these examples can be found in the QuantumCollocation.jl
GitHub repository [10].

A. Single-Qubit Y-Gate Minimum Time Problem

As a first example, we consider a single-qubit system
defined in QCTRL’s user guide [17] (note that we ignore
the noise factor and compare against the system ignoring
robustness) with the Hamiltonian:

H(α(t), γ(t)) =
1

2
(γ(t)σ− + γ∗(t)σ+) +

α(t)

2
σz. (21)

Where α ∈ R, γ ∈ C, σ+ and σ− are the qubit ladder
operators and σz is the Pauli z matrix. The goal is to find
a time-optimal pulse that enacts a Y -gate (i.e. Ugoal = σy)
while enforcing |α| < αmax = 2π × 0.1 MHz and |γ| <
γmax = 2π × 0.3 MHz.

To achieve this goal we first solve the following free-time
problem:

minimize
z1:N

J0(z1:N ) = Q · `(ŨN ) +R(α1:N−1, γ1:N−1)

subject to P(4)
(
Ũk+1, Ũk, (αk, γk),∆tk

)
= 0,

Ũ1 = I2n,

|αk| < αmax,

|γk|2 < γ2max,

∆tmin < ∆tk < ∆tmax,
(22)

where zk = (Ũk, αk, γk,∆tk), N = 100, Q = 200 is a user-
specified cost shaping parameter, and R(α1:N−1, γ1:N−1) is
a quadratic regularization objective on the magnitude of the
controls (see code for details).

With an initial solution to (22) found by PICO we then
warm-start a second problem with a new objective J = J0 +
D
∑

k ∆tk, and an inequality constraint on the final fidelty,
F(UN ) ≤ F̄ , to prevent the fidelity from decreasing while
we minimize the duration of the pulse. We used D = 109

and 1− F̄ = 5× 10−6. The final solution has an exponential
rollout infidelity of 4.72 × 10−6 and a duration of 1.67 µs.
As can be seen in Fig. 2, PICO has found the analytical
bang-bang solution. Q-CTRL’s proprietary method also finds
a comparable solution, which is to be expected for this simple
problem, but with PICO we are able to fix the fidelity and
solve for the duration.

Fig. 2. Single qubit Y-gate minimum time solution. The top plot shows
the evolution of the real and imaginary components of the unitary operator
over the duration of the pulse. The bottom plot shows the pulse returned by
PICO, where it is observed to have found the analytic bang-bang solution
on its own (α and Re γ were effectively zeroed out). The optimized pulse
has a duration of 1.67µs and a final rollout infidelity of 4.72 × 10−6. We
solved the same minimum time problem using Q-CTRL [17] which achieved
a duration of 1.68µs and infidelity of 1.44 × 10−5 as defined in Eqn. 3.
Notably, unlike the PICO solution, this solution did not zero out α and Re γ.



Fig. 3. Two-qubit CNOT gate. Optimized pulse of duration 16 ns and
rollout infidelity of 2.25×10−8. The top plot shows the evolution of the |11〉
state under the control pulse, while the bottom plot shows the pulse itself.
The dots in the bottom plot correspond to the N = 100 knot points of the
trajectory.

B. Two-Qubit CNOT Gate Problem

As a second example, we consider a two-qubit Hamiltonian
in the rotating frame with direct qubit drives:

H(u(t)) = g
(
â†â
) (
b̂†b̂
)

+ u1(t)
(
â+ â†

)
+ iu2(t)

(
â− â†

)
+ u3(t)

(
b̂+ b̂†

)
+ iu4(t)

(
b̂− b̂†

)
,

(23)

where g/2π = 100 MHz and â and b̂ are the annihilation
operators of the first and second qubits, respectively. We
optimize a CNOT gate using the free-time problem framework
subject to the control bounds |ui=1:4(t)|/2π < 20 MHz. The
theoretical minimum CNOT gate time is given by 2π/g = 10
ns, although this may not be achievable under our control
bounds. Hence, as a starting point, we solve an initial free
time problem with N = 100 knot points and an initial guess
of ∆tk=1:N−1 = 0.1 ns between knot points, subject to the
constraint that all the ∆tk between knot points are equal and
0.09 < ∆tk < 0.17 ns. This problem converges to a 15 ns
solution with rollout infidelity 3.67 × 10−8 in just 64 solver
iterations. Given this solution, we then solve another free-time
problem with an initial guess of ∆tk = 0.15 and bounds
0.135 < ∆tk < 0.210 ns. This problem converges to a 16 ns
solution in around 500 solver iterations with a rollout infidelity
of 2.25× 10−8 as shown in Fig. 3.

This example highlights two of the compelling convergence
properties of PICO: 1) dynamically infeasible initial guesses
and intermediate dynamics constraint violations have the po-
tential to enable fast convergence and 2) the favorable tail-
convergence properties afforded by direct methods result in
many 9s of fidelity in far fewer iterations that indirect methods.

C. Three-Qubit SWAP Gate Problem

In this example, we consider the three-qubit Hamiltonian

H(u(t)) = 2πH0 +

3∑
j=1

uj(t)âj + uj(t)∗â†j , (24)

where u(t) ∈ C3, âj is the annihilation operator on the j-th
qubit, and the drift term is,

H0 =

3∑
j=1

(ωj − ωd)â†j âj −
ξ

2
â†j â
†
j âj âj

+ J12

(
â†1â2 + â1â

†
2

)
+ J23

(
â†2â3 + â2â

†
3

)
,

(25)

where (in units of GHz) ω1 = 5.18, ω2 = 5.12, ω3 = 5.06,
ωd = 5.12, ξ = 0.34, and J12 = J23 = 5.0× 10−3. We used
500 timesteps, where T = 200µs, ∆t = T/500, ∆tmin =
0.5∆t, and ∆tmax = ∆t. We also enforced box constraints
of 0.04 GHz on

∣∣Reuj
∣∣/2π and

∣∣Imuj
∣∣/2π. The goal is to

enact a 1− 3 SWAP gate, i.e.

Ugoal = |0〉〈0| ⊗ I ⊗ |0〉〈0|
+ |1〉〈0| ⊗ I ⊗ |0〉〈1|
+ |0〉〈1| ⊗ I ⊗ |1〉〈0|
+ |1〉〈1| ⊗ I ⊗ |1〉〈1| .

(26)

This problem was solved using the smooth solution dy-
namics in (20) and knot points zk = (Ũk, uk, u̇k, ük,∆tk)>.
The real and imaginary components of ük were constrained
to have absolute values less than 0.05 to enforce smoothness.
The solution is shown in Fig. 4; code for this solution can be
found in the QuantumCollocation.jl GitHub repository.

Fig. 4. Three-qubit 1-3 SWAP gate pulse. The top plot shows the
populations of a |100〉 state, evolved via the exponential, with the controls
optimized for the target 1-3 SWAP gate. The bottom plot shows the controls.
This pulse achieved solver infidelity of 3.4 × 10−5 and exponential rollout
infidelity of 8.6× 10−5 with a duration of 194.56µs.



(a)

(b)

(c)

Fig. 5. PICO pulse hardware results for a target state of |g1〉. (a)
Initial controls uj(t) are solved in a rotating frame at the qubit and cavity
frequencies, such that the dispersive shift χ term dominates the Hamiltonian.
Each of the cavity (c) and qubit (q) pulses are split into the real (x) and
imaginary (y) quadratures to allow for effectively complex controls while
still only solving with real numbers. (b) The quadratures of the cavity and
qubit control pulses are recombined in the lab frame before being sent
to the experiment control instrumentation. This also involves modulating
at the cavity or qubit frequency. (c) Resolved qubit spectroscopy of the
resulting state from the control pulses. Dashed lines indicated locations of
photon-number resolved peaks so that, from right to left, they correspond
to 0, 1, . . . , 4 photons. The final system state matches the target |g1〉 with
fidelity 0.988± 0.011.

V. HARDWARE RESULTS

In applying PICO to a hardware system a few other details
were needed. Specifically, we were interested in a state transfer
instead of a unitary gate. Additionally, in order to simulate
the bosonic oscillator component of our hardware system,
we truncated its infinite-dimensional Hilbert space. To ensure
PICO did not take advantage of the artificial nonlinearity
created by this truncation, we prevented the population of the
highest levels in our truncated model by imposing high L1

regularization costs on them in the problem objective. The
result is a success in both simulation, as can be seen in Fig. 1,
and in the outcome of the hardware experiment, as described
below.

A. Experimental Outcome

Control pulses were tested on a 3D superconducting circuit-
cavity QED platform that features a nonlinear transmon qubit
coupled to a bosonic oscillator cavity and a readout cavity [18].
This system implements the following Hamiltonian,

H(uq(t), uc(t)) = ωq b̂
†b̂+

α

2
b̂†b̂(b̂†b̂− 1) + χâ†âb̂†b̂

+ ωcâ
†â+

k

2
â†â(â†â− 1)

+ uq(t)(b̂+ b̂†) + uc(t)(â+ â†),

(27)

where b̂ is the annihilation operator for the transmon, ωq =
2π×4.96 GHz is the qubit |g〉− |e〉 transition frequency, α =

2π ×−0.143 GHz is the anharmonicity, â is the annihilation
operator of the cavity, ωc = 2π × 6.22 GHz is the cavity
frequency, χ = 2π×−1.13 MHz is the dispersive interaction
term, and k = 2π × 4.2 kHz is the self-Kerr of the cavity.
Controls uq(t) and uc(t) are time-dependent input pulses that
determine the dynamics of the system. Pulses were generated
by modeling three levels of the transmon and 14 levels of the
cavity with L1 costs on the highest levels.

To measure the performance of a set of control pulses, we
perform photon-number-resolved qubit spectroscopy. Due to
the χ dispersive shift term, individual-cavity photon-number
populations change the qubit frequency and form distin-
guishable peaks [19]. As an example, we test solutions for
state preparation of |g1〉 (transmon in the ground state, one
photon in the cavity), and obtain an experimental fidelity of
0.988 ± 0.011, as shown in Fig. 5, with the error obtained
from simulating the experiment process. This fidelity is in
line with state-of-the-art results [20, 21], and is close to the
simulated fidelity under decoherence of 0.997. We attribute
the discrepancy to slight inaccuracies or fluctuations in ex-
perimental system parameters, as well as quantization errors
in the control electronics. Additional simulations showing the
expected evolution and state populations at different time slices
for the duration of the pulse are shown in Fig. 1 in the form
of reduced traces on the transmon and cavity and Wigner
tomography on the cavity.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced PICO, a direct collocation method
for quantum optimal control. By treating both the states and
controls as decision variables, in contrast to indirect methods,
PICO is able to achieve exceptional performance by lever-
aging state-of-the-art sparse nonlinear programming solvers
like IPOPT. As a direct method, which can handle general
nonlinear constraints on both the states and controls, PICO
demonstrably outperforms existing indirect methods. In partic-
ular, it can solve minimum-time problems with constraints on
the final state fidelity, allowing it to minimize pulse durations
without sacrificing performance. PICO’s other capabilities —
e.g. a free-time problem formulation that allows the solver to
find the optimal pulse duration — and experimental results,
both in simulation and on hardware, show that is a powerful
approach. PICO is open-source and available via a registered
Julia package: QuantumCollocation.jl.

There are a number of exciting directions for future work.
One avenue is to develop a custom nonlinear solver that takes
advantage of the SU(n) structure inherent in our dynamics:
solvers, such as IPOPT, use techniques [22, 23, 9] that could
be specialized for this setting. Another direction, which we
view as crucial to hardware applications, is utilizing iterative
learning control [24] combined with PICO to correct model-
mismatch errors.
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