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ABSTRACT

Quantum computing is at an exciting time, with practical quantum processors coming closer to

experimental realization. Yet a major challenge in building a practical quantum computer is to

generate and manipulate interactions between its many components. Superconducting (SC) qubits

are promising candidates not only because they have strong coupling and high-fidelity readout,

but also for allowing versatile parametric control that can realize different effective interactions

at will, which might be difficult to achieve through other means. In this thesis, we start from the

simple example of parametrically flux modulated SC qubit and demonstrate its application towards

quantum communication between remote SC modules. We then move on to discuss the parametric

modulation of the light-matter interaction strength, where we introduce a novel SC tunable coupler

device that allows for the direct dc-flux control of qubit-qubit or qubit-cavity coupling strength

without sacrificing qubit coherence, as well as the convenient realization of blue- and red-sideband

interactions through appropriate choice of parametric flux-modulation frequency. By engineering

the dissipative system-environment interactions through sophisticated parametric control of this

tunable coupler device, we achieve the autonomous stabilization of arbitrary qubit states, in a

manner akin to laser cooling in atomic physics. Finally, we present our on-going experimental

effort of extending the idea of autonomous stabilization to autonomous quantum error correction,

an important step towards the ultimate realization of the universal quantum computer.
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CHAPTER 1

INTRODUCTION TO SUPERCONDUCTING QUBITS

To begin our story with the beginning of our story, we record that the theory of quantum mechanics

was born almost one hundred years ago. Ever since its inception, quantum mechanics has revo-

lutionized our understanding of the fundamental principles of nature. While quantum mechanics

governs the way how microscopic particles behave, in our everyday life, macroscopic objects that

are composed of these particles rarely display quantum effects for direct observation, making the

study and control of individual quantum systems inherently exciting and challenging. Tremendous

effort has been devoted to the deeper understanding and practical application of quantum mechan-

ics over the years. The first generation of quantum technology has seen the invention of transistors

and laser, yet they are still “classical machines” that behave and are used in classical ways on

the macroscopic level (as all classical machines do). It was not until the early 1980s that, based

upon earlier theoretical developments and experimental progress, more and more people started to

realize the value of building “quantum machines” that are operated fundamentally through quan-

tum mechanical principles - by leveraging the unique quantum features these machines exhibits,

they can easily outperform their classical counterparts. New seeds, such as quantum comput-

ing, quantum communication, and quantum cryptography, begin to grow and prosper from the

cross-pollination of quantum mechanics and other disciplines including computer science and in-

formation theory, and matures into the booming field of quantum information science as we know

it today.

The introduction, like the remaining part of this dissertation, will focus on quantum com-

putation and its physical realization via superconducting qubits. We aim to provide high-level

descriptions for these basic concepts, leaving more detailed discussions for the following chapters.
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1.1 Basic Idea of Quantum Computing

As Richard Feynman famously noted [1], “If you want to make a simulation of nature, you’d

better make it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look

so easy.” The bizarre quantum natures, such as entanglement and superposition of quantum states,

impedes the efficient simulation of quantum many-body systems through classical means. This is

both a curse and a blessing because in return it provides powerful computational resources, such

as qubits and quantum algorithms, for the simulation of such systems and beyond. This is known

as the art of quantum computing [2, 3, 4].

1.1.1 Qubit: quantum bit

Akin to the classical bit that carries the minimum amount of classical information, the quantum

bit, commonly referred to as “qubit”, is the basic unit of quantum information. A classical bit can

be represented by a binary digit with two states 0 and 1. The state of a classical bit is deterministic

- it is either 0 or 1. On the contrary, a qubit can be in a coherent superposition of both 0 and 1, a

striking feature unique to quantum states. The general state of a qubit can be written as

|ψ〉 = α |0〉+ β |1〉 , (1.1)

where α and β are normalized complex numbers, |α|2 + |β|2 = 1. Here, |0〉 and |1〉 are orthogonal

basis vectors in the 2-dimensional Hilbert space, 〈i|j〉 = δij .

There are various physical implementations of a qubit, from the polarization of a photon to the

angular moment of spin-half particles and so on. In principle, any two-level quantum-mechanical

system can be used as a qubit, even multilevel systems too as long as the addressability of an in-

dividual two-level subspace is guaranteed, as we will see later in the example of superconducting

qubits. However, this does not necessarily suggest that all qubits are created equal, as there are sig-

nificant variances among different realizations in terms of their quality, measured by the coherence

properties and the feasibility of control, readout, storage, etc.
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1.1.2 The Bloch sphere representation of qubit

The state of a single qubit can be better visualized by recasting Eq. 1.1 into the following form,

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 , (1.2)

which immediately acquires a geometrical meaning as the two parameters, 0 ≤ θ ≤ π and 0 ≤

φ ≤ 2π, can be directly related to the polar and azimuthal angles of a sphere, known as the Bloch

sphere, shown in Fig. 1.1(a). The red arrow, a.k.a the Bloch vector, stands for a single qubit with

its information stored in its orientation. It is easy to verify that the north and south pole of the

Bloch sphere represent |0〉 and |1〉 states, while along the equator are the equal superpositions of

the basis states with different phases.

Pure states described by Eq. 1.1 and 1.2 are represented by Bloch vectors of unit length. Bloch

vectors shorter than unity, on the other hand, represent “mixed states” that are inside of the Bloch

sphere and are comprised of a statistical ensemble of pure states |ψi〉 with classical probabilities

pi,

ρ =
∑
i

pi |ψi〉 〈ψi| ,
∑
i

pi = 1. (1.3)

As Fig. 1.1(b) shows, the decomposition of a given mixed state into pure states is, generally

speaking, not unique, except for the eigen-decomposition where the pure state components are the

eigenstates at the crossing between the Bloch sphere and the Bloch vector. In reality, almost every

quantum state that we can create is a mixed state no matter how close it is to a pure state, because of

the inevitable loss of quantum information within the state preparation process. The most extreme

case is the “maximally mixed state” at the center of the Bloch sphere which is an even mixture

of two bases states, and is mathematically equivalent to the identity matrix. In this case, all the

quantum information is completely lost and the state becomes classical again.

Using the density matrix ρ appearing in Eq. 1.3, we can conveniently express an arbitrary state

3



(a) (b)

Figure 1.1: The Bloch sphere representation of a qubit state.(a) The pure state is represented by
the Bloch vector of unit length. (b) Non-uniqueness of the decomposition of a mixed state.

of the qubit, whether it be pure or mixed, as a function of the Bloch vector in the following way:

ρ =
1

2
(I + ⇀n · ⇀σ) , (1.4)

where I is the identity matrix, ⇀n =
(
nx, ny, nz

)
is the Bloch vector, and ⇀σ =

(
σx, σy, σz

)
is the

Pauli vector with the Pauli matrices defined by

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (1.5)

1.1.3 Quantum entanglement

Entanglement is yet another profound or even spooky (in Einstein’s words) phenomenon exclu-

sively found in the quantum world. Entanglement occurs for a multi-body quantum system when

correlation exists among its local constituents so that the overall state ρ CANNOT be written as a

product of each individual state ρi as below,

ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn = ⊗ni ρi, (1.6)
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nor, in a broader sense, a “separable state” in the form of

ρ =
∑
k

pkρk1 ⊗ ρk2 ⊗ · · · ⊗ ρkn =
∑
k

pk ⊗nki ρi,
∑
k

pk = 1. (1.7)

The product state in Eq. 1.6 is obviously a special case of the separable state in Eq. 1.7. If a

density matrix cannot be written in the form of a separable state, it is called an “entangled state”.

One class of the most important entangled states are the following “Bell states” [5],

∣∣ψ±〉 =
1√
2

(|01〉 ± |10〉) ,
∣∣φ±〉 =

1√
2

(|00〉 ± |11〉) , (1.8)

which are the necessary ingredients in various quantum communication protocols. A common

misbelief about entanglement is that information can be communicated faster-than-light (FTL)

through measurement of the Bell state: suppose Alice and Bob each hold a particle of Bell state∣∣ψ+
〉

and they separate far away from each other. A paradox then arises that if Bob measures

his particle (particle B) and finds it to be in the |0〉 (|1〉) state, then instantaneously the particle

that Alice holds (particle A) will collapse into the state of |1〉 (|0〉), which “violates” the special

relativity - except this is no true. In fact, Alice would not notice any difference in her particle

regardless of the outcome of Bob’s measurement, without classical communication between the

two parties. This is known as the “no-communication theorem” [6, 7] - no FTL communication

allowed after all, there is nothing spooky about entanglement!

Nonetheless, the study of quantum entanglement, such as understanding its classification and

detection [8, 9, 10, 11, 12, 13], is rightfully one of the most interesting topics in the field of

quantum information theory, which is well-motivated by the fact that entanglement is exploited

as a key resource in every aspect of quantum computation and quantum communication. Perhaps

it is not an exaggeration to say that entanglement is what makes the quantum speedup possible

- quantum parallelism residing in superposition alone is not enough, as Scott Aaronson put it

“quantum computers would not solve hard search problems instantaneously by simply trying all

the possible solutions at once”, but one needs to employ entanglement to interfere the unwanted
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paths away, leaving only the desired answer.

1.1.4 Analog and digital quantum simulation

Suppose we want to simulate a system with initial state |ψ〉 evolving under some Hamiltonian Ĥ,

|ψ (t)〉 = e−iĤt/~ |ψ (0)〉 , (1.9)

for the sake of brevity here we assume a time-independent Hamiltonian and a closed system with-

out any loss. One may be tempted to calculate the propagator U (t) = e−iĤt/~ for each t, but will

soon be stuck in the same conundrum as the Indian King in the wheat and chessboard problem - the

resource for such an operation quickly explodes when the size of the system n becomes large, as

the complexity of this calculation scales exponentially as O
(
23n
)
. While exact calculations based

on first principles are only possible for small Hilbert spaces, approximation methods such as mean-

field theory, tensor network theory, density functional theory and quantum Monte Carlo algorithms

all have their limitations [14]. As the most “original” application of quantum computation, quan-

tum simulation [15, 16, 17], which aims to mimic the dynamical or static behavior of the quantum

system of interest via another more controllable quantum platform (the quantum simulator), is per-

haps by far the most realistic path to achieving quantum advantage for practical subjects such as the

simulation of high-Tc superconductivity [18, 19], quantum phase transitions [20, 21, 22, 23, 16],

quantum chemistry [24, 25, 26], etc.

Quantum simulation can be loosely classified into digital and analog quantum simulation. In

digital quantum simulation, the continuous time-space of the evolution is discretized (digitized)

so that the evolution operator can be decomposed and implemented through the application of a

sequence of single- and two-qubit gates from a universal quantum gate set [27, 28, 29, 30, 31].

Digital quantum simulation is especially helpful when the system Hamiltonian can be written as a

sum of subsystem Hamiltonians,

Ĥ =
∑
k

Ĥk, (1.10)
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where the subsystems do not commute with each other, while each being easier to compute than

the overall Hamiltonian. Then, according to the first-order Trotter formula [32]

eA+B = lim
n→∞

(
eA/neB/n

)n
, (1.11)

the evolution operator can be rewritten as

U (t) = e−
i
~
∑
k Ĥkt ≈

(∏
k

e−
i
~Ĥk t

N

)N
, (1.12)

when t
N → 0. Each term in the product can be decomposed into single- and two-qubit gates, while

the product forms a gate sequence and the evolution operator is implemented through applying the

sequence N times. Because of this, digital quantum simulation is a highly universal approach that

can be reprogrammed to simulate any local quantum system within its computational capacity. On

the downside, how to efficiently scale up such as digital quantum simulator while maintaining its

efficiency in performing the universal gate set is a difficult open problem.

In contrast, the idea of analog quantum simulation is to construct another system that bears a

Hamiltonian Ĥsim closely resembling Ĥ so that its evolution of state, which we can better control

and measure, can be mapped back to the original system to accomplish the simulation of it in

different parameter regimes and conditions. Such analog simulators are single-purpose devices

that trade in universality for lower errors and higher scalability for particular problems, but in

return they become less versatile than digital quantum simulators for simulating various other

systems with different Hamiltonians. One such example of the analog quantum simulator is the

recent work on the simulation of the Mott insulator of microwave photons with superconducting

qubits [33].

Illustrated in Fig. 1.2, eight tunable superconducting qubits with nearest-neighboring couplings
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From Simon Lab at UChicago

Figure 1.2: Building a Bose Hubbard lattice with a superconducting circuit.

constitute a one-dimensional lattice, with a Hamiltonian given by

Ĥ/~ = −
∑
〈ij〉

Jij â
†
i âj +

U

2

∑
i

n̂i (n̂i − 1) +
∑
i

εin̂i. (1.13)

This is none other than the well-known Bose-Hubbard Hamiltonian, a paradigm for strongly inter-

acting bosons. Hence the usefulness of the simulator for the exploration of Bose Hubbard physics

such as phase transition and in this particular case, the stabilization of Mott insulator phase.

We need to point out that, while in this case the natural Hamiltonian of the simulator coincides

with the simulated system, in general this is not a requirement for analog quantum simulations,

provided that the simulator possesses enough tunability to support the engineering of its Hamil-

tonian to better accommodates the goal of the simulation. We will demonstrate how this can be

achieved through the parametric control of superconducting circuits, with more concrete examples

in the following chapters .
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1.2 Quantum Computing with Superconducting Qubit

As alluded to earlier, most qubit proposals are built upon microscopic systems that naturally exhibit

quantum effects, such as atoms [34, 35, 36, 37], ions [38, 39, 40, 41], electron or nuclei spin [42,

43, 44, 45], etc. While they are reasonable candidates as microscopic particles are intrinsically

quantum coherent once carefully isolated from the environment, the microscopic nature of these

systems also put constraints on their usage as qubits. For instance, while a very well-isolated two-

level atom seems to be an excellent choice for quantum information storage, it does not interact

very strongly with a propagating photon so that it is difficult to control its state with a shining

laser. This can be partially resolved by placing the atom into a high-finesse optical cavity, where

photons can bounce back and forth between the walls of the cavity and interact with the atom for an

effectively much longer time, with a Hamiltonian described by the quantum Rabi model in cavity

quantum electrodynamics1 (cavity QED):

H/~ = ωra
†a+

ωa
2
σz + g

(
a† + a

)
σx. (1.14)

The first two terms represent the energies of cavity mode (standing wave as a result of pho-

ton interference) and the atom, whereas the last term is the coupling between the cavity and the

atom. The study of cavity QED with natural atoms embedded in optical cavities is fundamentally

interesting and lays a solid groundwork as a prototype quantum computing system for many other

possible candidates. In the meantime, a considerable amount of effort in the optimization of the

system is required for compensating the tiny dipole moment of natural atoms and the weak inter-

atom interaction strength, potentially limiting its scalability for quantum computation purposes.

An alternative to the natural, microscopic systems is the artificial atom made with supercon-

ducting circuits [46, 47, 48, 49, 50]. While being a macroscopic system formed by hundreds

of billions of atoms, the collective electrodynamical modes within the circuit still exhibit quan-

1. From this point forward we will use a convention that σz is the atomic inversion operator defined as the negative
Pauli-Z operator.
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tum behavior, much like natural atoms. Thanks to its macroscopic size, the dipole moment of a

superconducting qubit can be engineered many orders of magnitude larger than a natural atom,

engendering the relatively easy attainment of strong couplings between different modes, as well as

more efficient control and readout schemes. Further, superconducting qubits are highly scalable

as they can be fabricated with standard lithography techniques for making computer chips. Unlike

in cavity QED where trapping the atoms takes additional experimental overhead, superconduct-

ing qubits will stably stay at precisely the same locations without ever being lost due to inelastic

collisions. Finally, as an artificial atom, the parameters influencing its quantum behavior can be

fine-tuned either in the design or even in situ after it is made, allowing for extremely versatile

manipulations at a level difficult or impossible with natural atoms.

1.2.1 Quantum LC oscillator

In principle, being macroscopic per se does not prohibit an object from being quantum, but its

interaction with the environment will. The reason why quantum effects are not common to see

in everyday life is not only because we are too big, but more importantly because we are too

hot (thermally populated) and too messy (disordered)! For any classical mode, mechanical or

electrical, it is just a matter of proper isolation and cooling before we can witness its quantum

properties. Take the simplest case of a pendulum as an example (Fig. 1.3(a)). Under small angles

(θ ∼ 0), the Lagrangian is readily written

L = T − V =
1

2
ml2θ̇2 − 1

2
mglθ2, (1.15)

which yields the Euler-Lagrangian equation of motion

θ̈ +
g

l
θ = 0, (1.16)
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(a) (b) (c)

Figure 1.3: The analogy between a classical pendulum and a quantum LC oscillator. (a) The
pendulum, although macroscopic, can still be thought of as a quantum object, but does not typically
reveal its quantum nature due to its poor isolation from the environment. (b) The collective motion
of electrons (or Cooper pairs) in a microwave LC oscillator possesses quantum coherence when
the circuit is cooled down to 20 mK. (c) Both the pendulum and the microwave LC oscillator can
be quantized into quantum harmonic oscillators, with linear energy levels evenly spaced by their
oscillation frequency ~ω.

where we can find the oscillation frequency to be

ω =

√
g

l
. (1.17)

So far we have applied a completely classical-mechanical treatment of the pendulum, but there is

nothing to stop us from quantizing the pendulum into a quantum mode. To this end, we find the

“momentum” variable conjugate to the angle,

L =
∂L
∂θ̇

= ml2θ = mlv, (1.18)

which has a physical interpretation of angular momentum. Now, the angle and angular momentum

can be promoted to quantum operators following canonical quantization,

[
θ̂, L̂

]
= θ̂L̂− L̂θ̂ = i~, (1.19)
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so that the classical Hamiltonian

H = Lθ̇ − L =
L2

2ml2
+

1

2
mglθ2 (1.20)

can be rewritten using the ladder operators as

Ĥ/~ = ω

(
â†â+

1

2

)
, (1.21)

with

â =

√
mωl2

2~

(
θ̂ +

i

mωl2
L̂

)
, â† =

√
mωl2

2~

(
θ̂ − i

mωl2
L̂

)
. (1.22)

In an ideal world where the pendulum is perfectly isolated from the environment, it should just

act like a quantum harmonic oscillator dictated by Eq. 1.21, with equidistant energy levels shown

in Fig 1.3(c). In reality, the pendulum will interact with the environment until it reaches thermal

equilibrium at temperature T , and falls into a thermal mixed state

ρ =
∑
n

Pn |n〉 〈n| , (1.23)

with the population of its n-th level following the Maxwell-Boltzmann distribution:

Pn =
1

Z
gne
−n~ω/kBT , (1.24)

where Z is the partition function, gn is the degeneracy of the n-th level, kB is the Boltzmann

constant. Suppose the macroscopic pendulum has an oscillation frequency of 2π × 10 Hz, then

according to Eq. 1.24, at room temperature T ≈ 300K, the pendulum has a mean excitation number

as high as 6.25 × 1011! This corresponds to a highly classical state that resembles a maximally

mixed state in the low energy space. Equivalently, in order to achieve a pure quantum state with

99% population in the ground state |0〉, the pendulum will have to be cooled down to a ridiculously

low temperature of 0.1 nK. A more practical solution relies on modifying the mode frequency
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instead, either by making the pendulum much smaller or the effective g much larger. The same

calculation shows that with mode frequency higher than 2 GHz, it only takes 20 mK to ensure 99%

fidelity for the ground state, well within the reach of modern dilution refrigerators.

While in theory it is possible to build such a “macroscopic quantum coherence” with a pen-

dulum (in fact, it has already been realized in the forms of quantum drum [51] and other optome-

chanical devices), it is much easier to use microwave LC oscillators as artificial quantum modes.

A standard oscillator circuit, as demonstrated in Fig. 1.3(b), is formed by an inductor L and a

capacitor C, which together give rise to the oscillation of the collective motion of electrons at

frequency ω = 1/
√
LC. Following the same quantization procedure but with the “position” and

“momentum” operators being the inductor flux Φ and the capacitor charge Q1,

[
Φ̂, Q̂

]
= i~, (1.25)

the Hamiltonian of the LC oscillator in the second quantization form is found to be

Ĥ/~ = ω

(
â†â+

1

2

)
, (1.26)

and the flux and charge operators can also be expressed in ladder operators as

Φ̂ =

√
~Zc

2

(
a† + a

)
, Q̂ = i

√
~

2Zc

(
a† − a

)
, (1.27)

where Zc =
√
L/C is the characteristic impedance of the oscillator.

According to our previous discussion, once the oscillation frequency is in the GHz level, the

quantum feature of the LC oscillator can become accessible at experimentally feasible low tem-

peratures. This can be readily realized by simply making the size of the circuit smaller such that

it resonates with microwaves at micrometer wavelength. Unfortunately this is not quite enough

1. The subtlety here is that the sign of the commutation relationship actually depends on which variable is treated
as the “position” or “momentum”. While this doesn’t affect the final quantization result, it can simplify further
calculations for certain regimes.
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to make a good quantum LC oscillator yet, because typically an LC oscillator is damped from

coupling to a dissipative environment represented by the resistor R in the circuit diagram, which

can significantly degrade its quantum coherence properties. Luckily, as another crucial benefit of

operating the circuit at few tens of milli-Kelvin, if we make the microwave LC circuit out of su-

perconducting material such as Aluminum or Niobium with critical temperatures higher than the

operating temperature, electrons will be bounded into a coherent condensate of bosons (Cooper

pairs) and the circuit will transition into a resistance-free superconducting phase, eliminating the

most serious source of dissipation and noise.

1.2.2 Josephson junction

Superconducting LC oscillators are quantum harmonic oscillators in the microwave domain, repli-

cating the role of the optical cavities in cavity QED systems. However, just like natural atoms are a

necessity in cavity QED, harmonic oscillators alone are not sufficient for circuit QED because their

linear energy levels prevent their usage as two-level atoms. In order to selectively address a spe-

cific pair of levels with a single photon, we need to introduce non-linearity (anharmonicity) into the

system in a non-dissipative manner. Amazingly, this is made possible by a superconducting device

called the Josephson junction [52, 53]. Pictured in Fig. 1.4(b), the most common method to create

a Josephson junction is via two superconducting electrodes separated by a thin insulating oxide,

through which the coherent tunneling of Cooper pairs may occur and give rise to a supercurrent of

I = Ic sin θ, (1.28)

where the critical current Ic is the maximum current that the junction can sustain and θ is the

superconducting phase difference between the two sides of the dioxide barrier. This phase also

evolves in time in the presence of a potential difference V across the junction according to

V = φ0
∂θ

∂t
, (1.29)
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where φ0 = ~/2e is the reduced flux quantum. From the above Josephson equations we find

V =
φ0

Ic cos θ

dI

dt
, (1.30)

which suggests that the Josephson inductance can be defined as

LJ =
φ0

Ic cos θ
. (1.31)

Recall from Eq. 1.29 that the superconducting phase difference θ is related to the flux through

Φ = φ0θ, (1.32)

we can conclude that the Josephson junction is equivalent to a nonlinear inductor whose inductance

is a function of its flux, with an inductive energy given by

E =

∫
IV dt = φ0Ic sin θ

∂θ

∂t
dt = −EJ cos θ, (1.33)

where EJ = φ0Ic is called the Josephson energy.

So far we have been only considering the energy of the junction arising from the Josephson

effect. If the junction were only inductive, then Eq. 1.33 would fully describe the Josephson

junction. The superconducting phase would be perfectly quantized, represented by a continuous

basis vector |θ〉 with eigenenergy −EJ cos θ, but there would be no way of changing the phase

state, a rather uninteresting quantum circuit. However, we also need to take the capacitive energy

into account, which emerges from the Coulomb charging energy of the parallel plate capacitor

CJ naturally embedded in the S-I-S architecture. The Lagrangian of the Josephson junction then

becomes

L =
1

2
CJφ

2
0θ̇

2 + EJ cos θ, (1.34)

in which Eq. 1.29 is used again. Then, the classical equation of motion can be acquired from the
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Figure 1.4: The analogy between a nonlinear pendulum and a Josephson junction. (a) The motion
of the pendulum becomes nonlinear when it is allowed to make large angular excursions. (b)
The tunneling of the Cooper pairs through the barrier, along with the electrostatic charging of
the parallel superconducting plates, underlies the nonlinear dynamics of the Josephson junction
characterized by the charging energyEc and the Josephson energyEJ . (c) The nonlinear pendulum
and the Josephson junction share the same cosine potential energy which gives rise to unevenly-
spaced energy levels.

Euler-Lagrangian equation,

CJφ
2
0θ̈ + EJ sin θ = 0, (1.35)

which is mathematically equivalent to the oscillation of a nonlinear pendulum at large angle

(Fig. 1.4 (a)).

More interestingly, we obtain the Hamiltonian from Legendre transformation,

Ĥ =
P̂ 2

2CJφ
2
0

− EJ cos θ̂, (1.36)

where P̂ = CJφ
2
0θ̇ is the momentum operator that obeys the commutation relationship with θ̂,

[
θ̂, P̂

]
= i~. (1.37)

As P̂ is related to the charge stored in the capacitor through P̂ = φ0Q̂, Eq. 1.36 can be written in

a more meaning way as

Ĥ = 4Ecn̂
2 − EJ cos θ̂, (1.38)

in terms of the number of Cooper pairs n̂ charging the capacitor. Here, Ec = e2/2CJ is the
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charging energy, and the two operators follow the commutation relationship

[
θ̂, n̂
]

= i. (1.39)

Thus, we may write out the Schrödinger equation in the phase basis

−4Ec
∂2ψ (θ)

∂θ2
− EJ cos θψ (θ) = Eψ (θ) . (1.40)

by making use of n̂ = −i∂/∂θ. This is equivalent to a single particle in a 1D cosine potential,

see Fig. 1.4(c). Due to the nonlinearity of the cosine potential, the eigenenergies of the Josephson

junction are no longer evenly-spaced like the quantum harmonic oscillator, but exhibit an anhar-

monicity α = E21 − E10 critical for its control as a qubit. The calculation of the individual

eigenenergy and the wavefunction can be executed either by numerically solving the 2nd order

ODE, or computing from the analytical Mathieu’s functions [54, 48].

It is vital to note that here the Cooper pair number operator has integer eigenvalues, while the

phase operator is defined within [−π, π], similar to the angle of the nonlinear pendulum. Because

θ and θ + 2π physically correspond to the same state, the wavefunction must also follow the 2π-

periodicity as ψ (θ) = ψ (θ + 2π), which is not always the case for periodic lattice according to

the Bloch theorem. This periodic boundary condition is lifted, however, if the Josephson junction

is shunted by a linear inductance that breaks the periodicity of the potential energy.

The Hamiltonian in Eq. 1.38 can also be written in the charge basis1,

Ĥ = 4Ec
∑
n

n2 |n〉 〈n| − EJ
2

∑
n

(|n〉 〈n+ 1|+ |n+ 1〉 〈n|) , (1.41)

which is recognized as a 1D tight-binding model, with the on-site energy being the charging energy,

and the tunneling energy of the Cooper pair equal to the Josephson energy. When Ec � EJ ,

dubbed as the charge qubit regime, intuitively the low-energy manifold is confined within a small

1. See Appendix. 6.1 for detailed derivation.
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〈n〉 range, and can be directly found through the diagonalization of the Hamiltonian by keeping

enough |n〉 levels greater than the spread of the wavefunction. In the opposite “transmon regime”

where Ec � EJ , charge basis will no longer be a good representation because the wavefunction

is widely dispersed across many charge basis, making the diagonalization more susceptible to

truncation errors. In either case, with properly designed circuit parameters, the Josephson junction

can provide enough nonlinearity suitable for quantum operations as a “superconducting qubit”.

1.2.3 Superconducting Quantum Interference Devices

Another important superconducting element is the Superconducting Quantum Interference Device

(SQuID) [55, 56], which is a crucial building block for flux-tunable superconducting circuits in

particular relevance to this thesis. Here and in the following, SQuID will mostly refer to dc-

SQuIDs made of split Josephson junctions presented in Fig. 1.5, but it should be noted that rf-

SQuID composed of a Josephson junction shunted by a linear inductance is also of great interest

as a potential candidate of superconducting qubits [57, 58].

The dc-SQuID is essentially a superconducting loop formed by two Josephson junctions that

is threaded by an external flux, creating a difference between the two superconducting phases

proportional to the penetrating flux of Φext within a single period of flux quantum Φ0,

θ2 − θ1 = 2πn+ 2π
Φext
Φ0

. (1.42)

Assuming the Josephson energies of the two junctions are EJ1,2, and the charging energies Ec1,2,

we write out the Lagrangian of the split junction as

L =
1

2
C1Φ̇2

1 +
1

2
C2Φ̇2

2 + EJ1 cos θ1 + EJ2 cos θ2 (1.43)

where the flux variables Φ1,2 are related to the phase variables θ1,2 through

θ1,2 = 2πΦ1,2/Φ0. (1.44)
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Figure 1.5: The sketch of a split Josephson junction and its circuit model. The superconducting
loop formed by the two junctions allows for external flux control of the circuit.

Eq. 1.42 to 1.44 combine to a new Lagrangian

L =
1

2
(C1 + C2) Φ̇2

1 + C2Φ̇extΦ̇1 + EJ1 cos θ1 + EJ2 cos

(
θ1 + 2π

Φext
Φ0

)
, (1.45)

which finally leads to a Hamiltonian

Ĥ =

(
4e2n̂1 − C2Φ̇ext

)2

2 (C1 + C2)
− EJ1 cos θ̂1 − EJ2 cos

(
θ̂1 + 2π

Φext
Φ0

)
, (1.46)

with the same commutation relationship between n̂1 and θ̂1 as Eq. 1.39. Further assuming the

external flux to be quasi-static1, i.e. Φ̇ext ≈ 0, Eq. 1.46 is reduced to the formed of a single

Josephson junction Hamiltonian,

Ĥ = 4Ecn̂
2 − Eeff

J cos
(
θ̂ + θ0

)
, (1.47)

where Ec = e2/2 (C1 + C2), Eeff
J is the effective Josephson energy modified by the external flux,

Eeff
J = (EJ1 + EJ2)

√
cos

(
π

Φext
Φ0

)2

+

(
EJ1 − EJ2

EJ1 + EJ2

)2

sin

(
π

Φext
Φ0

)2

, (1.48)

and θ0 is the phase offset

θ0 = π
Φext
Φ0
− arctan

[
EJ1 − EJ2

EJ1 + EJ2
tan

(
π

Φext
Φ0

)]
. (1.49)

1. The case with time-dependent external flux will be discussed in Chapter 2.
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When the flux is quasi-static, the phase offset can be eliminated by the phase displacement trans-

formation Ûθ0
= exp (iθ0n̂),

Ĥnew = Ûθ0
HÛ†θ0

= 4Ecn̂
2 − Eeff

J cos θ̂, (1.50)

without affecting the boundary condition of the wavefunction1. Observe that the detailed form

of θ0 is dependent on our definition of the charge/phase variable in Eq. 1.45. In the static flux

scenario, the Hamiltonian is invariant under any normalized linear combination of θ1 and θ2 as the

phase offset can always be gauged away. We may approximate the dc-SQuID as a single Josephson

junction with flux-tunable Josephson energy.

1.2.4 Control, readout and storage

Before we have seen how the superconducting LC circuit can act like a quantum harmonic oscil-

lator and the Josephson junction as a nonlinear artificial atom. By integrating these two critical

components together, we can replicate the same light-matter interaction between the optical cavity

and natural atoms as in the cavity QED system. The laser drives in cavity QED is then replaced by

dc or microwave pulses for the control and readout of the circuit QED system, represented by the

conceptual circuit diagram in Fig. 1.6 with a driven Hamiltonian (with ~ = 1)

Ĥ = ω̃râ
†â+

ω̃q
2
σz + χâ†âσz + Ĥdrive (t) , (1.51)

where ω̃r,q are the dressed frequencies of the qubit and the cavity different from their bare frequen-

cies ωr,q, χ is a qubit-state-dependent shift to the cavity (or a photon-number-dependent shift to

the qubit, depending on which mode one looks at), and Ĥdrive (t) stands for the time-dependent ex-

ternal drive that brings about all kinds of interesting dynamics. Some may even argue that it is the

1. This is because there is no real boundary for the charge basis as it can go to±∞, to be contrasted with the phase
variable which is compact so that a charge displacement transformation can indeed alter the boundary condition.
This is why the charge offset (see more discussions in Chapter 2) generally affects the energy spectrum unless the
compactness of θ is removed by, say, the shunting inductor in the fluxonium’s case.
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Figure 1.6: A generalized superconducting circuit model with all the control knobs such as voltage,
current and flux controls.

Ĥdrive (t) that makes superconducting circuit such an amazing tool for probing quantum physics,

as it can be flexibly engineered to possess a wealth of interaction terms with decent amplitudes,

through quasi-static or dynamic modulations of the circuit control knobs involving voltage, current

and flux. Qubit states can be flipped and multiple qubits can simultaneously interact with each,

fulfilling the requirement for universal quantum operations. Circuit QED features substantially

larger coupling strength that facilitates the high-fidelity dispersive readout of the qubit state from

the χ term, which is a quantum non-demolition measurement1 of σz that can be applied either

repetitively or in a single-shot fashion with the aid of parametric amplifiers [59].

Aside from nice control and readout properties, superconducting qubits in different parameter

regimes are optimized over the years to achieve long coherence times for storing quantum infor-

mation. From the prototype qubit of Cooper-pair box which only has nanosecond level coherence

time barely enough for the observation of coherent oscillation [60], to the modern transmon and

fluxonium qubit that approach millisecond lifetime [61, 62], it only takes three years on average

for a 10-fold improvement of the coherence time, a phenomenon nicknamed “Schoelkopf’s law”

as the quantum computing version of the “Moore’s law”. In this process, a variety of useful qubit

concepts have been demonstrated, including the quantronium [63], the phase qubit [64], the flux

1. This is only true in a perturbation sense as the electric-dipole coupling doesn’t commute with σz .
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qubit [46], tunable coupling circuits [65, 66, 67, 68, 69, 70, 71, 72], etc, accompanied by scien-

tific and technological breakthroughs within and beyond circuit QED. Superconducting quantum

circuits are now being scaled up experimentally to systems with several tens of qubits [73, 74, 75],

capable of performing a large number of high-fidelity quantum gates with control and readout

operations.

1.3 Thesis Overview

We intend to put the experiment and theory on equal footing in this dissertation. Chapter 2 intro-

duces some frequently used analytical and numerical methods for circuit QED calculation, crucial

for the understanding and the design of superconducting circuits. Their applications are demon-

strated with concrete examples for more intuition comprehension of each case. Mathematical

descriptions of the driven Hamiltonians are found for superconducting circuits subject to different

parametric modulations, namely the modulation of voltage, current and flux as the focus of this

thesis. Discussion is also made for the correct quantization scheme of flux-driven circuits. Chap-

ter 3 analyzes how “sidebands”, i.e. the quasi-energy levels of the qubit, can be generated when

the qubit frequency is parametrically modulated, useful for the creation of the stimulated Vacuum

Rabi oscillation that is vital to scalable circuit QED architecture. The data begins to flow in this

chapter where the multimode circuit and the quantum communication circuits are experimentally

tested under qubit frequency modulation, with a pursuit of achieving higher connectivity and scal-

ability in superconducting circuits. The investigation of parametric flux modulation continues in

Chapter 4, but with a different focus on the modulation of the coupling strength, which calls for

more dedicated tunable coupling circuit devices. Based on a solid theoretical ground, We explore

how sideband interactions come into play through the parametric control of our tunable coupling

circuit, and how they can be manipulated in the experiment to our advantage for parametric ampli-

fication, photon swapping operation and most interestingly, the universal stabilization of a single

qubit state as well as two qubit Bell states. This sets a firm foundation for Chapter 5, where all

the previous knowledge of driven superconducting circuits are combined to achieve the ultimate
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goal of autonomous quantum error correction (AQEC), a prerequisite for the realization of univer-

sal quantum computation. We demonstrate our experimental implementation of AQEC with the

specially designed VSLQ circuit, and provide a thorough explanation of its working mechanism

built on top of driven dissipation processes. Rather than a report of separated experiments, this

thesis aims to present a dynamic collection of several published works as well as newly-made un-

published observations, both in theory and in experiment, that are organically interlinked by the

theme line of parametric flux control of superconducting circuits, testifying its full power as an

indispensable resource of circuit QED that is worth further explorations.

23



CHAPTER 2

CIRCUIT QUANTUM ELECTRODYNAMICS

In the previous chapter, we introduced some background knowledge about quantum computation

and set up the basic framework of quantum computing with superconducting circuits, where we

have seen how the individual components of a circuit, such as the LC oscillator and the Josephson

junction, can be treated as linear and nonlinear quantum modes. In practice, a useful supercon-

ducting circuit possessing adequate functionalities is almost always a multiplex system containing

several or even tens of quantum modes coupled to each other. It is therefore of vital importance

to develop a quantum description for such integrated quantum circuits as well as for the external

drives they are subject to. In this chapter, we first briefly review the circuit quantization technique

capable of systematically finding static and driven circuit Hamiltonians, then proceed to establish

the Hamiltonian model for different types of parametric modulations. Important canonical trans-

formations and useful numerical simulation methods are also covered, aiming to provide further

insights to the reader. Throughout this chapter, for better concreteness and consistency, we base

all our discussions on one particular circuit example depicted in Fig. 1.6, which is a hypotheti-

cal circuit model containing all the circuit elements and control knobs well-suited for pedagogical

purpose.

2.1 Quantization of Superconducting Circuits

In this section we restrict our discussions to the circuits with physical sizes much smaller than their

characteristic wavelengths, allowing for a lumped element interpretation decomposing the circuit

into separate inductors and capacitors. The central idea of circuit quantization can be condensed

into the following procedures [76, 77]: first find the energy for all inductive elements based on their

flux (phase) drops, which is Φ2/2L for a linear inductor and −EJ cos (2πΦ/Φ0) for a Josephson

junction, then the voltage Vi at each node i of the circuit network is determined by circuit geometry

and Kirchhoff’s law as a linear combination of all voltage drops Φ̇, enabling the rest capacitive
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Figure 2.1: Circuit quantization using node flux variables, Φr and Φq.

energy, 1
2CV

2, to be expressed as a function of Φ̇, which can be thought of as the kinetic part of

the circuit Lagrangian while inductive energy the potential part. The circuit Hamiltonian is then

constructed, and the circuit quantization is completed through the canonical quantization process

introduced in Chapter 1.

In actual calculations, it is usually much more convenient to use the “node flux” Φi for each

node i, than the flux drop Φij = Φi − Φj as circuit variables. As a concrete example, let us

consider the quantization of the circuit in Fig. 2.1. Among all the nodes in a circuit, one can

always be chosen as the “reference node” where the node flux is simply set to zero. We set the

node where the circuit is electrically grounded as the reference node, leaving the other two “active

nodes” labeled as Φr and Φq. The circuit Lagrangian is straightforwardly represented by

L = T − V =
1

2
CrΦ̇

2
r +

1

2
CsΦ̇

2
q +

1

2
Cg

(
Φ̇r − Φ̇q

)2
− Φ2

r

2Lr
+ EJΣ cos

(
2π

Φq
Φ0

)
, (2.1)

whereEJΣ is the effective Josephson energy of the SQuID given by Eq. 1.48. The charge variables

are

Qr =
∂L
∂Φ̇r

=
(
Cr + Cg

)
Φ̇r − CgΦ̇q,

Qq =
∂L
∂Φ̇q

=
(
Cs + Cg

)
Φ̇q − CgΦ̇r, (2.2)
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which can be written in the matrix representation as

Q = CΦ̇. (2.3)

Recall that the kinetic energy is actually from 1
2CΦ̇2 which also has a matrix form of

T =
1

2
Φ̇TCΦ̇ =

1

2
QTC−1Q, (2.4)

so the circuit Lagrangian may finally be written in terms of the conjugate variables, Q and Φ:

L = T − V =
1

2
QTC−1Q− Φ2

r

2Lr
+ EJΣ cos

(
2π

Φq
Φ0

)
, (2.5)

and the quantum Hamiltonian after the canonical quantization is

Ĥ =
1

2
Q̂TC−1Q̂ +

Φ̂2
r

2Lr
− EJΣ cos

(
2π

Φ̂q
Φ0

)
. (2.6)

Expanding the kinetic energy and translating everything into the number and phase basis give

Ĥ = 4Ecrn̂
2
r +

1

2
Elθ̂

2
q + 4Ecqn̂

2
q − EJΣ cos θ̂q + 4Ecgn̂rn̂q, (2.7)

which is clearly constituted of a linear oscillator mode and a nonlinear Josephson junction mode,

coupled to each other via the “dipole-dipole” interaction induced by the coupling capacitor. In this

particular case, we can readily transform the basis of the circuit Hamiltonian into the tensor prod-

uct of harmonic oscillator basis and the Mathieu’s function, so that the overall wavefunction of the

coupled system can be easily obtained from matrix rediagonalization. For more general cases, one

can typically follow the same principle of first finding out the spectrum for each mode, either nu-

merically or analytically, and then combining and diagonalizing the joint Hamiltonian. One caveat

should be noticed when the modes are coupled through nonlinear interactions such as a Josephson

energy, where this modular approach becomes ineffective and one needs to numerically solve the
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Schrödinger equation for the complete circuit wavefunction in the multidimensional Hilbert space,

which is of course much more computationally expensive.

2.2 Parametric Modulation of Superconducting Circuits

Parametric modulation is not a new concept in mechanics and electronics, and is usually associated

with frequency conversion and amplification process. The most canonical example of parametric

modulation is perhaps a child on a swing, where modulating frequency at twice the resonance fre-

quency results in an amplification of the oscillation. In this section and in the rest of the thesis,

parametric control of superconducting circuits is defined, in a more general sense, as the engineer-

ing of circuit Hamiltonian with time-dependent circuit parameters, by coupling the circuit to dif-

ferent control knobs. Roughly speaking, superconducting circuits have three typical control knobs,

namely the voltage, current and flux control, which we will describe in the following subsections.

2.2.1 Modulation of gate voltage

The charge control of a superconducting circuit is enabled by coupling a voltage source to an

active node of the circuit, illustrated in Fig. 2.2. For simplicity, we ignore the resonator part of the

circuit for this discussion. The voltage then induces a polarization charge CgVg on the Josephson

capacitor1, which modifies the energy of the Josephson nonlinear mode as2

Ĥ = 4Ec
(
n̂− ng

)2 − EJ cos θ̂, (2.8)

where ng = CgVg/2e is called the charge offset. We ignore the voltage division ofCgVg/
(
Cg + Cr

)
on the resonator for simplicity. Note that the charge offset is a classical quantity as the measure-

ment of the applied external voltage and hence a continuous variable. Microscopically it corre-

1. Cg here is the gate capacitor not to be confused with the coupling capacitor in the previous subsection. The
name “gate” is merely a historical convention originating from the way gates were performed for a Cooper-pair box.

2. See Appendix. 6.2 for its derivation.
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Figure 2.2: Modulation of the gate voltage Vg of a Josephson junction. The resonator part is grayed
out for being irrelevant to the discussion.

sponds to a “bodily displacement of the electron fluid in the electrodes with respect to the ion

lattice” [78]. We may be tempted to formally cancel out the charge offset through a gauge trans-

formation n̂→ n̂+ng, but only at the expense of altering the boundary condition of the Josephson

junction wavefunction in the phase basis, which will no longer be perfectly 2π-periodic but up to

a phase, much like a Bloch wave in the 1D periodic lattice with a wave vector k = ng. Simi-

lar to the band structure exhibited by the solid-state system, the Josephson junction also has an

energy-charge dispersion relation [48],

Em
(
ng
)

= Eca2[ng+k(m,ng)] (−EJ/2Ec) , (2.9)

where aν (q) denotes Mathieu’s characteristic value, and k
(
m,ng

)
is a eigenvalue-sorting function

defined as

k
(
m,ng

)
=
∑
l=±1

[
int
(

2ng +
l

2

)
mod 2

]{
int
(
ng
)

+ l (−1)m [(m+ 1) div 2]
}
. (2.10)

We plot the dispersion relation for 0 < ng < 0.5 under different EJ/Ec ratios 1.0, 10.0 and

50.0, in Fig. 2.3. Noticeably, in the two different regimes where EJ ≤ Ec and EJ � Ec, the

Josephson mode has drastically different properties. The first regime is like a insulator phase

where localization of Cooper pairs prevails, manifested by the strong dependence of the energy
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Figure 2.3: Energy bands of the Josephson nonlinear mode at differentEJ/Ec ratios, withEc fixed
at 0.2 GHz. As the ratio is increased the charge dispersion becomes exponentially suppressed,
making the mode highly immune to charge noise.

spectrum against the perturbation of the charge offset. The lowest two energies have a charge-

tunable spacing of

E01 =

√
E2
J +

[
4Ec

(
1− 2ng

)]2
, (2.11)

which is suitable as a qubit given its large anharmonicity. Indeed, this is the well-known Cooper-

pair box (CPB) [60, 79], one of the early generations of superconducting qubit.

When the EJ/Ec ratio increases, the energy bands begin to lose their dependence on the bias

charge, as the tunneling of Cooper pairs becomes more and more energetically favorable, and the

system settles on a “superfluid” phase insensitive to low energy charge fluctuations. In the extreme

case of EJ � Ec, the system is equivalent to a 1D tight-binding model with nearest-neighbor

hopping, giving rise to a dispersion relation as a cosine function of the wave vector (charge offset),

Em
(
ng
)

= Ēm + εm cos
(
ng2π

)
, (2.12)

with charge dispersion εm being

εm ∼ (−1)m+1Ec
24(m+1)

m!

√
2

π

(
EJ
2Ec

)m
2 +3

4

e−
√

8EJ/Ec . (2.13)

The exponential insensitivity of the energy levels to charge fluctuation endows substantially longer
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coherence time to the so-called transmon qubit, who possesses an offset-charge-free transition

energy between the ground and the first excited state,

E01 =
√

8EJEc − Ec, (2.14)

with anharmonicity α ∼ Ec.

When the gate voltage becomes time-dependent, so will be the charge offset and Eq. 2.8 be-

comes

Ĥ (t) = 4Ecn̂
2 − EJ cos θ̂ − 8Ecng (t) n̂. (2.15)

In the weak interaction limit, assuming the energy scale of the drive term is much less than the static

Hamiltonian, we can safely approximate the drive term as a perturbation which doesn’t affect the

wavefunctions, and can therefore be expressed in the same basis as the static Hamiltonian1,

Ĥ (t) =
(√

8EcEJ − Ec
)
â†â− Ec

2
â†2â2 − 8ng (t)Ec

(
EJ
8Ec

)1/4 i
(
â− â†

)
√

2
, (2.16)

where we have assumed the transmon regime, and kept the leading order perturbation in the ex-

pansion of ladder operators. We see that the voltage modulation is essentially arising from the

coupling between the external field coupled to the dipole moment of the artificial atom, akin to

the interaction between the laser and natural atoms. Just like laser driving in cavity QED, voltage

modulation is the most elementary yet important control scheme in circuit QED that leads to fas-

cinating dynamics such as Rabi oscillation and four-wave mixing that we will further explore in

section 2.3.

1. When the drive term becomes comparable to the static part of the Hamiltonian, a re-quantization of the circuit
at each ng is necessary to find out the correct wavefunctions in either phase or charge basis, which can then be used
for the calculation of the evolution.
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Figure 2.4: Modulation of the bias current Ib of a Josephson junction. The resonator part is grayed
out for being irrelevant to the discussion.

2.2.2 Modulation of bias current

We include the modulation of bias current into our discussion for the sake of completeness and

generality, although this scheme is very rarely practiced outside the field of phase qubits [64].

Shown in Fig. 2.4, a Josephson junction (for simplicity we take the split junction as one, assuming

zero penetrating flux) is biased by an external current Ib from coupling to a current source. The

external current and the Josephson voltage together give rise to a coupling energy of

E =

∫
IbV dt = IbΦ0θ, (2.17)

leading to a circuit Hamiltonian (again neglecting the resonator part) of

Ĥ = 4Ecn̂
2 − EJ cos θ̂ + IbΦ0θ̂, (2.18)

with a potential energy resembling a “tilted washboard”. Phase qubits are typically operated at

strong biasing current approaching the critical current of junction, leading to a cubic well that

traps three levels at the local minimum of the potential, with the lowest two being the qubit and

the top one for readout. Instead, we consider a time-dependent small current Ib (t) modulating a

31



transmon qubit at the “current sweetspot”, where the driven Hamiltonian can be written as

Ĥ (t) =
(√

8EcEJ − Ec
)
â†â− Ec

2
â†2â2 − Ib (t) Φ0

(
8Ec
EJ

)1/4 â+ â†√
2
, (2.19)

which has similar effects to the voltage modulation in Eq. 2.16 as they are off by merely a phase

difference.

2.2.3 Modulation of SQuID flux

In section 1.2.3, we have demonstrated the static tuning of the effective Josephson energy from flux

biasing a dc-SQuID. Here we extend our investigation to the dynamic modulation of the SQuID

flux shown in Fig 2.5, where Φext = 0 is time-dependent and Φ̇ext = 0 no longer holds true for

Eq. 1.46,

Ĥ =

(
4e2n̂1 − C2Φ̇ext (t)

)2

2 (C1 + C2)
− EJ1 cos θ̂1 − EJ2 cos

(
θ̂1 + 2π

Φext (t)

Φ0

)
, (2.20)

Recall that there is a “freedom” in choosing the phase variable - we can parameterize the two

phases in the follow way without violating the flux quantization relation:

Φ1 = Φ0 + r1Φext, Φ2 = Φ0 + r2Φext (2.21)

with r2 − r1 = 1. Plugging them back to the SQuID Lagrangian yields

L =
1

2
(C1 + C2) Φ̇2

0 + (C1r1 + C2r2) Φ̇0Φ̇ext +EJ1 cos (θ0 + r1θext) +EJ2 cos (θ0 + r2θext) ,

(2.22)

and

Ĥ =
Q̂2

0

2 (C1 + C2)
+

(C1r1 + C2r2) Q̂0Φ̇ext
2 (C1 + C2)

−EJ1 cos
(
θ̂0 + r1θext

)
−EJ2 cos

(
θ̂0 + r2θext

)
,

(2.23)
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Figure 2.5: Modulation of the SQuID flux Φext with time-dependent current signal. The resonator
part is grayed out for being irrelevant to the discussion.

where the Φ̇ext terms in the kinetic energy can be removed from setting

r1 = − C2

C1 + C2
, r2 =

C1

C1 + C2
, (2.24)

resulting in a simplified Hamiltonian of

Ĥ =
Q̂2

0

2 (C1 + C2)
− EJ1 cos

(
θ̂0 −

C2θext
C1 + C2

)
− EJ2 cos

(
θ̂0 +

C1θext
C1 + C2

)
. (2.25)

Remarkably, it has been proved that the particular gauge choice in Eq. 2.24 is more than a per-

sonal preference for the sake of Hamiltonian simplification - it is, in fact, the only correct way

of quantizing the circuit under time-dependent external flux1, while all the other choices cause

inconsistency issues for the calculation of flux-driven transition rates [80]. Using trigonometry

relationships Eq. 2.25 can be compactly written as

Ĥ (t) = 4Ecn̂
2 − Eeff

J (t) cos
[
θ̂ + θ0 (t)

]
, (2.26)

1. See Appendix. 6.3 for the general quantization procedure incorporating dynamic flux modulations.
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where Ec = e2/2 (C1 + C2), Eeff
J (t) is the time-dependent effective Josephson energy,

Eeff
J (t) = (EJ1 + EJ2) cos

[
π

Φext (t)

Φ0

]√
1 +

(
EJ1 − EJ2

EJ1 + EJ2

)2

tan

[
π

Φext (t)

Φ0

]2

, (2.27)

and θ0 (t) is the time-dependent phase offset

θ0 (t) =
2πC1

C1 + C2

Φext (t)

Φ0
− arctan

{
EJ1 − EJ2

EJ1 + EJ2
tan

[
π

Φext (t)

Φ0

]}
. (2.28)

Finally, Eq. 2.26 can be regrouped in static and dynamic terms,

Ĥ (t) = 4Ecn̂
2 − fc (t) cos θ̂ + fs (t) sin θ̂

−
{
fc (t)− fc (t)

}
cos θ̂ +

(
fs (t)− fs (t)

)
sin θ̂, (2.29)

where

fc (t) = Eeff
J [Φext (t)] cos [θ0 (t)] , fs (t) = Eeff

J [Φext (t)] sin [θ0 (t)] , (2.30)

and the bar represents time-averaged value. We rewrite Eq. 2.29 as

Ĥ (t) = 4Ecn̂
2 − EJ cos θ̂ − Fc (t) cos θ̂ + Fs (t) sin θ̂, (2.31)

where we have already gauged away the static offset from merging the cosine and sine potential.

For a transmon, this driven Hamiltonian can be expressed in terms of the ladder operators as

H (t) =

(√
8EcEJ − Ec

)
â†â− Ec

2
â†2â2

+
Fc (t)

2

√
2Ec

EJ

(
â† + a

)2
+ Fs (t)

(
8Ec

EJ

)1/4 â+ â†√
2
. (2.32)

This reveals that the transmon frequency could be shifted by the flux modulation due to the non-

linearity Eeff
J (t), which is known as the dc-offset observed in our experiment.
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2.3 Important Canonical Transformations in Circuit-QED

In this section we discuss some of the most important canonical transformations that have been

frequently and widely applied in the field of circuit-QED. These analytical methods are not only

great at reducing the computation complexity mathematical wise, but also immensely helpful for

acquiring physical insight of the quantum system we are working with. We base our discussion on

a detailed problem for the first three transformations, and practice all four on a “grand example” in

the finale subsection.

2.3.1 Bogoliubov-Valatin transformation

The Bogoliubov-Valatin (B-V) transformation was initially developed for finding solutions of BCS

theory in the context of superfluidity, and soon became a successful effective theories for quantum

many-body systems. Here we introduce it, pertinent to our discussions, as a diagonalization tech-

nique for bosonic quadratic Hamiltonians. To get a flavor, let’s take a moment to look at the original

Bogoliubov theory with a Hamiltonian that describes the weakly interacting Bose gas [81],

Ĥ =
∑
p6=0

p2

2m
â
†
pâp +

1

2
gn
∑
p6=0

(
2â
†
pâp + â

†
pâ
†
−p + âpâ−p

)
, (2.33)

where âp is the annihilation operator for a single particle state of a plane wave with momentum p.

Then the spectral properties of this Hamiltonian can be found from the following transformation,

âp = ubp + vb
†
−p, â

†
p = ub

†
p + vb−p. (2.34)

The commutation relationship between ap and a†p imposes a constraint for parameters u and v,

u2 − v2 = 1. (2.35)
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Plugging Eq. 2.34 into Eq. 2.33, we find that the non-diagonal terms disappears at

gn

2

(
u2 + v2

)
+

(
p2

2m
+ gn

)
uv = 0, (2.36)

which, along with Eq. 2.35 ,uniquely determines u and v as

u, v = ±
√
p2/2m+ gn

2ε (p)
± 1

2
, (2.37)

where

ε (p) =

√
gn

m
p2 +

(
p2

2m

)2

(2.38)

gives the famous Bogoliubov dispersion relation. The Hamiltonian is finally diagonalized by the

transformation as

Ĥ = E0 +
∑
p6=0

ε (p) b̂
†
pb̂p. (2.39)

The above Hamiltonian can be taken as a special case of bosonic quadratic Hamiltonians, which

has a more general form of [82, 83]

Ĥ =
n∑

i,j=1

(
mij â

†
i âj + kij â

†
i â
†
j + k∗ij âiâj

)
. (2.40)

For simplicity we limit ourselves to the “normal Hamiltonian”,

Ĥ =
n∑

i,j=1

mij â
†
i âj , (2.41)

withmij = m∗ji. This Hamiltonian only contains the “energy-conserving” terms which is typically

a good approximation in circuit-QED. It can be compactly written in a matrix form,

Ĥ =
1

2
Ψ†MΨ, (2.42)
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where Ψ is the bare-mode vector with the annihilation operator with its i-th element being âi,

and M is the coefficient matrix with mij being its entries. M is obviously Hermitian and can

be diagonalized by a unitary matrix U, UMU† = Ω with the diagonal matrix Ω carrying the

normal-mode energies ωi, which also diagonalize the Hamiltonian into

Ĥ =
1

2
Φ†ΩΦ =

∑
i

ωib̂
†
i b̂i, (2.43)

where the Φ =
(
b̂1, b̂2, · · ·

)T
is the normal-mode vector connecting to the bare modes through

Φ = U†Ψ. (2.44)

Such transformation becomes handy when we encounter coupled linear modes in superconducting

circuits, such as the one demonstrated in Fig. 2.6(a) where a transmon is capacitively coupled

to a “multimode circuit” consisting of a pair of coupled resonator modes. Skipping the circuit

quantization procedure, we empirically write down the circuit Hamiltonian,

Ĥ/~ = ωqâ
†â+

α

2
â†2â2 + gq

(
â†b̂1 + âb̂

†
1

)
+ ωr1b̂

†
1b̂1 + ωr2b̂

†
2b̂2 + gr

(
b̂
†
1b̂2 + b̂1b̂

†
2

)
, (2.45)

where the coefficient of the multimode Hamiltonian is simply

M̂ =

ω1 gr

gr ω2

 , (2.46)

which can be diagonalized as

M̂ = U†ΩU =

cos θ − sin θ

sin θ cos θ

 ·
ω′1 0

0 ω′2

 ·
 cos θ sin θ

− sin θ cos θ

 , (2.47)
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(a)

(b)

Figure 2.6: The Bogoliubov-Valatin transformation of the multimode circuit. (a) A transmon is
capacitively coupled to the multimode within the dashed box that is composed of two coupled LC
oscillators. (b) The effective circuit after the Bogoliubov-Valatin transformation, showing that the
two bare resonator modes hybridize into two uncoupled normal modes (circled by dashed boxes),
which are simultaneously coupled to the transmon with renormalized coupling strengths.

where θ is the mixing angle defined as

θ =
1

2
arctan

(
2g

ωr2 − ωr1

)
. (2.48)

Under the unitary transformation U the bare resonator mode b̂i becomes dressed mode ĉi,b̂1
b̂2

 =

 cos θ sin θ

− sin θ cos θ

 ·
ĉ1
ĉ2

 , (2.49)
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and the circuit Hamiltonian in Eq. 2.45 becomes

Ĥ/~ = ωqâ
†â+

α

2
â†2â2 + g1

(
â†ĉ1 + âĉ

†
1

)
+ g2

(
â†ĉ2 + âĉ

†
2

)
+ ω′r1ĉ

†
1ĉ1 + ω′r2ĉ

†
2ĉ2. (2.50)

We immediately see the two effects of the BV transformation: it not only diagonalizes the

multimode circuit into two decoupled normal modes with dressed frequencies ω′r1,2, but also ef-

fectively couples the transmon to all the normal modes, with renormalized coupling strength gi,

as shown in Fig. 2.6(b). For the special case of two identical resonators, both effective coupling

strengths become gq/
√

2 regardless of the coupling between the bare modes. A similar result can

be obtained for a multimode chain architecture, where the transmon can get full connectivity to all

normal modes by only physically coupling to a single bare mode, an extremely important feature

for the random access circuit [84, 85, 86] we will discuss in Chapter 3.

2.3.2 Schrieffer-Wolff transformation

Schrieffer-Wolff (S-W) transformation [87, 88, 89] is another important Hamiltonian diagonaliza-

tion technique. Unlike the B-V transformation where linear modes are precisely diagonalized into

normal modes, the S-W transformation is a perturbation theory that can block-diagonalize Hamil-

tonians with nonlinear modes up to any desired order, given that the block off-diagonal terms can

be treated as perturbations. Such Hamiltonians can in general be written as

Ĥ = Ĥ0 + εV̂ (2.51)

where Ĥ0 is block diagonal and V̂ is block off-diagonal, with ε being a small quantity representing

the energy ratio between the two parts. The goal is to find a unitary transformation such that the

transformed Hamiltonian,

Ĥ = eŜĤe−Ŝ (2.52)
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is block diagonal up to the desired order in ε, where Ŝ is the generator of the S-W transformation,

which is obviously anti-Hermitian.

Eq. 2.52 can be expanded using the Campbell-Baker-Hausdorff formula

Ĥ = Ĥ0 + εV̂ +
[
Ŝ, Ĥ0

]
+
[
Ŝ, V̂

]
+

1

2!

[
Ŝ,
[
Ŝ, Ĥ0

]]
+
ε

2!

[
Ŝ,
[
Ŝ, V̂

]]
+ · · · , (2.53)

from which we may speculate that the generator Ŝ has to be block off-diagonal too (or rather, any

block diagonal component of Ŝ would be useless for the block diagonalization of Ĥ), so that all

the even order
[
Ŝ, Ĥ

]
commutators and odd order

[
Ŝ, V̂

]
have to be block off-diagonal, while all

the rest terms are block diagonal and have to be zero:

εV̂ +
[
Ŝ, Ĥ0

]
+
ε

2!

[
Ŝ,
[
Ŝ, V̂

]]
+

1

3!

[
Ŝ,
[
Ŝ,
[
Ŝ, Ĥ0

]]]
+
ε

4!

[[
Ŝ,
[
Ŝ,
[
Ŝ,
[
Ŝ, V̂

]]]]]
+ · · · = 0,

(2.54)

Now we are ready to set off a perturbation calculation where we assume Ŝ as a power series of

ε1,

Ŝ = εŜ1 + ε2Ŝ2 + ε3Ŝ3 + · · · . (2.55)

Plugging this back into Eq. 2.54, we solve Ŝi iteratively from each order of ε,

ε : V̂ +
[
Ŝ1, Ĥ0

]
= 0 (2.56)

ε3 :
[
Ŝ3, Ĥ0

]
+

1

2!

[
Ŝ1,
[
Ŝ1, V̂

]]
+

1

3!

[
Ŝ1,
[
Ŝ1,
[
Ŝ1, Ĥ0

]]]
= 0 (2.57)

...

where all the even order Ŝi terms are zero2. The approximately diagonalized Hamiltonian is thus

Ĥ = Ĥ0 +
[
Ŝ1, V̂

]
+

1

2!

[
Ŝ1,
[
Ŝ1, Ĥ0

]]
= Ĥ0 +

1

2

[
Ŝ1, V̂

]
(2.58)

1. The zeroth order term is missing because the diagonalization is a small rotation in the Hilbert space.

2. This is only true when the perturbation is purely block off-diagonal, otherwise both even and odd terms should
exist.
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up to second order in ε.

The power of the S-W transformation can be seen in two aspects. First, it is a perturbation

theory on quantum operators, returning the diagonalized Hamiltonian in an analytical form that

promises intuitive understandings of the system on a quantum physics level. One good example

may be the diagonalization of the quantum Rabi model that describes the light-matter interaction

in circuit- and cavity-QED,

Ĥ/~ = Ĥ0/~ + V̂/~ = ωrâ
†â+

ωa
2
σ̂z + g

(
â† + â

)
σ̂x, (2.59)

which is typically in the dispersive regime where g � ωr, ωq,∆, so that the coupling term can be

treated as an block off-diagonal perturbation, with the ratio g/∆ being “the ε”. To apply the S-W

transformation, we make an reasonable initial guess of the generator Ŝ to share the same form of

V̂/~ = g
(
â†σ̂− + â†σ̂+ + h.c.

)
except being anti-Hermitian,

Ŝ =
(
αâ†σ̂− − α∗âσ̂+

)
+
(
βâ†σ̂+ − β∗âσ̂−

)
, (2.60)

with α and β being the undetermined parameters. Plugging it back to Eq. 2.56, and making use of

the commutator relationships in Appendix. 6.4, we obtain the first order perturbation generator as

Ŝ =
g

∆

(
â†σ̂− − âσ̂+

)
+
g

Σ

(
â†σ̂+ − âσ̂−

)
, (2.61)

where ∆ and Σ are the cavity-qubit detuning and sum frequency, respectively. Combining this

with Eq. 2.58 one finds the diagonalized Hamiltonian in the analytical form1,

Ĥ/~ = ω̃râ
†â+

1

2

(
ω̃q −

g2

∆
+
g2

Σ

)
σ̂z −

(
g2

∆
− g2

Σ

)
â†âσ̂z. (2.62)

Here, the g2/∆ and the g2/Σ in the qubit frequency term are named “Lamb shift” and “Bloch-

Siegert shift”, while the last term is the dispersive shift (Stark shift) that can interpreted as qubit-

1. We have abandoned the two-photon terms here because they are higher-order perturbations.
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state-dependent cavity shift or vice versa. In the typical regime where Σ� ∆, this Hamiltonian is

further reduced to the textbook dispersive Hamiltonian,

Ĥ/~ = ω̃râ
†â+

1

2

(
ω̃q −

g2

∆

)
σ̂z −

g2

∆
â†âσ̂z, (2.63)

which we have seen as the static part in Eq. 1.51.

The second nice feature of the S-W transformation arises from the fact that it is a block diago-

nalization technique capable of decoupling any two orthogonal subspaces in a many-body system,

as long as their gap is sufficiently larger than their coupling strength. Indeed, the initial invention

of the S-W transformation was with the intention of obtaining an effective low energy model for

a quantum many-body system by decoupling it from the high energy manifold. As such, we can

selectively decouple anymmodes from another nmodes in a l-mode (l ≤ m+n) superconducting

circuit using the S-W transformation with generator

Ŝ =

m,n∑
i=1,j=1

Ŝi,j , (2.64)

where Ŝi,j is the S-W transformation generator for decoupling the i-th and j-th mode belonging to

them- and n-mode subgroup, respectively. The simplest circuit example can be found in Fig 2.7(a),

where two resonator modes are simultaneously coupled to a flux-tunable transmon, a geometry

that can be obtained from the multimode architecture as we have discussed in the previous section.

Within the two-level approximation, the circuit Hamiltonian is

Ĥ/~ =
ωq
2
σ̂z + ωr1â

†
1â1 + ωr2â

†
2â2 + g1

(
â1σ̂

+ + â
†
1σ̂
−
)

+ g2

(
â2σ̂

+ + â
†
2σ̂
−
)
. (2.65)

According to Eq. 2.61 and Eq. 2.64, the generator of the S-W transformation that decouples the

qubit from the resonator manifold reads

Ŝ =
g1

∆1

(
â
†
1σ̂
− − â1σ̂

+
)

+
g2

∆2

(
â
†
2σ̂

+ − â2σ̂
−
)
, (2.66)
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(a)

(b)

Figure 2.7: The Schrieffer-Wolff transformation of a superconducting circuit. (a) A flux-tunable
transmon is coupled to two resonators. (b) The Schrieffer-Wolff transformation decouples the
transmon simultaneously from both resonator modes, while creating a flux-tunable coupling
strength between the resonators.

and to the leading order in g/∆ the circuit Hamiltonian is S-W transformed to

Ĥ/~ = Ĥ0/~ +
1

2

[
Ŝ1, V̂

]
/~

=
1

2

2∑
i=1

(
ωq −

g2
i

∆i

)
σ̂z

+
2∑
i=1

(
ωri −

g2
i

∆i
σ̂z

)
â
†
i âi +

g1g2

2

(
1

∆1
+

1

∆2

)(
â
†
1â2 + â1â

†
2

)
σ̂z.

(2.67)

As expected we see that the qubit is decoupled from the resonator space now. The last line in
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Eq. 2.67 is the effective mean-field Hamiltonian of the resonators

Ĥ/~ = ω′r1â
†
1â1 + ω′r2â

†
2â2 + g (Φext)

(
â
†
1â2 + â1â

†
2

)
(2.68)

with dressed frequencies

ω′ri = ωri −
g2
i

∆i
〈σ̂z〉, (2.69)

and a flux-tunable coupling strength

g (Φext) =
g1g2〈σ̂z〉

2

(
1

ωr1 − ωq (Φext)
+

1

ωr2 − ωq (Φext)

)
. (2.70)

A truly beautiful piece of physics has emerged here: the originally uncoupled modes start to in-

teract with each other via a virtual process mediated by the transmon mode, at a strength that is

sensitive to the fluctuation or modulation of the transmon energy. In fact, this is what inspired the

invention of many tunable coupling circuits where the control of the coupling strength is achieved

through the modulation of the coupler frequency [65], as we shall see in Chapter 4.

2.3.3 Rotating frame transformation

Controlling a qubit state on demand is at the heart of quantum computation. The central question to

ask for a driven superconducting circuit is how its quantum state evolves under the time-dependent

Hamiltonian,

Ĥ (t) = Ĥ0 + Ĥd (t) . (2.71)

As we have seen before, normally the driven Hamiltonian does not commute with itself at different

moments of time, making the state evolution difficult to calculate as it can no longer be compactly

written in the form of a time integral. Without loss of generality, let us write Eq. 2.71 in the energy
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Figure 2.8: Rotating frame transformation in the Bloch sphere. (a) In the lab frame, a qubit driven
along the X-axis rotates from -Z to Z at the Rabi frequency, while precessing around Z at the qubit
frequency. (b) Transforming to the rotating frame, the precession along the Z-axis disappears,
leaving only the Rabi oscillation along X.

eigenbasis of Ĥ0,

Ĥ (t) =
∑
i

Ei |i〉 〈i|+
∑
i

fi (t) |i〉 〈i|+
∑
i6=j

gi,j (t) |i〉 〈j| , (2.72)

where gij (t) = g∗ij (t) holds for Hermiticity. For now let us temporarily ignore the last term that

gives rise to finite transition rates between different levels, but focus on the first two terms which

cause the phases of the superposition to advance,

|ψ (t)〉 =
∑
i

cie
− i

~

(
Eit+

∫ t
0 fi(t)dt

)
|i〉 . (2.73)

Geometrically this can be seen as a rotation of the state vector in time, which can obviously be

eliminated by a time-reversal evolution operator,

U (t) = e
i
~

(
Eit+

∫ t
0 fi(t)dt

)
|i〉〈i|

(2.74)

that defines a “rotating frame” where the state vector keeps still. It is straightforward to check from

the Schrödinger equation that in the rotating frame the “lab frame” Hamiltonian is transformed into
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Ĥrot = U (t) Ĥ (t)U† (t) + i~U̇ (t)U† (t) , (2.75)

hence the name “rotating frame transformation”. From Eq. 2.72 and Eq. 2.75 we have

Ĥrot =
∑
i6=j

gi,j (t) e
i
~

[
(Ei−Ej)t+

∫ t
0(fi(t)−fj(t))dt

]
|i〉 〈j| . (2.76)

While in the most general sense this Hamiltonian still doesn’t commute with itself at different

times, special cases do exist where its complexity can be greatly reduced. For the most naive

example where

gi,j (t) = gi,j (0) e
− i

~

[
(Ei−Ej)t+

∫ t
0(fi(t)−fj(t))dt

]
, (2.77)

the time-dependency is completely removed, albeit an rather idealized scenario. More realistically,

we may expect there to be slow-rotating terms where

∣∣∣∣ωi,j − ∣∣∣∣ i~
[(
Ei − Ej

)
t+

∫ t

0

(
fi (t)− fj (t)

)
dt

]∣∣∣∣∣∣∣∣ ∼ 0, (2.78)

as well as fast-oscillating terms where

∣∣∣∣ωi,j − ∣∣∣∣ i~
[(
Ei − Ej

)
t+

∫ t

0

(
fi (t)− fj (t)

)
dt

]∣∣∣∣∣∣∣∣� 0, (2.79)

with ωi,j with dominant Fourier component of gi,j (t). Thus, we can make the “rotating wave

approximation” (RWA) and keep only the slow-rotating terms in Eq. 2.76 as the effective Hamil-

tonian, while abandoning the fast-oscillating terms that are averaged out in the time integration.

Subtleties arise when such a clear slow/fast boundary is absent, or when multi-photon processes

may be present, the RWA becomes ineffective or needs to be applied with great caution [90].

To put the theory to test, we study the evolution of a voltage-driven transmon, with a Hamilto-

nian introduced in Eq. 2.15 that can be rewritten as

Ĥ (t) /~ = ωqâ
†â+ αâ†2â2 + iε (t)

(
â† − â

)
. (2.80)
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In a frame rotating at ωq, the operator â is phase shifted to âe−iωqt, so the rotating frame Hamilto-

nian is

Ĥrot/~ = αâ†2â2 + iε (t)
(
â†eiωqt − âe−iωqt

)
. (2.81)

Keeping the lowest three levels,

Ĥrot/~ = α |2〉 〈2|+ ε (t)
[
i
(
|1〉 〈0|+

√
2 |2〉 〈1|

)
eiωqt + h.c.

]
. (2.82)

We go into a second rotating frame where the |2〉 rotates at α, and assume ε (t) = ε0 sinωdt,

Eq. 2.82 becomes

Ĥrot/~ = −ε0
2

{
|1〉 〈0|

[
ei(ωq−ωd)t − ei(ωq+ωd)t

]
+
√

2 |2〉 〈1|
[
ei(ωq+α−ωd)t − ei(ωq+α+ωd)t

]}
+h.c.

(2.83)

When δq = ωq − ωd ≈ 0 and ε0 � α, we apply the RWA and get

Ĥrot/~ = −ε0
2

(
|1〉 〈0| eiδqt + |0〉 〈1| e−iδqt

)
, (2.84)

which finally transforms to a Hamiltonian analogous to a spin in the magnetic field ⇀B = −ε0⇀x +

δq⇀z,

Ĥrot/~ =
δq
2
σ̂z −

ε0
2
σ̂x, (2.85)

so that the state vector will rotate along the “B field” in the rotating frame, while in the lab frame

the trajectory is convoluted with a precession along the Z-axis. This explains why a multilevel

artificial atom, such as a transmon, can be used as a two-level qubit, as long as the anharmonicity

far exceeds the drive amplitude.

While the fast-oscillating terms do not directly participate in the dynamic evolution of states,

they manifest their effects through off-resonantly dressing the energy levels, giving rise to AC Stark

shifts. One particular example is the counter-rotating terms that we have dropped off in Eq. 2.83.
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When driving on resonance, in the lowest two levels we have

Ĥrot/~ = −ε0
2

(
|1〉 〈0| − |1〉 〈0| ei2ωqt + h.c.

)
. (2.86)

Reverting to the frame counter-rotating at ωq against qubit’s precession, the Hamiltonian changes

to

Ĥrot/~ = 2ωq |1〉 〈1| −
ε0
2

(
|1〉 〈0| e−i2ωqt − |1〉 〈0|+ h.c.

)
. (2.87)

where the |0〉 and |1〉 state are dressed by the counter-rotating term. In the dressed-state basis the

Hamiltonian is

Ĥrot/~ =
√
ε20 + 4ω2

q |1〉 〈1| −
ε0
2
|1〉 〈0| e−i2ωqt + h.c.. (2.88)

Now, transforming back to the original rotating frame, we find the qubit no longer being driven on

resonance,

Ĥrot/~ = −ε0
2

(
|1〉 〈0| eiχqt + |0〉 〈1| e−iχqt

)
, (2.89)

but with a small detuning denoted by

χ =
√
ε20 + 4ω2

q − 2ωq ≈
ε20

4ωq
, (2.90)

which is essentially the same Bloch-Siegert shift we saw in the last subsection, but created through

external drives as opposed to coupling to a static mode.

2.3.4 Displacement transformation

We have learned in subsection 2.3.1 how the B-V transformation diagonalizes coupled harmonic

oscillator modes. Here we demonstrate how to diagonalize a single mode whose dipole moment is

coupled to a static field,

Ĥ/~ = ωâ†â+ εâ† + ε∗â, (2.91)
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through the displacement transformation,

D (α) = eαâ
†−α∗â, (2.92)

with α being a complex number. Physically, this is known as the Glauber displacement oper-

ator [91] that displaces a coherent state by α in the phase space. Using the Campbell-Baker-

Hausdorff formula we can easily verify that it also displaces the ladder operators as1 â → â + α,

â† → â† + α∗. The displaced Hamiltonian is then

Ĥdisp/~ = D† (α) ĤD (α) /~ = ωâ†â+ (ε+ ωα) â† + (ε∗ + ωα∗) â, (2.93)

which is diagonal under the choice of2 α = −ε/ω. Like in the rotating frame where the transitions

are unveiled by removing the precessing of the qubit, the displacement transformation moves to

the frame of the driven cavity where the induced interactions are more easily seen. In the following

we apply the displacement transformation to the circuit-QED model shown in Fig. 2.9, where we

also make use of the other three canonical transformations as a review of the whole section. In

the circuit, a transmon is coupled to a multimode of resonators, with its bias charge dynamically

modulated by an external voltage drive. In the charge and phase operator representation, the circuit

Hamiltonian is given by

Ĥ (t) = 4Ecqn̂
2
q − EJ cos θ̂q + 4Ecgn̂qn̂r1 − 8Ecqng (t) n̂q

+ 4Ecr1n̂
2
r1 +

EL1

2
θ2
r1 + 4Ecr2n̂

2
r2 +

EL2

2
θ2
r2 + 4Ecgrn̂r1n̂r2. (2.94)

1. See Appendix. 6.1 for its derivation.

2. Strictly speaking, this expression should be written as α = ε/ (iκ− ω) with the photon loss rate κ taken
into account. Here and in the following we assume negligible photon loss rate within the context of displacement
transformation.
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(a) (b)

Figure 2.9: Application of all four transformations in a superconducting circuit. (a) A voltage-
driven transmon is statically coupled to a multimode circuit. The transformation techniques allow
us to analytically study the circuit dynamics, where we find driven at half the detuning of the two
normal modes leads to a photon-swapping interaction between them. (b) In the nonlinear optics
point of view, this is equivalent to the four-wave mixing process where interactions between three
wavelengths produce a new wavelength.

In the second quantization form, with qubit approximated by a two-level qubit, we have

Ĥ/~ =
ωq
2
σz + gq

(
â
†
1σ̂
− + â1σ̂

+
)

+ ε (t) σ̂x

+ ωr1â
†
1â1 + ωr2â

†
2â2 + gr

(
â
†
1â2 + â1â

†
2

)
, (2.95)

which can be followed by a B-V transformation that turns bare modes âi into normal modes b̂i,

Ĥ/~ =
ωq
2
σz+ωr1b̂

†
1b̂1 +ωr2b̂

†
2b̂2 +g1

(
b̂
†
1σ̂
− + b̂1σ̂

+
)

+g2

(
b̂
†
2σ̂
− + b̂2σ̂

+
)

+ ε (t) σ̂x. (2.96)

Here and in the following, we keep the same notation for the mode frequencies although they are

shifted as dressed frequencies. Using first order S-W transformation we may decouple the qubit

from the normal modes like we did in Eq. 2.67. Here we go beyond the first order to the third order

perturbation in g/∆, where the S-W generator is

Ŝ =
2∑
i=1

gi
∆i

[
b̂
†
i σ̂
− − b̂iσ̂+ − 4g2

i

3∆2
i

b̂
†
i b̂i

(
b̂
†
i σ̂

+ − b̂iσ̂−
)]

. (2.97)

For simplicity we keep only the relevant terms in the effective Hamiltonian after the S-W transfor-
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mation,

eŜĤe−Ŝ/~ ≈ ωq
2
σ̂z+

2∑
i=1

ωrib̂
†
i b̂i+

2∑
i=1

χib̂
†
i b̂iσ̂z+χ12b̂

†
1b̂1b̂

†
2b̂2σ̂z+ε (t)

[
σ̂x +

2∑
i=1

gi
∆i

(
b̂
†
1 + b̂1

)]
.

Assuming the voltage drive a monochromatic cosine signal at frequency ωd with amplitude ε0, and

suppose ωr2 > ωr1, we then apply a rotating frame transformation

U (t) = e
iωdt

(
σ̂z
2 −b̂

†
1b̂1+b̂†2b̂2

)
(2.98)

that transforms the Hamiltonian to

Ĥ =
∆q

2
σ̂z +

2∑
i=1

∆rib̂
†
i b̂i +

2∑
i=1

χib̂
†
i b̂iσ̂z + χ12b̂

†
1b̂1b̂

†
2b̂2σ̂z +

2∑
i=1

giε0
2∆i

(
b̂
†
i + b̂i

)
, (2.99)

where ∆q = ωq − ωd, ∆r1 = ωr1 + ωd and ∆r2 = ωr2 − ωd. Here we have tilted the qubit

eigenbasis to align with the fictitious B field axis ⇀B = −ε0⇀x + δq⇀z, under the assumption that

ε0 � ∆q. We now apply the displacement transformation

D (α1, α2) = e

∑2
i=1

(
αiâ
†
i−α∗i âi

)
, (2.100)

with αi ≈ giε0/ (2∆ri∆i), to the Hamiltonian, cancelling the drive term while creating new terms

in addition to the ones in Eq. 2.99,

Ĥ/~ =
∆q

2
σ̂z +

2∑
i=1

∆rib̂
†
i b̂i +

2∑
i=1

χi

(
b̂
†
i b̂i + αib̂

†
i + α∗i b̂i + |α|2

)
σ̂z

+ χ12

(
b̂
†
1b̂1 + α1b̂

†
1 + α∗1b̂1 + |α|2

)(
b̂
†
2b̂2 + α2b̂

†
2 + α∗2b̂2 + |α|2

)
σ̂z. (2.101)
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Finally, moving to the rotating frame corresponding to the first two terms, one finds

Ĥ/~ =
2∑
i=1

χi

(
b̂
†
i b̂i + αib̂

†
ie
i∆rit + α∗i b̂ie

−i∆rit + |αi|2
)
σ̂z

+ χ12

(
b̂
†
1b̂1 + α1b̂

†
1e
i∆r1t + α∗1b̂1e

−i∆r1t + |α1|2
)(

b̂
†
2b̂2 + α2b̂

†
2e
i∆r2t + α∗2b̂2e

−i∆r2t + |α2|2
)
σ̂z.

(2.102)

The interference between the rotating operators in the last line leads to a truly interesting effect:

when we set ∆r1 = ∆r2, i.e. when ωd = (ωr2 − ωr1) /2, the only non-fast-oscillating term is

Ĥ/~ = χ12

(
α1α

∗
2b̂
†
1b̂2 + α∗1α2b̂1b̂

†
2

)
(2.103)

which represents a photon-swapping interaction between the two normal modes. This result can

be more extended to the bichromatic drive tone case by time-dependent displacement transforma-

tion, where the same interaction is induced by two photons of different frequencies, as long as

they bridge the gap between the normal modes. This phenomenon is known as the “four-wave

mixing” [92, 93] in nonlinear optics illustrated by the cartoon in Fig. 2.9, which can be thought of

as the conversion of three photons (waves) into a fourth one.

The calculation above serves well for our purposes of demonstrating all the transformations

and nicely grasps the core feature of the four-wave mixing effect. However, it imposes a two-

level approximation on the transmon which is arguably an over-simplification. In the next section,

miraculously, we will see how a complete analysis for the full transmon case is made possible by

looking at the same problem from a different angle.

2.4 Numerical Simulations of Superconducting Circuits

While these analytical treatments offer great insights for understanding circuit-QED on the physi-

cal level, they may not be suitable for the exact calculation of superconducting circuits with high

precision demands. First of all, the modeling of a real-life superconducting circuit with Hamilto-
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nian parameters alone is no easy task, especially for large distributed circuits that cannot be well

approximated by the lumped-element model. Secondly, as we have seen in the four-wave mixing

example in the last section, theoretical analysis of driven circuits may require complicated cal-

culations involving high-order perturbation theory. Finally, dissipation is universally present in

superconducting circuits and must be taken into account, yet the numerical evaluation of effects

exerted on the qubit by the open system it is coupled to is beyond the reach of aforementioned

analytical solutions. In this section, we overcome these difficulties with theories and methods that

are directly applicable to the numerical simulation of superconducting circuits.

2.4.1 Black-box quantization and ABCD matrix

Previously we have seen that the Hamiltonian of a transmon is given with ladder operators by

Ĥ = ωqâ
†â+ αâ†2â2, (2.104)

which originates from the harmonic oscillator basis defined by the quadratic terms, expanding

the nonlinearity up to θ4 and keeping only its leading order contribution to the transmon energy.

One then typically approximates the charge operator as a harmonic oscillator field operator and

further formulates the Hamiltonian of a transmon-cavity system. Then one faces two options in the

subsequent calculation: one can either take the nonlinear term into the diagonalization for a precise

solution of the spectrum in nonlinear basis, at the cost of obscuring the high order interactions from

the nonlinearity, or one can choose to only diagonalize the linear part that elucidates nonlinearity-

induced interaction at all levels, which may compromise the accuracy of the spectrum but only

slightly so for the low-energy manifold of transmon of our interest. As a concrete example of the

latter approach, let’s revisit the four-wave mixing problem starting from rewriting Eq. 2.94 as,

Ĥ (t) ≈ 4Ecqn̂
2
q +

EJ
2
θ̂2
q +

2∑
i=1

(
4Ecrin̂

2
ri +

ELi
2
θ2
ri

)
+ 4Ecgn̂qn̂r1 + 4Ecgrn̂r1n̂r2

− EJ
24
θ̂4
q − 8Ecqng (t) n̂q. (2.105)
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As opposed to expressing every term with ladder operators, this time we leave the θ4 alone,

Ĥ (t) = ωqâ
†
qâq + gq

(
â
†
r1âq + âr1â

†
q

)
+ ωr1â

†
r1âr1 + ωr2â

†
r2âr2 + gr

(
â
†
r1âr2 + âr1â

†
r2

)
− EJ

24
θ̂4
q + ε (t) â

†
q + ε∗ (t) âq, (2.106)

which is simplified by a B-V transformation,

Ĥ (t) = ωq b̂
†
q b̂q + ωr1b̂

†
r1b̂r1 + ωr2b̂

†
r2b̂r2

− EJ
24

[
θ0
q

(
b̂
†
q + b̂q

)
+

2∑
i=1

βiθ
0
ri

(
b̂
†
ri + b̂ri

)]4

+ ε (t) b̂
†
q + ε∗ (t) b̂q, (2.107)

where θ0 stands for the zero-point fluctuation of the phase, and β1,2 are the wavefunction partici-

pation of the two normal modes in the transmon that scales as g/∆ assuming strong hybridization

of the multimode. Like before we kept the same frequency notations for simplicity. Going to a

frame rotating with the drive term as well as the two normal modes, we have

Ĥ (t) = ∆q b̂
†
q b̂q + ε0b̂

†
q + ε∗0b̂q

− EJ
24

[
θ0
q

(
b̂
†
qe
iωdt + b̂qe

−iωdt
)

+
2∑
i=1

βiθ
0
ri

(
b̂
†
rie

iωrit + b̂rie
−iωrit

)]4

, (2.108)

and finally, we displace the transmon field and then move to the frame rotating with the transmon,

Ĥ (t) = −EJ
24

[
θ0
q

(
b̂
†
qe
iωdt + b̂qe

−iωdt
)

+ θ0
q

(
α∗eiωdt + αe−iωdt

)
+

2∑
i=1

βiθ
0
ri

(
b̂
†
rie

iωrit + b̂rie
−iωrit

)]4

,

(2.109)

with α = −ε0/∆q. Now we can conveniently find out all the slow-oscillating terms from the

expansion under a certain drive frequency ωd, such as the four-wave mixing terms at ωd =

(ωr1 + ωr2) /2.

The advantage of such a quantization technique becomes more prominent for larger circuits

where the transmon is coupled to a complicated two-port linear network. Standard circuit quan-
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(a)

(b)

(c)

Figure 2.10: Black-box quantization of the communication circuit. (a) In the communication cir-
cuit, a transmon is coupled to a coplanar waveguide (CPW) cavity as the “communication cavity”,
which is further coupled to the transmission line/coaxial cable. (b) The linear part of the Josephson
energy is extracted and merged with other linear part of the circuit, forming a black-box of RLC
network. (c) Equivalent circuit of the black box consisting of a series of parallel RLC oscillators,
whose information can be extracted from the ABCD matrix calculation.

tization procedure in section 2.1 more or less fails on such large scale circuit either when the

analytical model is unavailable, or because of the divergence and renormalization issues in cal-

culating the multimode Purcell effect. In contrast, following the spirit of the above analysis, one

may circumvent these issues by grouping all the linear circuit components into a black box and

routinely solve the mode properties through circuit network theory, which are then fed into the

θ4 nonlinearity for gaining more sophisticated information such as the self-Kerr and cross-Kerr

between the modes. This is exactly how the BBQ - “Black-box quantization” [94] - works, shown

in Fig. 2.10 by the particular “communication circuit” as an example. The communication circuit,

which will be the topic of Chapter 3, is made of two transmons each coupled to an on-chip copla-
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nar waveguide (CPW) cavity, and a one-meter-long transmission line (TL) coupling the two CPW

cavities together. Of particular interest is how the lifetime of the transmon is affected by the lossy

TL, and the coupling strength between the transmon and the hybridized CPW-TL modes. We first

decompose the transmon Josephson energy into a linear inductive energy defined by the Joseph-

son inductance plus the Josephson nonlinearity. According to the Foster theorem, the black-box

network can be synthesized by a series of parallel RLC oscillators, with an input admittance of

Y (ω) =

 N∑
i=1

(
jωCi +

1

jωLi
+

1

Ri

)−1
−1

. (2.110)

The resonances of the RLC oscillators can be found from solving Y (ω) = 0, with the i-th mode

frequency and lifetime being

ωi = Re

(
j

2RiCi
+

√
1

LiCi
− 1

4R2
iC

2
i

)
≈ 1√

LiCi
, (2.111)

τi =
1

2

[
Im

(
j

2RiCi
+

√
1

LiCi
− 1

4R2
iC

2
i

)]−1

≈ RiCi, (2.112)

assuming weak dissipation limit Ri �
√
Li/Ci/2. Then it is easy to verify that Ri, Li and Ci are

given by

Ri =
1

ReY (ωi)
, Ci =

1

2
Im
dY (ω)

dω

∣∣∣∣
ω=ωi

, Li =

[
ω2
i

2
Im
dY (ω)

dω

∣∣∣∣
ω=ωi

]−1

, Zi =

[
ωi
2

Im
dY (ω)

dω

∣∣∣∣
ω=ωi

]−1

,

(2.113)

The admittance function of any linear microwave circuit can be obtained from finite element

numerical simulation like HFSS. For the communication circuit where the circuit model is well

established, a semi-analytical solution with the ABCD matrix is possible. Appendix. 6.5 offers

more detail on the ABCD matrix calculation of Y (ω), here we will jump to the result plotted in

Fig. 2.11. As our actual device is a flux-tunable transmon, we would like to know the frequency

dependence of the transmon coherence. In the simulation we sweep LJ to mimic the flux tuning
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Figure 2.11: Numerical simulation of the transmon lifetime in the communication circuit. (a) For
comparison we compare the three cases where either the CPW or the TL is absent, or they are both
present. The admittance matrix is obtained from the ABCD matrix of the “black-box” network in
Fig. 2.10, and the spectrum of ImY (ω) provides useful information about each normal mode in
the equivalent Foster circuit. Depicted here is the when the CPW is missing, and ImY (ω) crosses
zero at the transmon frequency and the TL multimode frequencies. (b) Plotting transmon lifetime
for the three situations as a function of its frequency, by varying LJ . We see the huge difference
between the baseline coherence with and without the CPW, showing the Multimode Purcell effect
as well as the protection of the CPW as a filter. The Purcell limit placed by the CPW is much
higher than the transmon intrinsic coherence and can be safely ignored.

effect. At each LJ value, the crossing between zero and ImY (ω) is found around the expected

transmon frequency, from which the resistance, capacitance and further the lifetime of the transmon

are determined according to Eq. 2.112 and Eq. 2.113. Repeating the same procedure for different

LJ results in the curves shown in Fig. 2.11(b), where we find clear evidence for the Purcell limit

the TL multimode exerts to the transmon that periodically brings down its lifetime (with a period

equal to the free spectral range of the TL), as well as for the protection of the transmon coherence

the communication cavity provides as a Purcell filter.

The RLC oscillators can be thought of as the normal modes after the Bogoliubov transforma-

tion, whose phases add up to be the Josephson phase according to Kirchhoff’s law,

θ̂ =
N∑
i=1

√
~
2
Zi

(
â
†
i + âi

)
, (2.114)
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(a)

(b)

(c)

Figure 2.12: An alternative approach for the calculation of coupling strength between the transmon
and the normal modes. (a) In this scheme, the black box only extends to the right side of the
coupling capacitor Cg1. (b) The black box is transformed into an equivalent RLC circuit like
before, allowing for a subsequent standard circuit quantization treatment. (c) Under the weak
coupling condition and large normal mode detunings, the coupling strength between the transmon
and the i-th mode can be obtained from this effective circuit model.

assuming no flux penetrating the loop. Now we have numerically obtained an Eq. 2.107-like

Hamiltonian for the communication circuit, and from this point on we can expand the Josephson

nonlinearity up to any order we want and find the energy corrections with perturbation theory. In

this basis, the transmon-cavity interactions appear in the form of cross-Kerr terms, where the bare

transmon-cavity coupling strength can be indirectly inferred. Here we present a variation of the

black-box quantization directly offering the bare coupling strengths, again using the example of

the communication circuit. Instead of wrapping everything into the black box including the linear

part of the JJ , we choose to only diagonalize the part beyond the coupling capacitance of the

transmon, illustrated in Fig. 2.12. Similarly we can reconstruct the normal modes as equivalent
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RLC oscillators, which then allows for a standard circuit quantization calculation for the coupling

strength, by selecting a few oscillators of interest and group them with the transmon, shown in

Fig. 2.12(b). Demonstrated in Appendix. 6.6, this protocol works under the condition that the gap

between the selected and the remaining normal modes ∆ be much larger than their coupling energy

induced by the transmon coupling capacitor Cg, which is often met by the real circuit when the

coupling is small.

2.4.2 Master equation and Monte Carlo wavefunction method

So far we have restricted our investigation to unitary evolution of closed systems, where the state

vector and the density matrix are determined by the Schrödinger equation and the von Neumann

equation,

˙|Ψ〉 = − i
~
Ĥ |Ψ〉 , (2.115)

ρ̇s = − i
~

[
Ĥ, ρs

]
. (2.116)

In the physical world, systems are never really closed but are coupled to each other, however weak

the coupling strength is. Such interactions are accompanied by the transferring of energy and

entanglement between the subsystems, which appear as dissipation/excitation and decoherence

processes to an individual subsystem. Within a two-level density matrix model, these processes

are described by

ρs (t) =


γ↓

γ↑+γ↓
+
[
Pg (0)− γ↓

γ↑+γ↓

]
e−(γ↑+γ↓)t Pφ (0) e−γφt−

γ↑+γ↓
2 t

P ∗φ (0) e−γφt−
γ↑+γ↓

2 t γ↑
γ↑+γ↓

−
[
Pg (0)− γ↓

γ↑+γ↓

]
e−(γ↑+γ↓)t

 ,

(2.117)

where γ↓,↑, γφ stand for the decay, excitation and dephasing rate, respectively, and Pg (0) and

Pφ (0) are the ground state population and the phase amplitude at t = 0. Based on these values

we may further define the “relaxation time” T1, “decoherence time” T ∗2 and the “pure dephasing
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time” Tφ,

Tφ =
1

γφ
, T1 =

1

γ↑ + γ↓
, T ∗2 =

(
1

Tφ
+

1

2T1

)−1

, (2.118)

which form the standard characterization of quantum coherence. Note that T ∗2 ≤ 2T1 always

holds true, and typically a qubit system is operated at low enough temperature where the excitation

rate can be ignored, T1 ≈ γ−1
↓ . As Eq. 2.117 only applies to open two-level systems without

external control Hamiltonian, its generalization to controlled higher dimensional systems is highly

desirable. Such generalization can be achieved by the aid of the quantum master equation,

ρ̇s = − i
~

[
Ĥ, ρs

]
+
∑
i

γiD
[
L̂i

]
ρs, (2.119)

where D
[
L̂i

]
is the Lindblad superoperator with jump operator L̂i acting on the density matrix as

D
[
L̂i

]
ρ = L̂iρL̂

†
i −

1

2

{
L̂
†
i L̂i, ρ

}
. (2.120)

The mathematical details for deriving the master equation are very nicely covered by many refer-

ences [95, 96] and we refrain from further discussions, except emphasizing the two approximations

made herein: the Born approximation that assumes the sufficiently weak interaction between the

subsystem and its environment so that the state of the environment is unaffected by the subsystem,

and the Markov approximation stating the memoryless property of the environment, that it has a

very short correlation time and thus never returns past information back to the subsystem. The

jump operators corresponding to the relaxation process are σ̂± that flip the ground and excited

state population for a qubit, or the ladder operators â† and â that climb up and down in the Fock

state basis, while the pure dephasing is represented by σ̂z/
√

2 or â†â, representing the fluctuation

of photon energies. For multilevel artificial atoms, it is also possible to include jump operators

between higher levels, with modified amplitudes according to their physical sources [97].

The relaxation and dephasing mechanism can also be understood from the prospective of noise

series, resulting either from the classical fluctuation of circuit parameters or control signals, or the
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circuit degrees of freedom coupling to quantum fluctuations [98, 99]. In the light of this theory,

the relaxation and the dephasing process of a qubit can be pictured as σ̂x,y and σ̂z/
√

2 operators

coupled to classical or quantum fluctuators, fxy (t) and fz (t), which carry different power spectral

densities (PSD) as the Fourier transformation of their autocorrelation functions,

Sxy,z [ω] =

∫ ∞
−∞

dτeiωτ 〈fxy,z (t) fxy,z (0)〉, (2.121)

which is related to the bare qubit decay and dephasing times through

γφ = Szz[0], γ↓ = Sxy[ωq], γ↑ = Sxy[−ωq], (2.122)

with Sxy[−ωq] = e−β~ωqSxy[ωq] restricting the last two under thermal equilibrium.

As a practical application, let us consider the simple case where qubit is driven off-resonantly

by a Rabi drive, namely

Ĥ(t) =
ωq
2
σ̂z + Ωxσ̂x cos (ωdt) , (2.123)

and we want to find out how the lab-frame noises (neglecting the fluctuation of the drive tone)

affect the driven qubit in the dressed basis along the Rabi drive axis. Combining rotating frame

transformation, qubit basis transformation and Eq. 2.121, one finds the “dressed” relaxation rate

and dephasing rate as

γ̃φ = Szz[0] cos2 θ +
{
Sxy[ωd] + Sxy[−ωd]

} sin2 θ
2 ,

γ̃↓ = Szz[ΩR] sin2 θ
2 + Sxy[ΩR − ωd] sin4 θ

2 + Sxy[ΩR + ωd] cos4 θ
2 ,

γ̃↑ = Szz[−ΩR] sin2 θ
2 + Sxy[−ΩR − ωd] cos4 θ

2 + Sxy[−ΩR + ωd] sin4 θ
2 , (2.124)

under the weak dissipation approximation where ΩR =
√

∆2 + ω2
x � γφ, γ↑↓, with ∆q = ωq −

ωd. Further assuming the near-resonance and weak-drive condition ωd ∼ ωq � ΩR, as well as

low qubit temperature kBT � ~ωq, we have Sxy[−ωd] ≈ Sxy[ΩR − ωd] ≈ Sxy[−ΩR − ωd] ≈ 0.
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Then Eq. 2.124 simplifies to

γ̃φ = Szz[0] cos2 θ + Sxy[ωd]
sin2 θ

2
,

γ̃↓ = Szz[ΩR]
sin2 θ

2
+ Sxy[ωd + ΩR] cos4 θ

2
,

γ̃↑ = Szz[−ΩR]
sin2 θ

2
+ Sxy[ωd − ΩR] sin4 θ

2
. (2.125)

This suggests that the driven qubit can be used as a noise spectrum analyzer to characterize noise

PSDs with coherence measurements [100]. If all the noise channels were white noise, i.e. their

PSD are uniform and the dissipation parameters are frequency independent, Eq. 2.125 would re-

duce to Eq. 4.30-4.32 in subsection 4.3.1 and evolution of the qubit can be perfectly solved from

master equation. However, realistic noise sources especially dephasing noise usually exhibit a col-

ored power spectrum such as 1/f type, which necessitates a more rigorous quantum noise analysis

beyond the capability of ordinary master equation simulations. We hereby introduce an efficient

numerical method that accommodates 1/f dephasing noise in the simulation, which is known as the

Monte Carlo wavefunction method or the quantum jump approach [101, 102, 103, 104]. Unlike

the master equation that solves the whole density matrix, the Monte Carlo simulation deals with

state vectors and stochastic jump operators for a single trajectory each time, then averages over all

the trajectories in the end. Technically, this may allow for a computational speed-up under certain

scenarios [105]. Physically this may be closer an approximation to reality because trajectories and

quantum jumps are actually observable in experiments, via high fidelity quantum non-demolition

readout [106, 107, 108, 109]. The procedure of the Monte Carlo wavefunction method is outlined

as follows:

1. Define the “effective Hamiltonian” as

Ĥeff (t) = Ĥ (t)− i~
2

∑
i

γiL̂
†
i L̂i, (2.126)

which is non-Hermitian. Here Ĥ (t) carries a time-sequence generated from the 1/f noise
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PDF of interest. Choose a small time step δt such that the evolution operator can be well-

approximated by terms linear to δt,

|ψ (t+ δt)〉 =
[
1− iĤeff (t) δt

]
|ψ (t)〉 . (2.127)

One can check that the new state is no longer normalized,

P = 〈ψ (t+ δt) |ψ (t+ δt)〉 = 1−
∑
i

pi < 1, (2.128)

where pi = γiδt 〈ψ (t)| L̂†i L̂i |ψ (t)〉. This results from the non-Hermitian term in Eq. 2.126,

which can be intuitively thought of as a damping term that evacuates the population from the

excited state manifold.

2. Compare P with a random number R drawn from [0, 1]. If P > R, intuitively it is more

probable for no quantum jump to happen, so the final state is just a properly normalized

|ψ (t+ δt)〉,

|ψ (t+ δt)〉′ = |ψ (t+ δt)〉 /
√
P . (2.129)

Note that even if no quantum jumps have occurred, they still impose a “back-action” effect

on the final state, in the sense that for a superposition of the ground and excited state, no-

jump is saying that the state was more likely to be a ground state.

On the other hand, if P < R, then a quantum jump L̂i has happened among all the jump

operators, with a probability of p̃i = pi/
∑
i pi, and the final state is

|ψ (t+ δt)〉′ =
L̂i |ψ (t)〉√

〈ψ (t)| L̂†i L̂i |ψ (t)〉
. (2.130)

3. Iterate on δt until a single trajectory is completed, then construct many trajectories by re-

peating the same procedure. Averaging over these trajectories yields the density state as a

function of time.
63



Figure 2.13: Monte Carlo wavefunction simulation of spin echo sequence under 1/f dephasing
noise. Qubit is initialized at the equal superposition of the ground and excited state at the begin-
ning of time. Under free evolution without spin echo, qubit decoheres according to the black line.
A π pulse inserted in the middle of time flips the qubit, causing the phase to refocus under the au-
tocorrelated 1/f noise and the increase of the decoherence time shown by the blue curve. Inserting
more π pulses further suppresses the 1/f noise and leads to T2 → 2T1, shown by the red curve.
The Gaussian rather than exponential decay envelope is indicative of the 1/f spectrum.

The definitions of T1 and T ∗2 we have seen earlier are from NMR conventions, where there is

another characteristic time T2, defined as the transverse relaxation time with the inhomogeneity

of the magnetic field (partially) removed by spin echos. The same concept can be borrowed for

removing the temporal inhomogeneity (long correlation time) of single atom frequency in cavity

or circuit-QED. As a demonstration of the Monte Carlo approach, we show in Fig. 2.13 how the

1/f noise is suppressed by a single spin echo, i.e. a π pulse inserted in the middle of x-y plane free

rotation. The PSD of the 1/f dephasing noise can be more strongly filtered by applying echo pulses

repetitively, where T2 will approach the 2T1 limit under zero white noise component.
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2.4.3 Quantum input-output theory

In many scenarios, it is more natural and convenient to move to the Heisenberg picture for ana-

lyzing the dynamics of a quantum system, where the time-dependency of the system is folded to

the operator side as opposed to the state. The Heisenberg equation which is the equivalence of the

Schrödinger equation in the Heisenberg picture is given by

˙̂
A =

i

~

[
Ĥ, Â

]
+

(
∂Â

∂t

)
H

, (2.131)

where Â is an arbitrary operator and Ĥ is the system Hamiltonian in the Heisenberg picture, and

the last term is present when the operator Â has explicit time-dependence. Mimicking the Lindblad

master equation in the Schrödinger picture, we have for the Heisenberg picture

˙̂
A =

i

~

[
Ĥ, Â

]
+
∑
i

L̂
†
i ÂL̂i −

1

2

{
L̂
†
i L̂i, Â

}
+

(
∂Â

∂t

)
H

, (2.132)

that describes the evolution of the operator for an open system. For the special case when the

operator is the annihilation operator of a lossy cavity, it is easy to check that Eq. 2.132 produces

˙̂a =
i

~

[
Ĥ, â

]
− κ

2
â+

(
∂â

∂t

)
H
, (2.133)

where κ is the photon loss rate of the cavity. To model a driven cavity under a coherent drive field

Ĥdrive = ε cosωdt
(
â† + â

)
, strictly speaking, one cannot directly substitute the Hamiltonian in

Eq. 2.133 by the time-dependent Hamiltonian in the Schrödinger picture, as it typically does not

commute with the propagator. However, by applying a rotating frame transformation that cancels

out the time-dependency as well as moving the operator to the interaction picture, one can obtain

the Heisenberg equation for a driven damped cavity as

˙̂a = −
(
iωc +

κ

2

)
â− iε

2
e−iωdt. (2.134)
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The frequency spectrum of the cavity field is easily found from the Fourier transformation of

Eq. 2.134 to be1

â [ω] = − iπε

i (ωc − ω) + κ
2
, (2.135)

with the time-evolution of the cavity population being (assuming Fock initial state)

〈â† (t) â (t)〉 = e−κt〈â† (0) â (0)〉+
ε2

4 (ωc − ωd)2 + κ2

[
1− 2e−

κt
2 cos (ωc − ωd) t+ e−κt

]
,

(2.136)

which saturates at the well-known n̄ = ε2/κ2 steady state.

The classical drive field can be extended to a quantum model as an ensemble of bath modes,

useful for describing the interaction between the cavity and propagating photons in a transmission

line. Under the rotating wave approximation and Markov approximation, the equation of motion

for the cavity driven by the bath modes can be derived as a quantum Langevin equation,

˙̂a =
i

~

[
Ĥ, â

]
− κc + κi

2
â+
√
κcb̂in, (2.137)

where κc and κi stands for the coupling and the internal decay rate of the cavity, and b̂in is the

input field that is defined as

b̂in = − 1√
2π

∫ ∞
−∞

b̂ (ω) e−iω(t−t0)dω, (2.138)

which is a propagating wave towards the cavity with t0 being the initial moment when the wave

packet is away from the cavity. The coupling between the cavity and the bath modes and the

coupling decay rate are connected by Fermi’s golden rule,

κc = 2πg2, (2.139)

1. The exponent of the Fourier transformation applied to the annihilation operator here and in the following has
opposite sign to the conventional mathematical definition.
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where we have made the Markov approximation. One can equally find the time-reversed equation

with an output field b̂out,

˙̂a =
i

~

[
Ĥ, â

]
+
κc + κi

2
â−√κcb̂out, (2.140)

so that the boundary condition between the input, output and the intra-cavity field is found from

Eq. 2.137 and Eq. 2.140 as

b̂in + b̂out =
√
κcâ, (2.141)

which is the so-called input-output relation. This formalism forms the basic framework of the

input-output theory (IOT) [110, 111, 112, 113] as a powerful tool for solving a variety of problems

including parametric conversion, amplification and quantum communication etc. Here we review

a few applications of the IOT that are particularly relevant to our experiments. First of all, we

notice that for the coherently driven cavity, the input field can be replaced by its mean value,

〈b̂in〉 = βe−iωdt, so Eq. 2.140 becomes completely equivalent to Eq. 2.134. More generally, IOT

allows one to find out the reflection and transmission coefficients of the cavity. As an example

we consider a cavity coupled to a “hanger line” shown in Fig. 2.14, which is one of the most

popular coupling scheme for readout cavities. Assuming balanced input and output impedance, we

can use network analysis technique such as the ABCD matrix method to find out the transmission

coefficient S21 as [114, 115, 116]

S21 (ω) = 1− Ql
Qc

1

1− 2iQl (ω − ωc)
, (2.142)

where Ql and Qc are the loaded quality factor and the coupling quality factor connected to the

circuit parameters via

Qc =
2ωcC

Z0ω2
cC

2
g
, Ql =

2ωcC

Z0ω2
cC

2
g + 2/R

, (2.143)

and ωc = 1/
√
LC is the cavity resonance frequency. From the IOT prospective, the quantum
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(a) (b)

Figure 2.14: Quantum input-output theory of an RLC oscillator coupled to a “hanger” transmission
line. (a) The cavity is driven by an input field b̂in propagating from port 1 to port 2, while the intra-
cavity field â leaks into the transmission line and propagates along both directions. The output
fields detected at port 1 and port 2 are from the mixing between the input field and the intra-cavity
field. (b) The transmission and the reflection coefficient as functions of the drive frequency. Hanger
line readout allows the determination of the internal and coupling quality factors of the cavity from
fitting the line-shapes with Eq. 2.142.

Langevin equation of the driven cavity is

˙̂a = −
(
iωc +

κi + κc
2

)
â+
√
κcb̂in, (2.144)

with boundary conditions

b̂out,1 =

√
κc
2
â, b̂out,2 = −

√
κc
2
â+ b̂in, (2.145)

for the two ports. Note that the factor of 1/2 of the intra-cavity field amplitude is from the fact that

emitted photons can travel in both directions of the hanger line. The transmission coefficient is

obtained by solving the quantum Langevin equation in the frequency domain,

S21 (ω) =
b̂out,2 (ω)

b̂out,1 (ω)
=

κi − 2i (ω − ωc)
κi + κc − 2i (ω − ωc)

. (2.146)
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Making use of the relations between the decay rates and the quality factors,

κi = ωc/Qi, κc = ωc/Qc, Q−1
l = Q−1

i +Q−1
c , (2.147)

one can be easily verify that Eq. 2.142 and Eq. 2.146 are identical.

The IOT is also useful for studying active networks containing non-reciprocal elements such

as parametric amplifiers [111, 112, 99, 117, 118]. In the case of the non-degenerate parametric

amplifier depicted in Fig 2.15a, the Hamiltonian is generally given by

Ĥ/~ = ω1â
†
1â1 + ω2â

†
2â2 + g

(
e−iωpt+iφâ†1â

†
2 + eiωpt−iφâ1â2

)
, (2.148)

where the pump frequency is close to the sum frequency of the two modes, ωp ≈ ω1 +ω2. Moving

to the rotating frame where â1 → â1e
−iωpt, the Hamiltonian transforms to be time-independent,

Ĥ/~ = δ1â
†
1â1 + ω2â

†
2â2 + g

(
eiφâ

†
1â
†
2 + e−iφâ1â2

)
(2.149)

with δ1 = ω1 − ωp. Substituting this into Eq. 2.133 and in the rotating basis, we have

˙̂a1 = −
(
iω1 +

κ1

2

)
â1 − ige−iωpt+iφâ†2 +

√
κ1b̂in,1, (2.150)

˙̂a2 = −
(
iω2 +

κ2

2

)
â2 − ige−iωpt+iφâ†1 +

√
κ2b̂in,2, (2.151)

which can be Fourier transformed into the frequency domain,

[
i (ω − ω1)− κ1

2

]
â1 (ω) = igeiφâ

†
2

(
ωp − ω

)
−√κ1b̂in,1 (ω) , (2.152)[

i (ω − ω2)− κ2

2

]
â2 (ω) = igeiφâ

†
1

(
ωp − ω

)
−√κ2b̂in,2 (ω) . (2.153)

Plugging the boundary conditions Eq. 2.141 into these equations, we obtain
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(a) (b) (c)

Figure 2.15: Input-output theory of a non-degenerate parametric amplifier. (a) The sketch of the
non-degenerate paramp where the incident tone at frequency ωd,i on the i-th mode is amplified by
the pump signal at ωp ≈ ω1 + ω2, giving rise to the reflected tone at ωd,i and a transmitted tone
converted to ωp − ωd,i. (b) Reflection spectrum of the i-th mode centered at the mode frequency,
under different coupling strength g. The gain increases with g and explodes at g =

√
κ1κ2/2.

(c) Transmission spectrum of the non-degenerate paramp under different coupling strengths. The
transmitted signal acquires a similar gain to the reflected tone at g ≈ √κ1κ2/2.

(
i∆1 +

κ1

2

) b̂in,1 (ω)
√
κ1

+
(
i∆1 −

κ1

2

) b̂out,1 (ω)
√
κ1

=
igeiφ√
κ2

[
b̂
†
in,2
(
ωp − ω

)
+ b̂
†
out,2

(
ωp − ω

)]
,

(2.154)(
i∆2 +

κ2

2

) b̂in,2 (ω)
√
κ2

+
(
i∆2 −

κ2

2

) b̂out,2 (ω)
√
κ2

=
igeiφ√
κ1

[
b̂
†
in,1
(
ωp − ω

)
+ b̂
†
out,1

(
ωp − ω

)]
,

(2.155)

from which we can finally solve for the output fields

b̂out,1 (ω) =

{[
i (ω − ω1) + κ1

2

] [
i
(
ωp − ω − ω2

)
+ κ2

2

]
+ g2

}
b̂in,1 (ω) + i

√
κ1κ2ge

iφb̂
†
in,2
(
ωp − ω

)[
−i (ω − ω1) + κ1

2

] [
i
(
ωp − ω − ω2

)
+ κ2

2

]
− g2

,

(2.156)

b̂out,2 (ω) =

{[
i (ω − ω2) + κ2

2

] [
i
(
ωp − ω − ω1

)
+ κ1

2

]
+ g2

}
b̂in,2 (ω) + i

√
κ1κ2ge

iφb̂
†
in,1
(
ωp − ω

)[
−i (ω − ω2) + κ2

2

] [
i
(
ωp − ω − ω1

)
+ κ1

2

]
− g2

.

(2.157)

We see that the output field is a combination of its reflected input field and the converted input

field of the other mode, both acquiring a gain through the parametric amplification. For resonant

pumping and driving conditions, Eq. 2.156 and 2.157 further reduce to

b̂out,1 (ω1) =

(
κ1κ2 + 4g2

)
b̂in,1 (ω1) + 4i

√
κ1κ2ge

iφb̂in,2 (ω2)

κ1κ2 − 4g2
, (2.158)
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b̂out,2 (ω2) =

(
κ1κ2 + 4g2

)
b̂in,2 (ω2) + 4i

√
κ1κ2ge

iφb̂in,1 (ω1)

κ1κ2 − 4g2
(2.159)

where the amplification of the input fields is reflected as the increasing gain of the Lorentzian-

shaped reflection and transmission spectrum as the coupling strength g approaches
√
κ1κ2/2, il-

lustrated in Fig. 2.15b and c.

Finally, the IOT can also be solved in the time domain to investigate the dynamic process of

photon emission and absorption [119, 120]. One particularly interesting example would be the

release and catch of a single photon between two remote atom-cavity systems useful for quantum

communication tasks. Specifically, the system to our interest is the communication device that

will be more formally introduced in Chapter 3, which is composed of two identical microwave

cavities connected by a coaxial cable, while each resonantly coupled to a superconducting qubit

with tunable strengths. Assuming qubit 1 is initially excited, the single-photon transferring process

between the two qubits is well-described by the quantum Langevin equations,

˙̂a1 = −κ1

2
â1 − ig1 (t) σ̂−1 +

√
κ1b̂in,1, (2.160)

˙̂σ−1 = −γ1

2
σ̂−1 − ig1 (t) â1, (2.161)

˙̂a2 = −κ2

2
â2 − ig2 (t) σ̂−2 +

√
κ2b̂in,2, (2.162)

˙̂σ−2 = −γ2

2
σ̂−2 − ig2 (t) â2, (2.163)

with boundary conditions

b̂in,i + b̂out,i =
√
κiâi, (2.164)

b̂in,i (t) = e−κ0Ts b̂out,j (t− Ts) . (2.165)

Here κi, γi and gi stand for the cavity and qubit decay rate and the coupling strength of the i-th

module, while κ0 and Ts are the internal loss rate and the single-passage time of the cable. When

the cable is nearly lossless, it is an easy exercise to prove the relation between its free spectral

range ∆νFSR and the single-passage time Ts, ∆νFSR = (2Ts)
−1. Two important regimes are
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(a) (b)

Figure 2.16: Time-domain input-output simulation of the single-photon transfer process between
two remote quantum modules. Each module consists a superconducting qubit parametrically cou-
pled to a microwave cavity that is connected to a coaxial cable, forming a quantum communi-
cation network. (a) In the “weak coupling regime” where ∆νFSR = 166 MHz, κ = 10 MHz,
γ = 0.1 MHz and g = 2π × 1 MHz, photon transferring is accomplished by simultaneously turn-
ing on the parametric qubit-cavity coupling for both modules, giving rise to a Lambda system that
allows for qubit population swapping in a holonomic-gate fashion [121, 122]. The transfer fidelity
in this case is mostly limited by qubit loss and systematic leakage into off-resonant cable modes.
(b) In the “strong coupling regime” where ∆νFSR = 1.25 MHz, κ = 20 MHz, γ = 0.1 MHz and
g = 2π × 100 MHz, photon transfer can be achieved by first applying a qubit-cavity swapping op-
eration, followed by the release, propagation and re-absorption of the photon between the cavities.
Finally a qubit-cavity swapping is applied when the receiver cavity reaches maximum population
and completes the transfer process. With fast swap gates and uncontrolled emission rate, the en-
velope of the wave packet is time-reversal-asymmetric and can only results in a fidelity of 54%
as is shown in the simulation, which is dominantly limited by the reflection of the photon and can
be substantially improved by engineering the swapping pulse shape or the emission rate. Qubit
dephasing and cable loss also contribute to the infidelity but are neglected for both simulations for
simplicity.

worth noting here:

1. The “weak coupling regime” where ∆νFSR � κ ' g, corresponding to what we have exper-

imentally achieved in Chapter 3 where the two cavities hybridize into two normal modes1

that are simultaneously coupled to both qubits, allowing the normal modes to be employed

as a quantum bus to coherently swap the photon between the qubits, as demonstrated in

Fig. 2.16a. The IOT simulation in this regime nicely reproduces the trajectories we have

1. Three normal modes will appear in the case where the cavity modes are degenerate with one of the cable modes.
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observed in the communication experiment as well as the master equation simulation in

Fig. 3.8c. The cable modes in this case are only “virtually” participating the transfer process

as the free spectral range is far larger than all the coupling strengths, making the cable loss

only weakly reduce the transfer fidelity through the Purcell effect.

2. The “strong coupling regime” where ∆νFSR � κ / g. In this regime, the cavity modes

hybridize with an ensemble of cable modes with different wave vectors, a result of either

a long coaxial cable or strong coupling between the cavity and the cable. The transmitted

photon simultaneously occupies all these cable modes, rendering the full master equation

simulation computationally challenging. In contrast, the IOT represented by Eq. 2.160 to

2.165 nicely produces the real-time propagation of the wave packet that can be thought of

as a collective excitation of the cable modes. In this regime, photon transferring is achieved

by the “pitch and catch” of the propagating photon (aka the “flying qubit”) illustrated in

Fig. 2.16b, where the time-reversal symmetry of the photon envelope is critical for yielding

a high transfer fidelity [123, 124, 125, 126, 127].

2.4.4 Floquet method

According to the Bloch theorem, the wavefunction of single electron moving in a periodic 1D

lattice can be written in the form

ψ̂k (x) = eikxûk (x) , (2.166)

with ûk (x) having the same periodicity as the lattice. The wavefunction is also invariant under

displacement of the quasimomentum by integer numbers of the reciprocal lattice vector K,

ψ̂k (x) = ψ̂k+nK (x) , (2.167)

so that we can fold all the non-degenerate quasimomentum into the first Brillouin zone of [−K/2, K/2].

Mathematically, the structure outlined by Eq. 2.166 and 2.167 is well explained by the Floquet

73



theory [128] which predicts it to be a common feature of periodic linear differential equations,

including of course Schrödinger equations with spatial or temporal periodicity. The latter can be

thought of as the dual of the Bloch theorem that describes a periodically-driven quantum system,

such as a superconducting circuit parametrically driven by a coherent field at frequency Ω with a

period of T = 2π/Ω,

i~
∂ψ̂

∂t
=
[
Ĥ0 + Ĥd cos Ωt

]
ψ̂. (2.168)

Mapping the variables k ↔ ω and x ↔ t, we can a priori write out its solution mimicking

Eq. 2.166 and 2.167 as [129]

ψ̂ω (t) = e−iωtûω (t) , (2.169)

where ûω (t) = ûω (t+ T ) is called the “Floquet mode” with respect to the quasi-energy ~ω,

which is equivalent to all quasi-energies differing by an integer number of Ω,

ψ̂ω (t) = ψ̂ω+nΩ (t) , (2.170)

so that the wavefunctions are only uniquely defined within the “first Brillouin zone”, [−~Ω/2, ~Ω/2].

In order to actually use Eq. 2.169 for computation, we first need to obtain for all the allowed ω

and their corresponding Floquet modes. Except for a few special cases where analytical solutions

are present, in general finding them require numerical calculations. One way is to perform an

ab initio calculation of the time-dependent Schrödinger equation for the propagator U (T, 0), and

make use the following relationship [130],

U (T ) ψ̂ω (0) = e−iωT ψ̂ω (0) , (2.171)

which is saying that the initial Floquet modes are eigenvectors of U (T ) with quasienergies directly

determined by its eigenvalues. Once the propagator is numerically obtained for [0, T ], the Floquet
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(b) (c)(a)

Figure 2.17: Floquet simulation of the Autler-Townes doublet and the Mollow triplet. The sim-
ulation is done for a transmon qubit coupled to a readout resonator, and measuring the cavity
transmission amplitude at different probe frequencies and drive strengths. (a) Quasienergy spec-
trum of the driven transmon up to the |f〉 level. Under resonant driving, |g〉 and |e〉 hybridize into
equal superposition states between different Floquet bands. The dressed states are dressed again
by another probe tone, giving rise to finite transition rates between different quasienergy levels.
The green arrows represent the Autler-Townes transition, while the blue, black and red arrows cor-
respond to the Mollow triplet. (b) The Autler-Townes 2D spectrum against the probe frequency
and the drive strength. The upper and lower branch are transitions from |f, n〉 to |g, n+ 1〉±|e, n〉.
The center of the doublet is shifted down with increased drive strength due to the Bloch-Siegert
Shift and the |f〉-level-induced AC Stark shift. (c) The Mollow triplet manifesting the couplings
between the dressed state manifolds. The upper and the lower branch are from transitions between
dressed levels of opposite parity, while the center one between the same parity appears as a weak
signal from the |f〉 level hybridization. Unlike the Autler-Townes transition, the center frequency
of the Mollow triplet is fixed by the energy of the drive field and remains unshifted w.r.t the drive
strength.

state up to an arbitrary time t can be calculated through

ψ̂ω (t) = e−iωtU (t mod T )U (T )bt/T c ψ̂ω (0) , (2.172)

and the overall state evolves as the superposition of all Floquet states with weights determined by

the initial condition.

More intuition can be gained by approaching the Floquet formalism from a slightly different

prospective [129, 131], where one expresses the T -periodic Floquet mode as a Fourier series,

ψ̂ω (t) =
∑
σ

∞∑
n=−∞

cσ,ne
−inΩt |σ〉 , (2.173)
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in any orthogonal basis |σ〉 of the driven system. Substituting this into Eq. 2.168 and 2.169, and

after some rearrangements, we arrive to

∑
σ′

∞∑
n′=−∞

cσ′,n

[
n~ωδσ,σ′δn,n′ +

1

T

∫ T

0
dt 〈σ| Ĥ0 + Ĥd cos Ωt

∣∣σ′〉 e−i(n′−n)Ωt

]
= ωcσ,n.

(2.174)

The above equation can be understood as a secular equation of the time-independent “Floquet

Hamiltonian”, which is an infinite Hermitian matrix defined by

〈σ, n| ĤF
∣∣σ′, n′〉 =

(
Ĥ0 + n~ΩÎ

)
δn,n′ +

Ĥd
2
δn,n′±1, (2.175)

where H0 and Hd are already in the |σ〉 basis. The quasienergies can be immediately obtained

from diagonalizing ĤF with a proper truncation. This approach not only has the key advantage

of reducing time-dependent problems into time-independent eigenvalue problems, but is also more

physically meaningful as it is equivalent to treating the classical coherent drive as a quantum har-

monic oscillator in a highly-excited coherent state. Correspondingly, the quasienergy levels are

“real” in the sense that the spectroscopy of a periodically driven system under another weak probe

tone exhibits discrete transition signals where selection rules are met, much like that of real en-

ergy levels. As an example, we plot the Floquet simulation of the Autler-Townes doublet and the

Mollow triplet spectrum in Fig. 2.17, where the quantum nature of the drive field is reflected as a

splitting of the transition signal on the probe tone spectroscopy. In the simulation, the strength of

the drive tone resonant with the qubit |g〉 to |e〉 transition frequency, fge, is tuned between 0 and

2π×50 MHz, while the frequency of a separate probe tone sweeps across fge or fef with a fixed

strength 2π×0.1 MHz.
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CHAPTER 3

PARAMETRIC MODULATION OF QUBIT FREQUENCY

This chapter begins the presentation of our experimental results realizing the parametric control of

flux-tunable superconducting circuits. Well-equipped with necessary theoretical knowledge after

all the previous discussions, we now focus our analysis on the flux-driven circuits where the qubit

frequency is dynamically modulated by one or a few coherent drive fields. This gives rise to the

generation of “sidebands” of the qubit mode that can selectively couple to multiple other modes,

a critical resource of connectivity and scalability exploited for the multimode quantum processor

and the remote quantum module network, as we will see in the following sections.

3.1 Generation of Sidebands

In radio broadcasting, a carrier wave that is modulated produces sidebands besides its basic fre-

quency. A frequency modulated (FM) signal with basic frequency ω0 and modulation frequency

ωd has Fourier components at ω0 ± nωd that appear as “sideband” signals, i.e.

f (t) = A0 cos (ω0t+ Ad sinωdt) =
∞∑

n=−∞
Jn (Ad) cos (ω0 + nωd) t. (3.1)

where the amplitude of the m-th sideband is the m-th order Bessel function of the first kind of the

modulation strength. Analogous to the FM signal is a FM qubit with a Hamiltonian

Ĥq/~ = (ω0 + εd cosωdt)
σ̂z
2
, (3.2)

whose propagator is given by

Uq = e−
i
~
∫
Ĥqdt = e

−i
(
ω0t+

εd
ωd

sinωdt
)
σ̂z
2 =

∞∑
n=−∞

Jn

(
εd
ωd

)
e−

i(ω0+nωd)t
2 σ̂z . (3.3)

Here we have made use of the Jacobi-Anger identity,
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(a) (b) (c)

Figure 3.1: Floquet picture of the qubit frequency modulation and the generation of sidebands. (a)
Quasienergy spectrum of the “FM qubit” where the modulation is effectively coupling all |g〉 and
|e〉 levels between different Floquet bands with nearest neighbour coupling. (b) Spectroscopy of
the FM qubit under a weak probe tone, where transitions between quasienergy levels show linear
dependency on the modulation frequency. (c) The modulation frequency is fixed at 0.2 GHz while
the modulation amplitude is swept from 0 to 1 GHz, resulting in the oscillation of the effective
coupling strength between the sidebands and the probe field as a Bessel function of the modulation
strength, which closely matches the theoretical prediction in Eq. 3.8.

eiz sin θ =
∞∑

n=−∞
Jn (z) einθ. (3.4)

Already we see the generation of sidebands in Eq. 3.3, as the evolution of the FM qubit consists

an infinite number of qubit evolution operators at all the sideband frequencies with different am-

plitudes. From the Floquet theory point of view, these sidebands are real spectral lines that can

be observed with a probe tone. Depicted in Fig. 3.1a, the modulation can be thought of as creat-

ing a tight-binding lattice for the ground and the excited state manifold in the Floquet basis, with

hopping parameters of opposite phases:

Ĥ(g)
Floquet/~ =

∞∑
n=−∞

(ω0 − nωd) |g, n〉 〈g, n| −
εd
4

(|g, n〉 〈g, n+ 1|+ h.c.) , (3.5)

Ĥ(e)
Floquet/~ =

∞∑
n=−∞

(ω0 − nωd) |e, n〉 〈e, n|+
εd
4

(|e, n〉 〈e, n+ 1|+ h.c.) . (3.6)
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Diagonalization of these lattices gives rise to the dressed states for the n-th Floquet band,

|̃g, n〉 =
∞∑

k=−∞
Jk

(
εd

2ωd

)
|g, n+ k〉 , |̃e, n〉 =

∞∑
k=−∞

J−k

(
εd

2ωd

)
|e, n+ k〉 , (3.7)

so the effective coupling strength between the quasienergy levels |̃g, n〉 and ˜|e, n+ k〉 with transi-

tion frequency ω0 + kωd is

gk = ApJk

(
εd
ωd

)
, (3.8)

where Ap is the amplitude of the probe tone, and we have used the identity

∞∑
k=−∞

J−k (x) Jk+l (y) = Jl (x+ y) . (3.9)

The modulation frequency and amplitude dependence of the sideband signals are well captured by

the Floquet simulation, shown in Fig. 3.1b and c. Remarkably, when the ratio between the am-

plitude and frequency of the modulation reaches one of the zero points of the Bessel function, the

qubit becomes “invisible” to the probe tone, which can be understood as a dynamical decoupling

mechanism and has important applications as a hopping-energy tuning technique in many-body

physics.

3.2 Stimulated Vacuum Rabi Interaction

Much like how the FM qubit responds to the probe tone at all sideband frequencies, a FM qubit

can resonantly interact with the cavity mode it is coupled to when the detuning frequency matches

one of the sidebands [132, 133]. Consider the Rabi model with a FM qubit,

Ĥ (t) /~ = ωcâ
†â+

ωq + εd cosωdt

2
σ̂z + g

(
â† + â

)
σ̂x. (3.10)
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Rewriting it in the dressed basis with a leading-order S-W transformation and with all the static

terms cancelled out by a rotating frame transformation, we have an effective Hamiltonian,

Ĥeff (t) /~ = εd cosωdt

(
σ̂z
2

+
g

∆
âσ̂+ei∆t +

g

Σ
â†σ̂+eiΣt + h.c.

)
, (3.11)

where ∆ = ωq − ωc and ∆ = ωq + ωc. Keep moving to the rotating frame by applying the

transformation U = eiσ̂z
∫
εd cosωdt/2, we arrive to

Ĥeff (t) /~ = εd cosωdt

[
g

∆
âσ̂+e

i
(

∆t+
εd
ωd

sinωdt
)

+
g

Σ
â†σ̂+e

i
(

Σt+
εd
ωd

sinωdt
)

+ h.c.

]
. (3.12)

According to the Jacobi-Anger identity in Eq. 3.4, when ωd = ∆/n, the effective Hamiltonian

under the RWA is

Ĥeff/~ = gJn

(nεd
∆

)(
â†σ̂− + âσ̂+

)
, (3.13)

where we have used the recurrence relation,

2kJk (x) = x [Jk−1 (x) + Jk+1 (x)] . (3.14)

We immediately see that the effective coupling strength is exactly the same as what we obtained in

Eq. 3.8, which is not surprising as the probe field is essentially a mode in a highly-excited coherent

state. Eq. 3.13 describes a single-photon exchange interaction between the qubit and the cavity

mode, which is dubbed the “stimulated vacuum Rabi interaction” due to its resemblance of the

vacuum-Rabi Hamiltonian for the static case. Similarly, when ωd = Σ/n, a two-photon pumping

term is generated,

Ĥeff/~ = gJn

(nεd
Σ

)(
â†σ̂+ + âσ̂−

)
, (3.15)

which can be used for squeezing, amplification and stabilization etc. In practice, the modulation

frequency is usually set to the (absolute) detuning frequency, where the strength of these interac-

tions becomes the 1st order Bessel function that has the largest maximum value of all orders n ≤ 1,
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gmax ≈ 0.58g, reached at εd ≈ 1.84∆ or εd ≈ 1.84Σ. The latter typically corresponds to a very

large modulation amplitude and is usually hard to actually achieve.

Such sideband interactions obtained from FM qubits possess various advantages over tradi-

tional dc-flux controlled qubit. Under dc-flux tuning, the qubit can only be brought into resonance

with an individual mode within its tunable range. Excitations are loaded into the modes by adiabat-

ically tuning the qubit frequency through or near a mode resonance, which may suffer from stray

Landau-Zener transition to all other modes in its path that leaves residual excitations in the mani-

fold. Also, the qubit must be returned to the far-dispersive regime to minimize spurious unwanted

interactions, requiring longer gate durations. In contrast, the parametric flux modulation can di-

rectly target the mode of interest with controllable interaction strength and phase, even if the mode

is out of the dc-flux tuning range. By simultaneously modulating the qubit at multiple frequen-

cies, it is possible to entangle the qubit with multiple modes at the same time, either for swapping

population or for more complicated quantum operations. These nice properties, along with the

multimode architecture that solves the connectivity issue, paves the road towards the building of

random access quantum processor and remote quantum modules, which will be demonstrated in

the following sections.

3.3 Random Access Quantum Information Processors

A practical quantum computer requires a large number of qubits working in cooperation, a chal-

lenging task for any quantum hardware platform. For superconducting qubits, there is an ongoing

effort to integrate increasing numbers of qubits on a single chip [134, 135, 136, 137, 138, 139,

140]. This typically involves coupling many Josephson junction qubits into a lattice structure with

nearest-neighbor interactions. While in ion trap quantum computers an all-to-all connectivity can

be easily attained and exploited to its advantage [141, 142, 143], superconducting chip devices are

constrained by circuit geometry that prevents high connectivity to be achieved. Classical computa-

tion architectures typically address this challenge by using a central processor which can randomly

access a large memory, with the two elements often comprising distinct physical systems. We
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implement a quantum analog of this architecture, realizing a random access quantum information

processor using circuit QED.

As in the classical case, quantum logic elements, such as superconducting qubits, are expen-

sive in terms of control resources and have limited coherence times. Quantum memories based

on harmonic oscillators, instead, can have coherence times two orders of magnitude longer than

the best qubits [144, 145], but are incapable of logic operations on their own. This observation

suggests supporting each logic-capable processor qubit with many harmonic oscillator modes as

“memory qubits”. In the near term, this architecture provides a means of controlling tens of highly

coherent qubits with minimal cryogenic and electronic-control overhead. To build larger systems

compatible with existing quantum error correction architectures, one can connect individual mod-

ules consisting of a single processor qubit and a number of bits of memory while still accessing

each module in parallel.

In this section, as the first important application of qubit frequency modulation we have achieved,

we describe how to make use of a single non-linear element to enable universal quantum logic with

random access on a collection of harmonic oscillators. Information is stored in distributed, read-

ily accessible, and spectrally distinct resonator modes, while single qubit gates can be performed

on arbitrary modes through frequency-selective parametric control to exchange information be-

tween the transmon and individual resonator modes. Making use of higher levels of the transmon,

controlled-phase (CZ) and controlled-NOT (CX) gates on arbitrary pairs of modes can be realized,

completing all the ingredients necessary for universal quantum computation with harmonic modes.

3.3.1 Multimode quantum memory

The multimode quantum memory circuit consists of a transmon coupled to a linear array of iden-

tical, strongly coupled superconducting resonators [84], shown in Fig. 3.2, with a circuit Hamilto-

nian of

Ĥ/~ = ωqâ
†â+

α

2
â†2â2 + gq

(
â†b̂1 + âb̂

†
1

)
+ gr

n−1∑
k=1

(
b̂
†
k b̂k+1 + b̂k b̂

†
k+1

)
+ωr

n∑
k=1

b̂
†
k b̂k. (3.16)
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Figure 3.2: Random access superconducting quantum information processor. (a) and (b),
Schematic and optical image, respectively, of the superconducting microwave circuit. The circuit
comprises an array of 11 identically designed, coplanar waveguide (CPW) half-wave resonators,
capacitively coupled strongly to each other. The top end of the array is capacitively coupled to
a tunable transmon qubit. The transmon is measured with a separate resonator, whose input line
doubles as a charge bias for the transmon. The inset shows the tunable SQuID of the transmon, as
well as its flux bias above it. (c) Random access with multiplexed control. The quantum memory
consists of the eigenmodes of the array, with each mode accessible to the transmon. This allows
for quantum operations between two arbitrary memory modes (such as those highlighted in green)
via the central processing transmon and its control lines.

Applying the B-V transformation introduced in section 2.3.1, we may write out the circuit Hamil-

tonian in the multimode normal mode basis, in a similar fashion to Eq. 2.50, as

Ĥ/~ = ωqâ
†â+

α

2
â†2â2 +

n∑
k=1

gk

(
â†ĉk + âĉ

†
k

)
+

n∑
k=1

ωk ĉ
†
k ĉk, (3.17)

with normal mode frequencies being

ωk = ωr − 2gr cos

(
kπ

n+ 1

)
. (3.18)
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The normal mode and bare multimode operators are connected to each other through

b̂k =
n∑
j=1

√
2

n+ 1
sin

(
jkπ

n+ 1

)
ĉj . (3.19)

Substituting this into Eq. 3.16, we obtain the coupling strengths between the transmon and the

normal modes as

gk = gq

√
2

n+ 1
sin

(
kπ

n+ 1

)
. (3.20)

We see the important feature of the multimode circuit that every normal mode has non-zero partic-

ipation at the edge site, allowing the transmon to couple to each mode. While this implementation

is straightforward, the idea of a multimode memory also applies to related systems with many har-

monic degrees of freedom, including long transmission-line [146] or 3D waveguide cavities [147].

It is also possible to use more of the oscillator Hilbert space, allowing logical encoding in terms of

cat [148] and binomial code [149] states.

To achieve single-mode operation within the zero- and one-photon Fock states, we parametri-

cally modulate the transmon frequency through an rf-flux tone. This results in a photon swapping

operation (the “iSWAP gate”) between the transmon and the normal mode when the modulation

frequency is at the detuning between the two, which, along with qubit operations, can be utilized

to perform arbitrary single-mode operations illustrated in Fig. 3.3a. Assuming the transmon is ini-

tially in the ground state, one simply needs to swap the state between the transmon and the normal

mode, apply the desired quantum gate U to the transmon, then perform the swapping operation

again, i.e.

|g〉⊗(α |0〉+ β |1〉)→ i (α |g〉+ β |e〉)⊗|0〉 → iU (α |g〉+ β |e〉)⊗|0〉 → − |g〉⊗U (α |0〉+ β |1〉) .

(3.21)
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(a) (b)

Figure 3.3: Single-mode gate and two-mode CZ gate pulse sequence for the multimode architec-
ture. (a) The sequence for generating arbitrary single-qubit gates of a memory mode: (1) The
mode’s initial state, consisting of a superposition of 0 and 1 photon Fock states, is swapped to the
transmon (initially in its ground state), using a transmon-mode iSWAP. (2) The transmon is rotated
by the desired amount (Rφ) via its charge control line. (3) The rotated state is swapped back to
the mode, by reversing the iSWAP gate in (1). Segments of this sequence are used to achieve state
preparation [steps (2) and (3)] and measurement [steps (1) and (2)] of each mode. (b) Protocol for
controlled-phase (CZ) gate between an arbitrary pair of modes, with j indicating the control mode
and k indicating the target mode of the gate: (1) The state of mode j is swapped to the transmon
via a transmon-mode iSWAP pulse at the frequency difference between the transmon |g〉 − |e〉
transition and mode k. (2) A CZ gate is performed between mode k and the transmon, by applying
two frequency-selective iSWAPs from energy level |e1〉 to level |f0〉 and back, mapping the state
|e1〉 to − |e1〉. (3) The state of the transmon is swapped back to mode j, reversing the iSWAP in
(1).

3.3.2 Universal quantum operations

To achieve universal control of the quantum memory, we extend our parametric protocols to realize

two-mode gates. We perform conditional operations between the transmon and individual modes

by utilizing the |e〉 − |f〉 transition of the transmon. A controlled-phase (CZ) gate between the

transmon and an individual mode consists of two sideband iSWAPs resonant to the |e1〉 − |f0〉

transition, selectively mapping the state |e1〉 to -|e1〉, leaving all other states unchanged due to the

anharmonicity of the transmon:

|g〉 ⊗ (α |0〉+ β |1〉)→ |g〉 ⊗ (α |0〉+ β |1〉) , (3.22)
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|e〉 ⊗ (α |0〉+ β |1〉)→ α |e〉 ⊗ |0〉+ iβ |f〉 ⊗ |0〉 → |e〉 ⊗ (α |0〉 − β |1〉) . (3.23)

To enact a CZ gate between two arbitrary modes, the control mode is swapped into the transmon,

a transmon-mode CZ is performed, and the mode is swapped back as illustrated in Fig. 3.3b. In

our device, gate speeds (250-400 ns) are primarily limited by crosstalk between iSWAP operations

on the |g〉 − |e〉 and |e〉 − |f〉 transitions of modes with difference frequencies approaching the

anharmonicity of the transmon. This crosstalk can be reduced by tailoring the frequency spacing

of the memory modes and the anharmonicity of the transmon. In addition to the CZ gate, we

obtain controlled-X and Y gates (CX, CY) between modes by swapping |e〉 and |f〉 transmon

state populations in the middle of the pulse sequence for the CZ gate. These gate protocols can

be extended to realize two-mode SWAP gates, as well as multi-qubit gates such as Toffoli and

controlled-controlled-phase (CCZ) gates [150] between arbitrary modes.

3.4 Quantum Communication Between Remote Multimode Modules

On top of the multimode architecture that realizes high connectivity on the single chip level, an-

other promising approach to scaling up superconducting quantum computing hardware is to adopt

a modular architecture [151, 152, 153] in which modules are connected together via communi-

cation channels to form a quantum network. This reduces the number of qubits required on a

single chip, and allows greater flexibility in reconfiguring and extending the resulting informa-

tion processing system. In such an architecture, each module is capable of performing universal

operations on multiple-bits, and neighboring modules are connected through photonic channels,

allowing communication and entanglement generation between remote modules.

In light of this spirit, we show how to further push up the scalability of the multimode device

by employing parametric flux control to perform quantum operations between remote multimode

modules. Each module, as displayed in Fig. 3.4, is composed of a flux-tunable transmon (yellow),

eight multimode cavities formed by two chains of identical lumped-element resonators (purple), a

readout cavity (cyan) as well as a CPW “communication cavity” (green) that plays an important
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Figure 3.4: The remote multimode module. (a, b) False-colored photo and circuit diagram of a
remote multimode module. Each chip consists of a frequency-tunable transmon and two chains
of four identically designed, lumped-element resonators. In addition, a resonator is included for
readout, and a second resonator is to be coupled to the coaxial cable that provides the commu-
nication link between the chips. (c) The chevron patterns generated by sweeping the length of
the flux modulation pulse at each detuning frequency and measuring the excited state population
of the transmon after the pulse ends. The local memory on each processor can be used for local
processing and entanglement distillation in future work.

role in the communication experiment. The sideband modulation of the frequency-tunable trans-

mon can access resonators in each chip by targeting their corresponding frequency detunings, as

shown in Fig. 3.4c.

3.4.1 Connecting modules with communication channel

Remote entanglement between superconducting qubits has been realized probabilistically [154,

155, 156]. A deterministic quantum communication channel is advantageous over a probabilis-

tic one because it lowers the threshold requirement for fault-tolerant quantum computation and

can achieve higher entanglement rates [157]. Realizing deterministic photonic communication
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requires releasing a single photon from one qubit and catching it with the remote qubit. In the

long-distance limit, the photon emission and absorption are from a continuum density of states. In

this limit, static coupling limits the maximum transfer fidelity to only 54% , as we have seen in

section 2.4.3. This limit is exceeded by dynamically tailoring the emission and absorption profiles.

These capabilities are presently being used to perform photonic communication between super-

conducting qubits connected by a transmission line within a cryostat [156, 158, 159, 160]. In these

experiments, the use of a circulator enables the finite-length transmission line to be modeled as a

long line with a continuum density of states, at the cost of added transmission loss.

Here, we establish bidirectional photonic communication between two superconducting qubits

through a multimodal communication channel. Rather than inserting a circulator, the multimode

nature of the finite length transmission line is made manifest and exploited [161]. For intra-cryostat

communication, the required connection coaxial cable length of 1 m or less results in a free spec-

tral range on the order of 100 MHz. Illustrated in Fig. 3.5, the coaxial cable is coupled to the

communication cavities of the two modules. The communication cavities are designed to be CPW

resonators with a large center pin and gap width to make the frequency insensitive to fabrication

variations [162], resulting in their near-identical frequency ωr as well as the coupling strength to

the cable mode, gc. Since the free spectral range of the coaxial cable is an order of magnitude

larger than gc, we consider the cable as a single mode at ωc nearly resonant with the communica-

tion cavities. This leads to the Hamiltonian of the three modes as

Ĥ/~ =
2∑
i=1

ωib̂
†
i b̂i + ωcb̂

†
cb̂c + gc

2∑
i=1

(
b̂
†
i b̂c + b̂ib̂

†
c

)
. (3.24)

Eq. 3.24 can be directly diagonalized by the B-V transformation, yielding three normal modes B̂±

and D̂,

Ĥ/~ = ω+B̂
†
+B̂+ + ω−B̂

†
−B̂− + ωDD̂

†D̂. (3.25)

In the ideal case where the two communication cavities are perfectly degenerate, ω1, 2 = ωr, we
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(a)

(b)

Figure 3.5: The remote multimode module. (a, b) False-colored photo and circuit diagram of a
remote multimode module. Each chip consists of a frequency-tunable transmon and two chains
of four identically designed, lumped-element resonators. In addition, a resonator is included for
readout, and a second resonator is to be coupled to the coaxial cable that provides the commu-
nication link between the chips. (c) The chevron patterns generated by sweeping the length of
the flux modulation pulse at each detuning frequency and measuring the excited state population
of the transmon after the pulse ends. The local memory on each processor can be used for local
processing and entanglement distillation in future work.

have

ωD = ωr, ω± = ωr +
1

2

(
∆±

√
8g2
c + ∆2

)
, (3.26)

and

D̂ =
1√
2

(
b̂1 − b̂2

)
, B̂± =

1√
2 +

(
r ±
√

2 + r2
)2

[
b̂1 + b̂2 +

(
r ±

√
2 + r2

)
b̂c

]
. (3.27)

Here ∆ stands for the deviation of the cable mode frequency from the communication resonator

frequency, i.e. ∆ = ωc−ωr, and r = ∆/2gc. We refer to the B̂± as the “bright” modes, and D̂ the

“dark” mode for the simple reason that the later has no cable mode participation, making it highly
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(a) (c)(b)

Figure 3.6: The communication normal modes and the stimulated vacuum Rabi oscillation between
the qubit and normal modes. By fitting to the experimental data (a) using our analytical model,
we extracted the deviation of the cable mode frequency from the two communication resonators
to be 4.25 MHz, while the coupling between the cable mode and the communication resonator
is 6.46 MHz. Plugging these along with other circuit parameters obtained from the experiment
into a master equation, we can simulate the experimental result with decent agreement (c). (b)
The schematic showing the wavefunctions of the coupled system involving the communication
resonators and the coaxial cable. The three degenerate modes hybridize and form three normal
modes with distinct signatures. The center dark mode has minimal participation in the lossy cable
mode and has high quality factor.

immune to the photon loss of the cable. Suppose the bare coupling strength between the transmon

and the communication cavity is g0, the renormalized coupling strengths between the qubit and

these normal modes are given by

gD =
g0√

2
, g± =

g0√
2 +

(
h±
√

2 + h2
)2
. (3.28)

We further see that the dark mode also couples more strongly to the qubit comparing to the other

two bright modes, which will be helpful for a faster communication rate. These nice features of the

dark mode are well confirmed in our experiment shown in Fig. 3.6, where parametric modulation

of the transmon frequency leads to three stimulated vacuum Rabi oscillations at the normal mode

frequencies, with the center chevron being the fastest and the most coherent of the three.

The above derivation is based on the ideal scenario where the two communication resonators
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have the same resonant frequency. In reality, the imperfection of the circuit fabrication inevitably

gives rise to a small detuning between the two resonators, with a typical value around a few MHz

as observed from sample iterations. Also couplings between the two resonators and the rest of the

cable modes need to be accounted for a more accurate calculation, as they lead to the an additional

Purcell loss of the communication mode. Measure through our best fit of data with simulation, we

find the detuning between the two communication cavities to be δ = 2π × 5 MHz, the detuning

and the coupling between the communication cavity and the cable mode to be ∆ = 2π×4.25 MHz

and gc = 2π × 6.46 MHz, the quality factors of the bare communication resonator and bare cable

mode to be Qr = 2.65 × 105 and Qc = 2.1 × 103, and a free spectrum range of the cable of

∆ν = 100 MHz, then the rotating frame Hamiltonian describing the communication cavities and

the nearest three cable modes can be written as

Ĥ/~ =
2∑

k=1

[(k − 1) δ −∆] b̂
†
k b̂k +

1∑
n=−1

2πn∆νb̂
†
c,nb̂c,n + gc

∑
k,n

(
b̂
†
k b̂c,n + b̂k b̂

†
c,n

)
. (3.29)

Plugging the values for each parameter in the above Hamiltonian, and being cognizant of the alter-

nating phase of neighboring cable mode wave functions, we numerically diagonalize the Hamilto-

nian and obtain a participation of the lossy cable in the communication mode to be 6.5%, and we

find the quality factors of the “dark” communication mode and the “bright” normal modes to be

Qc = 2.67 × 104, Q1 = 5.5 × 103 and Q2 = 3.8 × 103, which quantitatively agrees with their

corresponding coherence times that are characterized by the combination of iSWAP operation plus

transmon population measurement.

In order to calculate the communication processes between the remote modules, we write out

the Hamiltonian of the driven network in the rotating frame, as

Ĥ/~ =
2∑
i=1

∑
l=±

{
(ωl − ωD) B̂

†
l B̂l + J1

(
εi
ωd,i

)[
gl

(
B̂lσ̂

+
i + B̂

†
l σ̂
−
i

)
+ gD

(
D̂σ̂+

i + D̂†σ̂−i
)]}

,

(3.30)
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Circuit parameters 1st 2nd 3rd

Transmon frequency (GHz) 4.7685 4.7420 N/A
Transmon T1 (µs) 10.1 7.9 N/A
Transmon T ∗2 (µs) 0.7 1.4 N/A

Bare comm frequency (GHz) 7.878 (comm1) 7.883 (cable) 7.883 (comm2)
Bare comm T1 (µs) 5.35 0.043 5.35

Normal mode frequency (GHz) 7.872 (bright) 7.88 (dark) 7.891 (bright)
Normal mode T1 (µs) 0.15 0.55 0.1

Table 3.1: Remote multimode module circuit parameters.

with εi and ωd,i being the flux modulation amplitude and frequency of the i-th transmon. The

corresponding master equation is

ρ̇ = − i
~

[
Ĥ, ρ

]
+
∑
l=±

κbD[B̂l]ρ+ κdD[D̂]ρ+
2∑
i=1

γiD[σ̂−i ]ρ+
2∑
i=1

γi,φD[
σ̂i,z√

2
]ρ, (3.31)

where the decay and dephasing parameters can be directly obtained from Table. 3.1. With these,

we are able to simulate the bidirectional photon transfer experiment and the remote entanglement

experiment that will be discussed in the following sections.

3.4.2 Bidirectional single-photon transferring

To demonstrate photonic communication between the two chips, we send a single photon from

one chip to the other using the dark mode (from this point on we will call it the “communication

mode”) as the transfer medium. As parametric modulation allows us to couple the transmons to

the communication mode, the most obvious scheme would be to excite the sender qubit, swap its

population into the communication mode by parametric flux modulation, followed by modulating

the receiver qubit frequency to transfer the photon from the communication mode to the receiver

qubit. In our experiment, we switch on sideband interactions simultaneously on both qubits. When

the amplitudes of the flux modulations are carefully matched such that the two sideband couplings

are equal, this effectively creates a non-adiabatic holonomic gate [121, 122] between the qubits

that swaps the population from one to the other, allowing the photon transfer to be accomplished in
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(a) (b)

Figure 3.7: Bidirectional excitation transfer. The inset at top right shows the pulse sequence used
to implement excitation transfer. The labels c1, c2 denote the charge drives on qubits 1 and 2,
respectively, and f1, f2 the respective flux drives. We first apply a π pulse to excite one of the
qubits, then simultaneously switch on the sideband flux pulse to drive the transfer process. Using
the same sideband sequence, but instead applying the π pulse to the other qubit, we can send a
single photon in the opposite direction. The transfer fidelity is limited by qubit dephasing and
photon decay in the communication mode. Described in the following, the transfer process in
different directions have slightly different loss mechanisms. (a) Excitation transfer from qubit 1 to
qubit 2. Notice that in this transfer process the sender qubit is not able to fully receive its excitation
(population of |eg〉 does not reach zero). As confirmed by the master equation simulation, this is
due to the dephasing of qubit 1. The remaining errors arise from communication cavity loss and
dephasing of qubit 2, which is less than that of qubit 1. (b) Excitation transfer from qubit 2 to qubit
1. In this process, while qubit 2 releases most of its excitations (population of |ge〉 comes close to
zero), the dephasing of qubit 1 prevents it from capturing all the excitations in the communication
mode, resulting in a slightly higher final population in |gg〉. The resulting fidelities for the transfer
in the two directions are similar: {P|ge〉, P|eg〉} ≈ 61%, confirming the results from our numerical
simulation.

a shorter time than two sequential sideband π pulses with less communication mode participation,

which are both helpful for achieving a higher transfer fidelity. Sending a photon in the reverse

direction simply takes the same sideband sequence but exciting the other qubit instead. Fig. 3.7

shows the transmon population plotted as a function of the sideband pulse length. The master

equation simulation results (solid lines) are shown along with the experimental data (dots). We

are able to obtain photon transfer with a success rate of {P|ge〉, P|eg〉} ≈ 61%. We use square

pulses for the time-envelopes of the modulation which is the optimal choice under the current

circuit parameters. Note that the achieved transfer fidelity exceeds 54%, the maximum fidelity for

absorbing a naturally shaped emission into a continuum. This demonstrates a qualitative difference

93



in transferring via a multimode cable compared to that of releasing and catching flying photonic

qubits through a continuum.

The transfer fidelity is limited by qubit dephasing and photon decay in the communication

mode. Qubit 1 has a higher dephasing rate (T ∗2 ≈ 700 ns) than qubit 2 (T ∗2 ≈ 1.4µs). The

dephasing rate of qubit 1 is comparable to the sideband coupling rate, with the result that this

qubit is not able to fully release its excitation during the transfer process. Conversely, for transfer

in the other direction qubit 1 is not able to receive all of the excitations. This transfer infidelity

can be largely mitigated by using a fixed-frequency qubit less susceptible to the flux noise, with

its coupling strength to the communication mode parametrically controlled via a tunable coupler

circuit [69, 68, 70, 71, 72]. The remaining loss of transfer fidelity comes from the loss in the

communication mode. From our numerical simulations detailed in the appendix, we estimate that

the overall photon loss in both the qubits and the communication mode contribute to an infidelity of

24%, while the dephasing error of the two qubits accounts for an infidelity of 15%. The sideband

coupling rate of the transmon is limited by the range over which its frequency can be parametrically

tuned, resulting in a maximum effective sideband coupling to the communication resonator of ≈

2 MHz. With improved qubit coherence time, our simulation shows that more sophisticated transfer

protocols such as STIRAP can be employed to boost transfer efficiency, see subsection 3.2.

3.4.3 Remote entanglement generation

We now entangle two qubits by creating a Bell state between the transmons on the respective

chips. We can create such a state by first applying the
√

iSWAP gate between the excited qubit

1 and the communication mode, which generates the Bell state (|g1〉 + |e0〉)/
√

2 between them.

We implement the
√

iSWAP by applying a sideband modulation pulse to qubit 1 to perform a π/2

rotation. Subsequently, we transfer the state of the communication mode to qubit 2 through the

iSWAP gate by applying a sideband modulation pulse to the latter to perform a π rotation. Ideally

this sequence prepares the Bell state |Ψ+〉 = (|ge〉 + |eg〉)/
√

2 shared between the two remote

qubits. To minimize decoherence the sender and receiver pulses can be applied simultaneously, so
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long as the lengths and amplitudes of the pulses are adjusted appropriately. Choosing qubit 1 as

the sender and using square pulses, we found — both in our simulation and in the experiment —

that maximal fidelity was obtained by setting both pulses at the same coupling rate and the length

of the receiver pulse to be slightly longer than twice that of the sender, demonstrated by the pulse

sequence diagram in Fig. 3.8b. The resulting Bell state has a fidelity of 〈Ψ+|ρexp|Ψ+〉 = 79.3 ±

0.3%. We obtained the density matrix ρexp using quantum state tomography with an over-complete

set of measurements complemented with the maximum likelihood method, and we corrected the

measurement error by constructing a confusion matrix. To measure the two-qubit state, we record

the homodyne voltage for each qubit from every run. For example, run i of the experiment would

result in a 4D heterodyne voltage values (VI1,i, VQ1,i, VI2,i, VQ2,i). These voltages are random

numbers generated from a specific distribution corresponding to state projection and experimen-

tal noise. To measure the population in the four two-qubit basis states: |gg〉, |ge〉, |eg〉, |ee〉 we

construct the histograms for these states by applying π pulses to the qubits. These histograms ap-

proximate the probability distribution for measuring a given voltage pair when the system is in a

given basis state. We employ logistic regression for classification of the two-qubit states. By set-

ting decision thresholds for maximizing the classification accuracy for the two-qubit basis states

according to the voltage distribution, we obtain a confusion matrix representing the correct and

incorrect identification of basis state. For an unknown density matrix ρ we construct the classifi-

cation distribution for ρ from N measurements, and project onto the basis states by applying the

inverse of the calculated confusion matrix M (row: prepared state, column: measured state) for

the states {|gg〉 , |ge〉 , |eg〉 , |ee〉}, where

M =



0.8293 0.1053 0.0572 0.0082

0.1841 0.7514 0.0122 0.0523

0.101 0.0117 0.7923 0.095

0.0236 0.0979 0.1686 0.7099


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(a)

(b)

(c)
f1+f2 f2

Figure 3.8: Bell pair creation. (a) Real component of the density matrix. (b) Expectation values of
two-qubit Pauli operators. (c) Simulation of the evolution of the two-qubit states for the entangle-
ment generation (up) and the single-photon transferring (down) under the same sideband coupling
strength, in the lossless idea situation. The dashed line indicates the end of the sending flux pulse
in the Bell pair creation, which is at the time point where the sender qubit drops to 50% population.
Then the receiving pulses keeps transferring the “half photon” from the communication mode to
the receiver qubit until the later also reaches 50% population, resulting in the creating of the Bell
state.

We perform state tomography using the standard method by calculating the linear estimator,

ρest =
∑
i,j

Tr[(σi ⊗ σj)ρ](σi ⊗ σj)
4

. (3.32)

To calculate the term Tr[(σi ⊗ σj)ρ we apply a unitary operator U to ρ prior to measurement. For

two-qubits, there are nine required measurements corresponding to the following unitary opera-

tors, (I, RY (π/2), RX(π/2))⊗ (I, RY (π/2), RX(π/2)). This simple linear estimator method can

return unphysical results because it projects onto the space of all Hermitian matrices with Trace 1.

However a physical density matrix must also be positive semi-definite. Following the maximum
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likelihood protocol outlined in [84, 163], we estimate the most likely physical density matrix by

minimizing the function,

F [ρest] =

N,4∑
i=1,j=1

(〈j|U†i ρestUi|j〉 − Pi,j)
2 (3.33)

, where Ui are the set of N applied tomography pulses, |j〉 is the j-th basis state, Pi,j is the

measured probability, and ρest is a physical density matrix satisfying the physical constraints.

The starting guess for the minimization is the density matrix estimated from the linear estimator

with all negative eigenvalues set to zero. To form a over-complete set for a total of 17 tomogra-

phy measurements, we also measure the negative pulse set [164] (I, RY (−π/2), RX(−π/2)) ⊗

(I, RY (−π/2), RX(−π/2)). It can be inferred from the data that the fidelity is almost equally

limited by photon decay in the cable and the qubit dephasing errors. We also note that the Bell

state fidelity is significantly higher than the success probability we achieved for photon transfer.

The reason becomes more obvious by looking at the evolution of the states plotted in Fig. 3.8c.

First of all, the entanglement scheme has shorter pulse length, and less channel mode participa-

tion which is the primary source of error. Moreover, in contrary to the photon swapping scheme,

the entanglement pulse sequence is not time-reversal symmetric so that we can use the qubit with

higher T2 as the sender qubit to minimize the infidelity due to the dephasing loss.

3.4.4 Suppression of 1/f noise in the communication process

In this subsection we study how quantum noises of realistic power spectrum affect the communi-

cation fidelity. We limit ourselves to single-excitation subspace where the relevant states are the

dressed basis

|G〉 = |g0g〉 , |B〉± =
1

2

(
|e0g〉+ |g0e〉 ±

√
2 |g1g〉

)
, |D〉 =

1√
2

(|e0g〉 − |g0e〉) . (3.34)
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|D〉 and |B〉 are not to be confused with the normal modes of the communication cavities and the

cable, but should be understood as the dark and bright modes from the hybridization of the driven

qubits and the communication mode in the rotating frame. Without loss of generality, we set the

initial state to be

|Φ (0)〉 = |e0g〉 =
1√
2
|D〉+

1

2

(
|B〉+ + |B〉−

)
. (3.35)

Under coherent evolution, the state becomes

|Φ (t)〉 =
1√
2
|D〉+

1

2

(
e−i
√

2Ωt |B〉+ + ei
√

2Ωt |B〉−
)
. (3.36)

Assuming the sideband interaction strength Ω to be far greater than the noise amplitudes, we make

the following observations for relaxation and decoherence processes within the dressed basis:

1. The bright states |B〉± relax to each other at rates

Γ±BB =
1

8

(
S

(1)
zz

[
±2
√

2Ω
]

+ S
(2)
zz

[
±2
√

2Ω
])
, (3.37)

while they relax to the dark state |D〉 at

Γ±BD =
1

4

(
S

(1)
zz

[
±
√

2Ω
]

+ S
(2)
zz

[
±
√

2Ω
])
. (3.38)

The dark state also relax to the bright states at

Γ±DB =
1

4

(
S

(1)
zz

[
∓
√

2Ω
]

+ S
(2)
zz

[
∓
√

2Ω
])
. (3.39)

Assuming symmetric PSD Szz [−ω] = Szz [ω], we have

Γ±BB = ΓBB =
1

8

(
S

(1)
zz

[
2
√

2Ω
]

+ S
(2)
zz

[
2
√

2Ω
])
, (3.40)

Γ±BD = Γ±DB = ΓBD =
1

4

(
S

(1)
zz

[√
2Ω
]

+ S
(2)
zz

[√
2Ω
])
. (3.41)
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2. |B〉± decay to the ground state |G〉 at

Γ±BG =
1

4

(
S

(1)
xy

[
ω1 ±

√
2Ω
]

+ S
(2)
xy

[
ω2 ±

√
2Ω
]

+ 2S
(c)
xy

[
ωc ±

√
2Ω
])
, (3.42)

while the dark state relax to the ground state at

ΓDG =
1

2

(
S

(1)
xy [ω1] + S

(2)
xy [ω2]

)
. (3.43)

Assuming Ω� ω1, ω2, ωc, we have

Γ±BG = ΓBG ≈
γ1 + γ2 + 2κc

4
, ΓDG ≈

γ1 + γ2

2
. (3.44)

3. There is no intrinsic dephasing rate between the two bright states, but a relaxation-induced

decoherence rate of

ΓBφ = ΓBB + ΓBD + ΓBG. (3.45)

In contrast, the dark state and the bright states have a pure dephasing rate of
(
γφ,1 + γφ,2

)
/16,

and the overall decoherence rate is

ΓDφ =
1

2

(
ΓBB + ΓBG + ΓDG + 3ΓBD +

γφ,1 + γφ,2
8

)
. (3.46)

In above, γi and γφ,i stand for the lab-frame decay and dephasing rate of the i-th qubit, κc is the

photon loss rate of the communication mode.

One can in principle construct the evolution of the density matrix based on the information

above. Here we take a different approach by studying the effective Lindblad operators in the

dressed basis. Within the single-excitation subspace, and in the rotating frame where the ground

99



state, dark state and bright states are isoenergetic, the Lindblad superoperators are given by

D̃
[
σ̂−1,2

]
= D

[
1

2
σ̂−B+ ±

√
2

2
σ̂−D +

1

2
σ̂−B−

]
, D̃

[
σ̂i,z√

2

]
= D

[
Σ̂i,z + Σ̂i,x√

2

]
, (3.47)

D̃
[
D̂
]

= D
[

1√
2
σ̂−B+ −

1√
2
σ̂−B−

]
, (3.48)

where

Σi,z = −
σ̂z,B+ +

√
2σ̂z,D + σ̂z,B−

4
, (3.49)

Σ1,x = −

√√√√S
(1)
zz
[
2
√

2Ω
]

S
(1)
zz [0]

σ̂−BB +

√√√√S
(1)
zz
[
−
√

2Ω
]

2S
(1)
zz [0]

σ̂−DB+ +

√√√√S
(1)
zz
[√

2Ω
]

2S
(1)
zz [0]

σ̂−DB−+ h.c., (3.50)

Σ2,x = −

√√√√S
(2)
zz
[
2
√

2Ω
]

S
(2)
zz [0]

σ̂−BB −

√√√√S
(2)
zz
[√

2Ω
]

2S
(2)
zz [0]

(
σ̂−DB+ + σ̂−DB−

)
+ h.c. (3.51)

Here we assume the relaxation noise to be white noise and the dephasing noise to be symmetric.

Further,

σ̂−B± = |G〉 〈B|± , σ̂−D = |G〉 〈D| (3.52)

σ̂z,B± = |B〉± 〈B|± − |G〉 〈G| , σ̂z,D = |D〉 〈D| − |G〉 〈G| , (3.53)

σ̂−BB = |B〉− 〈B|+ , σ̂−DB+ = |B〉+ 〈D| , σ̂−DB− = |B〉− 〈D| . (3.54)

Plugging these into the effective master equation in the dressed basis

˙̃ρ = − i
~

[ ˜̂H, ρ̃]+ κdD̃[D̂]ρ̃+
2∑
i=1

γiD̃[σ̂−i ]ρ̃+
2∑
i=1

γi,φD̃[
σ̂i,z√

2
]ρ̃, (3.55)

we can numerically calculate the state evolution with noises under realistic PSD. The result is

plotted in Fig. 3.9, which clearly manifests the suppression of the 1/f dephasing noise in the com-

munication process, which can be understood as a spin-echo effect discussed in section 2.4.2. It

needs to be pointed out that this approach is generally not equivalent to setting a weaker dephasing

rate (one that corresponds to Tφ found from echo experiments) in the bare master equation, as the
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Figure 3.9: Calculation of the state evolution in the communication experiment with 1/f dephas-
ing noise. In the simulation we set the parameters as follow: γ1,2 = 0.1 MHz, γ1,φ = 2 MHz,
γ2,φ = 5 MHz, κd = 1 MHz, Ω = 5 MHz. (a) Comparison between white dephasing noise and 1/f
dephasing noise. The swapping operation is dynamically decoupling the system from 1/f dephas-
ing noise, leading to a much higher fidelity than the white noise model. (b) Comparison between
1/f dephasing noise and zero dephasing noise. This indicates that while some components of the
1/f noise term in the dressed basis is heavily suppressed, there remains other terms that are not
completely cancelled out and will contribute to the transfer infidelity. (c) Simulation of the state
fidelity for 1/f noise, white noise and no dephasing noise, showing again the suppression of the 1/f
noise and intrinsic distinction between filtered 1/f noise and weaker white dephasing noise in the
bare basis.

later fails to fully capture the time correlation between the noise terms: for example, in the dressed

basis, the dephasing noise is transformed to a combination of dephasing noise as well as decay

and excitation noise. As they are from the same noise source, these noise terms are correlated

and strictly speaking should not be treated as separate Lindblad operators except for the strong

coupling regime where their correlation gets integrated out.

3.4.5 “Dark” mode: is it really dark?

Simultaneous square sideband pulses are adopted in both the photon transfer and Bell state creation

experiment to achieve the shortest pulse time possible. However, there is a possibility that better fi-

delities could be acquired through further minimizing the photon loss in the communication mode,

by making use of adiabatic protocols in a manner akin to the stimulated Raman adiabatic passage

(STIRAP) [165]. A typical STIRAP protocol has a pulse sequence shown in Fig. 3.11a, where

after the excitation of the sender qubit, the receiving pulse turns on first, and slowly ramps down
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together with the ramping up of the sending pulse. This creates instantaneous eigenstates of

|D (t)〉 = cos θ (t) |e0g〉 − sin θ (t) |g0e〉 , (3.56)

|B (t)〉+ =
1√
2

(sin θ (t) |e0g〉+ |g1g〉+ cos θ (t) |g0e〉) , (3.57)

|B (t)〉− =
1√
2

(sin θ (t) |e0g〉 − |g1g〉+ cos θ (t) |g0e〉) , (3.58)

where the mixing angle is determined by the ratio between the two drive strengths,

θ (t) = arctan
Ω1 (t)

Ω2 (t)
, θ (0) = 0, θ

(
tf
)

=
π

2
. (3.59)

This reduces back to the simultaneous square pulse scheme when Ω1 (t) = Ω2 (t) = Ω, where the

instantaneous eigenstates become the dark and the bright states in Eq. 3.34. When the ramping

of the pulses is done adiabatically with respect to the gap between the dark and bright modes, the

population is coherently trapped in |D (t)〉 without exciting the communication mode, so that the

transfer is immune to the photon loss of the communication mode.

Let us stop here for a moment and examine a paradox emerging from having a perfect dark

mode as the communication mode, where the photon loss rate is only dependent on the decay rates

of the communication cavities, κ1,2, as we anticipated for the idea case in subsection 3.4.1. This

is saying that the dark mode should be able to mediate the perfect sending of photons as long as

the neighboring bright modes are not excited, regardless of how lossy the cable is. On the other

hand, it is an obvious fact that any photon passing through a cable must be subject to the cable loss

for at least a single-passage time Ts. This paradox can be resolved by understanding that the dark

mode is actually not completely dark. Illustrated in Fig. 3.10, the communication cavities are in

fact coupled to an infinite number of cable modes with strength gc and free spectral range ∆. The

relative phases between their couplings having alternating signs, as the result of the wave functions
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(a) (b)

Figure 3.10: The communication mode is not completely dark to the cable loss even when the
communication cavities are perfectly resonant to the cable mode. (a) The communication cavi-
ties are coupled to all the cable modes. Because the standing waves of different harmonics have
alternating phases at the boundary, the couplings between one of the communication cavities and
cable modes have alternating signs. (b) The hybridization of the communication cavities and the
cable modes gives rise to the dark and bright modes, with the dark mode wavefunction acquiring
a small component of the cable mode. The transferring of a single photon will be simultaneously
susceptible to photon losses in both the dark mode and bright modes, with the minimum possible
loss set by the single-passage loss of the cable.

of cable modes having alternating phases at the end of the cable,

Ĥ/~ =
2∑

k=1

ωr b̂
†
k b̂k +

∞∑
n=1

n∆b̂
†
c,nb̂c,n + gc

∞∑
n=1

(
b̂
†
1b̂c,n + (−1)n b̂

†
2b̂c,n + h.c.

)
. (3.60)

This gives rise to a finite cable mode participation in the dark mode wavefunction, making it no

longer immune to the photon loss of the cable. The total decay rate of the communication mode is

calculated to be

κtot =
∆2

π2g2
c + 2∆2

(κ1 + κ2) +
π2g2

c

π2g2
c + 2∆2

κc. (3.61)

The cable loss term diminishes when ∆ → ∞, which represents a short cable with no physical

length. To better demonstrate how the single-pass loss is fundamentally limiting the transfer fi-

delity, we consider the STIRAP session described in Eq. 3.56 to 3.59. Considering the cable loss
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only, the Purcell loss to the bright states due to non-adiabaticity is

ε1 ≈
(
θ̇ (t)

Ω

)2

κdtf ≈
π2g2

cκc(
π2g2

c + 2∆2
)

Ω2tf
≈ π2g2

cκc
2∆2Ω2tf

, (3.62)

while the Purcell loss to the bright modes is

ε2 ≈

 1√
2
Ω

√
2gc

2

κbtf ≈
1

8

(
Ω

gc

)2

κctf . (3.63)

In above we have assumed θ̇ (t) � κd � Ω � κb ≈ κc
2 � gc. Minimizing over ε1 + ε2, we find

the optimal value for the transfer time and the total loss to be

tf =
2πg2

c

∆Ω2
, εtot ≈

κc
2∆

= κcTs, (3.64)

which is indeed the single-pass loss. This also leads to an interesting proposition that the complete

swapping of a single photon between the remote qubits can never be achieved in a shorter time

than the single-passage time, however fast we try to operate, which agrees well with the theory of

special relativity.

In reality, the finite coherence time of the transmons poses another important constraint to the

transfer fidelity. While the STIRAP protocol significantly suppresses the cable loss, it comes at

the cost of much longer transfer time, making qubit decoherence the dominant source of error.

For simplicity, we model the sender and receiver pulses as two Gaussian pulses with the same

maximum amplitude as the square pulse scheme used in our experiment. In the time domain, the

two pulses are set to be

fs(t) =

Ae
− (t−t0)2

2σ2 , |t− t0| 6 5σ

0, |t− t0| > 5σ

, fr(t) =

Ae
− (t−t0−∆t)2

2σ2 , |t− t0 −∆t| 6 5σ

0, |t− t0 −∆t| > 5σ

.

(3.65)

The fidelity yielded by this protocol is calculated as a function of both the pulse width σ and
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Figure 3.11: STIRAP-like protocol. (a) Pulse sequence of the STIRAP protocol for photon transfer.
After initializing of the sender qubit state in the excited state, two Gaussian pulses with same
duration and amplitude (set to be the maximum amplitude achievable in the experiment) are applied
to the flux channels of the two qubits, with the receiver pulse turned on ahead of the sending pulse
by a time of ∆t. (b) Calculation of the transfer fidelity as a function of the Gaussian RMS width,
σ, as well as the delay time ∆t. A maximum fidelity of 56% occurs at {σ = 120 ns,∆t = 0 ns}
(labeled by the yellow dot), which is worse than the 60% fidelity achieved by the simultaneous
square pulse scheme. This indicates that, in our current parameter regime, the fidelity is optimal
with simultaneous square pulse scheme which has the shortest pulse length. (c) With better qubit
coherence properties of T1, T2 = 20 us, the STIRAP protocol promises 85% maximum fidelity at
{σ = 145 ns,∆t = 95 ns} (labeled by the yellow dot), which is higher than the maximum fidelity
of 82% yielded by the simultaneous square pulse scheme under the same parameters.

the delay time ∆t, via master equation simulation with real circuit parameters. Fig. 3.11b shows

that a maximum fidelity of 56% is achieved when two Gaussian pulses with σ = 120 ns overlap

each other, which indicates that non-adiabatic transfer with the shortest time is favorable in our

current parameter regime. This also justifies our choice of the simultaneous square pulse scheme

which is the fastest in all non-adiabatic schemes. In contrast, if the coherence of the qubit is

improved to T1 = 20 us and T2 = 20 us, the same simulation results in a maximum fidelity of

85% at delay time ∆t = (Fig. 3.11c) that is higher than the simultaneous square pulse fidelity

of 82%, proving the usefulness of the adiabatic protocol for future improvements. Here we have

only considered the simple Gaussian pulse scheme as a proof of principle demonstration. There

are more sophisticated protocols that can further improve the transfer fidelity [166]. With better

qualities of qubits, the fidelity can potentially be improved through protocols with a small detuning

between the parametric drive frequency and the frequency difference between the qubit and the
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communication mode. This virtual process mitigates the loss in the cables by avoiding excitation

in the communication mode.

3.4.6 Purcell effect and the stepped impedance Purcell filter

It is worth emphasizing again the importance of the communication cavities in our experiment. In

principle, one can always minimize the cable loss down to the single-pass loss through adiabatic

protocols, even by coupling the qubits directly to the cable. However, as the bare cable modes

are much more weakly coupled to the qubits due to their lower density of states, the transfer time

will have to be substantially longer in order to reach the single-pass limit. As we have argued,

this significantly compromises the qubit coherence and causes the overall communication fidelity

to drop. Besides, without the protection from the communication cavities as Purcell filters, the

lifetime of the idling qubit will be heavily Purcell-limited by the lossy cable modes, which we

have illustrated in Fig. 2.11. These nice properties the communication cavities bring about could

be further enhanced, by upgrading the communication cavities to more dedicated Purcell filters,

such as the stepped impedance Purcell filter (SIPF) [167]. The SIPF is composed of N sections of

alternating high and low impedance CPW cavities, which form periodic stop and passbands with

broad ranges. The impedance mismatch at the boundaries of the high and low impedance sections

causes standing waves to form at the
(
n+ 1

2

)
λ resonances of all the sections, which hybridize

into N “normal modes” for each n that constructively interfere with the transmission signal and

give rise to the passbands. Outside the passbands the signal is reflected off the boundary, leading

to the stopbands with a range set by the high and low impedance ratio Zhi/Zlo. Obviously, at

Zhi = Zlo, the SIPF reduces to a regular transmission line, where the passband normal modes fall

back to the transmission line multimodes.

Like we did in Chapter 2, here we apply the ABCD matrix formalism and the black-box quan-

tization to calculate the Purcell limit of the qubit as well as their couplings to the communication

mode. We use the SIPFs in the same way as the communication cavities, where they are capaci-

tively coupled to the transmon as well as to the cable, as opposed to directly connected to the cable
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Figure 3.12: Black-box quantization (BBQ) Calculation of the communication network with
stepped impedance Purcell filters (SIPFs). (a) The new communication network is composed of
two transmons capacitively coupled to communication SIPFs, which are made of alternating sec-
tions of high and low impedance lines. The SIPFs are also capacitively coupled to the 1-meter-long
cable at their other ends. The black box is the part of the circuit that has been included in the BBQ
calculation. (b) BBQ calculation with ABCD matrix showing the Purcell-limited lifetime of the
transmon, overlaid on top of the transmission spectrum of the SIPF (red curve). In the calcula-
tion, we neglect transmon decay and set the lifetimes of the cable and the SIPF to be 0.5µs and
6µs respectively. The SIPF have seven sections of Zhi = 150 Ω and Zlo = 25 Ω, and the cou-
pling capacitors have values of Cg1 = 40 fF and Cg2 = 40 fF. To mimic the frequency sweep of
a tunable transmon, we vary Lj with fixed shunting capacitance, Cs = 100 fF. The cyan curve
represents the circuit where the SIPF is directly connected to the cable. In this situation, the trans-
mon mode, while being protected by the stopband of the SIPF, is still affected by the lossy cable
modes which manifest themselves as the periodic dips on the T1 curve. In comparison, the black
line corresponds to the capacitive coupling scheme in (a) and does not have these sudden jumps
in the transmon lifetime. The T1 limit in this case is due to the finite lifetime of the SIPF in the
simulation.

(see Fig. 3.12). In the stopband, this capacitive coupling scheme further reduces the Purcell loss

when the qubit mode hits one of the cable modes. In the passband, parametric modulation brings

both qubits into resonance with the same SIPF normal mode(s) with strong coupling strengths,

allowing the communication tasks to be accomplished in a similar manner to the previous exper-

iment. Using the numerical method outlined in section 2.4.1 we may also calculate the coupling

strength between the transmon and the SIPF normal modes. Under realistic circuit parameters

where the asymmetry of the SIPFs due to fabrication imperfections are taken into account, we find

a coupling strength of ∼ 70 MHz well achievable between the transmons and the SIPF normal

mode, while this number drops to ∼ 20 MHz when the capacitor between the SIPF and the cable
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is removed.

Incorporating the SIPF into the remote modular architecture to a large extent lifts the Purcell

limit of the cable loss and allows the accommodation of larger couplings between the qubit and

the communication mode. This promises the strong coupling regime, where the coupling strength

becomes comparable to the free spectral range of the cable. This regime is also reached for much

longer cables, although it is unclear what the benefits would be for long-distance communications

with microwave photons whose energies are well below the room temperature thermal noise. In

this regime, the photon no longer interacts with one or several cable modes only, but an ensemble

of modes altogether. In section 2.4.3, we have showcased how the quantum input-output theory

can be used for the calculation of the transfer fidelity in the strong coupling regime. This approach

can be easily integrated with the BBQ simulation, where the SIPF could be modeled as a collection

ofN normal modes capacitively coupled to the qubit in the passband, with the evolution of the n-th

normal mode operator coupled to the m-th transmon governed by quantum Langevin equations,

˙̂amn (t) = −κ
c
mn + κimn

2
âmn (t)− igmn (t) σ̂−m (t) +

√
κcmnb̂in,mn (t) , (3.66)

˙̂σ−m (t) = −γm
2
σ̂−m (t)− i

N∑
n

gmn (t) âmn (t) , (3.67)

b̂in,m̄n (t) = e−κ0Ts
[√

κcmnâmn (t− Ts)− b̂in,mn (t− Ts)
]
, (3.68)

where Ts is the single-passage time and κ0 is the damping rate of the photon amplitude.

The concern about minimizing the Purcell effect while remaining fully operational can also be

resolved if we can implement a controllable coupling strength between the qubit and the cable,

which can be turned on to perform communication tasks, and turned off to protect the qubit coher-

ence. This brings up the next topic of this thesis, about tunable coupling circuits and the parametric

control of the coupling strength.
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CHAPTER 4

PARAMETRIC MODULATION OF COUPLING STRENGTH

As we mentioned earlier, one of the most distinctive advantages of circuit QED is that stronger

couplings can be very easily attained. However, this sometimes comes at the cost of stronger un-

desired couplings as well, which can lead to reduced qubit lifetime or gate errors. The previous

frequency modulation scheme allows for the generation of sideband interaction strength with tun-

able strength, at the cost of an increased sensitivity of the qubit to flux noise, compromising the

qubit coherence time. To address these issues, we invent a flux tunable coupler with controllable

coupling strength that can be switched on and off on demand. Tunable coupling elements are

not new to circuit QED: they have been used for frequency conversion [67, 70], quantum logic

gates [68, 71, 168], and a variety of other tasks in quantum information processing and quantum

simulation. While sharing various compatibilities with these previous works, our tunable coupling

circuit has a particularly simple circuit architecture with high scalability, strong tunable coupling

strength and decent coherence properties. Moreover, it allows the parametric control of the cou-

pling strength to be harnessed for exploring interesting physics or as a useful resource for practical

applications.

In this chapter, we will first demonstrate how the coupling modulation is achieved with the

tunable coupling design, in which the qubit and the resonator are connected in parallel to a su-

perconducting quantum interference device, allowing for the quasi-static flux tuning of the qubit-

cavity coupling strength from 12 MHz to more than 300 MHz. Qubit coherence times exceeding

20µs are maintained over the majority of the range of tuning, limited primarily by the Purcell

effect. By parametric modulation of the coupling, we realize both photon conserving red-sideband

interactions to transfer single photons [132, 133, 168], as well as photon non-conserving blue-

sideband interactions [168, 169, 170, 171] necessary for qubit bath engineering and qubit state

stabilization. Finally We present the experimental protocol to parametrically stabilize arbitrary

single-qubit states by using the blue-sideband interaction in conjunction with a regular qubit Rabi

drive, which is an important step towards autonomous quantum error correction.
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4.1 Tunable Coupling Circuit

The tunable coupling circuit, shown in Fig. 4.1, consists of a transmon qubit and a lumped-element

resonator, both grounded at the same node through a dc-SQuID. The dc-SQuID acts as a tunable

inductor shared between the qubit and the resonator, creating a coupling strength between the two

systems proportional to its inductance Lg = Lg0/ |cos(πΦext/Φ0)|, which is controlled by the

external flux Φext threading the loop. Previous tunable coupler designs [68, 71] utilized series

coupling schemes which are convenient for chains and lattices of qubits or resonators. By contrast,

the topology of our circuit enables many resonators or qubits to share the same coupler, rendering

it highly scalable as a superconducting circuit device.

To obtain the circuit Hamiltonian, we perform circuit quantization introduced in section 2.1.

We begin our analysis by linearizing the circuit, where the non-linear inductive components in-

cluding the transmon qubit junction and the SQuID, are simplified as linear inductors Lq and Lg.

We denote the node flux variables Φ1, Φ2 and Φ3, and the circuit Lagrangian is given by

L = −(Φ1 − Φ3)2

2Lq
− (Φ2 − Φ3)2

2Lr
− Φ2

3

2Lg
+
CqΦ̇

2
1

2
+
CrΦ̇

2
2

2
+
Cg

(
Φ̇1 − Φ̇2

)2

2
. (4.1)

Charge variables conjugate to the flux can be found from a Legendre transformation

Qi =
∂L
∂Φ̇i

, (4.2)

and the circuit Hamiltonian can be obtained via

H = Φ̇iQi − L (4.3)

=
(Φ1 − Φ3)2

2Lq
+

(Φ2 − Φ3)2

2Lr
+

Φ2
3

2Lg
+

1

2C2∗

[(
Cr + Cg

)
Q2

1 +
(
Cq + Cg

)
Q2

2 + 2CgQ1Q2

]
,

(4.4)
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Figure 4.1: (a) Optical image and (b) circuit diagram of our device. The lumped-element resonator
is formed by a “C” shaped capacitor pad and an isolated meander line inductor. The inductor line
protrudes to the common node where both the qubit Josephson junction and the coupler SQuID
loop are connected. Two voltage ports are placed at the two sides of the resonator’s capacitor pad
enabling transmission measurements. The qubit-cavity coupling strength is tuned with the SQuID-
loop flux by modulating the current that flows through the flux line. The qubit can be probed via
a separate qubit driveline that is weakly coupled to the qubit’s shunting capacitor. Insets show the
details of the qubit Josephson junction and the dc-SQuID loop.

where

C2
∗ = CrCq + CrCg + CqCg. (4.5)

Φ3 is a non-dynamical degree of freedom that can be eliminated from minimizing the Hamiltonian,

∂H
∂Φ3

= 0, (4.6)

which gives

Φ3 =
Lg

L2∗

(
LrΦ1 + LqΦ2

)
, (4.7)

where

L2
∗ = LrLq + LrLg + LqLg. (4.8)

We note that the elimination of the coupler mode can also be understood from the constraint of

current conservation at node 3, which is equivalent to Eq. 4.7 and 4.8. This circuit is then described
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by the following two-body Hamiltonian that has both capacitive and inductive coupling terms,

H =
1

2L2∗

[(
Lr + Lg

)
Φ2

1 +
(
Lq + Lg

)
Φ2

2 − 2LgΦ1Φ2

]
+

1

2C2∗

[(
Cr + Cg

)
Q2

1 +
(
Cq + Cg

)
Q2

2 + 2CgQ1Q2

]
. (4.9)

With the flux and charge operators expressed in terms of creation and annihilation operators

Φi =

√
~Zi
2

(
â
†
i + âi

)
, (4.10)

Qi = i

√
~

2Zi

(
â
†
i − âi

)
(4.11)

where

Z1 =
L∗
C∗

√
Cr + Cg
Lr + Lg

, (4.12)

Z2 =
L∗
C∗

√
Cq + Cg
Lq + Lg

, (4.13)

the Hamiltonian is rewritten as

Ĥ/~ = ωqâ
†
1â1 + ωrâ

†
2â2 + gL

(
â
†
1 + â1

)(
â
†
2 + â2

)
+ gC

(
â
†
1 − â1

)(
â
†
2 − â2

)
, (4.14)

where

ωq =

√(
Lr + Lg

) (
Cr + Cg

)
L∗C∗

, (4.15)

ωr =

√(
Lq + Lg

) (
Cq + Cg

)
L∗C∗

, (4.16)

gL = −~Lg
2L2∗

√
Z1Z2, (4.17)

gC = −~Cg
2C2∗

√
1

Z1Z2
. (4.18)

Strictly speaking, the finite capacitance of the dc-SQuID leads to a high-frequency nonlinear
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mode that is strongly coupled to both the transmon and the cavity. The strong couplings arise from

the fact that the shunting capacitors of the transmon and the cavity are also playing the role of

coupling capacitors as well, which corresponds to a unit voltage division β = 1 that maximizes

the coupling strength. The size of the coupler junctions is designed to be 100 times larger than

the qubit junction, which guarantees that Lg0 � Lr,Lq and allows the adiabatic elimination of the

coupler mode in the same way as in subsection 2.3.2, resulting in an effective qubit-cavity coupling

similar to the one in Eq. 2.70. We make sure the SQuID loop size is small enough so that the

geometric inductance of the loop itself does not become comparable to the Josephson inductance

of the SQuID junctions, in order to avoid undesired hysteresis [172]. In the high frequency limit,

this coupling is well approximated by Eq. 4.17.

Within the two-level approximation of the transmon, the circuit is described by the effective

Hamiltonian,

Ĥ/~ = ωrâ
†â+

ωq
2
σ̂z − gR(â†σ̂− + âσ̂+)− gB(â†σ̂+ + âσ̂−),

where

gR,B =
Lg0

2 |cos(πΦext/Φ0)|

√
ωrωq
LrLq

∓ Cg
2

√
ωrωq
CrCq

(4.19)

are the coupling strengths associated with the red and blue-sidebands [169]. When the coupler is

not being driven, the counter-rotating gB term can usually be dropped from Eq. 4.19, but by dy-

namically modulating the inductance via the external flux Φext, both red- and blue-sideband inter-

actions can be utilized. Additionally, by balancing the inductive and capacitive terms in Eq. (4.19),

one can achieve a higher on to off ratio1.

We perform flux spectroscopy of the qubit (Fig. 4.2a) to determine the static coupling strength

gR(Φext), finding it to range from 12 MHz to 300 MHz. To calibrate the static coupling strength of

gR as a function of the flux, two methods have been employed in the experiment. The first one is to

make use of the photon number splitting of the qubit peak that can be observed from the two-tone

1. Here we naively ignore their nonlinear interactions inherited from the coupler mode.
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Figure 4.2: (a) Spectroscopy showing the qubit excited state population as a function of flux
through the coupler. The qubit frequency is insensitive over nearly the entire flux range. (Inset)
Number splitting of the qubit peak due to photons in the resonator, used to calibrate the static cou-
pling between the qubit and the resonator. (b) Qubit coherence and qubit-cavity coupling strength
as a function of the flux through the coupler. The dephasing time (T ∗2 ) is comparable to the energy
relaxation time (T1) over the entire tuning range. The coherence times drop near Φ = 0.5Φ0 as a
result of the Purcell effect due to the strong coupling to the readout resonator, as indicated by the
black dashed line.

measurement of the qubit spectrum, shown in Fig. 4.2. gR can thus be directly calculated using the

formula [173]

|gR| =
√

2χ∆(∆ + α)

α
, (4.20)

where both the anharmonicity α and the qubit-cavity detuning ∆ are easily obtained from spec-

troscopy measurements.

At flux values where the coupling strength is not strong enough to resolve the number splitting,

we take a different approach by applying a voltage drive with strength εd on the cavity at the qubit
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frequency, and measuring the Rabi rate of the qubit,

ΩR = 2εd

∣∣∣gR
∆

∣∣∣+ Ω0, (4.21)

where the first term represents the perturbative strength of the cavity drive on the qubit, and the

second term, which is a constant rate, is due to the spurious coupling between the cavity driveline

to the qubit capacitor pad. εd and Ω0 can be calibrated by fitting Eq. (4.21) with gR/∆ and ΩR

measurement values (taken in the same flux range where the number-splitting is still well resolved).

With calibrated εd and Ω0, Eq. (4.21) is capable of providing gR across the entire flux range.

As the qubit itself does not have a SQuID loop, its frequency is only indirectly affected by the

modulation of the coupler. Lg0 � Lr,Lq also ensures that the tuning of the qubit and resonator

frequencies from the change in the coupler inductance is small. As seen in Fig. 4.2, the qubit

frequency varies by less than 15 MHz over 80% of the tuning range, making the qubit nearly

immune to flux noise. Both the energy relaxation time T1 and the dephasing time T ∗2 remain above

20µs over most of the flux period (|Φext| < 0.4Φ0). Only when the flux approaches half a flux

quantum do coherence times start to drop significantly. There the Purcell effect from coupling to

the readout resonator, as well as an increased frequency-flux sensitivity, limit the coherence.

4.2 Red- and Blue-Sideband Interactions

The usefulness of parametric coupling becomes most evident when the qubit-cavity coupling

strength is modulated at the qubit-cavity difference or sum frequency. Modulation of Φext in

Eq. (4.19) at frequency ωd turns gR,B into gR,B(t) =
∑
n g

(n)
R,B cosω

(n)
d t, where ω(n)

d = nωd is

the effective modulation frequency of the n-th harmonic with Fourier coefficient g(n)
R,B . Substi-

tuting this into Eq. 4.19, we obtain the red- and blue-sideband Hamiltonians in rotating frames

as

Ĥ
R,B
rot = (ω′r ∓ ω′q − χ′σ̂z)â†â±

ωd
2
σ̂z − g′R,B(â†σ̂∓ + âσ̂±), (4.22)
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Figure 4.3: Red-sideband interactions probed by applying an rf flux tone to the tunable coupler
to generate sidebands. (a) Spectroscopy of the (normalized) resonator transmission as a function
of sideband and resonator probe frequency, showing the stimulated vacuum Rabi spitting. (b)
Stimulated vacuum Rabi oscillations between the qubit and resonator, measured as an oscillation
of the qubit excited state population. A single photon is loaded into the qubit before the flux pulse.

valid for effective modulation frequencies, ω(n)
d ≈ ω′r±(ω′q+χ′), respectively, with fast-oscillating

terms abandoned. Here, the primes stand for the dressed basis after diagonalizing the static com-

ponent of the driven Hamiltonian. At ω(n)
d = ω′r−ω′q+χ′, energy pumped into the circuit through

the parametric flux drive bridges the gap between the first excited state of the qubit |e0〉 and the

single-photon Fock state of the cavity |g1〉, causing a splitting of 2g′R due to the red-sideband

coupling between the two levels. This is seen as an avoided crossing in the cavity transmission

spectrum when the modulation frequency matches the detuning (Fig. 4.3a). In the time domain,

the red-sideband coupling mediates stimulated vacuum Rabi oscillations which coherently swap

a single photon between qubit and resonator. The oscillation rate, 2g′R/2π ≈ 80 MHz, can be

directly seen from Fig. 4.3b and determines how fast qubit-photon gates can be performed.

While the red-sideband coupling enables photon-conserving processes, the blue-sideband cou-

pling, which takes place at ω(n)
d = ω′r +ω′q −χ′, generates two-photon oscillations between states

|g0〉 and |e1〉. This interaction, created in our experiment through the second harmonic term by

flux modulating at ωd = (ω′r+ω′q−χ′)/2, produces a much richer resonance structure in transmis-
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Figure 4.4: Resonator spectroscopy showing (normalized) transmission near the blue-sideband
resonance condition. Experimental data (a) and master equation simulations (b) show excellent
agreement. (c) Energy level diagram corresponding to Eq. (4.22) provides a map to the spectro-
scopic features A, B, C and D at different modulation frequencies, indicated by arrows in (a). A:
When the modulation frequency is far-detuned from the blue-sideband resonance, the qubit stays
in its ground state. B: The excited state of the qubit is stabilized, causing the cavity to be shifted
down by 2χ. C: The crossing of |e1〉 and |g0〉, manifest as an avoided crossing. The qubit ex-
cited state is also maximally stabilized at this frequency due to the resonance of |e1〉 and |g0〉. D:
Enhanced cavity transmission appears when |e0〉 → |g0〉 and |g0〉 → |g1〉 transition energies are
equal. The asymmetry of the unshifted cavity peak line centered at the blue-sideband resonance is
likely due to interactions between higher levels |g, n〉 → |e, n+ 1〉.

sion (Fig. 4.4a), which can be accurately reproduced numerically (Fig. 4.4b) with master equation

simulation. The observed features can be understood conceptually by considering the Floquet

quasienergy levels within the first Brillouin zone (Fig. 4.4c). The blue-sideband interaction acts as

a coherent two-photon pump that drives the circuit to |e1〉, causing an avoided crossing between

|g0〉 and |e1〉 in the level diagram. As the cavity photon loss rate is faster than the qubit decay

rate by two orders of magnitude in the experiment (1/κ ≈ 100 ns and T1 > 20µs), |e1〉 → |e0〉

is the dominant decay process and traps most of the population in the single-photon subspace in

state |e0〉. When both photons are eventually lost from the circuit, the state immediately transi-

tions to |e1〉, beginning the cycle again. In this sense, the blue-sideband flux drive stabilizes the

qubit in the excited state. This, in turn, shifts the cavity frequency down by 2χ′ (B in Fig. 4.4a).
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Furthermore, as the blue-sideband interaction splits the degenerate levels of |e1〉 and |g0〉 in the

rotating frame, the cavity transmission measurement actually probes the transitions between |e0〉

and (|e1〉 ± |g0〉)/
√

2 so that the avoided crossing is visible within the shifted cavity peak (C in

Fig. 4.4a). Enhanced cavity transmission is observed at the crossing between the unshifted cavity

peak and the avoided crossing (D in Fig. 4.4a). Here the transition energy between |e0〉 and |g0〉

in the rotating frame coincides with the energy between |g0〉 and |g1〉, resulting in an enhanced

transmission due to the |g0〉 population being weakly replenished by the cavity probe.

4.2.1 Tunable coupling circuit as a non-reciprocal device

The sideband interactions the tunable coupling circuit generates also allow it to be manipulated

as various non-reciprocal elements [174]. For example, the blue-sideband interaction under para-

metric modulation at the sum frequency is shown to be the key component of the non-degenerate

parametric amplifier in subsection 2.4.3. While in our experiment we did not intend to exploit this

feature of the tunable coupling circuit, we were able to witness its paramp nature by observing an

amplified transmission peak at the cavity frequency, when performing cavity spectroscopy under

a strong blue-sideband tone. This was also seen on a vector network analyzer with a connected

output port and a disconnected input port, where a sharp peaks appears at the cavity frequency,

which can be understood as the amplification of the vacuum as the idler (transmon) input field.

In addition, the red-sideband interaction also allows the tunable coupling circuit to be operated

as a frequency converter as well as a circulator. The basic idea is to connect the transmon, the cavity

and the coupler mode into a closed loop through sideband interactions with different phases. As a

result of the path interference, the field propagation becomes directional akin to the chiral ground

state of a synthetic magnetic field [175]. Similarly, directional amplification can also be achieved

through a combination of the red- and blue-sideband interactions with different phases.
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4.3 Universal Stabilization of Single Qubit State

Previously, we have seen that the blue-sideband resonance features can be largely attributed to the

stabilization of the qubit excited state. Coming back to look at the red-sideband interaction from

a similar prospective, we find that it also creates a stabilization process, but with the qubit ground

state being stabilized instead. This is known as the sideband cooling [176, 177, 178, 179], useful

for quickly resetting the qubit to a lower effective temperature. The natural next step to make would

be to stabilize arbitrary qubit states on demand, which constitutes important building blocks for fu-

ture error-tolerant circuit QED networks. In the past, several schemes have been explored using

active feedback [180, 181] or autonomous stabilization [182, 183, 184, 185, 186, 187, 188]. Here

we demonstrate our experimental scheme that employs engineered dissipation processes to stabi-

lize arbitrary single-qubit states, which is an important step towards implementing error-correction

code. On the theory side, we further explore the possibilities of achieving the stabilization effect

with different combinations of sideband interactions.

4.3.1 The weak and the strong coupling regime

We first present a theoretical proposal for stabilizing arbitrary single-qubit state, through a qubit-

cavity Hamiltonian of the form

Ĥ = Ĥq + Ĥint + Ĥc, (4.23)

where the qubit term Ĥq/~ = ΩR
2 ~r·~̂σ is a spin-1

2 Hamiltonian subject to a magnetic field ~B = ΩR~r,

and Ĥc/~ = Ωcâ
†â represents a lossy cavity that is coupled via some interaction Hint to the qubit.

We assume this is a rotating frame Hamiltonian resulted by some external drives, without worrying

for now about its realization.

For simplicity and without loss of generality, we choose ~B to have only ~z and ~x components,

which lets us write

Ĥq =
1

2
(Ωxσ̂x + Ωzσ̂z) =

ΩR
2

(σ̂x sin θ + σ̂z cos θ), (4.24)
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Figure 4.5: The decay diagram consisting the lowest four Floquet levels. The lab frame decay rates
translate to these rotating frame decay rates via a unitary transformation acting on the lab frame
dissipators. |ẽ0〉 and |g̃1〉 coupled with strength g can be brought to resonance by tuning the qubit
or cavity frequency, while all other levels are far detuned.

where ΩR =
√

Ω2
x + Ω2

z is the qubit’s total Rabi frequency, and θ = arccos(Ωz/ΩR). The rotation

matrix U

U =

 cos θ2 sin θ
2

− sin θ
2 cos θ2

 (4.25)

connects the rotating frame eigenstates of the qubit to its lab frame basis,

|g̃〉 = U |g〉 = cos
θ

2
|g〉 − sin

θ

2
|e〉 , (4.26)

|ẽ〉 = U |e〉 = sin
θ

2
|g〉+ cos

θ

2
|e〉 . (4.27)

Here and throughout the text, objects with tilde stand for those in the rotating frame. The

decay and excitation rate between |g̃〉 and |ẽ〉 can be easily calculated by rewriting the lab frame

dissipators (at zero temperature) in the new basis,
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γD[σ̂−]ρ = γD[U†˜̂σ−U ]ρ = γD
[˜̂σz

2
sin θ − ˜̂σ+

sin2 θ

2
+ ˜̂σ− cos2 θ

2

]
ρ, (4.28)

γφD[σ̂z]ρ = γφD[U†˜̂σzU ]ρ = γφD
[˜̂σz cos θ − (˜̂σ+

+ ˜̂σ−) sin θ
]
ρ, (4.29)

where γ and γφ are the decay and dephasing rate of the qubit in the lab frame. Therefore, by

regrouping the above dissipators and dropping out the fast oscillating terms (assuming ΩR �

γ, γφ), such as ˜̂σ+
ρ˜̂σ+

and ˜̂σ−ρ˜̂σ− etc., we obtain the effective decay rate γ̃−, excitation rate γ̃+

and dephasing rate γ̃φ in the rotating frame as

γ̃− = γ cos4 θ

2
+
γφ
2

sin2 θ, (4.30)

γ̃+ = γ sin4 θ

2
+
γφ
2

sin2 θ, (4.31)

γ̃φ =
γ

2
sin2 θ + γφ cos2 θ. (4.32)

Note that here we have assumed the spectrums of all noises to be white. The more general form of

the dressed decay and dephasing rate, with noise PSD incorporated, can be found in Eq. 2.125.

Now we can write down the master equation in the rotating frame basis,

ρ̇ = −i[Ĥ, ρ] + κD[â]ρ+ γ̃−D[˜̂σ−]ρ+ γ̃+D[˜̂σ+]ρ+ γ̃φD[
˜̂σz√

2
]ρ, (4.33)

where κ is the cavity’s photon loss rate. Our goal is to stabilize the qubit in its rotating frame

ground state |g̃〉. To gain more insight into the stabilization process, we focus on the dynamics of

the lowest four energy levels of Eq. (4.23) (which is well justified when the energy scale of the

rotating frame Hamiltonian is small compared to the anharmonicity of the qubit), illustrated by

Fig. 4.5. Without coupling to the cavity, the ratio of the excitation rate and the decay rate sets the

“rotating frame temperature” T̃ of the qubit
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γ̃+

γ̃−
= e
− ~Ω
kBT̃ , (4.34)

which further sets the qubit’s population distribution. However, when |ẽ0〉 and |g̃1〉 are coupled

together through Hint with strength g,

g = 〈ẽ0| Ĥint |g̃1〉 , (4.35)

the qubit can lose its excitation and scatter a Raman photon in the cavity mode, which is again lost

through the cavity decay channel that brings |g̃1〉 back to |g̃0〉, and autonomously completes the

stabilization process. The |ẽ0〉 → |g̃1〉 → |g̃0〉 transition can be thought of as a cavity assisted

qubit decay channel, which is sometimes referred to as the “refilling” process [189]. Intuitively,

the success of the scheme with high stabilization fidelity lies upon κ � γ̃+ as well as a decent

|ẽ0〉 → |g̃1〉 transition rate Γ.

To begin our treatment with a more quantitative analysis, under the assumption that the cavity

decay rate is dominant among all dissipation rates, we divide the parameter space into two different

regimes in terms of the ratio g/κ, namely the weak coupling regime (g/κ � 1) and the strong

coupling regime (g/κ� 1), as shown in Fig. 4.6. In the weak coupling regime, the |g̃1〉 state can

not build up any population as the photon is very quickly drained. Therefore |ẽ0〉 exponentially

decays at the transition rate Γ given by Fermi’s golden rule [99]

Γ =
g2κ

(κ/2)2 + (Ωc − ΩR)2
, (4.36)

where the transition rate is maximized at Ωc = ΩR and reduces simply to

Γ =
4g2

κ
. (4.37)

In the weak coupling regime, the population of |ẽ0〉 varies at a rate much slower than κ. Thus the

qubit dissipation terms associated with γ̃± can be linearly added into the optical Bloch equations.
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Figure 4.6: Decay diagrams for (a) weak and (b) strong coupling regimes, depending on g/κ. We
set Ωc = ΩR for both cases for optimal performance. (a) When g/κ� 1, the |ẽ0〉 state can decay
back to the ground state |g̃0〉 through a two-step process |ẽ0〉 → |g̃1〉 → |g̃0〉, which is limited by
the slower rate of the two. Γ is calculated from Fermi’s golden rule as 4g2/κ. (b) When g/κ� 1,
the transition rate is strong enough to build up population in |g̃1〉 and even allow the photon to
tunnel back to |ẽ0〉 before it is lost, giving rise to a coherent oscillation between the two levels fast
enough to be viewed as a equally weighted mixture. As the photon spends half of its time in each
mode, its decay rate to |g̃0〉 is effectively the average of κ and γ, and it jumps to |ẽ1〉 at half of
the excitation rate γ̃+, as this transition is only allowed when the photon lives in the qubit mode.
Similarly, we can find the rest of the decay rates for this approximate three level system. Finally,
by solving the optical Bloch equations we arrive to the analytical expressions of the stabilization
fidelity, given by Eq. (4.38) and Eq. (4.39).

Those can be straightforwardly solved for the qubit ground state population as,

Pg̃ = Pg̃0 + Pg̃1 =
γ̃−(γ̃− + γ̃+ + κ)κ2 + 4g2(γ̃− + κ)(γ̃+ + κ)

(γ̃− + γ̃+)(γ̃− + γ̃+ + κ)κ2 + 4g2[(γ̃− + γ̃+)(γ̃+ + κ) + κ2]
. (4.38)

As for the strong coupling regime, the system first undergoes coherent oscillations between

the |ẽ0〉 and |g̃1〉 states which eventually are driven into a statistical mixture with (almost) equal

population of the two levels. Therefore, at long times we can approximate the two levels as one,

with a decay rate to |g̃0〉 corresponding to the mean value of the cavity decay and the qubit decay

(γ̃− + κ)/2, as it can decay through both the qubit and the cavity channels. We can find the decay

rates shown between other levels shown in Fig. 4.6 in a similar fashion. Solving the corresponding
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Figure 4.7: (a) The stabilized state population and (b) mean cavity photon number for stabilization
angle θ = π, as a function of the coupling strength g = 〈ẽ0| Ĥint |g̃1〉, calculated with κ/2π=
1 MHz, γ/2π = 0.1 MHz, γφ/2π = 0.1 MHz. Parameters are exaggerated for enhancing visual
contrast and do not reflect experimental values. At θ = π, the rotating frame ground state overlaps
with the lab frame excited state, i.e. |g̃〉 = |e〉. The exact solution from the master equation
coincides with the weak coupling formula when g is small, whereas it falls into its asymptote
predicted by the strong coupling formula when g is big, showing an good agreement between the
theory and the numerical calculation.

optical Bloch equations again gives the stabilization fidelity as (with Ωc = ΩR)

Pg̃ = Pg̃0 + Pg̃1 =
γ̃− + κ

γ̃− + γ̃+ + κ
. (4.39)

The interaction Ĥint may also induce finite coupling between other levels, through 〈i| Ĥint |j〉.

However, unlike Γ between (near-)resonant levels |ẽ0〉 and |g̃1〉, these transition probabilities are

strongly suppressed by the detuning and can be safely dropped out as long as 〈i| Ĥint |j〉 �

ΩR,Ωc.

Eq. (4.38) and (4.39) are shown in Fig. 4.7 as the two asymptotes of the fidelity versus coupling

strength g calculated from master equation, which shows quantitative agreements between the

analytical formulas and the numerical simulations.

In the analysis above we have ignored the effect of the dressed dephasing in Eq. 4.32. While it

has no explicit contribution to γ̃±, we need to point out that dephasing indeed weakens the stabi-

lization along the z axis, especially when in the weak coupling regime. The reason is a little subtle
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but can be understood as follow: in the derivation of the weak coupling regime, we have made

the assumption that in the subspace spanned by |ẽ0〉 and |g̃1〉, they evolve as a pure superposition

state. However, this assumption becomes invalid when qubit dephasing causes their superposition

to lose pureness over time. This impedes the swapping of population between |ẽ0〉 and |g̃1〉 and

reduces the effective decay rate from |ẽ0〉 to |g̃0〉, and ultimately results in a lower stabilization

fidelity.

4.3.2 Universal stabilization with blue-sideband interaction and Rabi drive

In the previous subsection, we have proved that the success of universal stabilization critically

relies on the implementation of the coupling strength, g = 〈ẽ0| Ĥint |g̃1〉. In other words, we need

to find an interaction Hamiltonian Ĥint that universally provides decent coupling strength for all

possible |ẽ0〉 and |g̃1〉. To gain more insights on what the detailed form of this interaction term

should be, we rewrite it as

Ĥint/~ = Ω (|ẽ0〉 〈g̃1|+ |g̃1〉 〈ẽ0|) . (4.40)

The components of this Hamiltonian immediately become clear by plugging in Eq. 4.26 and 4.27,

Ĥint/~ = Ω

[
cos2 θ

2

(
â†σ̂− + âσ̂+

)
− sin2 θ

2

(
â†σ̂+ + âσ̂−

)
+

1

2
sin θ

(
â† + â

)
σ̂z

]
, (4.41)

where the first two terms are the familiar red- and blue-sideband interactions, while the last term

represents the longitudinal coupling that can be achieved in a similar way to the cross-resonance

gate [190, 191], i.e. by Rabi driving through qubit’s charge port at the cavity frequency2. The am-

plitudes of the three components vary according to the stabilization angle: the blue-sideband terms

maximizes at θ = 0 where the stabilization target state is the qubit excited state, the red-sideband

interaction at θ = π which optimally stabilizes the ground state, and the longitudinal coupling at

2. This is typically accompanied by a quite significant direct cavity drive tone that needs to be compensated by
another cavity drive of the opposite phase.
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Figure 4.8: Comparison of stabilization fidelity with respect to P|g̃〉 at different polar angles θ,

between schemes using (a) blue-sideband interaction Ωb(â
†σ̂++âσ̂−), (b) red-sideband interaction

Ωr(â
†σ̂− + âσ̂+) and (c) longitudinal interaction Ωl(â

† + â)σ̂z . All three interactions can be
realized with the tunable coupling circuit, by using flux modulations and charge drives. Each
scheme is calculated with its coupling strength varying from the weak coupling regime to the
strong coupling regime. The grey and black dashed lines are theoretical limitations in the weak
(Ωb,r,l/2π = 0.5 MHz) and the stronger coupling regime (Ωb,r,l/2π = 10 MHz), respectively.
Other parameters are ΩR/2π = 100 MHz, κ/2π= 1 MHz, γ/2π = 0.1 MHz, γφ/2π = 0.1 MHz.
For all three schemes, the increase of the interaction strength results in higher overall fidelity
levels, gradually approaching the upper limit set by Eq. (4.39). However only the blue-sideband
interaction allows for universal stabilization throughout all θ values, as it uniquely remains highly
efficient up to θ = π when the other two rapidly lose fidelity.

θ = π/2 that stabilizes the xy superposition state. Conversely, they all have their “weak points”

on the Bloch sphere that they fail to stabilize: the ground state for the blue-sideband, excited state

for the red-sideband and both ground and excited states for the longitudinal coupling. However,

the spontaneous decay of the qubit makes the stabilization of the ground state a trivial task, as it

can always be accomplished under low enough temperatures. The specialty of the blue-sideband

interaction is clearly displayed in Fig. 4.8, which shows the comparison of the stabilization fidelity

under the three coupling schemes. While all three schemes could achieve stabilization with high

efficiency at small θ, only the blue-sideband interaction is able to couple |g0〉 and |e1〉, which is

critical for achieving a truly universal stabilization.

Now we will show how the universal stabilization is experimentally realized with only the blue-

sideband interaction plus the qubit-dressing Rabi drive. We begin by writing down the lab-frame
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Hamiltonian of the tunable coupling circuit under simultaneous charge and flux modulation,

Ĥ/~ =
ωq
2
σ̂z + ωcâ

†â+ χâ†âσ̂z + Ωxσ̂x cosω1t+ 2Ωb(â
† + â)σ̂x cosω2t, (4.42)

where the first three terms are the static energy of the device, and the last two represent the Rabi

drive and the flux modulation. When the flux is modulated in the vicinity of the blue-sideband

frequency, this Hamiltonian can be transformed to the rotating frame by the operator,

U = ei[
ω1
2 σ̂z+(ω2−ω1)â†â]t, (4.43)

which is given by (under RWA)

Ĥrot/~ =
Ωx
2
σ̂x +

ωq − ω1

2
σ̂z + χâ†âσ̂z + Ωb(â

†σ̂+ + âσ̂−) + (ωc + ω1 − ω2)â†â. (4.44)

Denoting Ωz = ωq − ω1 and Ωc = ωc + ω1 − ω2, the Hamiltonian is rewritten as

Ĥrot/~ =
1

2
Ωxσ̂x +

1

2
(Ωz + 2χâ†â)σ̂z + Ωb(â

†σ̂+ + âσ̂−) + Ωcâ
†â. (4.45)

We can approximate the above Hamiltonian as

Ĥrot/~ =
1

2
Ωxσ̂x +

1

2
(Ωz + 2χn̄)σ̂z + Ωb(â

†σ̂+ + âσ̂−) + Ωcâ
†â (4.46)

as long as 2χn̄ � ΩR is satisfied, where n̄ is the mean cavity photon number. This requirement

guarantees that the dispersive shift term can be safely counted in as only a small perturbation to

the stabilization angle

θ′ = arccos
Ωz + 2χn̄√

Ω2
x + (Ωz + 2χn̄)2

. (4.47)

Fig. 4.7b plots the mean cavity photon number versus the coupling strength. Similar to Fig. 4.7a,
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in the strong coupling regime the mean cavity photon number saturates at the upper limit given by

n̄max =
γ̃+

γ̃− + γ̃+ + κ
, (4.48)

which is small under κ � γ̃±. In our experiment, the Rabi drive strength is 2π×9 MHz while the

dispersive shift is less than 2π×1 MHz at zero dc flux, so the requirement 2χn̄� ΩR is well met.

The dispersive shift term can also be viewed as a qubit state dependent frequency shift to the

cavity, in which sense Eq. 4.45 becomes

Ĥrot/~ =
1

2
Ωxσ̂x +

1

2
Ωzσ̂z + Ωb(â

†σ̂+ + âσ̂−) + (Ωc + 2χσ̂z)â
†â. (4.49)

As stated previously, the optimized fidelity is reached when |ẽ0〉 and |g̃1〉 become degenerate,

which happens at

Ωc = ΩR − 2χ 〈σ̂z〉 ≈ ΩR + 2χ cos θ (4.50)

that corresponds to the qubit Rabi drive frequency ω1 and blue-sideband drive frequency ω2 being

ω1 = ωq − Ωz, ω2 = ωq + ωc − ΩR − Ωz, (4.51)

see Fig. 4.11a.

In our experiment, the static flux in the coupler SQuID loop is biased to zero via the dc flux

line. This tunes the coupling strength gR,B to its minimum where the first order term g
(1)
R,B in the

Fourier series of gB(t) vanishes by symmetry in the expansion of the Josephson potential [192],

allowing the blue-sideband interaction to be created through the second harmonic term g
(2)
B by flux

modulation at half of the qubit-cavity sum frequency Σ. This avoids the need to drive at the sum

frequency directly, and requires lower bandwidth control. The blue-sideband frequency is cali-

brated by finding the modulation frequency that corresponds to the maximum value of the qubit

excited state population, which is measured after the flux pulse is turned on for sufficiently long

time. The strength of the blue-sideband interaction, Ωb, can be directly obtained from the oscil-
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Figure 4.9: (a) Ramsey experiment done with flux modulation applied between the two qubit π/2
operations. The flux signal is created by an AWG of fixed output power. From the curved fringes
qubit dc-offset/effective flux-modulation strength can be measured. (b) Output power of the awg is
compensated using the calibration result obtained from (a), showing vertical lines which indicates
that the effective flux-modulation strength is kept constant over the modulation frequency range.
(c) calibration of the mismatch time ∆t between the flux pulse and Rabi drive pulse of the same
length, using θ = 3π/4 scheme shown in Fig. 4.10. Qubit excited state population is measured as
a function of pulse durations as well as the delay time between the two pulses, shown as a chevron
pattern. At times when the two pulses are not overlapping, they do not affect the qubit state as both
are far-detuned from resonance. Therefore, the red regions (where qubit is in the ground state) in
the upper and lower left corners indicate the mismatch between the two pulses. They only precisely
overlap each other at the axis of symmetry of the pattern, indicated by the dashed line.

lation rate of the qubit excited state population. It is a necessity for the stabilization protocol to

drive the blue-sideband modulation at different frequencies depending on the stabilization target

state (4.51). However, the effective amplitude of the flux modulation will change at different fre-

quencies, due to the frequency-dependent power loss along the rf flux line. On the other hand, the

flux modulation also gives rise to a shift of the qubit frequency known as the “dc-offset”, which

is uniquely dependent on the modulation amplitude. As shown in Fig. 4.9a, Ramsey fringes can

be used to directly measure the dc-offset at different flux modulation frequencies. By adjusting

the output power of the arbitrary wave form generator (AWG) which is used to provide the rf

flux signal, we produce a constant qubit dc-offset across the flux modulation frequency of interest

(Fig. 4.9b), equivalent to realizing a constant blue-sideband interaction strength for all these fre-

quencies. The strength of the Rabi drive Ωx, which is also kept fixed throughout the stabilization

protocol, can be directly measured from the Rabi experiment. The Rabi drive pulse and the blue-

sideband flux pulse are simultaneously sent to the circuit sample, with detunings Ωz and Ωz + ΩR,
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Figure 4.10: Stabilization of the qubit state at polar angle θ = 3π/4, illustrated by the evolution of
its projections to the x (red), y (blue), and z (black) axis.

respectively. Synchronization of the two pulses is guaranteed by calibrating their mismatch time

∆t (see Fig. 4.9c). Qubit tomography, with phase synchronized to the Rabi drive, is performed

at different pulse times. As is displayed in Fig. 4.10, a coherent oscillation of the qubit state is

observed at the beginning of time, with a rate close to the total Rabi rate ΩR. We set the initial

phase of the Rabi drive to zero (for Fig. 4.10 it is set to π), so that in the long-time limit the qubit

state will be stabilized with
〈
σy
〉
≈ 0, while the polar angle and the purity are measured as

θmeasured = arccos
〈σz〉√

〈σx〉2 +
〈
σy
〉2

+ 〈σz〉2
, (4.52)

|〈~σ〉| =
√
〈σx〉2 +

〈
σy
〉2

+ 〈σz〉2. (4.53)

We apply this protocol to demonstrate stabilization of arbitrary states on the Bloch sphere.

The polar angle was varied by changing the Rabi drive detuning Ωz while keeping its strength

Ωx/2π fixed at 9 MHz. As can be seen from Eq. (4.38), the azimuthal angle has no effect on the

stabilization fidelity and was thus set to zero. The amplitude of the flux modulation is calibrated

to create a constant blue-sideband coupling strength Ωb/2π = 0.5 MHz for all stabilization angles,
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Figure 4.11: Illustration of the universal stabilization scheme for single-qubit states. In the lab
frame (a), qubit Rabi drive and blue-sideband modulation are applied with appropriately chosen
detuning and strength. In the rotating frame (b), these two drives result in the dressing of the qubit
state into arbitrary superpositions |g̃〉, |ẽ〉, with resonant coupling between |ẽ0〉 to |g̃1〉. Together
with the aid of the fast cavity decay, these finally lead to the stabilization of the |g̃0〉 state. (c) The
stabilization purity |〈~σ〉|, plotted against the polar angle θ of the stabilization axis, both obtained
from qubit tomography. Purities exceeding 80% are achieved over the entire Bloch sphere, while
purities >90% and > 99% are reached for stabilizing the |e〉 (θ = 180◦) and |g〉 (θ = 0◦) states,
respectively. Experimental data qualitatively agrees with the analytical calculation from Eq. 4.38
(red line) and numerical master equation simulation (black dashed line). The stabilization exper-
iment was performed at zero flux, where qubit and cavity frequencies are ωq/2π = 4.343 GHz
and ωr/2π = 5.439 GHz, with the linewidths being γ/2π ≈ 7.6 KHz, γφ/2π ≈ 3 KHz and
κ/2π ≈ 1.6 MHz. Left inset: stabilization angles predicted by theory closely match the experi-
mental values. Right inset: trajectory of the qubit state in the dynamic process of stabilization, for
the specific case of θ = 135◦ (red triangle) with measured purity of 87%. Starting from |g〉, the
qubit state moves in a helical path along the stabilization axis, until it saturates around the rotating
frame ground state, |g̃〉.

with the detuning chosen in each case to be Ωz + ΩR. The measured stabilization purity |〈~σ〉| =√
〈σx〉2 +

〈
σy
〉2

+ 〈σz〉2 is plotted as a function of the stabilization polar angle θ in Fig. 4.11c,

which closely follow the theory prediction made by Eq. 4.38. The excited state |e〉 is stabilized

with 93% purity at θ = 180◦, where only the blue-sideband process is required. Purity starts to

reduce as θ is lowered, which can be understood by the blue-sideband interaction losing efficiency

in coupling the |g̃1〉 and |ẽ0〉 states when the rotating-frame ground state |g̃〉 has less overlap with

the bare excited state, |e〉. This, however, does not invalidate the scheme’s performance for small

angles. According to Eq. 4.30 and Eq. 4.31, the qubit’s natural decay guarantees γ̃− � γ̃+ as

θ → 0, resulting in good stabilization fidelity in Eq. 4.38, irrespective of how small Γ is. This
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is reflected in Fig. 4.11c as a revival of the purity from a minimum value of ∼ 80% to near

unity (limited by lab-frame qubit temperature) at θ = 0, where the lab-frame ground state |g〉

is “stabilized” through the natural decay of the qubit. The high fidelity at all stabilization angles

therefore relies upon the mixed contribution of the active stabilization process induced by the blue-

sideband interaction (Γ), and the passive process from natural qubit decay (γ̃−).

4.3.3 Universal stabilization with “purple” sideband interaction

While the blue-sideband interaction is capable of universally stabilizing all qubit states with the

aid of the qubit’s natural decay, the stabilization rate significantly drops down as θ → 0 and is

ultimately limited by the spontaneous emission rate. On the other hand, the optimal interaction

obtained in Eq. 4.41 poses stringent experimental requirement as it calls for all three parametric

drives of different amplitude and frequencies. Here we demonstrate how the optimal scheme can be

further simplified while maintaining the same stabilization performance. An alternative to Eq. 4.40,

the optimal interaction term that is universally efficient for all stabilization angles can be written

as

Hint = Ωp(a
† + a)(eiφσ̃+ + e−iφσ̃−) (4.54)

where φ is an arbitrary phase, and σ̃+ is defined as

σ̃+ = |ẽ〉 〈g̃| . (4.55)

Comparing to Eq. 4.40, Eq. 4.54 contains “counter-rotating terms” that lead to off-resonant stray

coupling between |g̃0〉 and |ẽ1〉. Nevertheless, as long as the Rabi drive energy far exceeds this in-

teraction energy, this undesired coupling is fast oscillating and can be averaged out. Transforming

it back to the lab basis through the unitary operator from Eq. (4.25),

σ̃+ =
1

2

 sin θ −1 + cos θ

1 + cos θ − sin θ

 , (4.56)
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Figure 4.12: Comparison of stabilization schemes with different interactions, by plotting their
stabilization state population Pg̃ as a function of the stabilization angle θ. The grey curve represents
“stabilization” from qubit’s natural decay without interactions at play. All interaction terms have
the same coupling strength of 2π × 1 MHz. Other parameters are ΩR/2π = 100 MHz, κ/2π =
1 MHz, γ/2π = 0.1 MHz and γφ/2π = 0.1 MHz. The purple interaction outperforms all of the
other interactions by providing highest stabilization population for all angles.

so

eiφσ̃+ + e−iφσ̃− =

 cosφ sin θ −i sinφ+ cosφ cos θ

i sinφ+ cosφ cos θ − cosφ sin θ

 . (4.57)

By setting φ = π/2 here, we arrive to the “purple” sideband interaction

Hint = Ωp(a
† + a)σy (4.58)

which is a balanced mixture of the red- and blue-sideband interactions completely independent

of θ. Fig. 4.12 displays the comparison between the purple-sideband stabilization and the other

three schemes, which shows that under the same coupling strength, the purple-sideband interaction

provides the highest stabilization fidelity at all angles. The mixing of the red-and blue-sideband

interactions, which might be hard to achieve via conventional schemes using the qubit’s nonlinear-

ity, can be directly realized by driving the tunable coupling device at the red- and blue-sideband

frequency simultaneously with equal drive strength.
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4.3.4 Dark state picture of qubit state stabilization

This subsection aims to provide a slightly different perspective to look at the cavity-assisted qubit

stabilization process. Assuming we have a qubit-cavity system whose Hamiltonian is given as

follows,

Ĥ/~ =
Ωq
2
˜̂σz + Ωcâ

†â+ g(â†˜̂σ− +H.c.), (4.59)

where σ̃z = − |g̃〉 〈g̃|+ |ẽ〉 〈ẽ|, and σ̃− = |g̃〉 〈ẽ| is some arbitrary qubit operator. This Hamiltonian

can be defined in the lab frame, or is transformed from the lab frame Hamiltonian through unitary

operators. The tilde signs indicate dressed basis that can be different from natural bare basis.

The master equation that describes the evolution of this open system is given by

ρ̇ = −i[Ĥ, ρ] + κD[â]ρ+ γ̃−D[˜̂σ−]ρ+ γ̃+D[˜̂σ+]ρ+ γ̃φD[
˜̂σz√

2
]ρ, (4.60)

Note that here the qubit dissipators are defined in the same dress basis as Eq. 4.59. In the weak

coupling limit where κ� g, γ̃, γ̃φ, the cavity terms can be adiabatically eliminated [193], yielding

the effective qubit master equation,

ρ̇ = (Γ + γ̃−)D[˜̂σ−]ρ+ γ̃+D[˜̂σ+]ρ+
γ̃φ
2
D[˜̂σz]ρ, (4.61)

where

Γ =
g2κ

(κ/2)2 + (Ωq − Ωc)2
. (4.62)

From here we can easily recover the main result in subsection 4.3.1 where the stabilized qubit state

is

ρq =
Γ + γ̃−

Γ + γ̃− + γ̃+
ρ̃g +

γ̃+

Γ + γ̃− + γ̃+
ρ̃e. (4.63)

Now we take a dark state point of view [194], where we note the fact that each jump operator in

the master equation has its corresponding dark state (or degenerate dark subspace) and the global

steady state is usually an incoherent mixture of these darks states. When one of the dissipators is
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dominant while others can be treated as perturbations, its dark state becomes approximately equal

to the steady state. This observation, along with the adiabatic elimination method, can be useful

for providing a quick and convenient way to intuitively discover the steady state of qubit(s) under

cavity-assisted dissipation processes. We now give an example of its application.

Imagine we have two qubits parametrically coupled to a lossy quantum bus mode via blue-

sideband interactions, and we now want to find the steady state of the qubits. Assuming the blue-

sideband drives are on resonance, we write out the Hamiltonian as,

Ĥ = g
(
â†(˜̂σ−1 + ˜̂σ−2 ) +H.c.

)
, (4.64)

where we have moved to the rotating frame and ˜̂σ−i = σ̂+
i . After adiabatic elimination of the bus

mode, we have

ρ̇ =
4g2

κ
D[σ̂+

1 + σ̂+
2 ]ρ+ γ1D[σ̂−1 ]ρ+ γ2D[σ̂−2 ]ρ+ γ1,φD[

σ̂1,z√
2

]ρ+ γ2,φD[
σ̂2,z√

2
]ρ. (4.65)

Assuming 4g2/κ � γi, γi,φ, we estimate the qubit steady state to be the dark state of the leading

dissipator, σ̂+
1 + σ̂+

2 , which can be easily found as

(σ̂+
1 + σ̂+

2 ) |ee〉 = 0,

(σ̂+
1 + σ̂+

2 )
∣∣ψ−〉 = 0, (4.66)

where
∣∣ψ−〉 = |ge〉 − |eg〉 is a Bell state. This means that, assuming weak qubit decoherence,

the two-qubit steady state is a superposition or mixture of the Bell state
∣∣ψ−〉 and |ee〉 state,

depending on the initial condition. This is further verified by numerical simulations, proving this

quick estimation method to be valid.
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4.4 Stabilization of Bell states

As a natural extension of the stabilization of single-qubit state, in this section we showcase the

stabilization of an arbitrary Bell state via parametric flux modulation of the tunable coupling cir-

cuit, in a hardware-efficient way analogues to the “VSLQ” error correction scheme [187] that will

be the subject of discussion in Chapter 5. We scale up the tunable coupling circuit to a 4-mode

system consisting of two qubits and two lossy cavities, sharing a dc-SQuID to ground. The circuit

Hamiltonian then becomes

Ĥ/~ =
2∑

i,j=1

[ωqi
2
σ̂zi + ωrj â

†
j âj + gij (t)

(
â
†
j + âj

)
σ̂xi

]
+gq (t) σ̂x1σ̂x1+gc (t)

(
â
†
1 + â1

)(
â
†
2 + â2

)
.

(4.67)

In order to stabilize an even-parity Bell state of |φ (θ)〉 =
(
|gg〉+ eiθ |ee〉

)
/
√

2, we simply need

to modulate the circuit with a flux tone of (assuming modulating at a linear flux point)

f (t) = ε0 sin
(
ωq1 + ωq2

)
t+ ε1 sin

∣∣ωq1 − (ωc1 + Ω)
∣∣ t+ ε2 sin

∣∣ωq2 − (ωc2 + Ω)
∣∣ t. (4.68)

Properly adjusting the drive amplitudes and phases, we may obtain the rotating frame Hamiltonian

as

Ĥ/~ = Ω
(
eiθσ̂+

1 σ̂
+
2 + e−iθσ̂−1 σ̂

−
2

)
+

2∑
i=1

[
gi

(
â
†
i σ̂
−
i + âiσ̂

+
i

)
− Ωâ

†
i âi

]
. (4.69)

As displayed in Fig. 4.13, when the energy scale of Ω� gi ∼ κi � γi is fulfilled, the stabilization

of |φ (θ)〉will take place. Comparing to the single-qubit stabilization Hamiltonian Eq. 4.49, we see

that the first term of Eq. 4.69 is essentially playing the same role as defining the “principle-axis” in

the stabilization subspace, which determines the effective ground state to be its lowest eigenstate,

in this case |φ (θ)〉. The second term couples the two-qubit state to the quantum bath made of

two lossy resonators, while the last term guarantees a resonant Raman process that optimizes the

stabilization fidelity. In the weak coupling regime where
√
κγ � g � κ, this gives rise to an

effective decay and excitation rate between
∣∣ϕ+

〉
and |ge〉 as
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Figure 4.13: Stabilization of the
∣∣ϕ+

〉
= (|gg〉+ |ee〉) /

√
2 illustrated with the rotating frame

Hamiltonian energy levels. The blue-sideband interaction between the two-qubits gives rise to the
energy level structure where

∣∣ϕ+
〉

and
∣∣ϕ−〉 are gapped by 2Ω. The red and black waved-arrows

represent qubit and cavity decay respectively. The solid red double-headed arrows stand for the
red-sideband interactions between the qubit and the cavity, and the dashed red arrow is the off-
resonant interaction that transfers the population from the stabilization target state to other states.
Single-photon loss can result in (a) |ge00〉 or (b) |eg00〉 depending on from which qubit the photon
is lost. For both cases, the “error state” will be mapped to the parent Bell state while adding a
photon to the lossy cavity through the resonant red-sideband coupling, which quickly decays to
the stabilization target state due to fast cavity photon loss rate. Like the single-qubit’s case, the
stabilization of the Bell state works well when the engineered dissipation rate is far greater than
the qubit spontaneous emission rate, i.e. g ≥ κ � γ. The off-resonant sideband couplings are
suppressed by the gap of 2Ω, further requiring Ω� g. The levels with two cavity photons are not
displayed here as they should have minimum population.

Γ
ge
↑ =

γ2

2
+

2g2
2

κ2
, Γ

ge
↓ =

γ1

2
+

2g2
1κ1

16Ω2 + κ2
1

, (4.70)

similarly the relaxation rates between
∣∣ϕ+

〉
and |eg〉 are

Γ
eg
↑ =

γ1

2
+

2g2
1

κ1
, Γ

eg
↓ =

γ2

2
+

2g2
2κ2

16Ω2 + κ2
2

. (4.71)

To the leading order in κγ/g2 and in κ/Ω, the fidelity of the
∣∣ϕ+00

〉
is given by

Pϕ+ = 1− κγ

2g2
− κ2

8Ω2
, (4.72)
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Figure 4.14: Illustration of the
∣∣ψ+

〉
= (|ge〉+ |eg〉) /

√
2 stabilization in the rotating frame. As

the dominant term, the qubit-qubit red-sideband interaction defines the rotating frame levels while
the qubit-cavity sideband interactions, labeled by the blue double-headed arrows, can be viewed
as perturbations between these levels. The red and black waved-arrows represent qubit and cav-
ity decay respectively. (a) In this case, single-photon loss on either qubit brings the Bell state
into the zero-photon state |gg00〉, which is simultaneously coupled to

∣∣ψ+01
〉

and
∣∣ψ+10

〉
. Fast

cavity decay then ensures the trapping of the population in
∣∣ψ+00

〉
. (b) Unlike in the stabiliza-

tion of
∣∣ϕ+

〉
, this stabilization scheme creates a “metastable state” of |ee00〉 from the off-resonant

blue-sideband coupling between the
∣∣ψ+00

〉
and |ee01〉 or |ee10〉, leading to a lower stabilization

fidelity for
∣∣ψ+00

〉
. This infidelity can be suppressed by increasing the energy gap of 2Ω.

assuming g1 ≈ g2, κ1 ≈ κ2, γ1 ≈ γ2. It is worth noting that the specific choice of the red-sideband

coupling between the qubit and the cavity can also be replaced by blue-sideband coupling as well.

Similarly, under the trichromatic flux drive of

f (t) = ε0 sin
∣∣ωq1 − ωq2∣∣ t+ ε1 sin

(
ωq1 + ωc1 + Ω

)
t+ ε2 sin

(
ωq2 + ωc2 + Ω

)
t, (4.73)

another rotating frame Hamiltonian could be generated as follows,

Ĥ/~ = Ω
(
eiθσ̂−1 σ̂

+
2 + e−iθσ̂+

1 σ̂
−
2

)
+

2∑
i=1

[
gi

(
â
†
i σ̂

+
i + âiσ̂

−
i

)
− Ωâ

†
i âi

]
, (4.74)

which is capable of stabilizing an arbitrary odd-parity Bell state of |ψ (θ)〉 =
(
|ge〉+ eiθ |eg〉

)
/
√

2,

with the same requirement of the energy scale. As depicted in Fig. 4.14b, this scheme also creates

138



a metastable state of |ee00〉. Again we can find out the effective decay rates from
∣∣ψ+00

〉
to |gg00〉

and |ee00〉,

Γ
gg
+↓ =

γ1 + γ2

2
, Γee

+↓ =
2g2

1κ1

16Ω2 + κ2
1

+
2g2

2κ2

16Ω2 + κ2
2

, (4.75)

and the excitation rates as well,

Γ
gg
−↑ =

2g2
1

κ1
+

2g2
2

κ2
, Γee

−↑ =
γ1 + γ2

2
. (4.76)

Likewise, we can write out the relaxation rates between |gg〉, |ee〉 and
∣∣ψ−〉,

Γ
gg
−↓ =

γ1 + γ2

2
, Γee

−↓ =
2g2

1

κ1
+

2g2
2

κ2
, (4.77)

Γ
gg
−↑ = 0, Γee

−↑ =
γ1 + γ2

2
. (4.78)

From Eq. 4.75 to Eq. 4.78 we may obtain the fidelity of
∣∣ψ+00

〉
, to the leading order of s = κγ/g2

and t = κ/Ω, as

Pψ+ = 1− s

4
+

(
1

8
− 1

4s

)
t2 +O

[
s2
]

+O
[
t4
]

+O

[(
t2

s

)2
]
, (4.79)

where we immediately find an extra constraint on the energy scale,

Ω�
√
κ

γ
g, (4.80)

which agrees with the intuitive observation that the energy gap needs to be far larger than the blue-

sideband interaction strength in order to suppress the population leakage to |ee〉. This leakage can

be also remedied by by introducing a qubit-qubit dispersive shift term, χ |ee〉 〈ee| that detunes |ee〉

without affecting other levels. When χ is small, to the lowest order in s, t and r = χ/κ we have

Pψ+ = 1− s

4
+

(
1

8
− 1

4s

)
t2 +

(
1

4s
− 1

8

)
t3r, (4.81)
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Figure 4.15: Master equation simulation of the Bell state stabilization fidelity. In the simulation, we
set the qubit lifetime to be 10µs, while the cavity is 0.1µs. With fixed Ω = 2π×20 MHz, we sweep
qubit-cavity coupling strength g for fidelity optimization. For odd-parity Bell state stabilization,
optimal g happens at 2π × 0.6 MHz, with stabilization fidelity ≈ 0.9. The gradual descending of
the
∣∣ψ+

〉
fidelity indicates the population trapping in the |ee00〉 level. For even-parity Bell states,

a maximum stabilization fidelity of 0.97 is reached at g = 2π× 1.3 MHz. The black curves are the
natural decay of the Bell states for reference.

which reduces back to Eq. 4.79 as χ → 0. Eq. 4.81 shows that the fidelity improves when χ goes

negative, which is a natural result of the increased gap between
∣∣ψ+

〉
and |ee〉. When χ becomes

much larger, χ� Ω, we can similarly obtain the stabilization fidelity to be

Pψ+ = 1− s

4
+

(
3

8
− 1

s

)
r−2 − 4

st
r−3, (4.82)

and when χ→∞, the fidelity asymptotes to 1− s/4.

We can further calculate the stabilization fidelity for the two cases from the master equation

simulation, shown in Fig. 4.15. We choose the ground state to be the initial state and plot the

fidelity of the
∣∣φ+

〉
and

∣∣ψ+
〉

as a function of time. The lifetime of the stabilized Bell state is

shown to be substantially prolonged, comparing to the bare T1 of the Bell state with no parametric

modulation.

Finally, when the modes in the tunable coupling circuits are made inherently fixed-frequency

(i.e. single-junction transmon and linear resonator), their dephasing noises mostly (neglecting ther-
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mal noise) originate from the frequency fluctuation of the coupler mode, and therefore are strongly

correlated to each other. This cross-correlation has some interesting effects on the dephasing of the

Bell states. According to the quantum noise theory [99], under zero correlation, the decoherence

rate from pure qubit dephasing of any Bell state is
(
γφ,1 + γφ,2

)
/2, where γφ,i is the i-th qubit

dephasing rate. With maximum correlation (identical dephasing noise), the decoherence rate of |ψ〉

drops to
(√

γφ,1 −√γφ,2
)2
/2, while that of |ϕ〉 rises to

(√
γφ,1 +

√
γφ,2

)2
/2, which suggests

that |ψ〉 could be the preferable entanglement resource for quantum computation with the tunable

coupling circuit.
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CHAPTER 5

TOWARDS AUTONOMOUS QUANTUM ERROR CORRECTION

In this chapter, we take another step forward and put parametric flux modulation to even greater

use. While we had a lot of fun playing with qubit stabilization in previous chapters, we have

yet to see any particularly useful applications except for perhaps sideband cooling. Here, with

the concrete example of the Very Small Logial Qubit (VSLQ) superconducting device, we will

demonstrate stabilization and other driven dissipation processes as a valuable resource for quantum

computation.

Quantum error correction (QEC) is vital for the ultimate goal of quantum computing - con-

structing a useful quantum computer. Traditionally, quantum error correction scheme [195, 196,

197, 198] are based on feedback processes, which places formidable overhead requirements on

both quantum circuitry and classical control hardware. An alternative approach is the autonomous

quantum error correction [199, 189, 186, 187, 200, 201, 202, 203, 204], which can be loosely

thought of as the stabilization of any unknown logical state. Stabilization of any particular state

requires to know the state beforehand which is clearly not QEC, but if we can somehow stabi-

lize a manifold of logical bases, in a coherent way without destroying the embedded quantum

information, then we can stabilize any unknown superposition of the logical bases, which is equiv-

alent to AQEC. Thanks to its passive nature, AQEC protocol neither requires feedback control

that poses stringent experimental requirements, nor is it limited by the cycle time that tends to

be long enough to become the bottleneck for higher QEC fidelities. Even more remarkable is

the VSLQ circuit [187, 203], which, albeit its simple physical form consisting only two transmon

qubits coupled by dc-SQuID, and two lossy resonators, is capable of protecting against all realistic

single-qubit quantum error channels with orders of magnitude improvement. In this chapter we

will first introduce the theory of VSLQ, then present our experimental effort towards its realization

in circuit-QED.
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5.1 Theory of the Very Small Logical Qubit

This section is structured as follows: We first introduce the VSLQ as a digital error correction code,

and define its logical states and error correction operators. We then construct a driven dissipation

protocol with a rotating frame Hamiltonian that governs the interaction between the logical qubit

and the bath modes. Finally, we verify its capability of correcting photon losses and suppressing

phase noise errors from rigorous numerical simulations.

5.1.1 Codewords of VSLQ

Most quantum error correction codes rely on a repetitive codeword, where the logical bases inher-

ently possess some degree of redundancy to protect against certain types of errors, in a way that

quantum information is not deterministically lost, but can be recovered after error events. The two

logical bases of the VSLQ are product states of the 0- and 2-photon superposition of two qutrits,

with different phases,

|0〉L =
|0〉1 + |2〉1√

2
⊗ |0〉2 + |2〉2√

2
, |1〉L =

|0〉1 − |2〉1√
2

⊗ |0〉2 − |2〉2√
2

. (5.1)

It can be interpreted as a two-qutrit binomial codeword [149] with a mean photon number of 2,

with invariant superposition weights under single-photon loss error on either side,

â1 (α |0〉L + β |1〉L) = α |1〉1 ⊗ |̃+〉2 − β |1〉1 ⊗ |̃−〉2,

â2 (α |0〉L + β |1〉L) = α|̃+〉1 ⊗ |1〉2 − β |̃−〉1 ⊗ |1〉2 , (5.2)

where |α|2+|β|2 = 1, and |̃±〉 stand for the 0- and 2-photon equal superposition state with opposite

phases. In principle, with the VSLQ codeword, we can already perform quantum error correction

against single-photon loss in the measurement-based fashion. We simply need to simultaneously

monitor the single-photon state population on both sides, which heralds the error events while

being quantum non-demolition to the logical state (of course, we need to make very sure that the
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Figure 5.1: A measurement-based QEC protocol using the VSLQ codeword. The single-photon
population is being monitored for both qutrits in real time, which should be zero under arbitrary
logical states. Thus the detection of the population heralds the single-photon loss error event,
which can be corrected by applying a controlled gate on the error bit with the other transmon being
the control bit.

detector does not distinguish between the |0〉 and |2〉 states). Shown in Fig. 5.1, when a photon is

lost from either the left or the right qutrit, population in the single-photon level will be detected on

the same side, followed by unitary operations conditioned on the other qutrit state, which map the

error state back to its parent logical state. These unitary operators must satisfy

U2→1

(
|1〉1 ⊗ |̃±〉2

)
= ±

(
|̃±〉2 ⊗ |̃±〉2

)
,

U1→2

(
|̃±〉2 ⊗ |1〉

)
1

= ±
(
|̃±〉2 ⊗ |̃±〉2

)
. (5.3)

Like bosonic codes, the VSLQ codeword does not protect against two-photon lost, either happen-

ing together on the same qutrit or separately on both. Luckily, two-photon loss is typically rare to

happen and can thus be safely ignored.
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Figure 5.2: An ancilla-assisted autonomous VSLQ scheme. In principle, we can always find a
unitary operation that does not affect the logical state, but can map the single-photon-loss error
state back to its parent logical state while adding a photon to the ancillary mode. This photon is
then quickly lost through the fast dissipation of the ancilla. Autonomous error correction is simply
achieved by applying the unitary operation over and over again.

5.1.2 From measurement-based protocol to autonomous implementation

While the measurement-based VSLQ can be used for error correction, it suffers from the overhead

requirements that most measurement-based QEC protocols do, such as high fidelity QND mea-

surement, real-time data acquisition and fast feedback control. Recall that in a prototypical 3 qubit

bit-flip error correction, ancillary qubits are employed to store the error syndrome, followed by sta-

bilizer measurement that instructs the subsequent error correction operation. While the stabilizer

measurement and error correction operation can be formally combined into a controlled gate condi-

tioned on the ancillary state, it should not be thought of as autonomous error correction, as there is

no way of dumping the entropy from such a closed system. Indeed, the no-deleting theorem [205]

states that there is no way to delete an unknown state, making the error correction impossible to

last for more than one cycle as long as the uncertainty still lives within the ancillary space - unless

its state can be reset, say, from dissipation to environment. This “upside of noise” [200] enables

error correction to be passively accomplished.
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VSLQ error correction can also be autonomously implemented by coupling the qutrits to one or

more ancillae. There, the entropy of error is removed not by measurements, but by the dissipative

ancillae. The ancillae remain in their ground state through dissipation, and do not disturb the

logical qubit state until photon loss happens. Then, the interaction between the ancillae and the

qutrit must map the error state back to its parent logical state, at the cost of exciting the ancillary

states. Finally, dissipation resets the ancillae back to the ground state, ready for the next round of

error correction.

Making the most intuitive choice of coupling the two qutrits each to a low-Q cavity mode, it

is not hard to formulate a unitary transformation that carries out the error correction effect (see

Fig. 5.2), following the recipe in subsection 5.2.6. Such a unitary transformation can then be de-

composed into quantum gate sequence and implemented in a digital manner. However, the gate

time may outgrow the time scale of the error, rendering this digital error correction scheme ineffec-

tive. Naturally one may wonder, following the digital-analog quantum computing correspondence,

if this unitary transformation can be instead enforced in an analog way, by a Hamiltonian whose

energy scale far exceeds the spectral density of the error. Remarkably, such a Hamiltonian does

exist for the VSLQ qutrit-ancilla model, which reads

Ĥ/~ = WX̂1X̂2 +
2∑
i=1

δi
2
P̂ 1
i +

2∑
i=1

Ωi

(
â
†
qiâ
†
ri + âqiâri

)
+

2∑
i=1

(
W +

δ

2

)
â
†
riâri, (5.4)

where X̂ is the Pauli-x operator defined in the 0- and 2-photon subspace, P̂ 1 is the projection

operator to the single-photon subspace, âq and âr are the annihilation operator for the qutrit and the

lossy cavity. In this Hamiltonian, the first term contains the two-photon-swapping and four-photon-

pumping interactions between the qutrits, the second term modifies the energy of the qutrits’ single-

photon subspace, the third term represents the blue-sideband interactions between the qutrits and

their ancillae, while the last term describes the ancillary energy.

More insights can be gained by looking at the rotating frame levels of the VSLQ Hamiltonian

in Fig. 5.3. For simplicity here we only consider the photon loss and recovery processes in qutrit
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(a) (b)

(c) (d)

Figure 5.3: The error correction cycle of the VSLQ in the rotating frame. For simplicity we only
show the photon loss and correction for the second qutrit. (a) Initial logical state jumps to the
error state manifold at photon loss rate γ. (b) The blue-sideband interaction couples each basis
of the error state to the logical basis in the excited-ancilla subspace. The pale dashed arrows
represent error passages where phase-flips happen to the logical superposition. (c) and (d) The fast
dissipation of the ancillary states brings the system back to the initial logical state.

2. Similar to Rabi term that defines the principal axis in the universal stabilization scheme, the XX

and the P term of the VSLQ Hamiltonian are playing the role of a stabilizer that defines the logical

and error basis as two separated manifolds of degenerate eigenstates. The blue-sideband terms

couple the error state manifold to the logical state subspace with a single photon in the ancilla,

which are further brought into resonance by the ancillary energy term. For arbitrary superposition

of logical bases, when a single photon is lost, the system will be placed in the same superposition

of the error basis. Then, due to the resonant blue-sideband interaction, the error state will be

mapped back to the logical state subspace at the cost of adding one photon to the ancilla. Finally,

the fast decay of the ancilla brings the state back to its initial logical state, completing the error

correction. Throughout the whole process, the state remains in a coherent superposition with the

same amplitude.
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The blue-sideband interaction inevitably creates systematic error channels by linking logical

bases with different parities to each other, showing in Fig. 5.3b by the dashed arrows. To avoid

infidelity due to these harmful transitions, along with the stabilization requirement, the following

hierarchy of energy scale must be met,

δi −W,W � Ωi ∼ κi � γi. (5.5)

5.1.3 Suppression of 1/f dephasing noise

Aside from the photon loss error, dephasing noise acting on the physical qutrits also creates an error

channel where |±±〉 relaxes to |±∓〉 and vice versa. While such dephasing noise is not actively

corrected by the VSLQ design (though in principle it could be corrected in a larger three-qubit ring

implementation [189]), it is energetically suppressed by the gap of 2W between the two manifold

of degenerate logical bases of even and odd parities. Upon further examination of this relaxation

process using quantum noise theory, one finds that it is only sensitive to dephase noise near the

transition frequency 2W ,

Γirel = 2S
(i)
zz [2W ] , (5.6)

where Γ
1,2
rel are the relaxation rates between |±±〉 and |∓±〉, and between |±±〉 and |±∓〉. If

the qutrit dephasing noise has a low-frequency dominated power spectrum like 1/f spectrum, the

relaxation effect will be dramatically weakened when 1/W is far smaller than the noise correlation

time, just in the same way as we have demonstrated in subsection 3.4.4. This additional benefit

of phase noise suppression is intrinsic to this “analog” VSLQ scheme with continuously applied

Hamiltonian.

It is also interesting to note that single qutrit dephasing noise alone does not dephase VSLQ

logical states in same-parity manifolds, i.e. photon number measurement does not distinguish

between the basis,

〈+±| n̂qi |+±〉 = 〈−∓| n̂qi |−∓〉 , 〈+±| n̂qi |−∓〉 = 0, (5.7)
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where n̂qi = â
†
qiâqi. However, things can become a little different under two-qutrit dephasing

noise of the form n̂q1n̂q2. While such two-qutrit dephasing noise does not contribute to the pure

dephasing rate between any VSLQ levels, it does lead to relaxation between logical bases with the

same parity (flipping both phases at the same time). Unfortunately the W term has no suppression

to this relaxation rate, as there is no energy gap between the two bases involved. However, a

remedy can be found by introducing extra terms into the VSLQ Hamiltonian [187].

5.1.4 Can the VSLQ be any smaller?

A natural question arises from the name of VSLQ, that if it could be made any smaller without

compromising its error correction performance. The answer is unclear, but at least it will be very

difficult. One may be tempted to further reduce the number of transmons, by encoding quantum

information in the superposition of higher levels of an artificial atom, much like the bosonic codes

do. However, one does so at ones own peril which can be seen from the following example. The

logical qubit states in this case are made of the first four levels of a transmon,

|L0〉 =
|0〉+ |4〉√

2
⊗ |0〉 ,

|L1〉 = |2〉 ⊗ |0〉 . (5.8)

Mimicking the VSLQ Hamiltonian, we may even formally write out the “Smallest Logical Qubit”

Hamiltonian, as

H = −WX̂04 −Wσ22 + Ω
[
(σ21 + σ43) a

†
r +H.c.

]
+Wa

†
rar, (5.9)

where σij = |i〉 〈j|, X̂ij = σij + σji are defined in the transmon space while a†r is the cavity

ladder operator. Enforcing the energy scale hierarchy of W � Ω ≈ κ � γ, where γ and κ are

the lifetimes of the qubit and the cavity, we may arrive at the rotating frame energy level diagram

in Fig. 5.4 that clearly shows the “error correction” process. At first glance this protocal looks
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Figure 5.4: Rotating frame energy level diagram for the error correction protocol encoding the
bosonic code with the lowest four levels of an atom. We plot the Floquet levels of the Hamilto-
nian in Eq. 5.9 (the splitting by the Ω term not displayed here). The red and blue waved-arrows
stand for the photon loss processes in the qubit and the cavity space, while the double-headed
arrows represent couplings from the Ω term. Single-photon loss error brings the state from the
logical space {|0 + 4, 0〉 , |2, 0〉} to the error space {|3, 0〉 , |1, 0〉}, which then coherently tran-
sits to {|0 + 4, 1〉 , |2, 1〉}, accompanied by rapid cavity photon loss that sends the state back to
{|0 + 4, 0〉 , |2, 0〉}, completing the error correction cycle. The dashed arrows represent the leak-
age path from |L0〉 to the error state |0− 4, 0〉. However, this process is suppressed by the energy
gap of 2W at a rate of ΓE = 4Ω2/(16W 2 + κ2), which is much slower comparing to the refilling
rate of ΓR = 4Ω2/κ2. The hierarchy of energy scales can also be intuitively inferred from this
diagram, which imposes the requirement of W � κ ≈ Ω� γ.

very promising: suppose an arbitrary initial state of |ψ〉 = (α |L0〉+ β |L1〉)⊗|0〉 suffers a single-

photon loss that turns the state into

a |ψ〉 = (α |3〉+ β |1〉)⊗ |0〉 . (5.10)

In the rotating frame Hamiltonian, states |3〉 |0〉 and |L0〉 |1〉 are degenerate and coupled through

the Ω term. |3〉 |0〉 can further decay into |2〉 |0〉, yet |L0〉 |1〉 decays to |L0〉 |0〉 at a much faster

rate and results in its correction back to |L0〉. Likewise, the error state |1〉 |0〉 is corrected back to

|L1〉 via the process |1〉 |0〉 → |2〉 |1〉 → |2〉 |0〉. The same correction rate of 4Ω2/κ for these two

processes guarantees that the corrected state remains in the same superposition as the initial state

|ψ〉 = (α |L0〉+ β |L1〉)⊗ |0〉.
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Figure 5.5: Strong enhancement of the effective logical state lifetimes against photon losses
through engineered dissipation. We calculate the state fidelity as a function of time from mas-
ter equation simulations, with the initial state being |L0〉 (Blue), |L1〉 (red) and (|L0〉+ |L1〉) /

√
2

(purple). In comparison, the dash-dotted curves are unprotected fidelities of corresponding initial
states. The inset shows the infidelity at t = 100µs as a function of the mixing angle θ of the logical
state superposition, with colored dots representing the three initial states in the main graph. The
infidelity is higher for the superposition state because it is susceptible to dephasing loss, which
arises from the decay and refilling process between the logical states and the error states.

However this scheme has one fatal drawback: for transmon qubits, the unequal energy differ-

ence between |2〉 and |1〉, and |4〉 and |3〉 dephases the error state of α |3〉 + β |1〉 in Eq. 5.10. A

more intuitive way to look at this dephasing is that the photons emitted from the |2〉 → |1〉 decay

and |4〉 → |3〉 decay are at different frequencies, allowing for the distinction of the final states and

thus dephasing their superposition. From the quantum trajectory point of view, the decay process

is equivalent to applying the jump operator with some probability at all time points for a single

trajectory, and then averaging up all trajectories. Because the jump operator is randomly applied at

different time points between different trajectory, and the phase advance of the initial superposition

is different from the final state, averaging over trajectories will destroy the phase information of the

final superposition, in a similar way to the regular dephasing of a qubit. We want to point out that
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in above, the error correction effect of the Hamiltonian in Eq. 5.9 is completely valid as proved by

the master equation simulation result in Fig. 5.5. It is the nonlinearity of the physical system that

will prevent such an ideal rotating frame Hamiltonian to take place. This is an important reason

why bosonic codes are designed for linear cavity modes, where the emitted photons are identical

and do not destroy the phase information of logical states.

5.2 Experimental Realization of the VSLQ

As discussed in the above sections, the most remarkable feature of the VSLQ is that it can be re-

alized in a fully autonomous way with the ability to correct errors in continuous time. Comparing

with measurement-based QEC protocols, it neither needs fast feed-back control that poses strin-

gent experimental requirements, nor is it limited by the cycle time that tends to be long enough to

become the bottleneck for higher QEC fidelities. These nice features of the VSLQ critically rely on

the VSLQ Hamiltonian in Eq. 5.4. However, realizing the VSLQ Hamiltonian is no simple task, be-

cause it requires the generation of multi-photon interactions terms, such as the 2-photon-swapping

and 4-photon-pumping terms between the logical qubits, as well as the 2-photon-pumping term

(the blue-sideband interaction), between the logical qubit and the ancillary qubit. Moreover, the

VSLQ scheme requires rather strong interaction strengths for these terms, which are difficult to

realize through charge drive schemes, such as 4-wave mixing, without inducing other undesired

interactions.

Motivated by this, we have invented a novel flux-tunable circuit that nicely accommodates the

VSLQ Hamiltonian, through parametric flux modulation. In this section, we will demonstrate

the working mechanism of the VSLQ circuit along with its experimental characterization, and the

preliminary realization of the VSLQ Hamiltonian.
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5.2.1 VSLQ circuit device

The circuit device of the VSLQ is shown in Fig. 5.6. The primary qutrits, which are colored in red,

are made of two transmons with bridged grounds, coupled by a flux-driven SQuID colored purple.

Aside from the relative placement of the capacitances and values of the junctions, this architecture

is identical to a four-junction flux qubit [206], which has been shown to possess coherence times

similar to those of the best planar transmon qubits [207]. The dc-SQuID loop and the big flux

loop beneath are controlled by the two fluxes Φ2 and Φ1, which results in a nonlinear interaction

between the transmon modes,

Ĥint = −EJc cos
(
δ̂θ + θ1

)
− EJc cos

(
δ̂θ + θ1 + θ2

)
= −2EJc cos

θ2

2
cos

(
δ̂θ + θ1 +

θ2

2

)
,

(5.11)

where δ̂θ = θ̂q1 − θ̂q2 is the phase difference between the transmons, and θi = Φi/Φ0 is the

external phase. At θ2 = 2nπ ± π, it is easy to see that the transmons are decoupled from each

other, corresponding to a SQuID inductance of infinity.

We may further trig-expand Eq. 5.11 and find out how it perturbs the transmon energies. Under

dc-flux tuning, we can always gauge away the phase offsets of the phase variables like we did in

subsection 1.2.3, equivalent to recentering the 2D potential to its local minimums. To this end, we

group the Josephson energy of the two transmons with Eq. 5.11 to obtain the 2D potential energy

as

Uq = −EJ1 cos
(
θ̂1 +

¯̂
θ1

)
− EJ2 cos

(
θ̂2 +

¯̂
θ2

)
− 2EJc cos

θ2

2
cos

(
δ̂θ +

¯̂
δθ + θ1 +

θ2

2

)
,

(5.12)

where ¯̂
θ1,2 and ¯̂

δθ =
¯̂
θ1 − ¯̂

θ2 are classical equilibriums that can be found by solving

∂Ũq

∂θ̂1,2

∣∣∣∣
θ̂1=

¯̂
θ1,θ̂2=

¯̂
θ2

= 0, (5.13)

with Ũq being the uncentered 2D potential. Trig-expanding Eq. 5.12 and keeping the leading order
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Figure 5.6: (a) False-colored circuit micrograph and (b) circuit diagram showing the VSLQ circuit
components. The two transmons are plotted in red and will be used as logical qubits. In green
are the two lumped-element resonators designed to be low-Q as the ancillary qubits, which are
capacitively coupled to the transmons with fixed coupling strengths. At the heart of the device lies
the dc-SQuID in purple, which, along with the transmon junctions, forms two superconducting
loops controlled by tunable fluxes Φ1 and Φ2, giving rise to the tunable nonlinear coupling term in
Eq. 5.11, which is crucial for the generation of the VSLQ Hamiltonian.

terms, we obtain

Uq ≈ −Eeff
J1 cos θ̂1 − Eeff

J2 cos θ̂2 + Eg1θ̂1θ̂2 + Eg2θ̂1θ̂
2
2 + Eg3θ̂

2
1 θ̂2 + Eg4θ̂

2
1 θ̂

2
2. (5.14)

with all the coefficients being 2D functions of the fluxes. We see that the primary circuit is essen-

tially two flux-tunable transmons coupled through flux-tunable nonlinear interactions, promising

the generations of multi-photon parametric interactions through flux modulation.

In practice, Eq. 5.13 and 5.14 can be numerically calculated, then the whole VSLQ circuit
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Circuit parameters (GHz) 1st 2nd

Transmon Josephson energy 10.7 13.4
SQuID Josephson energy 7.9 7.7

Transmon charging energy 0.17 0.21
SQuID charging energy 0.009

Resonator frequency 6.9 8
Transmon-resonator coupling 0.048 0.055

Table 5.1: Circuit parameters of the VSLQ device.

can be canonically quantized in the same way as in section 2.1. This of course assumes that the

coupling terms in Eq. 5.14 can be treated as perturbations, otherwise the calculation of the full 2D

wavefunction is required.

In the actual circuit design, the capacitances and junction energies are chosen such that the en-

ergies of the two transmons are∼1 GHz apart (when decoupled), to minimize any stray interactions

between them. We also work in the deep transmon limit with EJ/EC ' 65.

To enable passive quantum error correction, the transmons are each coupled to a low-Q res-

onator, with fixed capacitive coupling strength. These resonators are made lossy by overcoupling

to the readout lines, enabling them to be used as dissipative ancillae as well as fast readout cavities.

The circuit parameters of the VSLQ circuit can be found in Table. 5.1

5.2.2 Parametric modulation of the VSLQ circuit

To operate the VSLQ, we need to apply rf flux tones through the coupler elements. Operating the

fluxes at the “VSLQ operating point”

{θ1 (t) , θ2 (t)} =
{

0.25− εd
2

sinωdt,−0.5 + ε sinωdt
}
, (5.15)

the interaction in Eq. 5.11 is reduced to a much simpler form as a cosine function of the transmon

phase difference, with a linearly modulated amplitude:

Ĥint = −2εdEJc sinωdt cos δ̂θ. (5.16)
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To understand how this term can provide all the necessary parametric interactions for the VSLQ

Hamiltonian in Eq. 5.4, we first go to the dressed basis where the transmon and the cavity modes

are decoupled. Under the leading order S-W transformation, and in the rotating frame where the

dressed transmon |f〉 levels and cavity single-photon states are isoenergetic, the interaction term

becomes1

Ĥint = −2εdEJc sinωdt cos

[
4

√
2Ec
EJ

(
â
†
q1e

iωq1t − â†q2eiωq2t +
g1

∆1
â
†
r1e

iωr1t − g2

∆2
â
†
r2e

iωr2t + h.c.

)]
.

(5.17)

From the interference between the rotating terms and the sine modulation term, different parametric

interactions can be created. For example, the so-called 3-wave mixing processes can be obtained

from the quadratic component of the cosine interaction, when the modulation frequency is at the

detuning or the sum between any two of the four modes. At the sum frequency of the transmon

and the resonator ωd = ωqi + ωri, the blue-sideband interaction is created,

Ĥint =
εdEJcgi

∆i

√
2Ec
EJ

(
â
†
qiâ
†
ri + âqiâri

)
. (5.18)

Similarly, from the quartic term we can achieve 5-wave mixing, useful for the generation of the

VSLQ Hamiltonian. It is easy to check that when the modulating is at twice the transmon detuning

frequency ωd = 2
(
ωq1 − ωq2

)
, we will obtain the 2-photon-swapping interaction,

Ĥint = −εdEcEJc
2EJ

(
â
†2
q1â

2
q2 + â2

q1â
†2
q2

)
, (5.19)

while modulating at twice the sum frequency ωd = 2
(
ωq1 + ωq2

)
gives rise to the 4-photon-

pumping term,

Ĥint = −εdEcEJc
2EJ

(
â
†2
q1â
†2
q2 + â2

q1â
2
q2

)
. (5.20)

1. Here we have ignored the phase dependence of the cavity operator on the transmon state, which reduces the
transmon-cavity blue-sideband rate.
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Finally, by driving at all four frequencies together with appropriate strengths and phases, we can

combine the four terms in Eq. 5.18-5.20 to become the desired stabilizer term (the W term) that

distinguishes the VSLQ logical and error basis, as well as the error correction term (the Ω term)

that maps the error state back to the logical state manifold. The single-photon projection term P̂ 1

is simply a residue of the rotating frame transformation, with its coefficient related to the transmon

anharmonicity, δi = −αi. Likewise, the last term in the VSLQ Hamiltonian, the ancillary energy of

W+δ/2, can be similarly achieved as a rotating frame residue term, by shifting the four modulation

frequencies to

ωb1,2 = ωqi+ωri−αi−W, ω2p = 2
(
ωq1 − ωq2

)
−α1 +α2, ω4p = 2

(
ωq1 + ωq2

)
−α1 +α2,

(5.21)

where ωbi is the i-th blue-sideband tone, and ω2p, ω4p are the two-photon-swapping and the four-

photon pumping tone. The parametric modulation of the VSLQ circuit is thus shown to be a

highly hardware-efficient control scheme for versatile quantum operations, including autonomous

quantum error correction.

5.2.3 Flux calibration and coherence measurement

In order to access the VSLQ operating point, we need to calibrate the two fluxes through cav-

ity spectroscopy measurement. In the numerical simulation (Fig. 5.7), we find that the periodic

avoided-crossings between the cavity and the transmon levels can be useful for determining the

flux scale. However, in the experiment, we find that the cavity spectrum is distorted and becomes

non-periodic when the flux is biased away from zero. This is because the current that we use to

tune one flux will also affect the other flux due to inevitable flux crosstalks. This can be better

illustrated by plotting the 2D cavity spectroscopy against both fluxes (see Fig. 5.8), where the

avoided-crossings appear as a 2D lattice of elliptical contours, whose principal axes are tilted by

the flux crosstalks. Now it becomes obvious that, as a vertical slice of the 2D spectrum, the 1D

flux spectroscopy is deformed and non-periodic.
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In the vector form, we can connect the fluxes Φ1,2 in the two loops represented by flux vector

Φ, with the two control currents I1,2 represented by the current vector I, through the mutual

inductance matrix L,

Φ = LI + Φ0, (5.22)

where the diagonal entry Lii of the L is the mutual inductance between the i-th flux line and its

corresponding loop, while the off-diagonal element Lij represents that between the flux line and

the other loop as flux crosstalk, and Φ0 stands for flux offsets due to stray fluxes trapped in the

loops.

To cancel out the flux crosstalk as well as the flux offset, we simply need to apply the following

transformation to I:

I→ L−1
(
L′I−Φ0

)
, (5.23)

where L′ is an arbitrary diagonal matrix. This is directly verified by plugging it back to Eq. 5.22,

which gives

Φ = L′I, (5.24)

showing that L′ sets the new mutual inductance for the transformed currents. In order to perform

this transformation, we first need to find out the entries of L and Φ0. This can be achieved by

reading the flux vectors Φ1,2,3 and current vectors I1,2,3 of the three ellipse centers (red dots) off

Fig. 5.8a, then feeding them into Eq. 5.22,

Φ1,2,3 = LI1,2,3 + Φ0. (5.25)

This gives rise to a set of six independent equations, which is exactly equal to the number of

unknown variables.

To show the effectiveness of the transformation, we retake the 1D cavity spectroscopy over

multiple flux periods shown in Fig. 5.7(c), and this time we observe a perfectly periodic flux

response. This is further verified from the 2D spectroscopy measurement in Fig. 5.8, where the
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Figure 5.7: Cavity spectroscopy of the VSLQ. (a) Numerical simulation of the cavity frequency
as a function of Φ1 with Φ2 = 0. The avoided crossings are from the interaction with the cavity
single-photon level and the f level of transmon 2. (b) Cavity spectroscopy against flux 1. Dis-
tortions are obvious to notice at large flux values, a signature of the flux crosstalk between the
two SQuID loops. (c) With calibrated control currents taking the flux crosstalk into account, the
cavity spectroscopy possess periodic avoided crossing features that agree well with the numerical
simulation.

transformation maps the tilted principal axes back to the orthogonal axes. Qubit spectroscopy is

also obtained by measuring the two qubit frequencies as a function of the two fluxes. This enables

the fine characterization of circuit parameters, which is reflected as an excellent agreement between

the measurement and the numerical simulation.

At the VSLQ operating point, coherence measurements are performed for the two qubits. and

decent lifetimes are observed (see Table. 5.2), which build a solid foundation for the logical qubit

lifetime. Cavity lifetimes are also measured, and are found to be shorter than the transmons by

two orders of magnitude, which satisfies the requirement for dissipative error correction. These,
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(a) (b)

Figure 5.8: 2D flux spectroscopy of the VSLQ cavity mode for flux calibration. Cavity frequency
is measured at each point (Φ1,Φ2), and the avoided crossings between the cavity and qubit levels
appear to be a 2D lattice of ellipses. (a) Without flux calibration, the principal axes of the lattice are
skewed, manifesting the effect of flux crosstalk that acts as the off-diagonal elements in Eq. 5.22.
The dashed line indicated where the 1D flux spectroscopy in Fig. 5.7b is taken. (b) Plugging the
coordinates of the ellipse centers into Eq. 5.22 and being cognizant of the actual flux values they
should correspond to, we solve for the mutual inductance matrix and use it for the flux calibration.
The principal axes become orthogonal after the calibration, and retaking the 1D flux spectroscopy
(Fig. 5.7c) results in an excellent agreement with the theory.

along with other designed circuit parameters, contribute to a significant enhancement of the VSLQ

lifetime, which is predicted to be around 400 us by the master equation simulation.

Coherence time Transmon 1 Transmon 2 Cavity 1 Cavity 2

T1 (µs) 43 22 0.4 0.18
T2∗ (µs) 17 12 N/A N/A

Table 5.2: Coherence times of the transmon and the cavity at the VSLQ operating point.

5.2.4 Experimental observation of the VSLQ Hamiltonian

As the first step of realizing the VSLQ Hamiltonian, we demonstrate the generation of its individual

interaction terms by parametric flux modulation. For simplicity we park the dc fluxes at zero and
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(a)

(b)

Figure 5.9: Qubit spectroscopy of the VSLQ, (a) as a function of Φ2 with Φ1 = 0, and (b) against
Φ1 at Φ2 = 0.5. The calibration of flux crosstalk corrects the flux scale, making the spectroscopy
measurement closely follow the numerical simulation.

modulate Φ2 only. There, the modulation term becomes a cosine function, which naturally serves

as a frequency doubler that allows us to drive at only half of the transition frequency.

For example, when we drive at half of the transmon sum frequency, the two-photon pumping

interaction is created, which manifests itself as a coherent oscillation between the |gg〉 and |ee〉

state in the time domain. Similarly, if we initialize the first transmon in the excited state by a π

pulse, then turn on flux modulation at half of the transmon detuning frequency, the single-photon

swapping interaction is generated, which is observed as a coherent exchange of excitation between

the two qubits. While these two interactions are not needed for the VSLQ scheme, they can be

very useful for implementing the iSWAP and bSWAP gates, which enables the hardware-efficient

universal operation of two-qubit states.

Taking another step forward, if we initialize the first transmon in the |f〉 state by consecu-

tive π pulses, then drive the flux at half of the transmon |f〉 level detuning frequency, we create
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Figure 5.10: Observation of individual VSLQ Hamiltonian terms in the form of time-domain co-
herent oscillations. We bias the dc fluxes to zero and dynamically modulate Φ2 at half transition
frequencies corresponding to these dynamic processes. (a) and (b): Blue- and red-sideband inter-
actions between the two transmons. (c) and (d): Two-photon-swapping and four-photon-pumping
interactions. (e) and (f): Blue-sideband interaction between the transmon and the cavity, in the
transmon {|g〉 , |e〉} and {|e〉 , |f〉} manifolds.

the 2-photon-swapping term needed for the VSLQ, and observe it as a coherent oscillation of the

transmon |f〉 level population in real time. The 4-photon-pumping term, which is perhaps the

most formidable part of the VSLQ Hamiltonian, can be achieved by driving at half of the transmon

|f〉 level sum frequency. Without frequency doubling from the cosine term, we will have to drive

at the |gg〉 to |ff〉 transition frequency around 23 GHz, which can be experimentally challeng-

ing for parametric modulation. With frequency doubling, we are able to observe this parametric

interaction around 11 GHz.

Finally, we need to create the blue-sideband interaction between the transmon and the low-

q cavity for the dissipative error correction process. Driven at half of their sum frequency, the

transmon and the cavity will first undergo a coherent oscillation process, but not for very long

because the cavity will quickly lose its population due to its large photon loss rate, which traps

the qubit population in the excited state. In the experiment, this is observed as the stabilization of
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the qubit excited state in the long time scale. The VSLQ protocol relies on a similar stabilization

process, but with the blue-sideband interaction defined for the transmon {|e〉 , |f〉} manifold as

opposed to the {|e〉 , |f〉} manifold. In our experiment, we first initialize the transmon in the

excited state by a π pulse, then turn on flux modulation to couple the |0e〉 and |1f〉 states together.

Similarly, after the initial coherent oscillations, the fast decay of the cavity will trap the transmon

population in the |f〉 level. However, this is not a true stabilization of the |f〉 level, as two-photon

loss events can bring the transmon population out of the {|e〉 , |f〉} manifold into the ground state,

which is a dark state to this driven dissipation process. Nonetheless, as the two-photon loss rate is

much slower than the stabilization rate, the transmon |f〉 level lifetime is greatly prolonged. In the

experiment, this is observed as a 10-fold enhancement of the |f〉 level lifetime, comparing to the

case where the flux modulation is off. While not being a true error correction, this gives us a taste

of how the VSLQ works, because likewise, the VSLQ is not protected against two-photon losses,

but is nevertheless capable of dramatically enhancing the lifetime of its logical states.

In summary, we have created and calibrated the VSLQ circuit device, and we have observed

all the key ingredients of the VSLQ Hamiltonian, by parametrically modulating the control fluxes

at appropriate frequencies. With the well-calibrated VSLQ circuit and the individual parametric

interactions at hand, the next fun thing to try can be the stabilization of arbitrary 2-qubit states, such

as the Bell states. The parametric interaction rates we have achieved need to be further increased,

and spurious interaction terms emerging from larger modulation amplitudes need to be canceled.

Finally, autonomous error correction can be accomplished by putting all the pieces together to

create and stabilize the VSLQ logical states, which is an extremely important step towards the

ultimate realization of universal quantum computation.

5.2.5 “Digital” AQEC with VSLQ codeword and others

In this subsection, we propose a “digital” quantum error correction protocol based on the code-

word of VSLQ. This protocol does not require feedback control, but only relies on performing

universal quantum gates and resetting the ancillary qubit. Comparing to VSLQ, it offers weaker
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protections to the logical state as error correction is only done in a time-segregated sense, and it

doesn’t suppress dephasing error. On the other hand, this protocol doesn’t require special circuit

design and operation scheme, and be can run on any superconducting circuit device that is capable

of performing universal operations between two physical qubit and ancillary qubits, and resetting

the ancilla. We further generalize this gate-based protocol for correcting other types of errors.

The VSLQ has logical qubit state of

|L〉 = α |L0〉+ β |L1〉 = α |++〉+ β |−−〉 (5.26)

where |+〉 and |−〉 are defined in the 0 and 2 photon subspace. Single-photon loss error brings the

logical state into error states of

∣∣∣El〉 = α
∣∣∣El0〉+ β

∣∣∣El1〉 = α |1+〉 − β |1−〉 , (5.27)

|Er〉 = α |Er0〉+ β |Er1〉 = α |+1〉 − β |−1〉 . (5.28)

Coupling the logical qubit to an ancillary qubit with some initial state |A〉, the task of correcting

the single-photon loss error is simply achieved by performing a unitary operation Uec that satisfies

Uec
∣∣L0,1

〉
|A〉 =

∣∣L0,1
〉 ∣∣∣A0

0,1

〉
,

Uec

∣∣∣El,r0,1

〉
|A〉 =

∣∣L0,1
〉 ∣∣∣Al,r0,1

〉
, (5.29)

here
∣∣∣A0,l,r

0,1

〉
are six unknown states, the detailed knowledge of which are not of importance, as

they will be reset to the initial state |A〉 at the end of the error correction sequence, thus completing

the cycle.

Eq. (5.29) forms incomplete constraints on the solution of Uec, that is, there is an infinite

number of Uec that satisfy this requirement, making further optimization of Uec’s fidelity possible,

which depends on the actual number and fidelities of the gates Uec is decomposed into.

It is interesting to note that the original VSLQ Hamiltonian itself conveniently offers one pos-
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sible Uec that meets Eq. (5.29),

Uec = e−
i
~ĤVSLQtπ , (5.30)

where tπ = 1/4Ω is the π-pulse time between |e0〉 and |f1〉. This Uec is then directly decomposed

into the desired universal gate set.

Next, we show how the gate-based protocol can be applied to not only the VSLQ but also other

error correction codes with codewords being |L0〉 and |L1〉. Suppose there are N independent

error channels that introduce 2N different error basis
∣∣∣Ei0,1〉 , i ∈ [1, N ], orthogonal to each other

and to the logical state. In addition, the error operators and the logical state basis must satisfy

OiE
∣∣L0,1

〉
= k

∣∣∣Ei0,1〉 , i ∈ [1, N ] (5.31)

with k being an arbitrary complex number independent of the indexes, so that errors may not alter

the coefficients of the logical state superposition,

Oie(α |L0〉+ β |L1〉) = α
∣∣∣Ei0〉+ β

∣∣∣Ei1〉 , i ∈ [1, N ]. (5.32)

In a manner akin to Eq. 5.29, we write down the criteria for the desired error-correcting unitary

Uec
∣∣L0,1

〉
|A〉 =

∣∣L0,1
〉 ∣∣∣A0

0,1

〉
,

Uec

∣∣∣Ei0,1〉 |A〉 =
∣∣L0,1

〉 ∣∣∣Ai0,1〉 , i ∈ [1, N ]. (5.33)

Eq. 5.33 also implies that

〈
Ai0|A

j
0

〉
= 0,

〈
Ai1|A

j
1

〉
= 0,∀i 6= j ∈ [0, N ], (5.34)

which poses a lower bound of N + 1 on the dimension of the ancilla space. We further assume

that the dimension of the ancilla space is K with K > N + 1, and the dimension of the qubit Fock

space is M with M > 2(N + 1).
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Now we demonstrate the general approach to construct the unitary Uec. We first write it as

Uec = U1 + U2, (5.35)

with U1 containing the elements given by Eq. 5.33,

U1 =

∑
i=0,1

|Li〉 ∣∣∣A0
i

〉
〈Li|+

N∑
j=1

|Li〉
∣∣∣Aji〉〈Eji ∣∣∣

 〈A| , (5.36)

and U2 being rest of the elements that make Uec unitary,

U2 =
∑
i=0,1

K−1∑
j=N+1

|Li〉
∣∣∣Aji〉 〈Wi,j

∣∣+
M−2∑
i=1

K−1∑
j=0

|li〉
∣∣∣aji〉 〈wi,j∣∣ . (5.37)

Here, |li〉 stands for an arbitrary set of M − 2 orthogonal states in the qubit Fock space outside the

logical qubit state subspace,
∣∣∣Aji〉 with j ∈ [N + 1, K − 1] are K − N − 1 ancillary states that,

along with Eq. 5.34, forms a complete orthogonal basis of the the ancillary space

〈
Ai0|A

j
0

〉
= 0,

〈
Ai1|A

j
1

〉
= 0,∀i 6= j ∈ [0, K − 1]. (5.38)

∣∣∣aji〉 is a set of ancillary states that satisfies

〈
a
j
i |a

j′

i

〉
= δ(j − j′),∀i ∈ [1,M − 2],∀j, j′ ∈ [0, K − 1], (5.39)

and
∣∣Wi,j

〉
and

∣∣wi,j〉 together stand for any MK − 2N − 2 orthogonal states in the following set

of states,

{∣∣l′i〉 |A〉 , ∣∣Fj〉 ∣∣∣Ak⊥〉} ,
i ∈ [1,M − 2(N + 1)], j ∈ [1,M ], k ∈ [1, K − 1], (5.40)
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where
∣∣l′i〉 are orthogonal qubit states not belonging to either the logical or the error qubit subspace,∣∣Fj〉 are M complete orthogonal basis of the full qubit space, and

∣∣∣Ak⊥〉 are K − 1 ancillary state

orthogonal to each other and |A〉.

Plugging Eq. 5.36 and Eq. 5.37 back to Eq. 5.35, it is straightforward to verify that

UecU
†
ec = I. (5.41)
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CHAPTER 6

APPENDIX

6.1 Transformation between charge and phase basis

Here we demonstrate how to transform the phase basis CPB Hamiltonian in Eq. 1.38 to the charge

basis. Note that cos θ̂ =
(
eiθ̂ + e−iθ̂

)
/2, we simply need to find out the charge basis representa-

tion for the unitary operator U = eiθ̂. We first show that Ung = eing θ̂ is a displacement operator

to the charge operator n̂,

U
†
ng n̂Ung = n̂+ ng. (6.1)

This can be easily proved by expanding the LHS into a series using the Baker-Campbell-Hausdorff

formula,

U
†
ng n̂Ung = n̂+ ing

[
n̂, θ̂
]

+

(
ing
)2

2!

[[
n̂, θ̂
]
, θ̂
]

+ · · · = n̂+ ng, (6.2)

where the second equation is from the commutation relationship
[
n̂, θ̂
]

= −i. In the same way,

we can prove that Uθ0
= eiθ0n̂ is a displacement operator to the phase operator θ̂,

U
†
θ0
θ̂Uθ0

= θ̂ − θ0, (6.3)

which has been used to gauge away the phase offset in section 1.2.3. This result can be generalized

for any two operators whose commutator is a c-number, including the ladder operator â† (or â) and

the generator of the Glauber displacement operator, αâ† − α∗â.

For the special case of U = eiθ̂, we have

eiθ̂ (n̂+ 1) = n̂eiθ̂, (6.4)

〈m| eiθ̂ |n〉 (n+ 1) = m 〈m| eiθ̂ |n〉 . (6.5)
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Obviously when m 6= n+ 1, 〈m| eiθ̂ |n〉 = 0. The unitarity of eiθ̂ further enforces it to be

eiθ̂ =
∞∑

n=−∞
eiφn |n+ 1〉 〈n| , (6.6)

where φn is an arbitrary phase. The charge-basis CPB Hamiltonian in Eq. 1.38 is immediately

recovered by setting φn = 0.

6.2 Charging Energy of a Cooper-Pair Box under gate voltage

In this section we derive for the charging energy of 4Ec
(
n̂− ng

)2. Assume that in the initial

of time there is a net charge of Q̂ = 2en̂ on the Josephson island (labeled red in Fig. 6.1). The

junction capacitance is Cs and the voltage source connects to the junction via the gate capacitor

Cg, with Cg � Cs.

Once the bias voltage of Vg is turned on, it begins to charge both capacitors, and the work done

by it is

W =

∫ q

0

(
Vg −

Q+ q′

Cs
− q′

Cg

)
dq′ = qVg −

2qQ+ q2

2Cs
− q2

2Cg
, (6.7)

where q is the charge on the gate capacitor. Also note that

Vg =
q

Cg
+
q +Q

Cs
, (6.8)

so

W =
q2

2

(
C−1
g + C−1

s

)
=
Cg
(
Q2 − 2CsVgQ+ C2

sV
2
g

)
2Cs

(
Cs + Cg

) . (6.9)

The total energy of the system after the charging process is given by

E = W +
Q2

2Cs
=
Cg
(
Q2 − 2CsVgQ+ C2

sV
2
g

)
+
(
Cs + Cg

)
Q2

2Cs
(
Cs + Cg

) , (6.10)
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Figure 6.1: Sketch of a Cooper-pair box connected to a voltage source.

and under Cg � Cs, this charging energy is simplified to

E =
Q2 − 2CgVgQ+ CgCsV

2
g

2
(
Cs + Cg

) = 4
e2

2CΣ

(
n̂− ng

)2
+

1

2
CgV

2
g , (6.11)

where ng =
CgVg

2e . The last term can be abandoned as a classical offset.

6.3 Quantization Procedure of RF-Flux Driven Circuits

We use the typical circuit consisting of a flux-tunable transmon coupled to a linear resonator

(Fig. 6.2) to demonstrate how to incorporate time-dependent flux tone into circuit quantization.

We assume that the external flux only penetrates the SQuID loop. The circuit Lagrangian is given

by

L = T − V

=
1

2

[
C1

(
Φ̇1 − Φ̇ext

)2
+ C2Φ̇2

2 + Cg

(
Φ̇2 − Φ̇1

)2
+ CrΦ̇

2
2

]
+ EJ1 cos

Φ1 − Φext
Φ0

+ EJ2 cos
Φ1

Φ0
− Φ2

2

2Lr
. (6.12)

Finding the correct phase allocation among the circuit modes is equivalent to minimizing the ki-

netic energy that eliminates the cross terms of the form Φ̇iΦ̇ext, with classical equilibrium of the
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flux variable determined by
∂T

∂Φ̇i

∣∣∣∣
Φ̇i=

¯̇Φi

= 0, (6.13)

which are solved to be

Φ̄1 =
C1
(
Cg + Cr

)
Φext(

C1 + C2 + Cg
) (
Cg + Cr

)
− C2

g
, Φ̄2 =

C1CgΦext(
C1 + C2 + Cg

) (
Cg + Cr

)
− C2

g
. (6.14)

Recentering the Lagrangian with respect to the classical equilibriums, we have

L =
1

2

[(
C1 + C2 + Cg

)
Φ̇2

1 − 2CgΦ̇1Φ̇2 +
(
Cg + Cr

)
Φ̇2

2

]
+ EJ1 cos

Φ1 − r1Φext
Φ0

+ EJ2 cos
Φ1 + (r1 − 1) Φext

Φ0
− (Φ2 + r2Φext)

2

2Lr
, (6.15)

where

r1 =
C2Cg + C2Cr + CgCr(

C1 + C2 + Cg
) (
Cg + Cr

)
− C2

g
, r2 =

C1Cg(
C1 + C2 + Cg

) (
Cg + Cr

)
− C2

g
. (6.16)

From here we may follow the standard Legendre transformation and obtain the circuit Hamiltonian

as

Ĥ =
Q̂2
q

2Ceff
q

+
Q̂2
r

2Ceff
r

+
Q̂qQ̂r

2Ceff
g

− EJ1 cos
Φ1 − r1Φext

Φ0
− EJ2 cos

Φ1 + (r1 − 1) Φext
Φ0

+
(Φ2 + r2Φext)

2

2Lr
, (6.17)

where

Ceff
q =

CqCr + Cg
(
Cq + Cr

)
Cg + Cr

, Ceff
r =

CqCr + Cg
(
Cq + Cr

)
Cg + Cq

, Ceff
g =

CqCr + Cg
(
Cq + Cr

)
2Cg

.

(6.18)

Interestingly, Eq. 6.17 suggests that the parametric flux modulation of the transmon also creates a

cavity drive term. It is easy to check that when Cg = 0 i.e. when the transmon and the resonator
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Figure 6.2: Circuit quantization of the flux-tunable transmon capacitively coupled to a linear res-
onator, assuming the flux threading the SQuID loop is time-dependent.

are decoupled, Eq. 6.17 reduces to Eq. 2.26 plus a harmonic oscillator Hamiltonian.

6.4 Commutation relations

Following commutation relations hold for bosonic ladder operators:

[
â, â†

]
= 1, (6.19)[

â, â†â
]

= â, (6.20)[
â†, â†â

]
= −â†, (6.21)[

â,
(
â†â
)2
]

=
(

1 + 2â†â
)
â, (6.22)[

â†,
(
â†â
)2
]

=
(

1− 2â†â
)
â†, (6.23)

and for spin-1
2 operators (by atomic convention σ̂z =

(−1 0
0 1

)
),

[
σ̂x, σ̂y

]
= −2iσ̂z,

[
σ̂y, σ̂z

]
= −2iσ̂x, [σ̂z, σ̂x] = −2iσ̂y, (6.24)

[
σ̂x, σ̂

±] = ∓σ̂z,
[
σ̂y, σ̂

±] = iσ̂z,
[
σ̂z, σ̂

±] = ±2σ̂±,
[
σ̂+, σ̂−

]
= σ̂z. (6.25)
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For Jaynes-Cummings type of interaction operators such as

∆̂± = â†σ̂− ± âσ̂+, Σ̂± = â†σ̂+ ± âσ̂−, (6.26)

we have the following commutation relations:

[
∆̂+, ∆̂−

]
= Î +

(
2â†â+ 1

)
σ̂z, (6.27)[

Σ̂+, Σ̂−
]

= Î −
(

2â†â+ 1
)
σ̂z, (6.28)[

Σ̂−, ∆̂+
]

=
[
Σ̂+, ∆̂−

]
=
(
â†2 + â2

)
σ̂z, (6.29)[

Σ̂−, ∆̂−
]

=
[
Σ̂+, ∆̂+

]
=
(
â†2 − â2

)
σ̂z, (6.30)[

∆̂±, σ̂z
]

= 2∆̂∓,
[
Σ̂±, σ̂z

]
= −2Σ̂∓. (6.31)

6.5 ABCD matrix

The ABCD matrix is a 2×2 matrix that describes the transmission of a two-port network,

V1

I1

 =

A B

C D


V2

I2

 . (6.32)

Here, V1 and V2 are the voltage of port 1 and port 2, and I1 and I2 are the currents flowing into

port 1 and out of port 2. The four entries of the ABCD matrix can be found through finding the

ratio of the voltages and currents at different boundary conditions,

A =
V1

V2

∣∣∣∣
I2=0

, B =
V1

I2

∣∣∣∣
V2=0

, C =
I1
V2

∣∣∣∣
I2=0

, D =
I1
I2

∣∣∣∣
V2=0

. (6.33)

From this one can easily find the ABCD matrix for a series impedance of Z to be

A B

C D

 =

1 Z

0 1

 , (6.34)
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(a) (b) (c)

Figure 6.3: Some equivalent circuits in the prospective of transmission. The ABCD matrix and
hence the transmission of a network is invariant under (a) moving the impedance element from the
signal line to the ground line, (b) swapping the impedance elements in series and (c) swapping the
admittance impedance between the signal and ground line.

while that of a shunt admittance of Y isA B

C D

 =

 1 0

Y 1

 . (6.35)

These suggest the equivalences (on the transmission level) between the circuit shown in Fig. 6.3,

which is helpful for simplifying superconducting circuit design.

The beauty of the ABCD matrix is that for large network cascaded by N smaller blocks, one

can readily find out the total ABCD matrix as the product of the ABCD matrices of all blocks,

V1

I1

 =

A1 B1

C1 D1


A2 B2

C2 D2

 · · ·
AN BN

CN DN


V2

I2

 , (6.36)

where the order of the matrix multiplication is from port 1 to port 2. For the lossy transmission
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line that has been used in the communication experiment, its ABCD matrix is given by

A B

C D

 =

 cosh γl Z0 sinh γl

Y0 sinh γl cosh γl

 , (6.37)

where

γ =
√

(R + jωL) (G+ jωC), Z0 =

√
R + jωL

G+ jωC
(6.38)

are the propagation coefficient and the characteristic impedance of the transmission line, with R,

G, L and C its the resistance, conductance, inductance and capacitance per unit length.

With ABCD matrix we can easily calculate other properties of the network, including the scat-

tering matrix S, the impedance matrix Z and the admittance matrix Y ,

S =

A+B/Z0−CZ0−D
A+B/Z0+CZ0+D

2(AD−BC)
A+B/Z0+CZ0+D

2
A+B/Z0+CZ0+D

−A+B/Z0−CZ0+D
A+B/Z0+CZ0+D

 , (6.39)

Z =

AC AD−BC
C

1
C

D
C

 , (6.40)

Y =

 D
B −AD−BCB

− 1
B

A
B

 , (6.41)

useful for the black-box quantization calculation outlined in subsection 2.4.1 and 3.4.6.

6.6 Coupling between transmon and linear network

The equivalent circuit of a transmon capacitively coupled to a linear network is shown in Fig. 6.4.

In this section we explain why, under certain regime, it is possible to calculate the coupling strength

between the qubit and an individual mode by ignoring all the other modes (see Fig. 2.12c). The
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Figure 6.4: Circuit diagram of transmon capacitively coupled to a linear network. The network has
been transformed into a series of LC oscillators according to the Foster theorem.

kinetic energy of the circuit is

K =
1

2
CsΦ̇

2
q +

1

2
Cg

(
Φ̇q − Φ̇1

)2
+

1

2

N∑
i=1

Ci

(
Φ̇i − Φ̇i+1

)2
. (6.42)

Denote Vi = Φ̇i − Φ̇i+1 which stands for the voltage drop on the i-th oscillator, Eq. 6.42 can be

rewritten as

K =
1

2
CsV

2
q +

1

2
Cg

Vq − N∑
i=1

Vi

2

+
1

2

N∑
i=1

CiV
2
i . (6.43)

From the expansion of the center term, we immediately see that the coupling capacitance between

any two modes is Cg. Therefore, when the mode capacitances are much larger than Cg as in the

case of a coaxial cable, the capacitive coupling strength between the modes becomes very weak.

When the gaps between the modes are far larger than the coupling strengths, the normal modes are

effectively decoupled from each other, but are all coupled to the transmon with capacitance Cg.

6.7 Cryogenic setup and Wiring Diagram

For the tunable coupling circuit device, the base layer is made of 150 nm of niobium sputtered

on 430µm thick C-plane sapphire substrate, and patterned by optical lithography and reactive

ion etching (RIE) to define the optical part of the circuit (excluding the qubit and the coupler

part). The circuit is surrounded by an array of 5µm wide square holes spaced by 50µm for flux
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Figure 6.5: Schematic of the experimental setup for the tunable coupling circuit, including the
cryogenic and room-temperature control instrumentation.

vortex pinning [208]. The qubit and the coupler junctions are both fabricated in the Manhattan

pattern [209], with the bottom (80 nm) and the top (150 nm) aluminum layers deposited via dual-

angle electron-beam evaporation. The two layers are gapped by an AlxOy insulating layer grown

in an oxidation process under 20 mBar of high-purity O2 for 12 minutes.

The schematic of the instrumentation and cryogenic setup can be seen in Fig. 6.5. The device

is mounted and wirebonded to a customized multilayer copper PCB (similar to that used in [210])

with microwave-launchers, which is then heat sunk to the base stage of a Bluefors dilution re-

frigerator (10-30 mK) via an OFHC copper post. The sample is surrounded by a can containing

two layers of µ-metal shielding, thermally anchored using an inner close fit copper shim sheet,

attached to the copper can lid. The device is connected to the rest of the setup through four ports:
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a charge port that applies qubit drive tones, an input and an output port for readout drive tones, a

flux port for shifting the qubit frequency using a dc-flux bias current and for applying rf sideband

flux pulses. The charge pulses are generated by mixing a local oscillator tone (generated from

an Agilent 8257D rf signal generator), with pulses generated by a Tektronix AWG5014C arbi-

trary waveform generator (TEK) with a sampling rate of 1.2 GSa/s, using an IQ-Mixer (MARQI

MLIQ0218). The readout drive pulse is generated from a second Agilent 8257D rf signal gener-

ator, which is also controlled by digital trigger pulses from the TEK. The flux-modulation pulses

are directly synthesized by a Tektronix AWG70001A arbitrary waveform generator (50 GSa/s) and

attenuated by 20 dB at the 4K stage. Filters on the rf flux line are configured to create a pass

band between 4.8 GHz - 6 GHz, which allows blue-sideband modulation while cutting off noise

at the qubit frequency. For red-sideband flux modulation, a low pass filter (Minicircuits VLF -

1800+) at 2 GHz is used instead. A better filtering option for the simultaneous implementation of

both sidebands could be using a notch (band stop) filter, with a rejection band covering only the

qubit frequency and allowing both the red and blue frequency to pass through. The dc flux bias

current is generated by a YOKOGAWA GS200 low-noise current source, attenuated by 20 dB at

the 4K stage, and low-pass filtered down to a bandwidth of 2 MHz. The dc flux bias current is

combined with the flux-modulation pulses at a bias tee thermalized at the base stage. The state of

the transmon is measured using the transmission of the readout resonator, through the dispersive

circuit QED readout scheme [211]. The transmitted signal from the readout resonator is passed

through a set of cryogenic circulators (thermalized at the base stage) and amplified using a HEMT

amplifier (thermalized at the 4K stage). Once out of the fridge, the signal is filtered (tunable

narrow band YIG filter with a bandwidth of 80 MHz) and further amplified. The amplitude and

phase of the resonator transmission signal are obtained through a homodyne measurement, with

the transmitted signal demodulated using an IQ mixer and a local oscillator at the readout resonator

frequency. The homodyne signal is amplified (SRS preamplifier) and recorded using a fast ADC

card (ALAZARtech).

The communication device is heat sunk via an OFHC copper post to the base stage of a Blue-
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Figure 6.6: Detailed schematic of the cryogenic setup, control instrumentation, and the wiring of
microwave and DC connections to the remote quantum modules.

fors dilution refrigerator (10-30 mK). The sample is surrounded by a can containing two layers of

µ-metal shielding and a layer of lead shielding, thermally anchored using an inner close fit copper

shim sheet, attached to the copper can lid. The schematic of the cryogenic setup, control instrumen-

tation, and the wiring of the device is shown if Supplementary Figure 6.6. Each device is connected

to the rest of the setup through three ports: a charge port that applies qubit and readout drive tones,

a flux port for shifting the qubit frequency using a DC-flux bias current and for applying RF side-

band flux pulses, and an output port for measuring the transmission from the readout resonator. The

readout pulses are generated by mixing a local oscillator tone (generated from an Agilent 8257D

RF signal generator), with pulses generated by a Tektronix AWG5014C arbitrary waveform gen-

erator (TEK) with a sampling rate of 1.2 GSa/s, using an IQ-Mixer (MARQI MLIQ0218). The

charge drive pulses are generated with Keysight M8195A arbitrary waveform generator by direct

synthesis, and subsequently combined with the readout drive pulse. The combined signals are
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sent to the device, after being attenuated a total of 60 dB in the dilution fridge, using attenuators

thermalized to the 4K (20 dB), still (20 dB) and base stages (20 dB). The charge driveline also in-

cludes a lossy ECCOSORB CR-117 filter to block IR radiation, and a low-pass filter with a sharp

roll-off at 6 GHz, both thermalized to the base stage. The flux-modulation pulses are also directly

synthesized by the Keysight M8195A arbitrary waveform generator and attenuated by 20 dB at the

4 K stage, and bandpass filtered to within a band of 400 MHz - 3.4 GHz at the base stage, using

the filters indicated in the schematic. The DC flux bias current is generated by a YOKOGAWA

GS200 low-noise current source, attenuated by 20 dB at the 4K stage, and low-pass filtered down

to a bandwidth of 1.9 MHz. The DC flux bias current is combined with the flux-modulation pulses

at a bias tee thermalized at the base stage. The state of the transmon is measured using the trans-

mission of the readout resonator, through the dispersive circuit QED readout scheme [211]. The

transmitted signal from the readout resonator is passed through a set of cryogenic circulators (ther-

malized at the base stage) and amplified using a HEMT amplifier (thermalized at the 4K stage).

Once out of the fridge, the signal is filtered (narrow bandpass filter around the readout frequency)

and further amplified. The amplitude and phase of the resonator transmission signal are obtained

through a heterodyne measurement, with the transmitted signal demodulated using an IQ mixer

and a local oscillator at the readout resonator frequency. The heterodyne signal is amplified (SRS

preamplifier) and recorded using a fast ADC card (ALAZARtech).

6.8 Fabrication Recipe

1. Wafer pretreatment:

(a) Sapphire wafer annealing: (a) RT-700◦C, 350◦C/hr; (b) 700◦C-1000◦C, 250◦C/hr; (c)

1000◦C-1200◦C, 100◦C/hr; (d) Wait 1.5hr, 1200◦C-RT, 100◦C/hr.

(b) “TAMI” Clean: Sonication in toluene, acetone, methanol and IPA for 3min each, then

rinse under DI water for 3min and blow dry.

i. Alternatively: Sonicate wafer in warm NMP, IPA, acetone and IPA for 5min each,
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rinse for 3min and blow dry.

2. Base-layer deposition:

(a) Bake wafer on hotplate @ 200◦C for 10min (optional if baking in Plassys @ 200◦C for

30min).

(b) Immediately transfer wafer to AJA ATC-Orion 8E ebeam evaporation system or Plas-

says evaporator (for Nb or Al evaporation), or AJA Orion 5 UHV sputtering system

(for Nb sputtering).

3. Photo lithography:

(a) Bake cleaned wafer on hotplate at 120◦C for 2 min.

(b) With mask-aligner: Spin coat S1811 (4000RPM for 40s) then bake wafer at 90◦C for

90s. Let cool and expose with Karl Suss MA6 mask aligner for 1.5s (in hard contact

or vacuum contact mode). Develop in MF-351/water 1:4 mixture for 45s with slight

agitation. Thoroughly rinse in DI water, then blow dry.

(c) With Heidelberg MLA 150 Direct Write: Spin AZ 703 @ 3500rpm (Ramp @ 1000rpm)

for 45s. Bake for 1min @ 95C. Convert design file, select laser 405 or 375 (high dose)

and set defocus, load wafer in and start exposure. Develop in AZ MIF 300 (for Nb) for

1min or in AZ 1:1 (for Al) for 1min30s. Rinse and blow dry.

4. Base-layer etching:

(a) Al etching:

i. Dry etching: Pre-condition plasma etcher(RIE Oxford PlasmaLab 100). The etch-

ing process has two steps: the break-through of the alumina on top first and then

the etch-through of 100nm Al. Al2O3 break-through: 30 sccm. Cl2, 100W RF for-

ward power, 0W ICP forward power, 5s. Al etch-through: 18 sccm. HBr, 100W

RF forward power, 0W ICP forward power, 80s.
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ii. Wet etching: Soak developed wafer in Aluminum Etchant Type A for 2min50s

(100nm) with slight agitation, then quickly dip into IPA and agitate for 30s, then

rinse in DI water and blow dry. Note: The isotropic nature of wet etching will

cause natural undercut to happen along the edge of your pattern and tend to make

the gap size slightly bigger.

(b) Nb etching: O2 clean and pre-condition PlasmaTherm ICP Fluorine Etch. Etch for

6min @ ICP run power = 100 W, Bias run power = 100 W, Table temperature = 10◦C.

Gases: 15 sccm. SF6, 40 sccm. CHF3, 10 sccm. Ar.

5. Resist strip-off: NMP @ 80◦C bath for >4hrs, then sonicate for 6mins. Rinse with and

sonicate in IPA (1mins), Acetone (5mins) and IPA (1min), rinse in DI and blow dry.

6. Ebeam session starts here. One can either dice the wafer here and ebeam write on single

chips, or write on the wafer scale and then dice into chips. The later is practiced much more

often now with the advanced Raith tool.

7. Ebeam resist spin-coating:

(a) Bake wafer @ 200◦C for 5min. Let cool.

(b) Spin MMA EL11: 4000rpm, ramp=500, time=45s

(c) Bake @ 180◦C for 5min.

(d) Spin PMMA 950 A7: 4000rpm, ramp=500, time=45s

(e) Bake @ 180◦C for 5min.

8. Evaporate 10nm gold conducting layer in Angstrom Nexdep Thermal E-Beam Evaporator.

9. Ebeam lithography:

(a) Prepare pattern file, import to beamer, generate Raith file, load sample and start writing.

(b) Gold layer etching: submerge wafer in iodine gold etchant for 45s. Rinse in DI and

thoroughly blow dry.
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(c) Develop ebeam resist: submerge wafer in 3:1 IPA:Water @ 6◦C (make sure it is pre-

thermalized) for 1min30s.

(d) Rinse in DI water (optional) and blow dry promptly and thoroughly.

10. Junction evaporation: load sample in Plassys in appropriate orientation, pump down, run

mild O2 plasma cleaning before running junction recipe:

(a) Chamber purging with Ti

(b) Ar ion milling

(c) Chamber purging with Ti

(d) First junction layer, 0.1nm/s, 60nm

(e) Oxidizing with O2-Ar mixture (15/85) for 12 minutes at 20mBar

(f) Chamber purging with Ti

(g) Second layer, 0.1nm/s, 150nm

(h) Oxidizing for 5min

11. Take out the sample from Plassys and leave it under Ionizing fan for >1hr.

12. From here there are two paths to the qubit sample: lift off the Al layers then dice the wafer,

or dice first and do lift-off for chips. While the former has been used more often, it requires

coating the bare junctions with another resist layer which is potentially a contaminant that

may degrade the qubit quality. Moreover, the Al layer before lift-off may provide extra

protection to the junctions against ESD issues, especially during the dicing session. Finally,

lift-off on the whole wafer level typically takes much longer time to finish than individual

chips. For these benefits we adopt the later approach.

13. Pre-dicing resist-coating:

(a) AZ1518 1500 RPM for 40s.
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(b) Bake @ 90◦C for 1min.

14. Dice wafer in Disco DAD3240 automatic dicing saw.

15. Al layer lift-off for chips (have ionizing fan on and wear anti-static equipment):

(a) Clamp the chips of interest to the specially design stage.

(b) NMP hot bath @ 80◦C for >4hrs.

(c) When the Al layer is noticeably peeling off, transfer the stage to a new beaker of warm

NMP, sonicate for 1min.

(d) Transfer to IPA, idle for 20min, sonicate for 30s.

(e) Transfer to wide beaker of IPA, remove sample from stage, agitate in clean IPA, DI

water and blow dry.

(f) Idle sample under ionizer for >10min then inspect under microscope.

Always remember to inspect the sample (with microscope) between steps.
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Córcoles, George A. Keefe, Mary B. Rothwell, J. R. Rozen, D. W. Abraham, Chad Rigetti,

and M. Steffen. Entanglement of Two Superconducting Qubits in a Waveguide Cavity

via Monochromatic Two-Photon Excitation. Physical Review Letters, 109(24):240505, 12

2012.

[90] Brian Baker, Andy C. Y. Li, Nicholas Irons, Nathan Earnest, and Jens Koch. Adap-

tive rotating-wave approximation for driven open quantum systems. Physical Review A,

98(5):052111, 11 2018.

[91] Roy J. Glauber. Coherent and Incoherent States of the Radiation Field. Physical Review,

131(6):2766–2788, 9 1963.

194



[92] Thomas Schneider. Four-Wave-Mixing (FWM). In Thomas Schneider, editor, Nonlinear

Optics in Telecommunications, pages 167–200. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2004.

[93] Wolfgang Pfaff, Christopher J. Axline, Luke D. Burkhart, Uri Vool, Philip Reinhold, Luigi

Frunzio, Liang Jiang, Michel H. Devoret, and Robert J. Schoelkopf. Controlled release of

multiphoton quantum states from a microwave cavity memory. Nature Physics, 6 2017.

[94] Simon E. Nigg, Hanhee Paik, Brian Vlastakis, Gerhard Kirchmair, S. Shankar, Luigi Frun-

zio, M. H. Devoret, R. J. Schoelkopf, and S. M. Girvin. Black-Box Superconducting Circuit

Quantization. Physical Review Letters, 108(24):240502, 6 2012.

[95] Heinz-Peter Breuer and Francesco Petruccione. The Theory of Open Quantum Systems.

Oxford University Press, Oxford/New York, 2002.

[96] Klaus Hornberger. Introduction to Decoherence Theory, in Entanglement and decoherence

: foundations and modern trends. Springer, 2009.

[97] Lev S. Bishop, J. M. Chow, Jens Koch, A. A. Houck, M. H. Devoret, E. Thuneberg, S. M.

Girvin, and R. J. Schoelkopf. Nonlinear response of the vacuum Rabi resonance. Nature

Physics, 5(2):105–109, 2 2009.

[98] C. W. Gardiner and P. Zoller. Quantum noise : a handbook of Markovian and non-

Markovian quantum stochastic methods with applications to quantum optics. Springer,

2000.

[99] A. A. Clerk, M. H. Devoret, S. M. Girvin, Florian Marquardt, and R. J. Schoelkopf. In-

troduction to quantum noise, measurement, and amplification. Reviews of Modern Physics,

82(2):1155–1208, 4 2010.

[100] Fei Yan, Simon Gustavsson, Jonas Bylander, Xiaoyue Jin, Fumiki Yoshihara, David G.

Cory, Yasunobu Nakamura, Terry P. Orlando, and William D. Oliver. Rotating-frame relax-

195



ation as a noise spectrum analyser of a superconducting qubit undergoing driven evolution.

Nature Communications, 4(1):2337, 12 2013.

[101] R. Dum, P. Zoller, and H. Ritsch. Monte Carlo simulation of the atomic master equation for

spontaneous emission. Physical Review A, 45(7):4879–4887, 4 1992.

[102] Jean Dalibard, Yvan Castin, and Klaus Mølmer. Wave-function approach to dissipative

processes in quantum optics. Physical Review Letters, 68(5):580–583, 2 1992.

[103] Howard Carmichael. An Open Systems Approach to Quantum Optics, volume 18 of Lecture

Notes in Physics Monographs. Springer Berlin Heidelberg, Berlin, Heidelberg, 1993.

[104] M. B. Plenio and P. L. Knight. The quantum-jump approach to dissipative dynamics in

quantum optics. Reviews of Modern Physics, 70(1):101–144, 1 1998.

[105] Klaus Mølmer, Yvan Castin, and Jean Dalibard. Monte Carlo wave-function method in

quantum optics. Journal of the Optical Society of America B, 10(3):524, 3 1993.

[106] K. W. Murch, S. J. Weber, C. Macklin, and I. Siddiqi. Observing single quantum trajectories

of a superconducting quantum bit. Nature, 502(7470):211–214, 10 2013.
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Schoelkopf, M. Mirrahimi, H.J. Carmichael, and M.H. Devoret. To catch and reverse a

quantum jump mid-flight. Nature, 570(7760):200–204, 6 2019.
196



[110] Bernard Yurke. Use of cavities in squeezed-state generation. Physical Review A, 29(1):408–

410, 1 1984.

[111] C.W. Gardiner and C.M. Savage. A multimode quantum theory of a degenerate parametric

amplifier in a cavity. Optics Communications, 50(3):173–178, 6 1984.

[112] M. J. Collett and C. W. Gardiner. Squeezing of intracavity and traveling-wave light fields

produced in parametric amplification. Physical Review A, 30(3):1386–1391, 9 1984.

[113] C. W. Gardiner and M. J. Collett. Input and output in damped quantum systems: Quantum

stochastic differential equations and the master equation. Physical Review A, 31(6):3761–

3774, 6 1985.

[114] Benjamin A. Mazin. Microwave kinetic inductance detectors. 2005.

[115] M. S. Khalil, M. J. A. Stoutimore, F. C. Wellstood, and K. D. Osborn. An analysis method

for asymmetric resonator transmission applied to superconducting devices. Journal of Ap-

plied Physics, 111(5):054510, 3 2012.

[116] Omid Noroozian. Superconducting Microwave Resonator Arrays for Submillimeter/Far-

infrared Imaging. 2012.

[117] Baleegh Abdo, Katrina Sliwa, Flavius Schackert, Nicolas Bergeal, Michael Hatridge, Luigi

Frunzio, A. Douglas Stone, and Michel Devoret. Full Coherent Frequency Conversion be-

tween Two Propagating Microwave Modes. Physical Review Letters, 110(17):173902, 4

2013.

[118] Ananda Roy and Michel Devoret. Introduction to parametric amplification of quantum

signals with Josephson circuits. Comptes Rendus Physique, 17(7):740–755, 8 2016.

[119] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi. Quantum State Transfer and Entangle-

ment Distribution among Distant Nodes in a Quantum Network. Physical Review Letters,

78(16):3221–3224, 4 1997.
197



[120] L.-M. Duan and H. J. Kimble. Scalable Photonic Quantum Computation through Cavity-

Assisted Interactions. Physical Review Letters, 92(12):127902, 3 2004.
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Houck, Jay M. Gambetta, and Jerry M. Chow. Broadband filters for abatement of

spontaneous emission in circuit quantum electrodynamics. Applied Physics Letters,

107(17):172601, 10 2015.

[168] Marco Roth, Marc Ganzhorn, Nikolaj Moll, Stefan Filipp, Gian Salis, and Sebastian

Schmidt. Analysis of parametrically driven exchange-type (iSWAP) and two-photon

(bSWAP) interactions between superconducting qubits. 8 2017.

[169] A Wallraff, D I Schuster, A Blais, J M Gambetta, J Schreier, L Frunzio, M H Devoret,

S M Girvin, and R J Schoelkopf. Sideband Transitions and Two-Tone Spectroscopy of a

Superconducting Qubit Strongly Coupled to an On-Chip Cavity. 2007.

[170] P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M. Fink, M. Goppl, L. Steffen,

and A. Wallraff. Using sideband transitions for two-qubit operations in superconducting

circuits. Physical Review B, 79(18):180511, 5 2009.

[171] S. Novikov, T. Sweeney, J. E. Robinson, S. P. Premaratne, B. Suri, F. C. Wellstood, and B. S.

Palmer. Raman coherence in a circuit quantum electrodynamics lambda system. Nature

Physics, 12(1):75–79, 11 2015.

[172] K Fossheim and A Sudbø. Superconductivity: physics and applications. 2005.

204



[173] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M. Gambetta, A. Blais, L. Frunzio,

J. Majer, B. Johnson, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Resolving photon

number states in a superconducting circuit. Nature, 445(7127):515–518, 2 2007.

[174] F. Lecocq, L. Ranzani, G.A. Peterson, K. Cicak, R.W. Simmonds, J.D. Teufel, and J. Au-

mentado. Nonreciprocal Microwave Signal Processing with a Field-Programmable Joseph-

son Amplifier. Physical Review Applied, 7(2):024028, 2 2017.

[175] P. Roushan, C. Neill, A. Megrant, Y. Chen, R. Babbush, R. Barends, B. Campbell, Z. Chen,

B. Chiaro, A. Dunsworth, A. Fowler, E. Jeffrey, J. Kelly, E. Lucero, J. Mutus, P. J. J.

O’Malley, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. White, E. Kapit,

H. Neven, and J. Martinis. Chiral ground-state currents of interacting photons in a synthetic

magnetic field. Nature Physics, 13(2):146–151, 10 2016.

[176] Sergio O Valenzuela, William D Oliver, David M Berns, Karl K Berggren, Leonid S Levitov,

and Terry P Orlando. Microwave-induced cooling of a superconducting qubit. Science (New

York, N.Y.), 314(5805):1589–92, 12 2006.

[177] A Schliesser, O Arcizet, R Rivière, G Anetsberger, and T J Kippenberg. Resolved-sideband

cooling and position measurement of a micromechanical oscillator close to the Heisenberg

uncertainty limit. Nature Physics, 5, 2009.

[178] J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D.

Whittaker, K. W. Lehnert, and R. W. Simmonds. Sideband cooling of micromechanical

motion to the quantum ground state. Nature, 475(7356):359–363, 7 2011.

[179] A. M. Kaufman, B. J. Lester, and C. A. Regal. Cooling a Single Atom in an Optical Tweezer

to Its Quantum Ground State. Physical Review X, 2(4):041014, 11 2012.

[180] R. Vijay, C. Macklin, D. H. Slichter, S. J. Weber, K. W. Murch, R. Naik, A. N. Korotkov, and

I. Siddiqi. Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback.

Nature, 490(7418):77–80, 10 2012.
205



[181] P. Campagne-Ibarcq, E. Flurin, N. Roch, D. Darson, P. Morfin, M. Mirrahimi, M. H. De-

voret, F. Mallet, and B. Huard. Persistent Control of a Superconducting Qubit by Strobo-

scopic Measurement Feedback. Physical Review X, 3(2):021008, 5 2013.

[182] K. W. Murch, U. Vool, D. Zhou, S. J. Weber, S. M. Girvin, and I. Siddiqi. Cavity-Assisted

Quantum Bath Engineering. Physical Review Letters, 109(18):183602, 10 2012.

[183] S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frun-

zio, M. Mirrahimi, and M. H. Devoret. Autonomously stabilized entanglement between two

superconducting quantum bits. Nature, 504(7480):419–422, 11 2013.

[184] K. Geerlings, Z. Leghtas, I. M. Pop, S. Shankar, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi,

and M. H. Devoret. Demonstrating a Driven Reset Protocol for a Superconducting Qubit.

Physical Review Letters, 110(12):120501, 3 2013.

[185] Zaki Leghtas, Gerhard Kirchmair, Brian Vlastakis, Robert J. Schoelkopf, Michel H. De-

voret, and Mazyar Mirrahimi. Hardware-Efficient Autonomous Quantum Memory Protec-

tion. Physical Review Letters, 111(12):120501, 9 2013.

[186] Eliot Kapit, John T. Chalker, and Steven H. Simon. Passive correction of quantum logi-

cal errors in a driven, dissipative system: A blueprint for an analog quantum code fabric.

Physical Review A, 91(6):062324, 6 2015.

[187] Eliot Kapit. Hardware-Efficient and Fully Autonomous Quantum Error Correction in Su-

perconducting Circuits. Physical Review Letters, 116(15):150501, 4 2016.

[188] Ziwen Huang, Yao Lu, Eliot Kapit, David I. Schuster, and Jens Koch. Universal stabilization

of single-qubit states using a tunable coupler. Physical Review A, 97(6):062345, 6 2018.

[189] Eliot Kapit, Mohammad Hafezi, and Steven H. Simon. Induced Self-Stabilization in Frac-

tional Quantum Hall States of Light. Physical Review X, 4(3):031039, 9 2014.

206



[190] Chad Rigetti and Michel Devoret. Fully microwave-tunable universal gates in supercon-

ducting qubits with linear couplings and fixed transition frequencies. Physical Review B,

81(13):134507, 4 2010.
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