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Resonators with weak single-photon self-Kerr nonlinearities can theoretically be used to prepare
Fock states in the presence of a loss much larger than their nonlinearities. Two necessary ingredients
are large displacements and a two-photon (parametric) drive. Here, we find that these systems
can be controlled to achieve any desired gate operation in a finite dimensional subspace (whose
dimensionality can be chosen at will). Moreover, we show that the two-photon driving requirement
can be relaxed and that full controllability is achievable with only 1-photon (linear) drives. We
make use of both Trotter-Suzuki decompositions and gradient-based optimization to find control
pulses for a desired gate, which reduces the computational overhead by using a small blockaded
subspace. We also discuss the infidelity arising from input power limitations in realistic settings, as
well as from corrections to the rotating-wave approximation. Our universal control protocol opens
the possibility for quantum information processing using a wide range of lossy systems with weak
nonlinearities.

Introduction– Bosonic systems, such as photons in
optical or microwave resonators, are a promising plat-
form for quantum information processing. In contrast
to qubits, the infinite-dimensional bosonic Hilbert space
provides novel ways to encode and robustly process quan-
tum information in a hardware-efficient manner [1]. A
challenge however is the need for nonlinear operations [2].
It has been shown that, to achieve universal control in
bosonic systems it is necessary and sufficient to have at
least one kind of nonlinear operation in addition to lin-
ear operations, i.e., unitary evolution under a Hamilto-
nian linear or quadratic in bosonic raising and lowering
operators [3, 4]. One approach to introduce nonlinearity
is to couple the bosonic system directly to a nonlinear
system such as a qubit [5–8], but for many platforms,
achieving this with sufficiently strong coupling can be dif-
ficult. For example, in millimeter wave regime (around
100 GHz) there is no good superconducting qubit yet;
other bosonic systems like phonons can work in a higher
temperature beyond the requirement for superconduct-
ing qubits [9, 10].

Given this, it would be ideal to exploit intrinsic nonlin-
earities in optical or microwave resonators. An extremely
common example is a self-Kerr nonlinearity. Examples
include micro-ring resonators or photonic crystals with
χ(3) nonlinearities [11, 12] and quantum LC circuits that
contain superconducting materials with high kinetic in-
ductance [13, 14]. While in principle these nonlinearities
are sufficient for universal control, in practice they are of-
ten much weaker than photon loss rates, precluding the
ability to achieve high-fidelity nonlinear operations.

While nonlinearities weaker than loss might seem to
be of no use for quantum nonlinear operations, recent
research suggests that this might not be the case [15].
In this work, the authors propose an intriguing scheme
to deterministically prepare a single-photon Fock state
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FIG. 1. Schematic diagram of the photon blockade in the
displaced rotating frame with (a) both 1-photon and 2-photon
drives, (b) only 1-photon drive with fast oscillation of the
displaced rotating frame in phase space.

using a Kerr nonlinearity, even in cases where this non-
linearity is significantly smaller than the loss rates. This
scheme relies on a novel photon blockade phenomenon
that requires the displacement of a single bosonic mode
together with carefully chosen 1-photon and 2-photon
driving amplitudes. Notably, the speed of the operations
in the blockade subspace is enhanced by the displacement
amplitude, which can be large enough to counteract the
effects of loss. A similar idea related to displacement-
boosted gates is also presented in Ref. [7].

Here, we generalize this blockade scheme to demon-
strate its applications beyond the preparation of single-
photon Fock states. We show that using this scheme, one
can perform any unitary operation in a blockaded sub-
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space of Fock states with an arbitrarily chosen dimen-
sion. In addition to formal proof in the ideal scenario,
we present a gradient-based optimization algorithm to
explicitly find the control pulse sequences to implement
a desired unitary operation in the blockaded subspace.

In practice, directly implementing the required 2-
photon drive can be a challenging task, as this can require
additional weak nonlinearities. For example, in certain
platforms one could pump an auxiliary mode that inter-
acts nonlinearly with the central mode [16]. Here we show
that one can eliminate the need for an explicit 2-photon
drive, by instead simply time-modulating the amplitude
of the single-photon drive. This is similar in spirit to the
operation of double-pumped parametric amplifiers [17].

The optimization algorithm and this modulation
scheme are then integrated seamlessly to implement ar-
bitrary operations using only a standard linear, single-
photon drive. This simplification comes at the cost of
requiring larger 1-photon driving amplitudes, which may
result in much stronger input power or even the viola-
tion of the rotating wave approximation (RWA). We dis-
cuss these implications and possible methods to resolve
the resulting imperfections. We argue that even with
these limitations, our scheme performs well in experi-
mental platforms where the strength of the single-photon
self-Kerr nonlinearity is comparable to or slightly smaller
than the loss rate, which was not possible using previous
techniques.

System setup– We consider a setup similar to Ref. [15],
consisting of a single-mode resonator with self-Kerr non-
linearity, subject to both 1-photon and 2-photon drives.
Within the RWA, the Hamiltonian of the system can be
written as

Ĥ =
χ

2
â†2â2 + ωcâ

†â+ [Λ1(t)e
−iω1(t)tâ†

+ Λ2(t)e
−iω2(t)tâ†2 + h.c.],

(1)

where χ indicates the strength of the single-photon Kerr
nonlinearity, ωc is the angular frequency of the res-
onator, and Λ1(2) and ω1(2) are the amplitude and the
frequency of the 1(2)-photon drives, respectively. Here,
h.c. denotes the Hermitian conjugate of the terms in the
bracket. As shown in Ref. [15], by choosing ω2 = 2ω1,
going to a frame rotating with ω1(t) and then displaced
by α(t), we can obtain a blockaded Hamiltonian of the
form

Ĥdr[α(t)] =
χ

2
â†2â2+∆0â

†â+[χα(t)â†(n̂−r)+h.c.], (2)

where r is an adjustable positive integer determining the
block subspace’s dimension, and ∆0 is the detuning term
in the displaced rotating frame. To achieve this effective
Hamiltonian for a given α(t), ∆0 and integer r, one needs
time-dependent drive amplitudes and frequencies chosen

such that




Λ1(t) = χα(t)[2|α(t)|2 − r]−∆0α(t) + iα̇(t),

Λ2(t) = −χ
2α

2(t),

ω1(t) = ωc −∆0 +
1
t

∫ t

0
2χ|α(t′)|2 dt′.

(3)

The key term in Eq. (2) is the nonlinear drive, which
has no coupling between |r⟩ and |r + 1⟩ levels. There-
fore, the dynamics generated by Ĥdr is constrained within
the blockade subspace Hb spanned by {|0⟩ , |1⟩ , . . . , |r⟩}.
Also, the amplitude of this nonlinear drive is set by the
time-dependent displacement α(t), which serves as a key
control parameter in what follows. Previously, it was
shown that with a static α, one could use Ĥdr to generate
Fock |1⟩ state on a timescale much shorter than 1/χ [15].
Here, we go much further: we show that in fact, by us-
ing a time-dependent α(t), one can generate any unitary
within the blockade subspace Hb, whose dimension can
also be chosen freely.
To account for the effects of photon loss in our system,

we use the master equation

dρ̂

dt
= −i[Ĥ, ρ̂] + κD[â]ρ̂, (4)

where D[â]ρ̂ = âρ̂â†− 1
2{â†â, ρ̂} is a dissipator that mod-

els the photon loss effect and κ is the rate of this process.
Note that when transforming to the same displaced ro-
tating frame mentioned earlier, the 1-photon driving am-
plitude Λ1(t) in Eq. (3) now requires the addition of an
extra term, namely iκα(t)/2, in order to obtain the same
Hamiltonian Ĥdr[α(t)]. However, the form of the dissipa-
tor D[â] and the associated loss rate κ remain unaltered
in this new frame. Consequently, due to the enhance-
ment of the nonlinear blockade drive by α in Ĥdr, the
operations can be performed on a significantly shorter
timescale than 1/χ. This, in turn, allows for the mitiga-
tion of the impact of photon loss, presenting an opportu-
nity to achieve high-fidelity gates, even when χ≪ κ.
Demonstration of universality– We sketch the proof

of universal controllability of our system governed by
the Hamiltonian Ĥdr shown in Eq. (2) here and refer
the reader to Ref. [18] for more details. We first focus
on the dynamics within the blockade subspace Hb. Let
Π̂r :=

∑r
n=0 |n⟩⟨n| denote the projector to this N = r+1

dimensional subspace. The projection of Ĥdr to the
blockade subspace is given by

Π̂rĤdrΠ̂r = Ĥd,0+χRe[α(t)]Ĥc,R+χ Im[α(t)]Hc,I , (5)

where




Ĥd,0 =
∑r

n=0

[
χ(n2 − n)/2 + ∆0n

]
|n⟩⟨n| ,

Ĥc,R =
∑r−1

n=0(n− r)
√
n+ 1(|n+ 1⟩⟨n|+ h.c.),

Ĥc,I = i
∑r−1

n=0(n− r)
√
n+ 1(|n+ 1⟩⟨n| − h.c.).

(6)
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In what follows (using the language of quantum control
theory, see e.g., [19]) Ĥd,0 serves as the drift Hamilto-

nian, while Ĥc,R and Ĥc,I are the control Hamiltonians.
The real and imaginary parts of α(t) are time-dependent
functions that can be controlled. Following Ref. [5] we
define universal control of a quantum system as the abil-
ity to realize any unitary operation Ûtar in the U(N)
group via a properly chosen control (α(t) in this case)
and evolution time T .

A theorem in Ref. [20] suggests a sufficient condition
for the Hamiltonian to make the system universally con-
trollable. It has two requirements. First, the drift Hamil-
tonian Ĥd,0 should be diagonal (with eigenvalues denoted
as Ek for eigenstates |k⟩) and contain certain type of
nonlinearity, specifically, the nearest energy difference
µk := Ek − Ek+1 should satisfy µ0 ̸= 0 and µ2

k ̸= µ2
0

for k > 0 (or similarly µN−2 ̸= 0 and µ2
k ̸= µ2

N−2 for

k < N − 2). Second, one of the control parts Ĥc,j

should only have couplings between |k⟩ and |k + 1⟩ for
all 0 ≤ k < N − 1. If both these conditions are satisfied,
then the generated dynamical Lie group will be U(N)

when Tr
[
Ĥd

]
̸= 0 and SU(N) otherwise.

We can easily verify that those requirements for U(N)
group (where N = r + 1 in our case) generation are sat-
isfied with our Ĥd,0 and Ĥc,R as long as r ̸= − 2∆0

χ + 1.
This allows us to fix ∆0 = 0 for r ≥ 2 in the rest of the
main text. Moreover, the two control degrees of freedom
Ĥc,R and Ĥc,I provide the possibility to do any gate (up
to a global phase) in an arbitrarily fast manner, as these
two are also sufficient to generate full SU(N) group [18].
Finally, as r is also adjustable, we can choose any block-
ade dimension we want. Therefore, unitaries defined in
any finite dimension are in principle achievable.

Optimal control– The generalized blockade phenomena
allow one, in principle, to perform an arbitrary unitary
operation in an arbitrarily chosen N -dimensional block-
aded subspace in a time much faster than 1/χ. The ques-
tion that we now address is how to design a particular
control α(t) to realize a target unitary. In contrast to the
conventional setting, where one optimizes the control in
the rotating frame of the drive [21], we consider Ĥdr de-
fined in the instantaneous displaced rotating frame and
optimize α(t), the frame parameter. Consequently, find-
ing an optimal α(t) directly determines the correspond-
ing physical parameters Λ1(2)(t) and ω1(t) via Eq. (3)
required for implementing the desired operations in the
laboratory. In other words, by hard coding the blockade
condition in the evolution through Eq. (3), we simplify
the optimization task to finding α(t) in the small block-
ade Hilbert space. In this way, even though the required
drive amplitudes Λ1(2)(t) can be very large, we do not
need to consider large photon number states in the opti-
mization. In this section, we only optimize the controls
for a fixed evolution time T in the absence of loss. We
further consider the effects of loss and a realistic experi-

mental constraint on total input power (see [18]); as we
show, these additional features lead to there being an
optimal choice of gate time T .

Typically, optimal control algorithms such as
GRAPE [22, 23] discretize the control pulse α(t), and
maximize a figure of merit such as the fidelity by
performing gradient-based optimization on the control
parameters, i.e., the amplitude of the control at discrete
time points. This standard approach would yield a
piece-wise constant α(t), something that is highly
problematic for our setup: discontinuous jumps in α(t)
would require infinite driving power to implement, as
the 1-photon driving amplitude has a term proportional
to iα̇(t) (c.f. Eq. (3)).

To solve this issue, in contrast to conventional meth-
ods, we expand α(t) on a basis of continuous functions.
Since it is desirable to be in a non-displaced frame, i.e.
α(0) = α(T ) = 0 in the beginning (t = 0) and at the end
(t = T ) of the protocol, we use the following sine-basis
ansatz for the control pulse

α(t) =

kmax∑

k=1

αk sin

(
kπt

T

)
. (7)

Here, kmax, the cutoff number for the highest harmonics
that we use, is a hyperparameter that is chosen accord-
ing to the complexity of the task, and αk are complex-
valued optimization variables. In practice, we choose
kmax heuristically in the optimization procedure. If the
fidelity achieved from the optimal pulses is lower than
our target, we increase kmax for better performance. To
implement a target unitary operation in N dimensions,

we maximize Fu({αk}) =

∣∣∣∣Tr
[
Û†
tarÛ(T )

]∣∣∣∣
2

/N2, where

Û(T ) is obtained by solving d
dt Û(t) = −iĤdr[α(t)]Û(t)

for t = T with the initial condition Û(0) = Î. When
optimizing Fu, we implicitly ignore the irrelevant global
phase. Note that the dependence of the objective on
{αk} originates from the dependence of Ĥdr on α(t) ac-
cording to Eq. (2). Moreover, while obtaining Fu involves
solving an ordinary differential equation, it is still differ-
entiable and its gradient with respect to {αk} can be
calculated using the chain rule and the adjoint sensitiv-
ity method [24]. Therefore, we can use gradient-based
optimization to find locally optimal {αk}.
To illustrate the universal controllability of our scheme,

we consider the problem of implementing the permu-
tation ÛP or the Fourier transformation ÛFT in a 3-
level blockade subspace up to a global phase spanned
by {|m⟩}2m=0, where

ÛP = |2⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨2| , (8a)

ÛFT =
1√
3

∑

m,n

ei
2πmn

3 |m⟩⟨n| . (8b)
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FIG. 2. Optimal control for implementing arbitrary uni-
tary operations. (a) The optimized α(t) function that imple-
ments permutation (8a) in a 3-level blockade subspace with
kmax = 5 harmonics. Total evolution time T = 0.2/χ. (b)

The elements of the unitary Û(T ) generated by α(t) shown in

(a) under the Fock basis, i.e., Ûij = ⟨i| Û(T ) |j⟩. The height
and color of each bar show the absolute value and argument
of the corresponding matrix elements. (c) Optimal α(t) for
implementing Fourier transform (8b) in the same blockade
subspace with kmax = 8 harmonics and T = 0.2/χ. (d) the

matrix elements of Û(T ) generated by α(t) shown in (c).

We use the automatic differentiation toolbox of JAX [25],
a numerical computing package, to perform the gradient-
based optimization. We choose the evolution time T =
0.2/χ. We also fix α(0) = α(T ) = 0 and ∆0 = 0 in Ĥdr

and find the pulses α(t) that implements the two unitary
operations of interest. In both cases, the algorithm finds

a solution such that

∣∣∣∣Tr
[
Û†
tarÛ(T )

]∣∣∣∣
2

/N2 > 1−10−4 (see

Fig. 2).

Only 1-photon drive– So far, we have focused on the
fundamental questions about controllability by explic-
itly constructing the 1- and 2-photon drives to achieve
fast universal control for weak-Kerr systems in the pres-
ence of loss. Here, we move away from the ideal sce-
nario and discuss issues relevant to experimental imple-
mentations. One question to address is whether one
truly needs a distinct 2-photon drive. While this can
be done in some platforms, e.g., superconducting qubits
with flux-pumping [4], it can be challenging in other plat-
forms. Here, we present a method that allows our control
scheme to be implemented without any explicit indepen-
dent 2-photon drive. As we show, this idea is intrinsi-
cally connected to squeezing by double-pumping a Kerr
resonator [17].

In the absence of an independent 2-photon drive,
Λ2(t) = 0 in Eq. (1). Again, we set ∆0 = 0 and choose
the 1-photon driving amplitude such that in a frame ro-
tating with ω1(t) and displaced by α̃(t), we have the same

blockade drive. In this frame, the Hamiltonian is

Ĥ ′
dr[α̃(t)] =

χ

2
â†2â2 + [χα̃(t)â†(n̂− r) + h.c.]

+

[
χ

2
α̃2(t)â†2 + h.c.

]
,

(9)

where the 1-photon driving amplitude is chosen to have
the form

Λ′
1(t) = χα̃(t)[|α̃(t)|2 − r] + i ˙̃α(t) + iκα̃/2. (10)

While the nonlinear single-photon drive in Eq. (9) has
the correct form, the induced two-photon drive term in
the last line violates the desired blockade condition.
A key observation in our strategy to revive the block-

ade condition is that the desired fully blockaded Hamilto-
nian can be written as Ĥdr[α(t)] =

1√
2
{Ĥ ′

dr[e
− iπ

4 α(t)] +

Ĥ ′
dr[e

iπ
4 α(t)]}. Intuitively, by alternating the phase of

α̃(t), we can average away and cancel the unwanted 2-
photon drive term while retaining the desired nonlinear
blockade drive. This observation combined with the Trot-
ter formula

e−i
Ĥ1+Ĥ2

2 δT = e−iĤ1δT/4e−iĤ2δT/2e−iĤ1δT/4

+O[(δT )3]
(11)

suggests that setting Ĥ1(t) = Ĥ ′
dr[e

− iπ
4 α(t)] and Ĥ2(t) =

Ĥ ′
dr[e

iπ
4 α(t)] and alternating the evolution for δT/2 be-

tween the two Hamiltonians suppress the errors in vio-
lating the blockade condition to O[(δT )3] [26]. However,
this Trotter scheme requires discretizing α(t) into inter-
vals of length δT and implementing instantaneous dis-
placements between e±

iπ
4 α, which in practice introduces

additional complexities.
Inspired by the discrete version of the Trotter formula,

we design its continuous counterpart via Magnus expan-
sion [18]

exp

[
−i
∫ δT

0

Ĥ(t) dt

]
= T exp

[
−i
∫ δT

0

Ĥ(t) dt

]

+O[(δT )3],

(12)

where T is the time-ordering operator and Ĥ(t) for
t ∈ [0, δT ] is chosen to be symmetric around δT/2, i.e.,
Ĥ(t) = Ĥ(δT − t). As a result, we construct a new func-
tion α̃(t) that oscillates rapidly with time. Specifically,
Eq. (12) gives us a recipe for finding α̃(t) such that the
coarse-grained evolution under Ĥ ′

dr[α̃(t)] over an interval

of δT is close to that under Ĥdr[α(t)]. This translates to
having the average of α̃(t) over a δT time interval cen-
tered on time t to satisfy

α̃2(t) = 0, α̃(t) = α(t), (13)

where the overline denotes the coarse-graining time av-
erage, and α(t) is the optimal choice of function in Ĥdr
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defined in Eq. (2) that generates the desired target uni-
tary operation. To satisfy these constraints, we propose
using the ansatz α̃(t) = α(t)f(t), where f(t) is a peri-
odic function with period δT = T

M . Here T is the total
evolution time and M is the number of periods during
the evolution. We also denote ωr := 2πM

T for further
use. Besides, to keep the same structure as the Trotter
formula in Eq. (12), we further require that

f(t) = f(δT − t). (14)

Consequently, the constraints for α̃(t) in Eq. (13) trans-
late to constraints

f(t) = 1, f2(t) = 0 (15)

on f(t) over over each period. This ensures that the
overall evolution under H ′

dr[α̃(t)] and Ĥdr[α(t)] for time
T closely resemble each other, that is

T exp

{
−i
∫ T

0

Ĥ ′
dr[α̃(t)] dt

}

≈ T exp

{
−i
∫ T

0

Ĥdr[α(t)] dt

}
.

(16)

One possible choice of f(t) is the following

fdp(t) = 1 + i
√
2 cos(ωrt). (17)

An example of the shape of α̃(t) after implementing this
modulation is shown in Fig. 3 (and schematic illustration
in Fig. 1(b) as well). To obtain physical intuition on the
underlying mechanism, we can split fdp(t) into two parts.
The constant part plays the role of Λ1 in Eq. (1), and
provides the desired nonlinear blockade drive in the dis-
placed rotating frame. In contrast, the time-dependent
term, i

√
2 cos(ωrt), corresponds to the double-pumping

scheme with driving frequencies ω1±ωr, as it contributes
to Λ′

1(t) via i ˙̃α(t). This double-pumping will effectively
generate the 2-photon driving Λ2 in Eq. (1) from the Kerr
interaction, as a result of 4-wave mixing [17].

The approximation in Eq. (16) is valid if the num-
ber of periods M is large enough such that (i) the error
from Trotter expansion (see Eq. (11,12)) is small, and
(ii) within each period of f(t), the control function α(t)
varies slowly so that the time average of α̃(t) deviates
little from α(t). In the infinite M limit the two sides of
Eq. (16) are identical. The induced error due to the in-
accuracy of Trotter approximation is analyzed in detail
in Ref. [18].

Discussion– In the previous section, we have demon-
strated that in principle a distinct 2-photon drive is un-
necessary for universal control and explicitly provided
the modified 1-photon pulse design for targeted opera-
tions. However, our operations may suffer from coherent
errors that come from inaccurate Trotter approximation.

T
0

(a)

Re[ ]
Im[ ]

T

t

0

(b) Re[ ]
Im[ ]

FIG. 3. Schematic comparison between the (a) original opti-
mal pulse α(t) and (b) the modulated pulse α̃(t) = α(t)fdp(t)
using Eq. (17) needed in the absence of a 2-photon drive. In
this example, we choose M = 80 periods for the modulation.

This, as well as the incoherent photon loss during gate
execution, serve as two sources for gate infidelity.
If the 1-photon driving amplitude |Λ1| (or the input

power Pin) is unlimited, both error sources can be suf-
ficiently suppressed. We can increase the amplitude of
α(t) so that the gate time T as well as the photon loss
probability is reduced. We can also increase the displaced
frame oscillating frequency ωr to reduce Trotter errors.
However, if Pin is limited, we have to make a trade-off
to achieve optimized operation fidelity. In Ref. [18], we
analyze the effect of these errors in detail for the case of
preparing a single photon Fock state and show that the
state preparation infidelity is given by

ϵtot ≃ C(κe + κi)T +
C ′

P 2
inκ

2
eχ

10T 14
, (18)

where κe(i) stands for the external (internal) loss rate.
Here the first term captures the effect of loss errors grow-
ing with time T , and the second term captures the Trot-
ter errors that scale inverse polynomially with T . There-
fore, there exist an optimal time and external loss rate
for a given power and internal loss rate that minimizes

the total error, which scales as ϵopttot ∝ κ
4/5
i /(P

2/15
in χ2/3).

For example, suppose we have a niobium nitride res-
onator [13] with ωc = 2π × 100 GHz, χ = −1 kHz and
an improved |χ|/κi = 0.5 in the future. Then, to prepare
|1⟩ state with 90% fidelity the required Pin is around 30
nW. The corresponding required α ≈ 15. These numbers
suggest that our scheme may work well in the regime
that self-Kerr is comparable to or slightly lower than the
loss rate. However, if κi is increased by a factor of 10
we need an increase of Pin by a factor of 106 to keep the
same ϵopttot , which indicates that our protocol may not be
power-friendly in the large κi regime. On the other hand,
if we can implement the 2-photon drive directly which is
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also power-efficient so that we only need to consider the
power cost for the 1-photon drive, then the error scaling

will be modified as ϵ ∝ κ
5/6
i /(P

1/6
in χ2/3). We leave the in-

vestigation of other power-saving protocols for universal
control as further work.

We also investigate the optimality of the Trotter
scheme by comparing it with a direct optimization
scheme. Specifically, we assume that the two-photon
drive is absent from the beginning, and directly maxi-
mize the fidelity by optimizing α(t) using a more expres-
sive ansatz that utilizes neural networks with periodic
activation functions [27]. Our results indicate that this
heuristic approach does not yield a better solution (in
terms of fidelity and required power) compared to the
Trotter scheme. We refer the reader to [18] for more
details.

Additionally, if our 1-photon drive is too strong, the
RWA may not be valid since the frequency ωc of the
resonator is always finite. The counter-rotating (non-
RWA) terms like (Λ∗

1(t)e
iω1(t)tâ† + h.c.) should be con-

sidered in Eq. (1). In Ref. [18], we discuss the way
to mitigate the dominant effects from non-RWA terms
by adjusting the driving amplitude Λ1(t) and frequency
ω1(t). It is also worth mentioning that there will be no
(Λ∗

1(t)e
iω1(t)tâ† + h.c.) term if on the hardware we can

drive both charge and flux simultaneously with prop-
erly chosen amplitudes, which provides another way to
mitigate non-RWA effects. However, there could still
be a fundamental limitation on the fidelity as a func-
tion of two dimensionless parameters κi/χ and internal
quality factor Qi := ωc/κi. For the task of prepar-
ing |1⟩, we found a rough lower bound for infidelity as

ϵ ≳ 3π(κi/χ)
2/3/(16Q

1/3
i ) even if we can directly im-

plement 2-photon drive or do 1-photon drives on both
charge and flux quadratures [18]. We leave the further
improvement of this bound as an open question.

Conclusion– We show that by making a non-trivial ex-
tension of the displacement-induced, weak-Kerr photon
blockade of Ref. [15], one can achieve any unitary opera-
tion in a blockade subspace of arbitrary dimension. The
speed of the operations can be enhanced by using large
displacements to overcome the adverse effects of photon
loss. Further, this can be implemented using only 1-
photon drives, provided that the input power is not a
limitation and RWA conditions are justified. Moreover,
from a computational perspective, our work simplifies
the task of optimal control in such systems. It reduces
the computational overhead for finding control sequences
that utilize large photon number states by working in a
special instantaneously displaced frame. As a result, our
work provides a novel and efficient quantum control pro-
tocol for weak nonlinear bosonic systems, which could be
helpful for future quantum information processing tasks
on suitable platforms.
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S1. DETAILED UNIVERSALITY PROOF

In this part, we show that the Hamiltonian Ĥdr (see
Eq. (2)) can generate arbitrary unitary operations in
U(N) within the N = r + 1 dimensional blockade sub-
space Hb. Since r is an adjustable parameter, our proto-
col allows for “universal control” in bosonic systems with
Kerr nonlinearities in the sense that any unitary operator
with any chosen dimension is realizable in the system.

In quantum control theory [S1], a Hamiltonian defined

in an N dimensional Hilbert space spanned by {|k⟩}N−1
k=0

contains a drift part Ĥd and several control parts Ĥc,j .
It can be expressed as

Ĥ(t) = Ĥd +
∑

j

vj(t)Ĥc,j . (S1)

Here, we consider the drift and one of the control parts
with the following form

Ĥd =

N−1∑

k=0

Ek |k⟩⟨k| ,

Ĥc,1 =
N−2∑

k=0

dk(|k + 1⟩⟨k|+ |k⟩⟨k + 1|).
(S2)

Here dk ∈ R and dk ̸= 0. The “universal control” [S2]
is named as the ability to realize any unitary operation
Ûtar in U(N) with properly chosen vj(t) and evolution
time T , such that

Ûtar = Û(T ) = T exp

[
−i
∫ T

0

Ĥ(t′) dt′
]
. (S3)

A Theorem in Ref. [S3] suggests a sufficient condition
for the choice of Ek and dk to make the system universally
controllable. We first repeat the theorem here and check
that our Hamiltonian Ĥdr restricted in blockade subspace
(Π̂rĤdrΠ̂r, see Eq. (5)) satisfies those criteria.

Theorem 1 (Ref. [S3]) Denote µk = Ek − Ek+1. If
µ0 ̸= 0 and µ2

k ̸= µ2
0 for k > 0 (or similarly if µN−2 ̸= 0

∗ yuanming@uchicago.edu
† liangjiang@uchicago.edu

and µ2
k ̸= µ2

N−2 for k < N − 2), then the dynamical Lie

group of the system Ĥ(t) defined in Eq. (S1, S2) is at

least SU(N). Further, if Tr
[
Ĥd

]
̸= 0, the dynamical Lie

group is U(N).

We notice that Π̂rĤdrΠ̂r contains the drift part Ĥd,0

and two control parts Ĥc,R and Ĥc,I . It is easy to verify

that Ĥc,R meets the requirement for the control part.

Then we should check the nonlinear condition for Ĥd,0.
In this case, we have Ek = χ(k2 − k)/2 + ∆0k, which
gives the nearest energy difference µk = −χk − ∆0. To
match the condition in Theorem 1, we need to make sure
µ2
0 ̸= µ2

N−2, which leads to r ̸= − 2∆0

χ + 1. Further,

since µk is monotonic in k, we cannot find both k1, k2
(0 < k1, k2 < N−2) such that µ2

0 = µ2
k1

and µ2
N−2 = µ2

k2
.

This concludes the proof of the universal controllability
of our system, even if we can fix Im[α(t)] = 0 all the time.
Moreover, the ability to control Im[α(t)] provides us

with an additional degree of freedom to control the sys-
tem, which in principle makes it possible to perform
operations arbitrarily fast. To demonstrate this, we
first show that the nested commutators between iĤc,R

and iĤc,I are sufficient to form a complete basis of the
Lie algebra associated with SU(N). The reason is that

[iĤc,R, iĤc,I ] =
∑r

n=0 −2[3n2 − (4r + 1)n+ r2]i |n⟩⟨n| is
diagonal in Fock basis, has zero trace, and fulfills the
anharmonicity requirement as that for the drift term
Ĥd in Theorem 1. Further, as proved in Theorem 1,
[iĤc,R, iĤc,I ] and iĤc,R are sufficient to generate a set
of complete basis of Lie algebra su(N). In practice,
the overall phase for unitary operations has no physical
meaning, which makes SU(N) group sufficient for uni-

versality. Second, since χRe[α(t)]Ĥc,R + χ Im[α(t)]Ĥc,I

is sufficient to achieve the desired unitary, we can simply
increase the amplitude of α(t) to do things arbitrarily

fast. In the short time limit, the drift term Ĥd,0 does
not contribute to the dynamics and therefore does not
impose a speed constraint.

S2. BASIC ERROR ANALYSIS

In this section, we analyze the errors in implement-
ing a desired operation using our protocol where only
1-photon drive is allowed. Notice that, even if all the
driving parameters are perfectly implemented, there are
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errors stemming from photon loss and inaccuracies of the
Trotter design in Eq. (16). Reducing the total time of
the protocol T helps to mitigate the photon loss errors,
but at the same time increases the required input power,
which could be limited in practice. This limited power
also introduces coherent errors in the Trotter approxima-
tion of the unitary operator of interest. Therefore, there
is a trade-off between these two sources of error, which
we discuss in detail in the following.

For simplicity, we only consider the error in state
preparation tasks characterized by infidelity

ϵ = 1− ⟨ψtar| ρ̂(T ) |ψtar⟩ , (S4)

where |ψtar⟩ is a pure state that we are interested in
preparing and ρ̂(T ) is the state of the system at the end
of the evolution. Here, ρ̂(T ) is the state obtained after
evolving for time T under the Lindblad equation

dρ̂

dt
= −i[Ĥ ′

dr, ρ̂] + κD[â]ρ̂, (S5)

where Ĥ ′
dr is introduced in Eq. (9).

To study the scaling of error ϵ with relevant physical
parameters in the problem, we focus our attention on the
case of single-photon state preparation when the blockade
subsystem has only 2 dimension and α(t) is constant, as
originally proposed in Ref. [S4]. Therefore, in this case we
set |ψtar⟩ = |1⟩, and ρ̂(0) = |0⟩⟨0|. To prepare the target
state |1⟩, we choose ∆0 = 0 and α(t) = α, a constant that
is assumed to be a real number for simplicity. Therefore,
the effective Hamiltonian in the blockade subspace is

Ĥqb
dr = −χασ̂x. (S6)

Here σ̂x = |0⟩⟨1| + |1⟩⟨0|. Moreover, in this subspace
the photon loss dissipator D[â] in Eq. (S5) is now sim-
ply modified to D[σ̂−], where σ̂− = |0⟩⟨1|. Note that in
the ideal case, when there is no loss or Trotter error, we

can perfectly prepare |1⟩ by evolving |0⟩ under Ĥqb
dr in

Eq. (S6) for time T = π
2χα . For simplicity here we ignore

the part of the dynamics where α(t) increases from 0 to α
in the beginning and decreases to 0 in the end [S4], while
only discussing errors with a constant α(t). In fact, using
a time-dependent α(t) will introduce additional imper-
fection for Trotter approximation. However, as discussed
in Sec. S3, given the assumption that α(t) varies slowly
over time, these additional errors are higher-order effects
compared with the major Trotter error scaling we focus
on later.

To find the scaling properties of ϵ, we treat the photon
loss (ϵloss) and Trotter (ϵtt) errors independently.

First, for the photon loss error, we assume that the

Hamiltonian Ĥqb
dr in Eq. (S6) is perfectly implemented so

that the quantum state is confined to the blockade sub-
space all the time. If χα≫ κ, we can treat the dissipative
term κD[σ−] perturbatively. So, to the lowest order, the
error from the photon loss process satisfies ϵloss = c1κT ,
where the coefficient c1 in general depends on the func-
tion α(t). In our case, we find that c1 = 3

8 (see Sec. S9).

Next, to estimate the error from the Trotter approx-
imation, we ignore the photon loss process and assume
that the system undergoes unitary evolution with Hamil-
tonian Ĥ ′

dr shown in Eq. (9). For simplicity, we use
the discrete Trotter formula to illustrate analysis, but
the results apply to the proposed continuous version as

well (see Sec. S8). Let Ûtar = e−i
Ĥ1+Ĥ2

2 δT and Û =

e−iĤ1δT/4e−iĤ2δT/2e−iĤ1δT/4. Using the discrete version
of Trotter formula [S5], we have

Û
−1/2
tar Û Û

−1/2
tar = exp{(δT )3Â3 +O[(δT )5]}, (S7)

where Â3 = i[[Ĥ1, Ĥ2], Ĥ1 + 2Ĥ2]/192 is anti-Hermitian.

Further, recall the form of Ĥ ′
dr[α̃]. Since we work in the

regime that |α| ≫
√
N (N is the dimension of the block-

ade subspace), the dominant contribution to Â3 comes

from the (χ2α
2
1,2â

†2 + h.c.) terms in the Hamiltonian Ĥ1

and Ĥ2, and therefore the matrix elements of Â3 that we
focus on scale as O[(χα2)3]. Finally, as mentioned before,
we need to sequentially apply M = T/δT repetitions of

the Trotter operation Û to approximately achieve our

desired unitary ÛM
tar, where |ψtar⟩⟨ψtar| = ÛM

tarρ̂(0)Û
†M
tar .

Therefore, we find

ϵtt = 1− ⟨ψtar| ÛM ρ̂(0)Û†M |ψtar⟩
= O[(M(χα2δT )3)2].

(S8)

Recalling the relation that T ∝ 1/(χα) and M = T/δT ,
we finally obtain ϵtt = c2/[M

4(χT )6], where c2 is again
the coefficient that depends on specific form of our pulse
design and can be estimated numerically (see Sec. S9).
Note that in our numerical work f(t) function is chosen
as

f(t) =
iπ

2
e−i2π|s(t)−1/2|, (S9)

where s(t) = t/δT −⌊t/δT ⌋. This choice of f(t) also sat-
isfies the requirements shown in Eq. (14, 15), and also
|f(t)| is constant over time. In this situation, the ref-
erence displaced frame (characterized by α̃(t)) oscillates
back and forth along a semi-circle. In practice, it can be
implemented with 1-photon drives using two interleaved
tones with frequencies ω1 ± ωr.
Since errors from the loss and Trotter approximation

are independent, to the lowest order they can be added
directly to find the total infidelity as

ϵtot = ϵloss + ϵtt = c1κT +
c2

M4(χT )6
. (S10)

If the driving amplitude is unbounded, we can use an
arbitrarily short time T with arbitrary fast oscillating
α̃(t) (M → ∞) such that both ϵloss and ϵtt are suppressed
to zero. However, in practice there are possible limita-
tions that prevent us from doing that. Here we consider
a key limitation, namely the input power Pin that can be
applied to the system and evaluate the optimal ϵtot that
we can achieve under this constraint.
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FIG. S1. Numerical results of the infidelity of Fock state |1⟩
preparation with given input power and corresponding op-
timal choice of gate time. The choice of Kerr parameter is
χ = 2π × 3 kHz. The dynamics is calculated with the as-
sumption that RWA is valid. Different colors indicate differ-

ent κi/χ ratio. The dashed lines are references for ϵ ∝ P
−2/15
in

scaling.

First, we assume that χ|α|2 ≪ ωc, which can be
checked self-consistently since otherwise RWA will not
apply, as discussed in Sec. S5. This assumption allows us
approximately write down the input power as

Pin ≃ |Λ1|2
κe

ℏωc, (S11)

where κe is the external loss rate induced by coupling
to the driving port. The total loss κ is composed of
κ = κe + κi, where κi is the internal loss rate of the
resonator. We notice from Eq. (10) that, Λ1 ∼ O(χα̃3)+

i ˙̃α. We then need to estimate the contribution from ˙̃α.
In our design we have ˙̃α ∼ O(αM/T ). Besides, since we
are only considering lowest order errors from the Trotter
expansion, the Trotter error should be small. Therefore,
we should have χα2δT ≪ 1, or equivalently χα2 ≪ ωr.
This implies that M ≫ χα2T , and as a result i ˙̃α is the
dominating term in Λ1. So, we can write Pin as

Pin ∼ O(
M2α2

κeT 2
) :=

c3M
2

κeχ2T 4
, (S12)

where ℏωc and the proportionality constant originating
from f(t) are both absorbed in c3. By eliminating M in
Eq. (S10) using Eq. (S12) we obtain

ϵtot = c1(κe + κi)T +
c2c

2
3

P 2
inκ

2
eχ

10T 14
. (S13)

As a result, we find that the scaling of T opt, namely the
optimal time that minimizes ϵtot, and the corresponding

optimal error ϵopttot is given by

T opt =

(
14c2c

2
3

c1

)1/15

· 1

P
2/15
in χ2/3κ

2/15
e (κe + κi)1/15

,

ϵopttot = 15

(
c141 c2c

2
3

1414

)1/15

·
(

1

P
2/15
in χ2/3

(κe + κi)
14/15

κ
2/15
e

)
.

(S14)

It is also natural to assume that κi is a fixed property
of the device while κe is adjustable to further optimize
ϵopttot . We can find the optimal ratio of κe/κi = 1

6 that

minimizes ϵopttot while keeping χ, κi and input power Pin

fixed and using the optimal T opt. This gives

ϵopttot =
15(c141 c2c

2
3)

1/15

214/15 · 64/5 ·
(

κ
4/5
i

P
2/15
in χ2/3

)
. (S15)

We also numerically investigate the infidelity ϵ as pre-
scribed by Eq. (S4) as a function of input power. To
find the optimal time for the protocol in our numerical
simulations we first need to determine the constants in
Eq. (S13). More details can be found in Sec. S9. We first
obtain c2 by varying M and T in the simulations and
extracting the corresponding proportionality constant in
Eq. (S10). We then obtain c3 by using the explicit form

of f(t) in Eq. (S9), which results in c3 ≃ π6

4 ℏωc. There-

fore, together with c1 = 3
8 from perturbative analysis,

we can then find T opt for a given power, which subse-
quently determines the required M using Eq. (S12). In
this way, both the optimal protocol time T opt and α̃(t)
are fully determined. Here we also use the optimal choice
of κe =

1
6κi.

In FIG. S1, we observe that the numerically obtained

infidelities agree well with the estimated ϵ ∝ P
−2/15
in scal-

ing in a wide range of Pin values.
Finally, in the numerical simulation we have assumed

the validity of RWA so that the dynamics is irrelevant
with ωc after going to the rotating frame. We notice that
if the required α or M (equivalently ωr) is so large such
that Λ1 is comparable with the frequency of the resonator
ωc, then those off-resonant terms which has been ignored
under RWA in the beginning may lead to non-negligible
effects on the dynamics. In Sec. S5, we use scaling anal-
ysis to briefly discuss those effects and strategies to par-
tially compensate them by adjusting Λ1(t) and ω1(t), or
driving both charge and flux quadratures together rather
than only one of them on hardware.

S3. TROTTER ERRORS WITH
TIME-DEPENDENT α(t)

In this section, we will also discuss the error scaling
properties of our protocol, but specifically focus on the
Trotter error in the case that α(t) designed by optimal
control algorithm is a slowly varied function that depends



4

on time t. Here, by “slowly varied”, we mean the time
derivative of α(t) scales as α̇(t) ∼ O(α/T ), and in general
dnα(t)/ dtn ∼ O(α/Tn). To be more precise, we will
calculate the difference between both sides of Eq. (16)
in detail, where on the left-hand side is the evolution we
can achieve with only 1-photon drive, and on the right-
hand side is the target unitary operation that we want
to achieve. Notice that, unlike the constant α case in the
main text that T ∝ 1/(χα), here we do not have such
property rigorously. But, it is still reasonable to assume
that T roughly scales as O(1/χα) since the dominant

part in Ĥdr is still [χα(t)â
†(n̂−r)+h.c.] if α is large. We

will keep this assumption in the following derivation.

First, let us calculate the difference of unitary op-
eration within each time slice t ∈ [kδT, (k + 1)δT ]
where k is an integer and 0 ≤ k < M . We de-

note Ûk = T exp{−i
∫ (k+1)δT

kδT
Ĥ ′

dr[α̃(t)] dt} and Ûtar,k =

T exp{−i
∫ (k+1)δT

kδT
Ĥdr[α(t)] dt}. Recall that α̃(t) =

α(t)f(t), where f(t) is a periodic function with period
δT , scales as O(1), and satisfies Eq. (14, 15). Without
loss of generality, we can just focus on k = 0 case and

calculate Û0Û
†
tar,0, since ÛkÛ

†
tar,k with any k has a similar

structure as the situation with k = 0. By analogy with
the Magnus expansion, we have

Û0Û
†
tar,0 = exp

(
− i

∫ δT

0

dt [Ĥ ′
dr(t)− Ĥdr(t)]−

1

2

∫ δT

0

dt2

∫ t2

0

dt1{[Ĥ ′
dr(t2), Ĥ

′
dr(t1)]− [Ĥdr(t2), Ĥdr(t1)]}

+
1

2

∫ δT

0

dt2

∫ δT

0

dt1[Ĥ
′
dr(t2), Ĥdr(t1)] + R̂3

)
.

(S16)

It is easy to see that R̂3 is anti-Hermitian and R̂3 ∼
O[(χα2δT )3]. As we discussed in the main text, if α(t)
is a constant within t ∈ [0, δT ], the first and the second
order terms written explicitly in Eq. (S16) are zero. But
here we want to talk about the more general case that
α(t) is time dependent. Even in this situation, we will
show that the contribution of the error from the first two
orders are small compared with the third order term.

We can write α(t) as

α(t) = α(t0) + α̇(t0)(t− t0) +
1

2
α̈(t0)(t− t0)

2

+O[(t− t0)
3],

(S17)

where t0 = δT
2 . Since we assumed that α(t) is a slowly

varied function, we have α̇ ∼ O(α/T ) and α̈ ∼ O(α/T 2).
As a result, based on the structure of f(t), for the first
order term we have

∫ δT

0

dt χ[α̃(t)− α(t)] ∼ O

[
χα(δT )3

T 2

]
,

∫ δT

0

dt χα̃2(t) ∼ O

[
χα2(δT )3

T 2

]
.

(S18)

Since we have assumed that T ∼ O(1/χα), both of the
two terms are smaller compared with O[(χα2δT )3] when
α is large.

A similar analysis can be performed for the second-
order terms. The dominant part lies in [Ĥ ′

dr(t2), Ĥ
′
dr(t1)]

since it contains O[(χα2)2] coefficients. We find that

∫ δT

0

dt2

∫ t2

0

dt1 χ
2[α̃2(t2)α̃

∗2(t1)− α̃∗2(t2)α̃
2(t1)]

∼ O

(
χ2α4(δT )3

T

)
,

(S19)

which is also a higher order term compared with
O[(χα2δT )3]. So, the dominant scaling of Trotter error
does not change even if α(t) is a slowly varied function
introduced in Eq. (7).

S4. ERRORS FROM INACCURATE CONTROL

In this part, we will investigate the extra infidelity
induced by inaccurate control of Λ1(t). As shown in
Sec. S2, |Λ1| ∼ O(αM/T ) can be strong enough so that
a deviation for a small portion of it may cause a huge
impact. Here we consider the problem that how the
infidelity changes if the actual driving pulse we use is
(1 + η)Λ1(t) where η is a small dimensionless number.
We first briefly derive the contribution of the extra

ηΛ1(t) to the dynamics. Notice that, if we go to the
same displaced rotating frame as mentioned in the main
text, now the Hamiltonian should be written as

Ĥη = Ĥ ′
dr[α̃(t)] + [ηΛ1(t)â

† + h.c.], (S20)

where Ĥ ′
dr[α̃(t)] has been defined in Eq. (9) and Λ1(t) =

χα̃(t)[|α̃(t)|2 − r] + iκα̃(t)/2+ i ˙̃α(t) (as in Eq. (10)). We
can again perform a frame transformation such that â→
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FIG. S2. Fidelity changes due to the amplitude deviation
with the ideal pulses for the Fock |1⟩ state preparation task,
as explained in Sec. S4.

â+ β(t) where β(t) satisfies

β̇(t) +
κ

2
β(t) = −iηΛ1(t). (S21)

Further, due to the specific form of Λ1(t), we can write
β(t) = β1(t) + β2(t) where β1(t) = ηα̃(t) and β2(t) =

−iη
∫ t

0
e−κ(t−t′)/2χα̃(t′)[|α̃(t′)|2 − r] dt′. It is worth men-

tioning that, although i ˙̃α dominates in Λ1, its contribu-
tion to β is much smaller compared with the contribution
from the O(χα3) term, provided that α≫ 1.

Now the Hamiltonian in the new frame should be

Ĥ ′
η =

χ

2
(â† + β∗)2(â+ β)2

+ {χα̃(â† + β∗)[(â† + β∗)(â+ β)− r] + h.c.}
+ [

χ

2
α̃2(â† + β∗)2 + h.c.].

(S22)

Clearly Ĥ ′
η deviates from the ideal Ĥ ′

dr[α̃(t)] as β in-
creases from zero. Besides, in general β(T ) ̸= 0, which
suggests that we need an extra displacement operation
D̂[β(T )] to let the states go back to the non-displaced
frame. But in practice we do not know what the β(T )
is and will not actively apply this operation, which may
lead to extra errors.

Finally we try to numerically consider a specific exam-
ple, which is the Fock |1⟩ state preparation with constant
α as mentioned in Sec. S2. We assume that, T and M
are chosen optimally such that for a given target infidelity
ϵ0 we have c1κT = 14

15ϵ0 and c2
M4(χT )6 = 1

15ϵ0. However,

during the constant α evolution time the actual 1-photon
driving amplitude we implement is (1 + η)Λ1(t). From
FIG. S2 we can see how the fidelity F = 1− ϵ decreases
as the increase of the inaccuracy η. We notice that for a
smaller ϵ0 expected, we need a larger α. However, larger
α will result in larger deviation β. The fidelity will be
more sensitive to η with larger α and therefore it decays
faster as η grows when ϵ0 is small.

S5. DYNAMICS BEYOND ROTATING WAVE
APPROXIMATION

A. Overview

In the main text, we did not talk about any property
related to the resonator frequency ωc, since it simply dis-
appears after we go to the rotating frame and perform the
rotating wave approximation (RWA). In practice, how-
ever, the validity of RWA will set a limitation on our
current protocol. If we can do either charge or flux drive
but not both, then the driving amplitude Λ1 cannot be
too strong, which further limits the maximum |α| and the
oscillation frequency ωr for α̃(t) that is used to suppress
the infidelity. In this section, we will discuss the effects
of those off-resonant terms in the aspect of scaling, and
we also provide some strategies to partially compensate
for them.
Before we start to talk about the specific problem,

we will briefly explain the analysis strategy we are go-
ing to use. Rather than going to the displaced rotating
frame we mentioned in the main text, which is treated
as the 0-th order reference frame here, we try to find an-
other reference frame with higher order corrections on the
original one and compare the difference between Hamil-
tonian there and the one (Ĥ ′

dr[α̃(t)]) we desire to engi-
neer. To make sure the dynamics induced by the differ-
ence between the two Hamiltonian are negligible, we need
higher-order corrections on the 1-photon driving ampli-
tude Λ1(t) and frequency ω1(t), together with several as-
sumptions on the relationship among some relevant pa-
rameters (see Eq. (S30) for example).
As we shall see, there are two kinds of terms in the dif-

ference between desired and actual Hamiltonian. One
kind includes terms that have a fast-oscillating coeffi-
cient, which is usually proportional to eikωct or eikωrt

with nonzero integer k; while another kind contains those
terms without fast-oscillating factors, which are called as
“slowly varied” terms. Besides, we also call terms with
coefficients eikωrt “slowly varied” when they are com-
pared with eikωct (or we call “slowly varied” compared
with ωc for short).
For both cases, the dynamics induced by those terms

is negligible if the amplitudes (absolute value) of their
coefficients are too small such that the integration of the
amplitudes over gate time T is far less than 1. For exam-
ple, terms with slowly varied coefficient c(t) or the fast

oscillating c(t)eiωt can be both ignored if
∫ T

0
|c(t)|dt≪ 1.

However, for terms with fast oscillating coefficients that
do not belong to the former situation, we need to consider
some effective Hamiltonian corresponding to those terms.
For example, the dynamics generated by a Hamiltonian
like Ĥ = Âeiωt + Â†e−iωt can be approximated by that
generated via an effective Hamiltonian Ĥeff = [Â, Â†]/ω,
provided that ω is much larger than some specific matrix
norm of Â. This can be simply demonstrated via Magnus
expansion. In this way, we will focus on the scaling of the
coefficients for those slowly varied effective counterparts
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and see if the time integration of those is far less than
1 and therefore negligible as well. Similarly, remember
that in the parameter regime we want to work in, the
coherent error induced by (χ2 α̃

2â†2 + h.c.) is negligible.

In general, for terms that oscillate in the form of f2(t)
(where f(t) is a periodic function with frequency ωr and
satisfies Eq. (14, 15)), their contribution to the dynam-
ics can be ignored even when their amplitudes scale as
O(χα2). We will also make use of this fact later. These
discussions provide support for the following derivations.

Our scaling analysis also relies on some assumptions for
the ideal blockade Hamiltonian. We assume the dimen-
sion of the blockade subspace is small, such that in the
scaling analysis the matrix elements of â and â† are of the
order O(1) when dynamics is restricted into the block-
ade subspace. Also, we assume that the control func-

tion α(t) is slowly varied in time, which (as mentioned in
Sec. S3) implies that the time derivative of α(t) scales as
α̇(t) ∼ O(α/T ), and similarly dnα(t)/ dtn ∼ O(α/Tn).

B. Detailed scaling analysis on the dynamics

In general, the Hamiltonian in the lab frame without
RWA should be written as

Ĥ =
χ

12
(â† + â)4 + (ωc − χ)â†â

+ [Λ1(t)e
−iω1(t)t + Λ∗

1(t)e
iω1(t)t](â† + â).

(S23)

From then on we denote ϕd(t) := ω1(t)t − ωct and as

shown in the main text we have ϕ̇d(t) ∼ O(χα2). If we
still go to the displaced rotating frame shown in the main
text, the Hamiltonian will become

ĤNR =
χ

2
(â† + α̃∗)2(â+ α̃)2 − ϕ̇d(t)(â

† + α̃∗)(â+ α̃) + [(Λ1(t)− i ˙̃α− iκα̃/2)â† + h.c.]

+ (Λ∗
1(t)e

2iϕd(t)e2iωctâ† + h.c.)

+

{[
χ

3
(â† + α̃∗)3(â+ α̃) +

χ

2
(â† + α̃∗)2

]
e2iϕd(t)e2iωct +

χ

12
(â† + α̃∗)4e4iϕd(t)e4iωct + h.c.

}
.

(S24)

It can be easily seen that we can recover the Hamilto-
nian under RWA by throwing away all the fast oscillating
terms related to eiωct. Therefore, as proposed earlier we

can choose Λ
[0]
1 and ϕ

[0]
d to achieve the desired Hamilto-

nian under RWA by

Λ
[0]
1 = ϕ̇

[0]
d α̃[0] − χα̃[0](|α̃[0]|2 + r) + i ˙̃α[0] + iκα̃[0]/2,

ϕ̇
[0]
d = 2χ|α̃[0]|2.

(S25)

where α̃[0] is the α̃ function we designed in the main text.

Now we want to focus on those fast oscillating terms.
One way is to go to a slightly different displaced frame
to absorb some large components. Note that Λ1 ∼ i ˙̃α ∼
αωr ≫ χα3, which means (Λ∗

1(t)e
2iϕd(t)e2iωctâ† + h.c.)

has the largest amplitude and we want to deal with it
first. Basically, we want to choose α̃ = α̃[0] + α̃[1] such
that the amplitude of the linear â† term can be mostly
absorbed in α̃[1]. We first introduce α̃[1′] tentatively such
that

i ˙̃α[1′] + iκα̃[1′]/2 = [Λ
∗[0]
1 + χα̃∗[0](|α̃[0]|2 + 1)]e2iϕ

[0]
d (t)e2iωct

+
χ

3
(α̃∗[0])3e4iϕ

[0]
d (t)e4iωct +

χ

3
(α̃[0])3e−2iϕ

[0]
d (t)e−2iωct.

(S26)

For simplicity, we denote the right-hand-side (RHS) of
the equation above as g(t).

The solution for α̃[1′] can be written down explicitly as

α̃[1′](t) = −i
∫ t

0

e−κ(t−t′)/2g(t′) dt′. (S27)

Via the technique of integration by parts, we have the

following identity

∫ t

0

h(t′)eiωt′ dt′ =
k∑

n=0

(
i

ω

)n+1

[h(n)(0)− h(n)(t)eiωt]

+

(
i

ω

)k+1 ∫ t

0

h(k+1)(t′)eiωt′ dt′,

(S28)
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where h(n)(t) = dn

dtnh(t). In Eq. (S28) we have implic-

itly assumed that h(n)(t) is a continuous function for
n ≤ k. Notice that if for any m, 1

ω | d
dt lnh

(m)(t)| =
1
ω

|h(m+1)(t)|
|h(m)(t)| ≪ 1, then the summation in the first line

of Eq. (S28) can be convergent quickly and the residual
terms can be ignored. In our situation here when calcu-
lating α̃[1′](t), we need to assume ωr/ωc ≪ 1 since α̃[0](t)

and Λ
[0]
1 (t) contains frequency components related to ωr.

In fact, as mentioned in former sections we always as-
sume that κ ≪ χα ≪ ϕ̇d ∼ χα2 ≪ ωr to guarantee
high-fidelity operations, which means the assumption of
ωr/ωc ≪ 1 implies κ/ωc ≪ 1 and χα2/ωc ≪ 1. Later on,

we simply ignore contributions from the factor e−κ(t−t′)/2

since we want to work in the regime that κt ≤ κT ≪ 1
to achieve high fidelity. Also, it varies slowly over time,
so it will not affect any scaling analysis when taking time
derivatives of this.
With the trick mentioned above, we can write α̃[1′] in

the following form:

α̃[1′] = α̃[1′,0]+ α̃[1′,1]e2iωct+ α̃[1′,2]e4iωct+ α̃[1′,−1]e−2iωct.
(S29)

We first analyze α̃[1′,1] since Λ
∗[0]
1 dominates in g(t).

For the lowest order term (n = 0) in Eq. (S28), notice

that Λ
[0]
1 contains i ˙̃α[0] term where α̃[0](t) = α(t)f(t),

we have the leading contribution in α̃[1′,1] as α̃[1′,1] ≃
iα∗ḟ∗

2ωc
e2iϕ

[0]
d ∼ O(αωr

ωc
). It also contains O(χα

3

ωc
) terms

that come from those O(χα3) parts in g(t) and those

implicitly in Λ
[0]
1 . Also, since we assumed α(t) varies

slowly that α̇(t) ∼ O(α/T ) ∼ O(χα2), it gives a correc-

tion to the estimation of α̃[1′,1] with O( α̇fωc
) ∼ O(χα

2

ωc
).

Besides, the second order term (n = 1) in Eq. (S28) can

give a contribution of O(αf̈ω2
c
) ∼ O(

αω2
r

ω2
c
). Using simi-

lar argument, we can show that α̃[1′,2] ∼ O(χα
3

ωc
) and

α̃[1′,−1] ∼ O(χα
3

ωc
). The analysis for α̃[1′,0] is a little dif-

ferent. As mentioned in the main text, in practice we
start with α(0) = 0 while α̇ ∼ O(α/T ) ∼ O(χα2). There-

fore, we have Λ
[0]
1 (0) ∼ O(χα2) so that α̃[1′,0] ∼ O(χα

2

ωc
).

Other terms from g(t) will only cause higher order cor-
rections.

Later we want to show how we can partially compen-
sate for the effects of those fast-oscillating terms and even
with this technique we still need further assumptions that

χα3

ωc
≪ 1,

αω2
r

ω2
c

≪ 1, (S30)

so that the residual effects could be small.

We focus on the change of the Hamiltonian under the
new displaced frame with α̃ = α̃[0] + α̃[1′]. We want
first to check those extra terms (in comparison with

Ĥ ′
dr[α̃(t)]) which are induced by α̃[1′] and do not con-

tain fast oscillating factor (factor eikωct where |k| ∈ N+).
We try to show the dominant effect from each term in
Eq. (S24), and evaluate their contributions under as-
sumptions Eq. (S30).

For the corrections with cubic â or â† terms (includ-
ing â†3, â†2â and their Hermitian conjugate), their co-

efficients will be of O(χα̃[1′]), whose amplitudes scale at
most O(χαωr

ωc
). Even without the fast-oscillating factor,

the integration of their amplitudes over time will give us
χαT ωr

ωc
∼ ωr

ωc
≪ 1 (where we have used T ∼ 1

χα ), which

means the contribution from those correction terms to
the dynamics are small.

For the correction induced by slowly varied (in com-
parison with ωc) â†â terms, it can come from ei-

ther 2χ|α̃|2â†â or (χα̃∗2e2iϕ
[0]
d e2iωct + c.c.)â†â, where

c.c. stands for “complex conjugate”. The former will
lead extra slowly varied â†â terms with coefficients like

(2χα̃[0]α̃∗[1′,0] + c.c.) ∼ O( 1
T

χα2

ωc
) and 2χ|α̃[1′,1]|2 ∼

O( 1
T

αω2
r

ω2
c
), while the coefficient of the dominant correc-

tion from the later will be (2χα̃∗[0]α̃∗[1′,1]e2iϕ
[0]
d + c.c.) ∼

O(χα2 ωr

ωc
). We introduce ϕ

[1]
d (t) function and make its

time derivative ϕ̇
[1]
d (t) to be equal to the summation of

all the slowly varied coefficients of the correction terms,
as

ϕ̇
[1]
d (t) = 2χ





2∑

k=−1

|α̃[1′,k]|2 + (α̃[0]α̃∗[1′,0] + c.c.) + {[(α̃∗[0] + α̃∗[1′,0])α̃∗[1′,1] + α̃∗[1′,2]α̃∗[1′,−1]]e2iϕ
[0]
d + c.c.}



 . (S31)

Apparently we still have ϕ̇
[1]
d ∼ O(χα2 ωr

ωc
). This term

may not be ignored and later we will show that we can
compensate for that by changing the frequency ω1(t) of
the linear drive.

Then we discuss the corrections for slowly varied (in
comparison with ωc) â

†2 terms which come from χ
2 (α̃ +

α̃∗e2iϕ
[0]
d e2iωct)2â†2. Those corrections are
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χ

2
{(2α̃[0] + α̃[1′,0] + α̃∗[1′,1]e2iϕ

[0]
d )(α̃[1′,0] + α̃∗[1′,1]e2iϕ

[0]
d )

+ 2[α̃∗[1′,1] + (α̃∗[0] + α̃∗[1′,0])e2iϕ
[0]
d ](α̃∗[1′,−1] + α̃∗[1′,2]e2iϕ

[0]
d )}â†2.

(S32)

The dominant coefficient of the correction will be
χα̃[0]α̃∗[1′,1]e2iϕ

[0]
d ∼ O(χα

2ωr

ωc
). Although the amplitude

of this term might be large, we notice that α̃[1′,1] ≃
iα∗ḟ∗

2ωc
e2iϕ

[0]
d with corrections of the order O(χα

2

ωc
) and

O(
αω2

r

ω2
c
). As a result, χα̃[0]α̃∗[1′,1]e2iϕ

[0]
d ≃ −iχα2fḟ

2ωc
.

We notice that fḟ
ωc

is a periodic function with period

δT = 2π
ωr

. By averaging within each period, we have

fḟ =
∫ δT

0
fḟ dt = 0. So, fḟ is a linear superposition

of fast oscillating eikωrt functions with nonzero integer
k. We can now use the effective Hamiltonian argument
we brought up previously. The commutator between this
and the 0-th order [χ(α̃[0])2â†2+h.c.] will give an effective

term with amplitude scaled as 1
ωr

(χα
2ωr

ωc
)(χα2) ∼ χα3

ωc

1
T ,

which is negligible after integration over time T under
our assumptions Eq. (S30). However, this trick does

not apply to higher order correction terms of α̃∗[1′,1] like

− αf̈
4ω2

c
∼ O(

αω2
r

ω2
c
), since it may lead to slowly varied correc-

tions (compared with ωr) in χα̃
[0]α̃∗[1′,1]e2iϕ

[0]
d . But with

the second assumption in Eq. (S30), after integration over

time we still have χα
αω2

r

ω2
c
T ≪ 1, which means the con-

tribution from the higher order correction of α̃∗[1′,1] can
still be ignored. We can similarly argue that other terms
in Eq. (S32) can be ignored since the amplitudes of their
coefficients are also too small.
Now we start the procedure of partial compensation.

We adjust the 1-photon driving frequency such that ϕd =

ϕ
[0]
d +ϕ

[1]
d . Therefore, we choose a new correction α̃[1] for

the displaced frame which satisfies

i ˙̃α[1] + iκα̃[1]/2 = [Λ
∗[0]
1 + χα̃∗[0](|α̃[0]|2 + 1)]e2i[ϕ

[0]
d (t)+ϕ

[1]
d (t)]e2iωct

+
χ

3
(α̃∗[0])3e4i[ϕ

[0]
d (t)+ϕ

[1]
d (t)]e4iωct +

χ

3
(α̃[0])3e−2i[ϕ

[0]
d (t)+ϕ

[1]
d (t)]e−2iωct.

(S33)

The only difference between here and Eq. (S26) is that

we use e2ki[ϕ
[0]
d (t)+ϕ

[1]
d (t)] instead of e2kiϕ

[0]
d (t). We denote

α̃[1] = α̃[1,0] + α̃[1,1]e2iωct + α̃[1,2]e4iωct + α̃[1,−1]e−2iωct.
(S34)

Then, from Eq. (S28) we can find that

α̃[1,1] = α̃[1′,1]e2iϕ
[1]
d (t) +O(

Λ1

ωc

ϕ̇
[1]
d

ωc
)

= α̃[1′,1]e2iϕ
[1]
d (t) +O(

χα3ω2
r

ω3
c

).

(S35)

Similarly, we can also find that the difference be-

tween α̃[1,k] and α̃[1′,k]e2ikϕ
[1]
d (t) (for k = −1, 0, 2) are

even smaller compared with O(
χα3ω2

r

ω3
c

) in the scaling

aspect. The difference between α̃[1] and α̃[1′] can
lead to extra non-fast-oscillating (compared with ωc)
terms. For example, the extra coefficient induced in
this way for â†â will be at most the same scaling

as [2χα̃∗[0](α̃∗[1,1]e2i(ϕ
[0]
d +ϕ

[1]
d ) − α̃∗[1′,1]e2iϕ

[0]
d ) + c.c.] ∼

O(
χα3ω2

r

Tω3
c
), which will be far less that 1 and therefore

can be ignored after integration over time. We can use
the same way to argue the extra effect from non-fast-
oscillating correction of â†2 term can be ignored, due to
the similarity in the structure of α̃[1] and α̃[1′].
The coefficient of slowly varied correction (in compar-

ison with ωc) for â
† term will be at most O(χα2α̃[1,1]) ∼

O(χα3 ωr

ωc
). To deal with it, we introduce a correction for

Λ1 = Λ
[0]
1 + Λ

[1]
1 , where
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Λ
[1]
1 = − χ[(|α̃[0] + α̃[1,0]|2 + |α̃[1,1]|2 + |α̃[1,2]|2 + |α̃[1,−1]|2)(α̃[0] + α̃[1,0] + α̃∗[1,1]e2iϕd)− |α̃[0]|2α̃[0]]

− χ[α̃[1,1](α̃∗[0] + α̃∗[1,0]) + (α̃[0] + α̃[1,0])α̃∗[1,−1] + α̃[1,2]α̃∗[1,1]](α̃[1,−1] + α̃∗[1,2]e2iϕd)

− χ[α̃∗[1,1](α̃[0] + α̃[1,0]) + (α̃∗[0] + α̃∗[1,0])α̃[1,−1] + α̃∗[1,2]α̃[1,1]][α̃[1,1] + (α̃∗[0] + α̃∗[1,0])e2iϕd ]

− χ[(α̃[0] + α̃[1,0])α̃∗[1,2] + α̃[1,−1]α̃∗[1,1]](α̃[1,2] + α̃∗[1,−1]e2iϕd) + χα̃∗[1,1]e2iϕd

+ [ϕ̇
[0]
d α̃[1,0] + ϕ̇

[1]
d (α̃[0] + α̃[1,0])]

− χ[α̃∗[1,2](α̃∗[0] + α̃∗[1,0])2 + 2α̃∗[1,2]α̃∗[1,1]α̃∗[1,−1] + (α̃∗[1,1])2(α̃∗[0] + α̃∗[1,0])]e4iϕd

− χ[2α̃[1,−1](α̃[0] + α̃[1,0])α̃[1,2] + α̃[1,−1](α̃[1,1])2 + (α̃[0] + α̃[1,0])2α̃[1,1]]e−2iϕd .

(S36)

Here Λ
[1]
1 ∼ O(χα3 ωr

ωc
) is chosen to fully absorb those

non-fast-oscillating corrections. It is still worth to
mention that after this change there will be extra

Λ
∗[1]
1 e2iϕd(t)e2iωct and some other fast-oscillating terms

with amplitude scaled at most O(χα3 ωr

ωc
) in the new

Hamiltonian, since all others with larger amplitudes have
been absorbed due to Eq. (S33).

Further, we can introduce a correction α̃[2] ∼
O(χα3 ωr

ω2
c
) ≪ 1 and repeat all the steps we did (including

ϕ
[2]
d and Λ

[2]
1 compensation) so that the contribution from

α̃[2] are too small and we can ignore this. After k rounds
of all those corrections, terms â† with coefficients oscil-

lating in the speed of ωc will be at most O[αωr(
χα2

ωc
)k],

which will be small compared with 1
T for k ≥ 3 under the

assumptions in Eq. (S30).
Finally we talk about the effects from those fast-

oscillating terms (under ωc) of â†2, â†â and â2 in
Eq. (S24), whose coefficients are at most O(χα2). We

denote the summation of them as ĤNR,2(t), which can
be written as

ĤNR,2(t) =
{[χ

2
[(2|α̃[0]|2 + 1)e2iϕde2iωct + (α̃∗[0])2e4iϕde4iωct] +O(

χα2ωr

ωc
e2ikωct)

]
â†2 + h.c.

}

+
[
[χ(α̃∗[0])2e2iϕde2iωct + c.c.] +O(

χα2ωr

ωc
e2ikωct)

]
â†â.

(S37)

We denote ÛNR,2(t) := T exp
(
−i
∫ t

0
ĤNR,2(t

′) dt′
)
,

then for any Hamiltonian Ĥ we can perform a frame

transformation to get a new one Ĥ ′ = Û†
NR,2ĤÛNR,2 +

i
˙̂
U†
NR,2ÛNR,2 = Û†

NR,2(Ĥ − ĤNR,2)ÛNR,2. We can choose

Ĥ as the Hamiltonian after going to the displaced rotat-
ing frame with all rounds of corrections. To achieve Ĥ ′,
we can replace â with â(t) := Û†

NR,2(t)âÛNR,2(t) and â†

with â†(t) := Û†
NR,2(t)â

†ÛNR,2(t) in (Ĥ − ĤNR,2) (also

if we consider loss we need to change D[â] into D[â(t)]).
From the definition of â(t) and â†(t), we have

dâ(t)

dt
= (−i)[χ(2|α̃[0]|2 + 1)e2iϕde2iωct + χ(α̃∗[0])2e4iϕde4iωct +O(

χα2ωr

ωc
e2ikωct)]â†(t)

− i
[
[χ(α̃∗[0])2e2iϕde2iωct + c.c.] +O(

χα2ωr

ωc
e2ikωct)

]
â(t),

(S38)

and also ˙̂a†(t) = [ ˙̂a(t)]† is also equal to a linear superpo-
sition of â†(t) and â(t). From scaling analysis we know

that (χα2)2

ωc
T ∼ χα3

ωc
≪ 1, which allows us to use Dyson

series expansion to solve Eq. (S38) and only keep the
lower order outcomes. Together with Eq. (S28), we can
achieve the solution for â(t) and â†(t) approximately with
dominant terms in the following:
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â(t) ≃ {1− χ

2ωc
[(α̃∗[0])2e2iϕde2iωct − c.c.] +

iχ2

ωc

∫ t

0

[2(|α̃[0](t′)|2 + 1

2
)2 +

|α̃[0](t′)|4
4

+O(
α4ωr

ωc
)] dt′}â +

{
− [

χ(2|α̃[0]|2 + 1)

2ωc
e2iϕde2iωct +

χ(α̃∗[0])2

4ωc
e4iϕde4iωct]

+
iχ2

ωc

∫ t

0

{[α̃[0](t′)]2(2|α̃[0](t′)|2 + 1) +O(
α4ωr

ωc
)}dt′

}
â†.

(S39)

We can see that the difference between â(t) and â is lin-

ear in â and â† whose coefficients are at most O(χ
2α4T
ωc

),
which are far less than 1. Let us focus on the terms
without eikωct factors first. Notice that the leading-
order terms come from the time integration of some
polynomials of α̃[0] and α̃∗[0] with at most fourth or-
der, which is denoted as p(α̃[0], α̃∗[0]) later in general.
Also α̃[0](t) = α(t)f(t) where f(t) is a periodical func-
tion that can be written as a Fourier series with ba-
sis eikωrt (k ∈ Z). Due to the time integration in
χ2

ωc

∫ t

0
p(α̃[0], α̃∗[0]) dt′, only the coefficient of eikωrt with

k = 0 scales as O(χ
2α4T
ωc

) ∼ O(χα
3

ωc
), while terms that

oscillate as eikωrt (with nonzero k) only have amplitudes

that scale as at most O(χ
2α4

ωrωc
). Therefore, for the cor-

rections that come from χ
2 (α̃

[0])2([â†(t)]2 − â†2), they

contain terms with amplitude O(χα2 · χα3

ωc
) ≪ O(χα2)

but oscillate in the form of f2(t), whose effect is ig-
norable as we argued at the beginning of the section.
They also contain slowly varied part with coefficients

at most O(χα2 · χ2α4

ωcωr
) ∼ O(χα

2

ωr
· χα3

ωc
· 1

T ), which are
again ignorable after integration over time T . We can
similarly demonstrate that the corrections coming from
χα̃[0]α̃∗[1,1]e2iϕd [â†(t)]2 and other high-order terms are
negligible.

Besides, after going to the reference frame with ÛNR,2,
the fast-oscillating (under ωc) â

†2 or â†â terms left have

amplitudes at most O(χ
2α4

ωc
) ∼ χα3

ωc
· 1

T ), which are
sufficiently small. Finally, since we work in a small-
dimensional blockade subspace with only several excita-

tions as assumed, as well as χ2α4T
ωc

≪ 1, the corrections

due to the frame transformation Û†
NR,2(T ) on the final

states are negligible. This concludes all the evidence that
under assumptions in Eq. (S30), the dynamics affected by
terms beyond RWA in Eq. (S24) could be ignorable, in
the aspect of scaling analysis.

C. Both charge and flux drives

Things will be different if we can drive both charge and
flux simultaneously. In this case, our 1-photon driving

term can be implemented as

Re[Λ1(t)e
−iω1(t)t](â+ â†)

+ Re[iΛ1(t)e
−iω1(t)t] · i(â− â†)

= Λ1(t)e
−iω1(t)tâ† + Λ∗

1(t)e
iω1(t)tâ.

(S40)

In this way, our leading non-RWA term in Eq. (S23) is
gone. As a result, the improved hardware controllability
can also help to mitigate the non-RWA effects.

D. Rough lower bound on operation infidelity

We want to point out that the requirement for χα3

ωc
≪ 1

is actually necessary since without the assumption the
ĤNR,2 term will affect the dynamics a lot. Even if we
can directly implement 2-photon drive, or we can do both
charge and flux drives, the requirement is still there due
to the difference between the original Kerr term χ(â +
â†)4/12 and the simplified one χâ†2â2/2 after RWA. We

can use the χα3

ωc
≪ 1 condition to derive a lower bound on

the infidelity of Fock |1⟩ state preparation using constant
α. Since α < (ωc/χ)

1/3, we have

T >
π

2(ωcχ2)1/3
. (S41)

So, even in the case that power is not a constraint, and
we are allowed to design κe as small as possible, we still
have

ϵ > c1κiT >
3π(κi/χ)

16(ωc/χ)1/3
=

3π(κi/χ)
2/3

16Q
1/3
i

, (S42)

where we have already put c1 = 3
8 in it, and Qi =

ωc/κi is the internal quality factor. We denote ϵmin :=
3π(κi/χ)

2/3

16Q
1/3
i

, which serves as a lower bound of the infidelity

that can be achieved.

S6. ROUGH LOWER BOUND FOR INPUT
POWER NEEDED

Here we consider some extreme cases to provide a
rough lower bound of the input power needed for our
protocol. We assume that we could directly implement
2-photon drives so that the infidelity only comes from
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photon loss that ϵ = c1(κe + κi)T . Besides, we further
assume that the 2-photon drives can be implemented in
some power-efficient manners such that we only need to
consider the power consumed by 1-photon drives. How-
ever, from Eq. (3) we still have Λ1 ≃ 2χα3, and therefore
the input power we need scales as Pin ∝ α6. To prepare
|1⟩ state with constant α, the power-dependent infidelity
satisfies the following equation

ϵ = c1
π

2

κe + κi

κ
1/6
e

(
4ℏωc

Pinχ4

)1/6

. (S43)

We can choose κe

κi
= 1

5 to further minimize ϵ when
κi is fixed, and therefore achieve the error scaling ϵ ∝
κ
5/6
i /(P

1/6
in χ2/3). Equivalently, the rough lower bound of

the input power Pin for a given infidelity ϵ satisfies

Pin =
4(3πc1)

6

55
ℏωc

κ5i
χ4ϵ6

. (S44)

S7. FEASIBILITY ON ACTUAL PLATFORMS

In this section, we try to consider parameters from dif-
ferent kinds of experimental platforms and check if it is
feasible to use our protocol to achieve some high-fidelity
operations on those devices. For simplicity we still con-
sider the Fock |1⟩ state preparation task. We will check
the requirements for RWA and the input power needed
in order to achieve a certain fidelity derived under RWA.
It is worth mentioning that, although our RWA require-
ments are derived under assumptions that α(t) is slowly
varied with α(0) = α(T ) = 0 and f(t) itself is analytic,
in this section we still focus on the method with con-
stant α and f(t) defined in Eq. (S9) to calculate relevant
parameters. More physical α(t) and f(t) functions will
lead to a change of those ci coefficients instead of the
scaling properties, so we can still use those ideal choices
to get a taste of the feasibility of our protocol on different
platforms.

A. Optical ring resonators

In this part, we talk about the possibility of imple-
menting our protocol on optical ring resonators with χ(3)

nonlinearity. We first estimate the self-Kerr χ value with
experimentally achievable platforms, and then check the
RWA requirements by calculating ϵmin, which is a rough
lower bound for infidelity achieved by perturbative anal-
ysis together with parts of the RWA requirements (See
Sec. S5D).

The self-Kerr parameter χ in optical ring resonators
with χ(3) nonlinearity can be calculated by [S7]:

χ = − ℏω2
ccn2

2n2AeffL
, (S45)

where ωc is the frequency of the mode, n and n2 are
the refractive index and nonlinear refractive index corre-
spondingly, and Aeff and L are effective area and length
of the waveguide. In the system proposed in Ref. [S8],
the authors there assumed ωccn2

n2AeffL
= 3.7× 1020 W−1s−2

without pointing out which kind of materials they use
nor those geometrical parameters of the resonators. Be-
sides, the authors hope to achieve an internal loss rate
κi = 2π × 25 MHz, and they mentioned that this as-
sumption is reasonable since the corresponding intrinsic
quality factor Qi ∼ 8×106 is achievable with the silicon-
nitride platform. This discussion indicates that they have
chosen ωc ≈ 2π × 200 THz. With those parameters,
the corresponding χ = −2π × 3.90 Hz. However, when
putting these numbers into Eq. (S42), we can find out
that ϵmin = 102 ≫ 1, which indicates that our pertur-
bative analysis should fall and RWA will be significantly
violated if we want to use our current protocol to prepare
a Fock |1⟩ state.
A similar result is achieved using parameters from an-

other literature [S9]. In their simulation, the parameters
are chosen as γNL := n2ωc

cAeff
= 1 W−1s−2, together with

ωc = 2π × 193 THz, n = 1.7, and L = 400 µm. With
these numbers, we can find that χ = −2π×0.79 Hz. The
intrinsic Q-factor is chosen as 2×106, which corresponds
to κi = 2π × 96.5 MHz. This gives ϵmin = 1151, which
again indicates that our protocol does not work.

B. Photonic crystals

Photonic crystals may perform better to increase Kerr
nonlinearities with smart design by suppression of effec-
tive mode volume. Our discussion in this part builds
on the work from Ref. [S6], where the authors discussed
the χ and κ values that can be possibly achieved using
their novel design of nanocavities with ultra-small mode
volumes. It is claimed to be promising for achieving a
“single-photon Kerr nonlinearity” (χ ∼ κ) regime. In
that work, χ is determined by

χ = −3χ(3)ℏω2
c

2ϵ0n4
VM
V 2
eff

, (S46)

where Veff is the effective mode volume, and VM is an-
other parameter related to cavity design with the unit of
volume.
The authors there provided two types of cavity de-

sign: tip design and bridge design. With the tip cav-
ity design there, in simulations people could achieve
QVM

V 2
eff

≈ 2 × 107λ−3 and quality factor Q ≈ 106. The

λ here is the wavelength of the mode. Besides, in that
work, those authors assumed that the cavity radiation
loss is much larger than material loss so that the same
quality factor applies to cavities with the same design
but different materials. Here we simply follow this as-
sumption to derive κi.
For organic materials like J aggregate (PIC), it has

|χ(3)|/n4 ∼ 1.1 × 10−15m2/V2 at λ = 575 nm, which
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TABLE I. A summary of power needed to achieve 90% fidelity of Fock state |1⟩ with our protocol in photonic crystals designed
in [S6], as well as the check of the self-consistency requirements for RWA.

Cavity
design

Nonlinear
materials

ωc/(2π) |χ|/(2π) κi/(2π) ϵmin Pin,0.9 (ωr/ωc)0.9 (αω2
r/ω

2
c )0.9 (χα3/ωc)0.9

Tip
PIC 521 THz 3.5 THz 0.52 GHz χ ≫ κi

ITO 255 THz 1.9 GHz 0.26 GHz 1.5× 10−3 1.3× 10−5 W 5.8× 10−5 3.3× 10−9 7.1× 10−6

Bridge
GaAs 283 THz 2.7 MHz 0.19 GHz 0.088 4.3× 108 W 0.46 112 1.3

Ge 94.6 THz 9.9 kHz 63 MHz 1.76 ϵmin > 1

gives χ = −2π × 3.5 THz and κi = 2π × 0.52 GHz. In
this case χ is several orders of magnitude larger than κi,
so there will be no need to use our protocol to achieve
universal control.

Inorganic materials like indium tin oxide (ITO) has
|χ(3)|/n4 ∼ 2.12× 10−17m2/V2 at λ = 1175 nm. It gives
χ = −2π × 1.9 GHz with κi = 2π × 0.26 GHz. The
parameters still lie in the strong Kerr-nonlinearity regime
as |χ|/κi > 1, and we only need input power Pin = 1.3×
10−5 W to achieve 90% fidelity of a single photon state
with our protocol.

Similarly, for their bridge cavity design they have
QVM

V 2
eff

≈ 5.5 × 107λ−3 and quality factor Q ≈ 1.5 × 106,

which in general requires a small |χ(3)|/n4 to achieve
the same Kerr nonlinearity. But, as they mentioned,
for usual semiconductor materials like gallium arsenide
(GaAs) with |χ(3)|/n4 ∼ 0.97× 10−20m2/V2 at λ = 1.06
µm, we can get χ = −2π × 2.7 MHz and κi = 2π × 0.19
GHz. In this case, if we want to achieve 90% fidelity at
the optimal point we derived in Sec. S2 under RWA, in
fact we can see that αω2

r/ω
2
c = 112 ≫ 1, which means

the RWA is actually violated. If people can get a better
device with κi 10 times smaller (so that κi = 2π × 19
MHz and κi/χ = 7.0) while other parameters do not
change, it is promising to pass the RWA requirement

with ωr/ωc = 1.5 × 10−3, χα3/ωc = 1.3 × 10−3 and
αω2

r/ω
2
c = 1.1× 10−4 if we want to achieve 90% fidelity.

The power needed will be P = 4.3× 102 W.
For bridge cavity design using Germanium (Ge) as

nonlinear materials with |χ(3)|/n4 ∼ 0.86× 10−20m2/V2

at λ = 3.17 µm, we have χ = −2π × 9.9 kHz and κi =
2π × 63 MHz. However, we find that ϵmin = 1.76 > 1,
which rules out the possibility of using our protocol due
to the violation of RWA.

S8. DERIVATION OF CONTINUOUS VERSION
FORMULAE

In this section, we will use the Magnus expansion
method to derive some “continuous version” formulae in-
cluding Eq. (12) and (S7).

We first use Magnus expansion to compute Û =

T exp
[
−i
∫ δT

0
Ĥ(t) dt

]
up to fourth order explicitly with

Ĥ(t) = Ĥ(δT − t). Notice that

Û = exp





4∑

m=1

(−i)mΩ̂m +O[(δT )5]



, (S47)

where

Ω̂1 =

∫ δT

0

Ĥ1 dt1, Ω̂2 =
1

2

∫
d2t [Ĥ1, Ĥ2], Ω̂3 =

1

6

∫
d3t ([Ĥ1, [Ĥ2, Ĥ3]] + [Ĥ3, [Ĥ2, Ĥ1]]),

Ω̂4 =
1

12

∫
d4t ([[[Ĥ1, Ĥ2], Ĥ3], Ĥ4] + [Ĥ1, [[Ĥ2, Ĥ3], Ĥ4]] + [Ĥ1, [Ĥ2, [Ĥ3, Ĥ4]]] + [Ĥ2, [Ĥ3, [Ĥ4, Ĥ1]]]).

(S48)

Here we use abbreviations for Ĥk := Ĥ(tk) and

∫
dkt :=

∫
· · ·
∫

0≤tk≤tk−1≤···≤t1≤δT

dt1 . . . dtk. (S49)

By making use of the property Ĥ(t) = Ĥ(δT − t), we have the following:

Ω̂2 =
1

2

∫
d2t [Ĥ2, Ĥ1] = −Ω̂2 = 0 (S50)

∫
d4t [[[Ĥ1, Ĥ2], Ĥ3], Ĥ4] =

∫
d4t [[[Ĥ4, Ĥ3], Ĥ2], Ĥ1] = −

∫
d4t [Ĥ1, [Ĥ2, [Ĥ3, Ĥ4]]] (S51)



13

Then, from Jacobi identity we have

∫
d4t [Ĥ1, [[Ĥ2, Ĥ3], Ĥ4]] =

∫
d4t − [Ĥ4, [Ĥ1, [Ĥ2, Ĥ3]]]− [[Ĥ2, Ĥ3], [Ĥ4, Ĥ1]]

=

∫
d4t − [Ĥ1, [Ĥ4, [Ĥ3, Ĥ2]]]− [[Ĥ2, Ĥ3], [Ĥ4, Ĥ1]]

=

∫
d4t − [Ĥ1, [[Ĥ2, Ĥ3], Ĥ4]]− [[Ĥ2, Ĥ3], [Ĥ4, Ĥ1]]

= −1

2

∫
d4t [[Ĥ2, Ĥ3], [Ĥ4, Ĥ1]].

(S52)

Similarly, we have

∫
d4t [Ĥ2, [Ĥ3, [Ĥ4, Ĥ1]]] = −1

2

∫
d4t [[Ĥ4, Ĥ1], [Ĥ2, Ĥ3]], (S53)

which will lead to Ω̂4 = 0.

In summary, we have

Û = exp
{
−iΩ̂1 + iΩ̂3 +O[(δT )5]

}
,

Ûtar = exp

[
−i
∫ δT

0

Ĥ(t) dt

]
= exp

[
−iΩ̂1

]
.

(S54)

Since Ω̂3 is in the order of O[(δT )3], it is easy to see that

Û − Ûtar = O[(δT )3], (S55)

which gives the proof of Eq. (12).
Similarly, with the Baker–Campbell–Hausdorff (BCH)

formula, we can find that

Û
−1/2
tar Û Û

−1/2
tar = exp

{
iΩ̂3 +O[(δT )5]

}
, (S56)

which gives the proof of the “continuous version” corre-
spondence of Eq. (S7).

S9. ESTIMATION OF UNDETERMINED
FACTORS IN EQ. (S13)

In this section, we will show how we estimate the co-
efficients c1, c2 and c3 in Eq. (S13) when focusing on
a specific task described in Sec. S2, which is to prepare
Fock state |1⟩ with constant α and oscillation function
f(t) defined in Eq. (S9).

A. Estimation of c1

In the estimation of c1, we can assume that the pho-
ton blockade is perfectly achieved with ideal Hamiltonian

Ĥqb
dr in Eq. (S6), so we only need to take care of the in-

fidelity induced by photon loss. We can start with the

following Lindblad equation with operators restricted in
the two-level blockade subspace:

dρ̂

dt
= −i[−χασ̂x, ρ̂] + κD[σ̂−]ρ̂. (S57)

The state is initialized as ρ̂(0) = |0⟩⟨0|. To prepare
the |1⟩ state, we require the evolution to last for T =
π

2χα . Since we work in the regime that κ ≪ χα, we

will treat the loss as a perturbation. We first go to the
interaction picture, and then denote Û0(t) = eiχαtσ̂x as

well as ρ̂I(t) = Û†
0 (t)ρ̂(t)Û0(t). Therefore, the evolution

of ρ̂I(t) satisfies

dρ̂I(t)

dt
= κD[Û†

0 (t)σ̂−Û0(t)]ρ̂I(t). (S58)

The final state ρ̂I(T ) up to first order in κ is

ρ̂I(T ) = ρ̂I(0) + κ

∫ T

0

D[Û†
0 (t)σ̂−Û0(t)]ρ̂I(0) dt. (S59)

Recall our definition for infidelity ϵ in Eq. (S4), we have

ϵ = 1− ⟨1| ρ̂(T ) |1⟩ = 1− ⟨0| ρ̂I(T ) |0⟩

= −κ ⟨0|
[∫ T

0

D[Û†
0 (t)σ̂−Û0(t)]ρ̂I(0) dt

]
|0⟩

=
3

8
κT,

(S60)

where T = π
2χα . This result directly indicates that c1 = 3

8

in the protocol we considered.

B. Estimation of c2

Notice that c2 is introduced as a factor in the expres-
sion of Trotter error ϵtt = c2/[M

4(χT )6], so we can nu-
merically estimate it by calculating the infidelity of the
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FIG. S3. Determine c2 = ϵttM
4(χT )6 numerically by varying

M and T . The black dashed line is the reference for c2 = 1.65.

state preparation under Hamiltonian Ĥ ′
dr[α̃(t)] evolution

while varyingM and T . We show the corresponding plot
in FIG. S3 where the data points on it are chosen to
satisfy ϵtt < 0.2, and find out that in the small χT (to
reduce infidelity coming from photon loss) but large M
(to reduce ϵtt) regime we have c2 ≈ 1.65. Since we mainly
care about the scaling behavior in our protocol instead
of exact numbers, we will just use c2 ≈ 1.65 as a rough
estimation when it is needed.

C. Estimation of c3

The derivation of c3 is straightforward, since we just
need to put the exact form of α̃(t) = αf(t) into Eq. (9)
and then calculating the power. As we mentioned in
Sec. S2 that i ˙̃α is the dominant term in Λ1, and due to
our specific design of f(t) in Eq. (S9), we have

|Λ1| ≃ | ˙̃α(t)| = |αḟ(t)| = π2Mα

T
=
π3M

2χT 2
, (S61)

in which we have used α = π
2χT . Therefore, we can finally

achieve

Pin =
|Λ1|2
κe

ℏωc =
π6

4
ℏωc

M2

κeχ2T 4
, (S62)

which directly gives us that c3 = π6

4 ℏωc.

S10. GENERATION OF CONTROL SEQUENCE
WITH NEURAL NETWORK

In this part, we will discuss about the way to use neural
network to generate control pulses in order to solve the
imperfect blockade situation due to the assumption that
we do not have the direct 2-photon drive in experiment.

We still first go to the rotating frame and then the dis-
placed frame, without making constraint between α(t)
and Λ1(t). Besides, we can choose ω1(t) such that there

is no detuning term (â†â) in the new Hamiltonian. There-
fore, we will end up with the following Hamiltonian:

Ĥnew
dr =

χ

2
â†2â2 + {χαnew(t)â†n̂+

χ

2
[αnew(t)]2â†2

+ Λnew
1 (t)â† + h.c.}.

(S63)

In this case, both αnew(t) and Λnew
1 (t) are controllable.

We note that, although r does not come into Ĥnew
dr

explicitly, we still try to achieve the effective photon
blockade during evolution by optimizing the fidelity of
the unitary operations or state preparation tasks within
the subspace spanned by {|0⟩ , . . . , |r⟩} that we want
to block, while adding a penalty function to penal-
ize the average population leakage out of the block-
ade subspace during evolution. Specifically, we can

choose gu = 1
(r+1)T

∫ T

0
dtTr

[
Û†(t)(Î − Π̂r)Û(t)Π̂r

]
as

the penalty function in the unitary operation task, or

gst =
1
T

∫ T

0
dt
〈
ψ(t)

∣∣ (Î− Π̂r)
∣∣ψ(t)

〉
for the state prepara-

tion task, where as in the main text Π̂r =
∑r

n=0 |n⟩⟨n| is
the projection operator onto the blockade subspace. Here
we can understand the dynamics as that, the states that
initially lie in the blockade subspace will always evolves
within it with small leakage, by keeping track of the
evolution with a proper time-dependent displace frame
αnew(t). This also provides another advantage that we
do not have to take a large dimension cutoff which al-
ways associates with numerical computation in bosonic
systems, since we just have to focus on the dynamics
confined in a small subspace with slight leakage.
To encode the variables αnew(t) and Λnew

1 (t) in the
optimization problem, we use sinusoidal representa-
tion neural network with three layers that takes t
as an input and returns the real and imaginary part
of the corresponding control parameter by Φ(t) =
W2 sin

(
W1 sin(W0t+ b0) + b1

)
+ b2, where W0 ∈

R20×1, W1 ∈ R20×20, and W2 ∈ R2×20, and bi are vec-
tors with a dimension consistent with their correspond-
ing Wi [S10]. We then maximize Ftask(α) − g(α) by
finding an appropriate set of Wi and bi that specifies

the controls, where Ftask(α) =

∣∣∣∣Tr
[
Û†
tarÛ(T )

]∣∣∣∣
2

/(r+1)2

for unitary operations and Ftask(α) =
∣∣∣
〈
ψtar

∣∣ψ(T )
〉∣∣∣

2

for

state preparation tasks. To do this we first fix the to-
tal evolution time χT and perform gradient based op-
timization until a convergence criteria is satisfied. Af-
ter finding αnew(t) and Λnew

1 (t) at the end of the opti-
mization, we compute the infidelity by taking the pho-
ton loss (κi + κe)D[â] into account and also the input
power needed. We fix κi and vary κe to find infidelity as
a function of the required power.
Note that as opposed to the Trotter based method

with the sine-basis ansatz of Eq. (7), we do not impose
α(0) = α(T ) = 0 for the neural network ansatz to allow
for more flexibility. These potential non-zero values in
the beginning and end of the protocol can be realized by
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FIG. S4. (a) The outcome of pulse sequences αnew(t) and
Λnew

1 (t) from the neural network with fixed χT = 0.2. (b) The
comparison of maximum power needed and infidelities of state
preparation between pulses from neural network optimization
(shown with dots) with fixed total time T and Trotter-based
design (shown with solid lines) with optimized T and M .

fast displacements. It is also possible to impose a con-
straint on these values by adding another penalty term
to the cost function.

To compare this method with the Trotter scheme, we

consider the single photon Fock |1⟩ state preparation
task. Unlike the protocol examined in Sec. S2, where
the total time T can be optimized analytically based on
χ, κi, and the input power allowed, here we fix T with-
out any optimization attempt, and vary κi to compare
the infidelity as a function of the power for the pulse
sequence generated by the neural network with those ob-
tained in Sec. S2 based on analytical intuition. We show
an example of the outcome in FIG. S4.
We believe that the inferior performance of the neural

network is due to the complexity of finding highly oscilla-
tory functions (as also seen in the Trotter based scheme)
required for relaxing the Λ2(t) requirement. Solving ordi-
nary differential equations with highly oscillatory func-
tions is computationally costly and increases the opti-
mization time. Therefore, even though, in principle, a
highly expressive neural network is capable of represent-
ing the solutions found using the Trotter scheme, it is
difficult to find those (or better) solutions directly using
our optimization techniques. It is interesting to devise
more efficient optimization methods using prior informa-
tion from the success of the Trotter based scheme. We
leave these questions for future work.
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